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ARTICLE

Contrasting social and non-social sources of
predictability in human mobility
Zexun Chen 1,2, Sean Kelty3, Alexandre G. Evsukoff 4, Brooke Foucault Welles5, James Bagrow 6,

Ronaldo Menezes 1✉ & Gourab Ghoshal 3,7✉

Social structures influence human behavior, including their movement patterns. Indeed, latent

information about an individual’s movement can be present in the mobility patterns of both

acquaintances and strangers. We develop a “colocation” network to distinguish the mobility

patterns of an ego’s social ties from those not socially connected to the ego but who arrive at

a location at a similar time as the ego. Using entropic measures, we analyze and bound the

predictive information of an individual’s mobility pattern and its flow to both types of ties.

While the former generically provide more information, replacing up to 94% of an ego’s

predictability, significant information is also present in the aggregation of unknown coloca-

tors, that contain up to 85% of an ego’s predictive information. Such information flow raises

privacy concerns: individuals sharing data via mobile applications may be providing action-

able information on themselves as well as others whose data are absent.
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The recent availability of extensive geolocated datasets
related to human movement, has enabled the quantitative
study of human movement at an unprecedented level1,

contributing greatly to insights in estimating migratory flows,
traffic forecasting, urban planning, mitigating pollution, unco-
vering socioeconomic inequalities, and epidemic modeling among
other applications2–11. Several common regularities have been
observed across these studies, including bursty activity rates,
tendencies to visit a select few locations disproportionately more
than others, as well as decreasing likelihood to explore as time
goes on12–17. A related aspect that can enhance the potential of
these findings, particularly for urban planning and the control of
epidemics, is the ability to predict the future locations of indivi-
duals or groups using their prior history of travel. Indeed, it has
been shown that a perfect algorithm can predict, with between 70
and 90% certainty, an individual’s future location given their
prior location visits18, depending upon the spatiotemporal
granularity of observations19.

Human beings are typically highly social creatures and social
structures can influence behavior in a variety of human activities
including movement patterns. In fact, it has been shown that
social relationships statistically account for between 10 and 30%
of all human movement20. Social structures inherently encode
information flow between parties, such that residual information
about an individual can be inferred from their social ties. Such a
phenomenon was demonstrated in the context of online inter-
actions, where about 95% of an individual’s potential predictive
accuracy was contained in their social network, despite no
recourse to information about the person in question21. Coupled
with the observation that movement patterns in the virtual and
physical domains are strikingly similar22, this leads to the intri-
guing question as to whether one can leverage a person’s social
network to predict their future mobility patterns, absent any
information on their own history. This possibility holds promise
for a number of applications, and may be particularly relevant in
the context of mitigating future pandemics23,24, where a key tool
in the arsenal is contact tracing based on mobility patterns25,26.
However, accurately mapping human mobility can be challenging
due to understandable privacy concerns and people’s willingness
to disclose or share personal data27,28.

Location-based social networks (LBSNs) and call detail records
(CDRs) from mobile phones yield opportunities to examine social
relations to human mobility, containing information both about
sequences of location visits and (in some cases) information on
the underlying social network. At the same time, spatially
aggregating these data can reveal individuals in different social
circles who visit similar or overlapping locations; for instance,
people working in the same building but with different compa-
nies, or parents whose children attend the same schools but are
unknown to each other. These non-social ties are potential pre-
dictors of a person’s mobility trajectory. Terming such individuals
“non-social colocators”, we ask whether and to what extent do
such colocators yield predictive mobility information, and how
this information compares to that of social ties?

Here we apply non-parametric information-theoretic estima-
tors to study human mobility extracted from three LBSNs, that
contain sequences of location trajectories and the (reported)
social network of a subset of users. In addition, we also analyze
CDRs from Rio de Janeiro in Brazil. Each type of dataset has its
own limitations: in the case of LBSNs, the mobility patterns being
biased by the types of individuals using the platform; in the case
of CDRs, the lower-spatial resolution. Despite this, we demon-
strate the existence of information transfer in all four networks,
finding that a given ego’s future location visits can be predicted,
with between 80–100% of the ego’s own accuracy, by studying the
historical patterns of just 10 of their alters (ranked by number of

common locations visited). Remarkably, non-social colocators,
while individually providing less information than social ties, can
in the aggregate provide similar levels of predictability. The
information flow provided by colocators is also surprisingly
robust to temporal-displaced colocations, implying users that
never physically colocate can still provide comparable informa-
tion to social ties. Indeed, the information transfer appears to be
driven by the overlap of unique locations visited by the ego and
alters, in both social ties and non-social colocators.

Results
Mobility data. Our study uses three publicly available datasets
and one private call record dataset that contain mobility traces,
with the former containing social networks of a subset of the
users of the platforms. The first is BrightKite, a location-based
social networking service (LBSN)20,29 containing 4,491,143 geo-
tagged check-ins by 58,228 users over a period of April
2008–October 2010. The second dataset is from Weeplaces, a
website that generated visualizations and reports from location-
based check-ins in platforms such as Facebook and Foursquare22.
The considered data contains only Foursquare check-ins, which
includes 7,658,368 geotagged check-ins produced by 15,799 users
from November 2003–June 2011. We also include an analysis on
Gowalla20, another LBSN consisting of 6,442,890 check-ins by
196,591 users over a period of February 2009–October 2010.
Finally, we consider a CDR dataset collected in the Rio de Janeiro
Metropolitan Area (RJMA), Brazil30, consisting of 22,116,252 call
records by 35,338 users pinging 1835 cell antennas over the
period of January 2014–June 2014. (For more details, see
“Methods” and Section S1.)

In Fig. S1 we show the check-in maps for each of the datasets
indicating global coverage with the highest concentrations in
North America and Western Europe. In Fig. S2 we plot the
distributions for the number of distinct locations visited by users,
the jump-length, and the radius-of-gyration. The LBSNs show
similar trends for their jump-length and radius-of-gyration,
consistent with other sources of mobility data1. Differences exist,
however, in the number of unique locations visited. BrightKite, in
particular, contains a large fraction of users that visit only a few
distinct locations (between 1 and 3). The CDR data differs from
the LBSN in having much sharper cut-offs in the tail of the
distribution, a consequence of scale—trips are bounded by the
spatial area of the city, unlike in the LBSNs that contain inter-city
and international travel. The statistical trends, however, are
consistent with that seen in other CDR datasets31.

Information contained in egos. We begin our analysis by
examining the information contained in the location trajectories
of all egos in each of the datasets; this serves as a baseline when
comparing information flow with social ties and non-social
colocators. The degree of uncertainty in capturing the future
locations of a trajectory A, given past observations, is encoded in
the entropy rate SA of the trajectory. Accounting for both fre-
quency of location visits, as well as temporal ordering (specific
ordered sequences in the data), we make use of a non-parametric
estimator32,33 given by the expression

ŜA ¼ N log2N

∑N
i¼1 Λi

; ð1Þ

where for a trajectory A of N moves of an individual, Λi is the
length of the shortest trajectory sub-sequence beginning at
position i not seen previously, and the entropy is measured in
bits. This estimator has been applied to mobility patterns and
online social activities18,21. In the absence of any temporal struc-
ture in the sequence, the expression converges to the standard
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Shannon entropy21. In Fig. 1A, we plot ŜA for the datasets, finding
peaks between 4 and 5 bits with varying degrees of spread for
Gowalla and Weeplaces. For BrightKite we find a peak at ≈ 1 bit, a
reflection of the fact that a large fraction of users visit only
between 1 and 3 distinct locations and therefore have low
entropy. The CDR data is peaked at a lower value (≈2) bits than
either Gowalla or Weeplaces, but higher than BrightKite. This is
primarily for two reasons: the possible space of locations that can
be visited is bounded by the city-size and is much lower than in
the other datasets (which include long-range travel). Second, the
spatial resolution is much lower than in the LBSN. A location
corresponds to the coverage area of a cell-phone antenna,
which varies from about a city-block to a neighborhood, and
therefore locations that might be distinct in Weeplaces, for
instance (coffee shops, restaurants, banks, etc.) are coarse-grained
into a single location18,31.

An intuitive measure to interpret these results is the perplexity
2S: we are as uncertain about future visits for a trajectory with
entropy rate 3 bits, for example, as we would be when choosing
uniformly at random from 23= 8 possible locations. Using ŜA
from Fig. 1A, this implies that on average knowing the past
history of the typical ego allows us to reduce the possible number
of future location visits to between 16 and 32 sites. Given the
average number of distinct locations (Fig. S2) that a typical user
visits across the datasets (107 total distinct locations per user on
average in BrightKite, 198 in Gowalla, 213 in Weeplaces, and 38
in the CDR), information due to the spatiotemporal regularities
of ego trajectories represent an order of magnitude reduction
from choosing across all locations uniformly at random, a result
consistent with that found in other mobility studies18,19.

The entropy rate can also be interpreted using Fano’s
inequality34 to define the predictability ΠA, the upper bound of
how often an ideal predictive algorithm can correctly guess the
next location visit, given prior history. This predictability is
calculated by inverting

ŜA ≤HAðΠAÞ þ ð1� ΠAÞ log2ðn� 1Þ; ð2Þ

where n is the number of distinct locations visited and H(x) is the
binary entropy function capturing the entropy of a simple
Bernoulli trial (in this case achieving maximal predictability or
not). Utilizing ΠA allows us to leverage information theory to
mathematically bound the performance of all real predictive
methods given an information source inferred uncertainty.
Figure 1B shows the distributions of predictability, finding
differences across the four datasets that reflect their respective
distributions of ŜA. While BrightKite shows a distinct spike of
highly predictable (ΠA ≈ 1) users (as a consequence of the low-
entropy users), in Gowalla, ΠA is peaked at ≈ 40%, with a wide

spread around the peak. This is due to the fact that some users
visit many locations (indeed, 23 users never return to a previously
visited location), resulting in a high entropy rate, and low
predictability, a feature that likely stems from Gowalla incentiviz-
ing its users to discover new locations (see Section S1). In
Weeplaces, ΠA is peaked at ≈ 50% with a tighter bound around
the peak as compared to the other datasets. Finally, in the CDR
data, we find a peak at ≈ 75% with a spread comparable to that
seen in Weeplaces and within the range found in other CDR
datasets31. The results suggest that each dataset has its own
peculiarities. BrightKite contains a large fraction of users that do
not visit many distinct locations; in contrast, Gowalla has users
that are incentivized by the nature of the platform to sample as
wide a location-set as possible. The CDR data has low spatial
resolution, and of course all datasets are biased by the behavior of
the population they cover. This observed diversity in mobility
behavior across the four platforms, thus provides a stringent
robustness check on the results to follow.

Information contained in social ties and non-social colocators.
Next we examine information flow, how much mobility infor-
mation about the ego is contained in the sequence of location
visits of their alter(s), absent any information about the ego’s own
location history. We do so by analyzing the social and non-social
colocation networks in each of the datasets (see “Methods” for
details of the construction). The information flow is measured by
the cross-entropy21,35, which is greater than the entropy when the
alter contains less information on the ego than the ego itself, and
quantifies information loss when we have access to only the alter’s
past. To estimate the cross-entropy between two sequences, Eq. 1
can be modified to account for A and B (representing the
mobilities of the ego and alter, respectively) according to

ŜAjB ¼ NA log2ðNBÞ
∑NA

i¼1 ΛiðAjBÞ
; ð3Þ

where NA and NB are the lengths of the sequences A, B, and the
cross-parsed match length Λi(A∣B), is the length of the shortest
location sub-sequence starting at position i of sequence A not
previously seen in sequence B. Here, ‘previously’ refers to those
locations ℓj in sequence B with tj < ti, the timestamp of the check-
in location ℓi in sequence A.

As with the cross-entropy, one can generalize the predictability
ΠA to the cross-predictability ΠA∣B by applying Eq. 2 to Eq. 3. For
the remainder of this paper, both social ties and non-social
colocators have been processed by retaining alters that provide
better-than-random information about their ego, as well as
removing from the colocation network any spurious colocators
(see Sections S2.1, S7).

Figure 2 shows the results of our information metrics on the
Weeplaces dataset. Panels A and B show the distribution of the
cross-entropy and predictability for the rank-1 social tie and non-
social colocated alter. We see that the top social tie provides
slightly more information than the top colocator, with predict-
ability slightly right-skewed (Fig. 2B). While social ties provide
more predictive information, the distribution also shows the
existence of some non-social colocators that provide mobility
information comparable to that provided by social ties.
Furthermore, the predictability of egos are positively correlated
with the predictability of their top alter (Fig. S9), meaning highly
predictable egos tend to have highly predictable top alters, and
similarly more unpredictable egos tend to have less predictable
alters.

We have thus far looked at the individual and pair-wise
information in ego-alter pairs, a limited analysis, given that these
are being considered as information sources in isolation. Next,
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Fig. 1 Entropy and Predictability in the four mobility datasets. A The
distribution of the entropy ŜA (Eq. 1) for each of the four datasets. B The
corresponding distribution of predictability ΠA, calculated by inverting Eq. 2,
tells us how well an ideal algorithm can predict an individual’s future
location given their mobility history.
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we examine the information content of a multiplicity of an ego’s
alters, or in other words examine the information content of a
subset of the ego’s colocators by adapting the cross-entropy to a
set of alters. To estimate the amount of information needed to
encode the next location of sequence A given the location
information in a set of sequences B, we generalize the pairwise
cross-entropy to the cumulative cross-entropy according to21,
thus,

ŜAjB ¼ NA log2ðNABÞ
∑NA

i¼1 ΛiðAjBÞ
; ð4Þ

where ΛiðAjBÞ ¼ maxfΛiðAjBÞ;B 2 Bg is the longest cross-parsed
match length over any of the sequences in the set of sequences
B, NAB ¼ ∑B2BwBNB=∑B2BwB is the average of the lengths NB,
and wb is the number of times that matches from sequence A are
found in each sequence B 2 B. Note that if there is only one
sequence in B, Eq. 4 reduces to Eq. 3. By applying Fano’s
inequality (Eq. 2), we denote the corresponding cumulative cross-
predictability as ΠAjB. In Fig. S5 we see that on average, alters
associated with more frequent colocations contain more informa-
tion content: as a consequence, we rank alters according to
frequency of colocations. Plotting the average number of
colocations between ego-alter pairs saturate at around 10 alters
in all four datasets (Fig. S4), and therefore we examine the
information content of the top-10 most frequently colocated
social alters and non-social colocated alters. For a fair comparison
between these two different sources of mobility information, we
focus on egos in both the social and colocation network with at
least ten alters in each network, leading to 33 (BrightKite), 97
(Gowalla), 199 (Weeplaces), 484 (Mobile Phone) egos (cf. third
column of Table S2 for details).

By moving from one non-social colocator to three, we see in
Fig. 2A, B that considerably more predictive information is
present, with the peak of ΠA∣B shifted significantly rightward.
Further, the peak is now at a higher value than the peak for the
top social tie (Fig. 2B), indicating that many egos are better
predicted by three non-social colocators than they are by their top
social tie. We further emphasize this relationship in Fig. 2C, D
with scatter plots comparing the cross-entropy of the top social
tie to the cumulative cross-entropy of the top-3 non-social
colocators; any points above the line y= x in panel D
demonstrate more information flow from the colocators about
the ego than from the top social tie. Individually, non-social
colocators are less informative than social ties, but collectively
they can meet or exceed the information content of individual
social ties.

Expanding on the comparison between social ties and non-
social colocators, in Fig. 2E, F, we plot the cumulative cross-
entropy and cross-predictability ΠAjB , finding a progressive
increase in predictability as we accumulate more alters (positive
Spearman’s ρ across 88.94% all users, p < 0.05). A given number
of social ties provides more information on average than the same
number of non-social colocators, as demonstrated by the lower
curve in entropy in panel E and higher curve in predictability in
panel F. Specifically, 94.47% of egos in Weeplaces show
significantly higher social tie predictability than non-social
colocator predictability (paired one-sided t-test, p < 0.01). How-
ever, while the colocator curve in Fig. 2F sits below the social
curve for a given number of alters, we do see that on average a
greater number of colocators can exceed the information content
of a small number of social ties. For instance, the top-3 non-social
colocators provide higher predictability than the top social tie,
and the top-7 colocators provide higher predictability than the

0.0

0.2

0.4

0.6

4 6 8 10

D
en

si
ty

Top social tie
Top non−social colocator
Top 3 non−social colocators

A

4

5

6

7

8

9

5 6 7 8 9

C

5

6

7

8

1 2 3 4 5 6 7 8 9 10
Included number of alters

Alter(s) and ego Alter(s) only Ego

Social tie(s) Non−social colocator(s)

E

0

1

2

3

4

5

0% 20% 40% 60%

D
en

si
ty

Top social tie
Top non−social colocator
Top 3 non−social colocators

B

20%

40%

60%

0% 20% 40% 60%

D

20.0%

30.0%

40.0%

50.0%

1 2 3 4 5 6 7 8 9 10
Included number of alters

F
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top-2 social ties. The corresponding results for the other three
datasets are shown in Fig. S6 (BrightKite), Fig. S7 (Gowalla) and
Fig. S8 (CDR). While the values of the entropies, predictability,
cross-predictability and the comparable information contained in
the top social tie viz the number of non-social colocators vary
between the datasets (reflecting their inherent biases), in all cases
the trends are consistent with that seen in Fig. 2.

Combined information of both ego and alter’s past. While alter
information about the ego is important to understand, especially
for matters of privacy (see “Discussion”), we also wish to
understand whether that information is redundant when given
the ego’s past. We, therefore, show in Fig. 2E, F curves including
the ego’s past alongside that of the alters. We find that non-
redundant information exists in both types of alters, with a gain
of ≈ 10% predictability for the top-10 social ties and ≈ 14% for the
top-10 non-social colocators. Fig. 2F also demonstrates that both
curves appears to saturate as more alters are included, an effect
observed in other studies21. This saturation effect is examined in
Section S4, where ΠAjB is extrapolated beyond our data window
of 10 alters by fitting a nonlinear saturating function and esti-
mating the extrapolation predictability Π∞. For Weeplaces we
find Π∞= 44.32 and 39.79% for social ties and colocators,
respectively. Compared to the average Πego= 47.05% of all egos
in the network, this means that 94 and 85%, respectively, of the
potential predictability of an ego is in principle available in that
ego’s alters. Including the ego’s past trajectory, for Weeplaces we
find Π∞= 56.70 and 56.25% for social ties and colocators,
respectively. Compared to the average Πego= 47.05% of all egos
in the network, this means an additional 19.5–20.5%, respectively,
of the potential predictability of an ego is in principle available
when including its alters. The closeness of these values underscore
the high degree of predictive information available in the non-
social colocators. The corresponding findings for the other three
datasets are shown in Table S3. In all cases, we see a gain of
predictability in the ego when alters are included in the range
of 2–10%.

Extrapolation analysis demonstrates the overall relative value of
non-social colocators, but it does not allow us to determine more
precisely how many non-social colocators equal the information
content for a given number of social ties. Therefore, to better
quantify the relative information content provided by social ties
compared with non-social colocators, we examine the predictability
ratio Πego∣social tie(s)/Πego∣non-social colocator(s) across all datasets. In
Fig. 3A we present the distributions of predictability ratio
comparing the top non-social colocator to the top-k social ties
(k= 1, 2, 3). For the top social ties (k= 1) we see that BrightKite
colocators provide the closest information with a ratio just below 2,
meaning the social tie provides approximately twice the predict-
ability of the colocator. In Gowalla and Weeplaces, the difference is
even stronger, with the top social ties providing approximately three
times the predictability of the top colocator. Moving from the top
colocator to multiple colocators, in Fig. 3B we plot the predictability
ratio for increasing numbers of non-social colocators; when this
curve crosses the horizontal line at a ratio of 1, we have equal
amounts of information. For example, examining the first panel in
B, we see that for BrightKite this happens between 1 and 2
colocators, between 7 and 8 for Gowalla, between 3 and 4 for
Weeplaces and between 1 and 2 for the CDR data. This suggests
that three Weeplaces colocators are equivalent to the top social tie,
while in Gowalla that number is between 7 and 8. In BrightKite, a
dataset characterized by high predictability and low entropy, one
added social tie provides the same degree of information as two
non-social colocators. Across all datasets, we see that an aggregate
of fewer than 10 non-social colocators can equal the information of

the top social tie. While more colocators are needed to equal the
aggregate of the top-2 or top-3 social ties, the observed decreasing
trends suggest a convergence in the amount of information
contained in either flavor of tie.

Underlying spatial and temporal mobility characteristics. We
next determine the key factors that determine the near identical
types of information transfer in both types of ties, despite having
no overlap in the pair-wise connections. One of the possibilities
driving the quantity of information on the ego provided by alters
is the information inherent in the locations themselves. That is, it
is reasonable to surmise that information about the ego is derived
from shared visits to common locations, given that predictability
of the ego itself depends on the patterns of location visits in their
trajectory. While alters do not necessarily visit all the locations
that their egos do, nor would they necessarily visit at the same
time, one can hypothesize that higher-ranked alters share
more distinct locations with the ego than lower-ranked ones. If
the trend is similar across both social ties and non-social colo-
cators, then this would be a plausible mechanism for the
similarity in the observed cross-predictability.

To measure this, we compute the proportion of unique
locations visited by the ego and its alters. For an ego A we define
the Overlapped Distinct Location Ratio (ODLR) η as the fraction
of A’s visited locations also visited by an alter B. Formally,

ηAjB ¼ YA \ YB

�
�

�
�

YA

�
�

�
�

ð5Þ

where YA and YB are the sets of locations visited by A and B,
respectively, and �j j denotes set cardinality.

In Fig. 4A we plot the ODLR as a function of alter rank. As
alters are ranked according to the frequency of overlap of any
location visit of the ego, as opposed to distinct location visits,
there is no reason to a priori expect that a rank-1 alter will share
the most number of distinct locations in their trajectory with the
ego. Nevertheless, that is indeed what is observed across all
datasets, with a monotonically decreasing trend of ODLR as one
considers lower-ranked alters. This monotonic trend is consider-
ably stronger for social ties than for non-social colocators,
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Fig. 3 Quantifying the predictive information aggregated from non-social
colocator(s) with respect to social ties. A The predictability ratio Πego∣social

tie(s)/Πego∣non-social colocator(s) between the top non-social colocator and (left-
to-right) the top, top-2, and top-3 social tie(s). B The predictability ratios
between the top 2 and 10 non-social colocators and the top, top-2, and top-
3 social tie(s). Error bars denote 95% CI.
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although the difference diminishes with the number of alters
added.

The ODLR fails to consider locations shared across multiple
alters, instead focusing on one alter at a time. Yet we previously
saw (Fig. 2) the importance of examining the aggregate
information, particularly when comparing non-social colocators
to social ties. Therefore, we generalize the ODLR to a Cumulative
Overlapped Distinct Location Ratio (CODLR) by taking the
union of the location sets of multiple alters according to,

ηAjB ¼ j∪ B2B ðYA \ YBÞj
jYAj

; ð6Þ

where A is the ego and B is the set of all alters. We plot the
results in Fig. 4B finding similar increasing monotonic trends
across datasets and networks. As alters are added, more
information on the ego’s unique locations are discovered,
saturating at between 30 and 40% after 10 social ties, and
between 15 and 30% for non-social colocators. The low spatial
resolution of the CDR data makes it an outlier, in that the
saturation occurs at 80 and 65% respectively. Nevertheless,
across all datasets, we observe that larger numbers of colocators
provide comparable location overlap as a smaller number of
social ties, emphasizing both the relative importance of social
ties and the extent of useful information present in the
aggregation of non-social colocators.

We connect ODLR and information flow directly in Fig. 5, by
plotting ηAjB against ΠAjB for the top-10 alters in both types of
networks, observing a strong, approximately linear trend
(Pearson’s R ≈ 0.66 for social ties; R ≈ 0.67 for non-social
colocators; both significant, p < 0.001). Disentangling the plots
by progressively adding alters from rank-1 to rank-10 shows a
monotonically increasing trend for the correlations Figs. S10 and
S11). The corresponding results for BrightKite (Figs. S12 and
S13), Gowalla (Figs. S14 and S15), and CDR (Figs. S16 and S17)
reveal similar trends.

The observed connection between information transfer and
location overlap behooves one to ask whether temporal effects are
a key factor. In other words, our choice of colocation is based on
the simple idea that individuals in the same place at the same time
contain information about mobility patterns of each other. We can
relax this condition and also consider individuals that visit the

same locations as the ego, but displaced in time. For example,
residents of a neighborhood can stop at their local corner store at
different times of day and never run into each other, but their
visits are always five hours apart because of their respective work
schedules. We can investigate this by creating networks of time-
displaced colocators, where now an ego and alter colocate if an
alter visits a location in the time windows [T, T− 1/2] hours prior
or [T− 1/2, T] hours following an ego visitation at the same
location (see the illustration in Fig. 6A). Note that T= 1/2 h yields
the fully connected window [−1/2, 1/2].

Each network resulting from the different temporal lags will
generally have different ego-alter pairs, and the set of egos with at
least 10 alters may change. We consider then the common egos
who have at least 10 alters for all networks constructed with
temporal lags in the range [0.5h− 12h] with 30 min intervals.
Given this condition, we are left with Weeplaces and the mobile
phone data, given that no common egos in either BrightKite or
Gowalla have at least 10 alters in all temporal intervals.
Nevertheless, Weeplaces and the mobile phone data are
sufficiently different for checking the robustness of such an
effect. We examine the trend in ΠAjB as a function of the
temporal-lag T in Fig. 6B (Weeplaces dataset) and Fig. S18
(Mobile Phone).
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Fig. 4 The degree of ego–alter distinct location overlap. A The Overlapped Distinct Location Ratio (Eq. 5) indicates that higher ranked alters share more
unique location visits than lower-ranked ones, with the top (rank-1) alter showing the most shared location. The trend is stronger for social ties than non-
social colocators. B The Cumulative Overlapped Distinct Location Ratio (Eq. 6) shows increasing discovery of unique locations in the ego’s trajectory as
alters are added in order of decreasing rank, but that the rate of discovery slows. Error bars denote 95% CI.
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As before, in both cases, there is an increase in both the cross-
predictability ΠAjB and the ODLR ηAjB (Fig. S20C) as alters are
progressively added, yet for a given number of alters, there is
little-to-no difference between any of the networks in terms of
their information content within the investigated temporal
ranges. This can be seen clearly in Figs. S19 and S20A for both
datasets where there is no measurable difference in predictability
as a function of the various temporal-lag intervals, apart from a
slight decrease in predictability as one increases the offset
(colocators displaced by an hour contain marginally more
predictive information to those displaced by a day). Remarkably
this is despite the fact that the ego-alter overlap between these
networks in Weeplaces (Fig. S19B) and the mobile phone network
(Fig. S20B) indicates that colocated alters are not necessarily the
same as time-displaced colocated alters. This suggests potentially
unexpected sources of mobility information, as non-social
colocators in both datasets do not necessarily have to be visitors
of the same location at the same time to provide predictive
mobility information about the ego.

Discussion
Using information-theoretic measures, we analyzed the spatio-
temporal structure of the mobility trajectories of a set of users in
three publicly available LBSNs and CDR data from one private
record of mobile phone users. Entropy measures were used to
quantify the sequential information contained in a user’s physical
trajectory which revealed differences in our datasets based on the
context of how users used the apps, the extent of coverage, and
the differences in spatial resolution. Using these measures, we
then compared the information present in the mobility patterns
of an individual’s (the ego’s) social ties compared with non-social
colocators, other users who frequently visited the same locations
as the ego. Across datasets, we found the importance of social ties:
consistently more information about the ego’s future location was
present in the past locations of the social ties than in the past
locations of the non-social ties, and this held when aggregating
information from multiple number of alters. Interestingly, how-
ever, this implies something important: that groups of many non-
social colocators can in principle provide as much information as
a smaller set of social ties, meaning that non-social sources of
mobility information are in principle available. If access to social
data is limited, these non-social data may, in the aggregate, be
used as a replacement. A future study on the mobility informa-
tion of an individual carried by non-social colocators should
consider the possibility that social-economics or demographics

could play a role. For instance, people working in the same
building but for different companies are likely to share similar
social-economic status, likewise, parents taking their children to
schools may share similar household responsibilities. The extent
to which these shared factors affect the predictability of a ego
mobility can be investigated in richer datasets.

Each considered dataset has its own biases related to the
behavior of the users, the extent of coverage, and the spatial
coverage. The study relied on observational data taken, which
introduces crucial caveats. In particular, the social ties reported in
the datasets are incomplete reflections of a person’s full social
circle, and the nature of such ties may differ in the online and
offline domains. Likewise, not all locations visited by an indivi-
dual are recorded in these social networks, which rely primarily
on user check-ins, so we expect mobility trajectories to be under-
sampled as well. Followup work, including richer, more detailed
data and even experimental studies, are needed to address these
concerns, yet our robustness checks, including observing con-
sistent trends across datasets with varying degrees of coverage,
resolution, behavioral differences in the observed populations,
and across sampling criteria, already provide rather strong evi-
dence for the robustness of our results.

The presence of predictive information, both socially and
otherwise, has crucial implications. Privacy protections regarding
social data are important to protect sensitive information about a
user and their social ties. Social information flow suggests that an
individual’s future movements can be predicted by studying the
mobility patterns of a few acquaintances. On the other hand, our
study also demonstrates that social ties are not the only source of
predictive mobility information, and measures of colocation are
enough to uncover novel sources of mobility information. This
means that locations monitoring individual visits, for example, a
grocery store tracking the smartphones of shoppers36, may in
principle be collecting the building blocks of mobility profiles,
and individuals providing access to their mobility data may also
be providing information about both social and non-social
ties37–39.

While these data can inform important applications such as
contact tracing in the early stages of a disease outbreak, sig-
nificant ethical concerns surrounding such information sources
make it critical to place strong access constraints on mobility
information. Indeed, the results presented here provide further
impetus to the ongoing debate on best practices for privacy
protection, both in terms of legislation and ethical algorithmic
development.
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Fig. 6 Temporal stability of non-social colocator(s) information. A An example of two time-displaced colocators who visit the same location as the ego
on a T= 2.5 h time lag. (Vector Clip-art designed by https://www.freepik.com.) B The (cumulative) cross-predictability influence of temporal-lag for non-
social colocator(s) in Weeplaces. Each point corresponds to a colocation network resulting from the amount of temporal offset between an ego and alters
visit to a common location. Error bars denote 95% CI.
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Methods
Data structure and filtering. In our four datasets, each event, i.e., an instance of a
location visit, is timestamped and tagged with a unique location ID. In all datasets,
a location visit v is represented by a tuple v= (u, ℓ, t), meaning a user u visited a
location ℓ at time t. At a user level, a trajectory composed of Nu discrete obser-
vations is characterized by a sequence of Nu location-time pairs ð‘i; tiÞi21¼Nu

where
ℓi stands for the location visited at step i and time ti. A user u who visits Nu

locations in total, visits nu ≤Nu distinct locations, with equality holding only if u
never visits a location more than once. To filter out spurious activities, we exclude
inactive users and discard records with missing attributes. Furthermore, for pur-
poses of statistical significance, we discard users who have logged Nu < 150 check-
ins (see Section S1.3 and Fig. S3). After filtering, we are left with 510,308 events
across 6132 users in BrightKite, 924,666 events across 11,533 users in Weeplaces,
850,094 events across 9937 users for Gowalla, and finally 1,382,626 events (call-
records) between 4415 users for the CDR dataset. (cf. Table S1 for further details).

Constructing social and non-social colocation networks. Each of the LBSN
datasets has social networks collected by their respective API’s (details in Sec-
tion S1.1), however, not all users log check-ins. Given that our goal is to examine
information transfer in social networks, as it relates to location visits, we focus only
on users with logged location-trajectories. To quantify the information provided by
colocated non-social ties, we construct colocation networks where a tie is included
between an ego and alter if they checked in at the same location within a particular
time window (see Section S2 for details on egocentric network construction). We
assume that individuals who colocate more often contain more predictive infor-
mation about one another’s whereabouts (see Section S7.4), so the ranking criteria
is based on the frequencies of colocations (see Section S2.2, Figs. S4 and S5). All
results presented in the main manuscript correspond to a one-hour temporal bin
(results are robust to varying temporal frames, Fig. S22).

While the LSBN datasets contain explicit social network information, the social
network needs to be inferred for the mobile phone data. Following the methodology
outlined in40, we consider reciprocal ego-alter pairs as social-ties, where reciprocity
refers to the fact that both egos and alters exchange phone-calls. We make the
reasonable (and stringent) assumption that a reciprocal call should occur at least once
a week, and therefore set a minimum threshold of 30 reciprocal calls (covering the
period of data-collection) in order to be considered a social-tie. For non-social
colocator networks, we require that zero calls exist between the ego and alter. For sake
of convenience, we use social-tie and non-social colocators to distinguish between the
two types of networks. In all other respects, the construction of the networks is the
same as in for the LBSNs. The summary statistics for the two types of networks in
each dataset is shown in the first two columns of Table S2.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The BrightKite data used in this study are available in the SNAP database under
accession code Brightkite [https://snap.stanford.edu/data/loc-brightkite.html]. The
Gowalla data used in this study are available in the SNAP database under accession code
Gowalla [https://snap.stanford.edu/data/loc-gowalla.html]. The Weeplaces data used in
this study are available on the website [https://www.yongliu.org/datasets/]. The raw CDR
data are protected and are not available due to data privacy laws. The processed CDR
may be made available by the authors upon reasonable request.

Code availability
The code for the analysis was programmed using Python 3.6 with standard packages. All
the calculations can be reproduced with the equations provided in the main text or
the Supplementary Information. The code is available in41.
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