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Abstract. The skill of global ocean biogeochemical models,
and the earth system models in which they are embedded,
can be improved by systematic calibration of the parameter
values against observations. However, such tuning is seldom
undertaken as these models are computationally very expen-
sive. Here we investigate the performance of DFO-LS, a lo-
cal, derivative-free optimisation algorithm which has been
designed for computationally expensive models with irreg-
ular model–data misfit landscapes typical of biogeochemical
models. We use DFO-LS to calibrate six parameters of a rela-
tively complex global ocean biogeochemical model (MOPS)
against synthetic dissolved oxygen, phosphate and nitrate
“observations” from a reference run of the same model with
a known parameter configuration. The performance of DFO-
LS is compared with that of CMA-ES, another derivative-
free algorithm that was applied in a previous study to the
same model in one of the first successful attempts at calibrat-
ing a global model of this complexity. We find that DFO-
LS successfully recovers five of the six parameters in ap-
proximately 40 evaluations of the misfit function (each one
requiring a 3000-year run of MOPS to equilibrium), while
CMA-ES needs over 1200 evaluations. Moreover, DFO-LS
reached a “baseline” misfit, defined by observational noise,
in just 11–14 evaluations, whereas CMA-ES required ap-
proximately 340 evaluations. We also find that the perfor-
mance of DFO-LS is not significantly affected by observa-
tional sparsity, however fewer parameters were successfully
optimised in the presence of observational uncertainty. The
results presented here suggest that DFO-LS is sufficiently in-

expensive and robust to apply to the calibration of complex,
global ocean biogeochemical models.

1 Introduction

Ocean biogeochemical models are a key tool in understand-
ing the cycling of nutrients and carbon in the ocean. They
are used to quantify the uptake of greenhouse gases such as
CO2 emitted by human activity, of which the ocean has ab-
sorbed roughly a third since the start of the industrial rev-
olution (Khatiwala et al., 2009; DeVries, 2014), as well as
assess the impact of increasing concentrations of greenhouse
gases on ocean ecosystems. Such models are also an impor-
tant component of the earth system models (ESMs) used to
project future climate change. In global ocean biogeochem-
ical models the complex interactions between biota, nutri-
ents, oxygen and carbon are typically heavily parameterised.
The skill of such models can be improved by either sub-
jective manual or systematic tuning of the parameter values
against observations. The latter uses numerical optimisation
algorithms which seek to find the minima of a “misfit func-
tion” – often defined as the root mean squared difference
between the model and observations – within the parame-
ter space. However, biogeochemical models are seldom sub-
jected to such tuning because of their large computational
expense and the long spin-up time required for chemical and
biological tracers to reach equilibrium (Wunsch and Heim-
bach, 2008; Khatiwala et al., 2012). Moreover, optimisation
algorithms must be able to navigate a generally irregular mis-
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fit landscape. Efficient and robust optimisation methods are
thus of considerable interest to the ocean biogeochemical and
broader climate modelling community.

Previous ocean biogeochemical calibration studies have
more frequently been carried out on computationally less ex-
pensive zero-dimensional (e.g. Kidston et al., 2013) and 1-
dimensional models (e.g. Chen and Smith, 2018; Xiao and
Friedrichs, 2014; Ward et al., 2010; Spitz et al., 1998), re-
gional models (e.g. Melbourne-Thomas et al., 2015; Zhao
et al., 2005), or steady-state global models (e.g. Kwon and
Primeau, 2006, 2008). However, with the aid of fast “offline”
circulation schemes, such as those using transport matrix
methodology (e.g. Khatiwala et al., 2005; Li and Primeau,
2008) which can be applied to time-dependent biogeochem-
ical models, more recently, complex global ocean biogeo-
chemical models have also begun to be systematically op-
timised to observations (e.g. Kriest et al., 2017, 2020; Sauer-
land et al., 2019; Niemeyer et al., 2019; Kriest, 2017).

Optimisation methods can generally be split into two
broad categories. Derivative-based algorithms such as
Gauss–Newton (Hartley, 1961) use derivatives within the pa-
rameter space to locate minima. The calculation of deriva-
tives, which can be undertaken using finite differences or au-
tomatic differentiation and adjoints (Griewank and Walther,
2008), can be prohibitively expensive in some cases, such as
when evaluating the misfit function is computationally costly
or noisy (chapters 8 and 9 of Nocedal and Wright, 2006). By
contrast, derivative-free algorithms (Conn et al., 2009) may
require fewer evaluations per iteration and are typically bet-
ter adapted to handle noisy misfit functions. An example of
the latter is “covariance matrix adaptation evolution strategy”
(CMA-ES; Hansen, 2016). CMA-ES was applied by Kriest
et al. (2017) to optimise six parameters within the Model of
Oceanic Pelagic Stoichiometry (MOPS; Kriest and Oschlies,
2015), by minimising a globally averaged misfit incorporat-
ing annual mean dissolved phosphate, nitrogen and oxygen.
This constituted one of the first successful attempts at sys-
tematic tuning of a relatively complex global biogeochem-
ical model. CMA-ES was subsequently used by Sauerland
et al. (2019) for multiobjective calibration of MOPS by in-
cluding oxygen minimum zones as a misfit metric, and by
Kriest et al. (2020) who compared the influence of different
general circulation models on parameter optimisation.

While the development and application of CMA-ES is an
important step forward, its evaluation cost per iteration, as
well as overall computational cost, is prohibitively expensive
for routine use. In Kriest et al. (2017), for example, the misfit
function had to be evaluated at least 950 times to achieve
a sufficiently low misfit. As each evaluation requires run-
ning the biogeochemical model to equilibrium (3000 years
in that study), this would be prohibitively expensive for the
more complex models run at resolutions typical of the current
generation of ESMs. Here, we explore the application of an-
other, computationally less expensive algorithm, “derivative-
free optimisation by least squares” (DFO-LS; Cartis et al.,

2019), to the same problem set-up as in Kriest et al. (2017).
We first compare the performance of CMA-ES and DFO-LS
to optimise six biogeochemical parameters against the out-
put of a reference run of MOPS where the parameters are
known. We examine in this “twin” experiment the ability of
the algorithms to recover the true parameters, and the com-
putational cost incurred. True oceanic observations contain
observational uncertainty; therefore we also investigate the
impact of optimising in the presence of observational uncer-
tainty by adding noise to the synthetic observations. Lastly,
we evaluate the performance of DFO-LS when given sparse
data. Sparse scattered oceanic observations are commonly
mapped onto a regular grid using methods such as objective
interpolation, introducing significant error, especially in re-
gions such as the Southern Ocean with poor data coverage.
The structure of the paper is as follows: Section 2 describes
the methodology, Sect. 3 the results, Sect. 4 the discussion
and Sect. 5 the conclusions.

2 Methodology

2.1 Ocean biogeochemical model

The Model of Oceanic Pelagic Stoichiometry (MOPS-2.0) is
a global ocean biogeochemical model, which simulates the
cycling of nine biogeochemical tracers, namely dissolved in-
organic and organic phosphate, dissolved inorganic nitrate,
dissolved oxygen, phytoplankton, zooplankton, and detritus
(Kriest and Oschlies, 2013, 2015), with the possibility to
include the carbon cycle. MOPS is coupled to the trans-
port matrix method (TMM; Khatiwala et al., 2005; Khati-
wala, 2007, 2018), an efficient numerical method for “of-
fline” simulation of biogeochemical tracers. In this study we
use monthly mean transport matrices and other physical forc-
ing fields (including temperature, salinity, sea ice and winds)
derived from a relatively coarse resolution (2.8◦×2.8◦× 15
levels) configuration of MITgcm (Marshall et al., 1997)
driven by climatological momentum, heat and freshwater
fluxes (Dutkiewicz et al., 2005).

2.2 Biogeochemical model parameters

The behaviour of MOPS is controlled by several parameters,
of which we have chosen the same six parameters to consider
for calibration as chosen in the previous optimisation study
by Kriest et al. (2017). The detailed definitions and possi-
ble ranges of these parameters are described in that paper.
Briefly, four of these parameters are mainly restricted to the
epipelagic and mesopelagic zones of the ocean, as they in-
volve phytoplankton and zooplankton. IC and KPHY are the
phytoplankton half-saturation constants for light absorption
and phosphate uptake, respectively. µZOO is the zooplankton
maximum grazing rate and kZOO the zooplankton quadratic
mortality rate. The remaining two parameters influence the
remineralisation and sinking of particulate organic matter
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(POM). RO2:P is the ratio of oxygen consumption to phos-
phate release during remineralisation when oxygen is avail-
able, and b∗ is the exponent of the “Martin curve”, a power
law function that describes the attenuation of POM flux with
depth (Martin et al., 1987).

2.3 Parameter sensitivities

Local sensitivities for each of the six parameters were calcu-
lated at one location within parameter space, whereby only
the parameter whose sensitivity was to be calculated was per-
turbed from its target value by 10 % of its range while the
other parameter values remained constant.

2.4 Optimisation algorithms

Optimisation algorithms iteratively evaluate the misfit be-
tween model and observations, then vary the model parame-
ter inputs with the aim of finding a lower misfit. Here, every
evaluation of the misfit requires running the biogeochemical
model to equilibrium (3000 years), then calculating the mis-
fit between the model outputs and real (or synthetic) observa-
tions of dissolved oxygen, phosphate and nitrate. In general
the misfit “landscapes” of biogeochemical models tend to be
nonlinear, as found by Kriest et al. (2017) for example, who
converged to multiple local minima. “Twin” experiments are
used to determine if an optimiser can find the global mini-
mum within the misfit function landscape, whereby the misfit
is calculated between the model outputs and synthetic obser-
vations. The synthetic observations are created by the model
with a known parameter configuration; therefore the global
minimum (is zero) and optimal parameter values are known.
We compare the performance of two different optimisation
algorithms, by using twin experiments.

2.4.1 CMA-ES

The Covariance Matrix Adaptation Evolution Strategy
(CMA-ES; Hansen, 2016) is a widely used stochastic evo-
lutionary algorithm, for use on a “black box” misfit func-
tion. By design, CMA-ES is an unconstrained solver, that is,
parameters are not restricted to be within specified bounds.
To ensure that parameters lie within reasonable bounds, a
penalty score is added to the misfit when any parameter value
goes outside of their specified range, as also done by Kriest
et al. (2017). During each iteration, a population size of λ
biogeochemical parameter vectors are sampled from a multi-
variate normal distribution, which is fully described by a
mean and a positive definite matrix of covariances. CMA-ES
then requires the misfit function to be evaluated at these λ lo-
cations in the parameter space. The results of these are used
to update the mean and covariance of the multi-variate nor-
mal distribution, before another λ biogeochemical parameter
vectors are sampled for the next iteration. With each iteration
the population should be guided towards areas of the param-
eter landscape which provide lower expected misfit values,

aiming to converge on the parameter configurations which
provide the best misfits. This process has been well illus-
trated by Kriest et al. (2017, see their Fig. 2), who previously
used CMA-ES to optimise MOPS. CMA-ES carries out a
global search of the parameter space; therefore it seeks to find
the minimum over the parameter space. In order to achieve
this, CMA-ES can require thousands of function evaluations
(e.g. 950–3460 required by Kriest et al., 2017). The CMA-
ES code used in this study, which is based on the (µ/µW,λ)-
CMA-ES algorithm of Hansen (2016), is summarised in Ap-
pendix A. The optimisation code was sourced from the Sup-
plement by Kriest et al. (2017), with some editing to make
it compatible with our chosen optimisation framework (see
Code and data availability section). As in the previous Kriest
et al. (2017) study, we use a population size λ of 10; i.e. in
each iteration of CMA-ES, the misfit function is evaluated 10
times.

2.4.2 DFO-LS

Derivative-free optimisation using least squares (DFO-LS) is
an iterative algorithm for minimising a function f (x) (Cartis
et al., 2019), where x is the n-dimensional vector of param-
eters, each of which is constrained within specified bounds.
DFO-LS can take into account individual terms of the mis-
fit function and use their structure to improve convergence.
Mathematically, DFO-LS solves the nonlinear least-squares
problem:

min
x∈D

f (x)=

d∑
i=1

ri(x)
2, (1)

where D is a bounded domain of Rn, and ri(x) denotes in-
dividual terms in the misfit function. DFO-LS starts at an
initial location within the parameter space and then moves
through the space to provably find a local minimum (see Ap-
pendix A.2 in Cartis et al., 2019, for convergence and com-
plexity rates). The algorithm is illustrated in Fig. 1 and sum-
marised in Appendix B.

DFO-LS must be given a starting location within the pa-
rameter space from which to initialise. In the initial iteration
of DFO-LS, the misfit function is evaluated at the starting lo-
cation and at n additional locations nearby (where n is the
number of parameters to be optimised), with their proxim-
ity determined by DFO-LS settings (see Table B1). In sub-
sequent iterations, typically only one function evaluation is
needed, and often only a handful are needed to achieve sig-
nificant misfit reduction.

Using this set of evaluated points, DFO-LS creates a
quadratic approximation to the underlying true (unknown)
misfit function (Cartis et al., 2019) and calculates the mini-
mum of this function within a “trust region” centred around
the starting point. The true misfit function is then evaluated
at this location. If it is found to be worse than the misfit at the
existing n+1 points, it is rejected. The trust region is shrunk
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Figure 1. Schematic of DFO-LS optimising one parameter. (1) Two individual misfits ri are evaluated at two locations in parameter space.
(2) Two mini-local regressions are built (green lines) using these two ri points (black diamonds). (3) These linearised misfits are then squared
and summed over to give a quadratic approximation (blue line) to the true misfit function. (4) Within the trust region (shaded in yellow) the
minimum of the approximation is found, at which the true misfit function is evaluated. (5) If the new point is accepted, this new information
is used to update the mini-local regressions, otherwise it is rejected and the trust region is shrunk. Steps 2–5 are then repeated until the
specified termination criterion or maximum evaluations is reached.

and the procedure is repeated. On the other hand, if it is found
to be lower than the best of the n+1 points then it is accepted,
and the point corresponding to the highest misfit amongst
the previous n+ 1 points is discarded. A new quadratic ap-
proximation is calculated for this n+ 1 set of points, and the
procedure is repeated. Thus, at any iteration DFO-LS keeps
track of n+ 1 points in parameter space and the point with
the lowest misfit is considered as that iteration’s best set of
parameters. The algorithm is terminated based on three spec-
ified criteria: (1) the maximum allowed number of function
evaluations is exceeded, (2) the trust region radius is shrunk
below a specified size, and (3) misfit reduction progress is
identified as being too slow.

Unlike CMA-ES, DFO-LS is more of a “local” optimi-
sation method. However, there is strong numerical evidence
from the derivative-free optimiser Py-BOBYQA, upon which
DFO-LS is based (Cartis et al., 2021), that it is able to
find global minima. To increase the likelihood of finding
the global minimum, DFO-LS can either be manually re-
initiated from different starting locations in the parameter
space, or automatically “restarted” once it determines that
the reduction in the misfit is progressing too slowly. Dur-
ing a restart the trust region expands, allowing DFO-LS to
search for points potentially outside the local minimum it

may be trapped in, and move towards a lower minimum else-
where. This can be done by either a “hard” restart, whereby
the (expensive) misfit function is re-evaluated at n+ 1 new
locations within the expanded trust region, or by a “soft”
restart, whereby DFO-LS only “shifts” some of the current
n+1 points in parameter space to geometry-improving points
(Cartis et al., 2019). The former is more computationally ex-
pensive; therefore we do not use it here, although soft restarts
are allowed. To increase confidence that DFO-LS has found
the global minimum, we also initiate from multiple starting
points.

2.5 Misfit functions

Every evaluation of our misfit requires running the biogeo-
chemical model for 3000 years before calculating the misfit
between the model outputs and synthetic observations. While
both CMA-ES and DFO-LS minimise a single misfit func-
tion, DFO-LS can exploit the structure of the misfit function.
Thus, if the misfit is defined as per Eq. (1), we only pro-
vide CMA-ES with f (x) whereas the individual ri(x) are
supplied to DFO-LS. There is no maximum suggested value
for d, the number of ri terms; therefore the misfit at every
grid point within the model domain could be provided to
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Figure 2. World Ocean Atlas nitrate data (Garcia et al., 2018a, b) of (a–c) interpolated objectively analysed mean concentration of nitrate in
sea water [µmolkg−1], and (d–f) number of true observations plotted on a log10 colour scale (white oceanic areas show areas of no nitrate
observations). These have been plotted for the (a, d) global surface at 0 m, which also show the locations of the longitudinal transects (red
lines) for the nitrate data plotted at (b, e) 23◦W and (c, f) 140◦W. Overlain are the boundaries of 13 biomes of similar biogeochemistry, the
majority of which were determined as in Henson et al. (2010), while those in the Southern Ocean as in Weber et al. (2016). Six regions have
been further split by depth, leading to a total of 19 regions.

DFO-LS. However, many of the individual ri misfits would
be physically close to each other in the model and there-
fore will respond similarly to perturbations in the biogeo-
chemical parameters being optimised, which will result in
a heavier weighting to this location of the ocean model. To
avoid this, we define ri to take into account the spatial struc-
ture of the misfit by partitioning the ocean into previously
established biome regions of similar ocean biogeochemical
properties (Henson et al., 2010; Weber et al., 2016, provided
by Raffaele Bernardello, Barcelona Supercomputing Centre,
personal communication, 2018), several of which were fur-
ther split by depth at 1000 m (see Fig. 2) for a total of 19
regions. For every region j , we further calculate a misfit for
each of the three tracers q (phosphate, nitrate, oxygen) used
in the optimisation. The objective f (x) is thus composed of
19× 3= 57 terms of the following form:

rεqj (x)=

√
Vj

Vglobal

√∑
i∈j (mqi(x)− (oqi + εqi))

2 Vi
Vj∑

i∈joqi
Vi
Vj

, (2)

wheremqi(x) is the model solution with parameters x at grid
point i for tracer q and oqi the corresponding observation

(the synthetic observations provided by a reference run of
MOPS). The misfit is normalised by the volume-weighted
mean tracer concentration for that region and weighted, first,
by individual grid point volumes Vi relative to the volume
Vj of region j and, second, by the region’s total volume rela-
tive to the global ocean volume Vglobal. Real oceanic observa-
tions have a degree of uncertainty associated with them due
to spatio-temporal oceanic processes, e.g. from small-scale
processes such as unresolved eddies. To account for this we
add a noise term εiq , which is the added noise due to un-
certainty associated with tracer q for every grid box i in the
model. The total global misfit f εT (x) is then defined as

f εT (x)=

3∑
q=1

19∑
j=1

rεqj (x)
2. (3)

The total misfit function is broadly similar to Kriest et al.
(2017), with the main difference being the incorporation of
the 19 biome regions.

The non-noisy equivalent of these misfit terms are rqj and
fT as in Eqs. (2) and (3) with ε = 0. We also define “base-
line” misfits rbase

qj and f base
T , which are the misfits due to the

noise alone in the special case where the model outputs equal
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the observations (in Eq. 2: mqi = oqi). f base
T give an indica-

tion of the termination criteria when optimising the model
to real noisy oceanic observations, as optimising below this
threshold would serve no useful purpose.

To specify a realistic noise field we take the standard de-
viation variable provided in the World Ocean Atlas database
(WOA18 Garcia et al., 2018a, b). Since our misfit is defined
with respect to annual mean data we require an annual mean
standard deviation without the variability of the seasonal cy-
cle. To do so we take the numerical mean (weighted by num-
ber of observations) of the monthly standard deviations re-
ported in the WOA18 dataset for the upper 800 m (phosphate
and nitrate) or 1500 m (oxygen), and the annual standard de-
viation below those depths. These standard deviations fields
were linearly interpolated onto the model grid and then mul-
tiplied by three different Gaussian noise fields to create three
separate noise (ε) realisations. The baseline misfit terms rbase

qj

and f base
T were calculated as an average over these realisa-

tions.
As mentioned above, the “observations” in this study

are from a reference simulation of MOPS, hereafter
referred to as MOPS-ref, run with the following pa-
rameter values: RO2:P = 170 mmol O2: mmol P, IC =

24 W m−2, KPHY = 0.03125 mmol P m−3, µZOO = 2 d−1,
kZOO = 3.2 (mmol P m−3)−1 d−1 and b∗ = 0.858 (see Ta-
ble C1).

2.6 Optimisation experimental design and solver
settings

In this study we seek to (1) compare the performance of
CMA-ES and DFO-LS on noise-free observations, (2) in-
vestigate DFO-LS’s performance on noisy observations, and
(3) investigate the impact of sparse observations on the abil-
ity of DFO-LS to recover the true parameters. In order to do
so we carried out the following series of experiments (see
Table 1 for the corresponding experiment labels):

Noise-free experiments. In the noise-free experiments we
attempted to recover all six parameters. For this a single
run of CMA-ES was performed (labelled C_SMOOTH). For
DFO-LS two experiments were carried out (D_SMOOTH1
and D_SMOOTH2), starting from two different locations in
parameter space that were chosen to be relatively far from
the target parameters. The parameter values for these and all
other experiments are listed in Table C1.

Both CMA-ES and DFO-LS are controlled by various
solver settings. For CMA-ES the main ones are the num-
ber of sequential generations and the population size. As per
Kriest et al. (2017) we set these to 200 and 10, respectively.
The solver settings used by DFO-LS are summarised in Ta-
ble B1. Of the noise-free experiments D_SMOOTH1 and
D_SMOOTH2, the former had DFO-LS settings regarding
trust region management (tr_radius) which are more suit-
able for a noisy misfit function, while the latter is more suit-
able for a smooth misfit function. Therefore, D_SMOOTH1

and D_SMOOTH2 vary both in starting values and trust re-
gion management. As D_SMOOTH1 was slightly more suc-
cessful, the trust region management settings were set to be
more suitable for a noisy misfit function in all subsequent
experiments.

DFO-LS experiments with observational uncertainty. To
understand optimisation performance in the presence of ob-
servational uncertainty, noise was added to the reference ob-
servations (see Sect. 2.5). Three such optimisation runs, each
with a different noise realisation, were carried out with DFO-
LS (D_NOISY1, D_NOISY2, D_NOISY3) starting from the
same location in parameter space, to minimise the noisy mis-
fit function f εT . The goal was to see if DFO-LS could recover
all six of the MOPS-ref target parameter values.

DFO-LS experiments with sparse observations. There are
large areas of the ocean which have not been sampled ade-
quately or at all (e.g. Fig. 2). While it is possible to fill in
the gaps in the data using objective interpolation methods,
this might not always work well in the presence of large
gradients. In a last set of experiments we therefore com-
pared how DFO-LS performs in the presence of data spar-
sity (D_SPARSE1 and D_SPARSE2), by only using obser-
vations at model grid points for which the corresponding lo-
cations in WOA18 contain data, with its corresponding per-
formance in the absence of data sparsity (D_SMOOTH1 and
D_SMOOTH2).

3 Results

3.1 Parameter sensitivities

To provide insight into why some parameters were tuned bet-
ter or worse in the following optimisation experiments, the
sensitivity of the misfit function to an individual perturbation
in each parameter has been calculated and shown in Fig. 3.
The greatest change in the misfit was caused by perturbing
b∗ by 10 % of its range, followed by IC. The parameter with
the lowest influence on the misfit at this local point in param-
eter space was KPHY, in which a 10 % perturbation caused a
misfit change of only 4.1× 10−6.

3.2 Noise-free experiments

The results for all twin optimisation experiments are sum-
marised in Figs. 4 and 5, and in Appendix C (Tables C1 and
C2), which show the starting and optimised parameter val-
ues, and parameter recovery information. In the subsequent
sections we then plot both the global misfit and parameter
values for every function evaluation throughout each individ-
ual optimisation experiment (Figs. 6–13). During one CMA-
ES iteration we evaluate the misfit function 10 times (the
population size). Therefore for CMA-ES we plot the mini-
mum (best) and maximum misfits, and we plot the parameter
values corresponding to the best misfit, and the minimum and
maximum parameter values of each population.

Geosci. Model Dev., 15, 3537–3554, 2022 https://doi.org/10.5194/gmd-15-3537-2022



S. Oliver et al.: A derivative-free optimisation method for global ocean biogeochemical models 3543

Table 1. Names of each experiment tuning to noise-free, noisy and sparse twin observations. C_SMOOTH is the non-noisy CMA-ES experi-
ment. D_SMOOTH1 and D_SMOOTH2 are the non-noisy DFO-LS experiments starting from two different locations in parameter space, run
specifically to be compared to C_SMOOTH. D_noise_randi are the noisy DFO-LS experiments, with three different noise realisations, run
specifically to be compared to the non-noisy equivalent experiment D_SMOOTH1. D_SPARSE1 and D_SPARSE2 are the non-noisy DFO-
LS experiments calibrating to sparse observations, starting from two different locations in parameter space, run specifically to be compared
to the non-sparse equivalent experiments D_SMOOTH1 and D_SMOOTH2, respectively.

CMA-ES DFO-LS

All observations Sparse observations

Noise-free Noisy Noise-free

C_SMOOTH D_SMOOTH1 D_NOISY1 D_SPARSE1
D_SMOOTH2 D_NOISY2 D_SPARSE2

D_NOISY3

different starting points different Gaussian different starting points
noises added

Figure 3. Bar graph of the misfit change due to individual parameter
perturbations from their target value to +10 % of their range.

To both reiterate how DFO-LS works and fully explain the
DFO-LS figures, we briefly describe the optimisation process
in terms of expected misfit reduction and parameter trajecto-
ries. First, DFO-LS evaluates the misfit function n+ 1 times
near to the chosen starting point; therefore in the first seven
evaluations we do not expect a misfit reduction. After these
initial evaluations, DFO-LS attempts to minimise the misfit
function and there will be both successful evaluations (the
resulting misfit is lower than previously found in the optimi-
sation) and unsuccessful ones (the misfit is not lower). There
may also be restarts, directly after which unsuccessful evalu-
ations are common as DFO-LS perturbs the parameter values
to get out of a possible local minimum. Therefore on every
DFO-LS figure we have plotted the misfit or parameter val-
ues for every evaluation (both successful and unsuccessful)
as scattered points, and successful ones in a solid line.

On every figure of total global misfits the expected base-
line misfit (f base

T ; see Sect. 2.5) is also plotted, below which
any misfit reduction is within observational noise levels. On
every parameter trajectory plot the “recovery zone” is also
shown. This indicates the range of parameter values within
±5 % of the target value, normalised by the total range (upper
bound minus lower bound) for that parameter. We consider
a parameter to have been “recovered” by a certain number
of evaluations, when all subsequent parameter values corre-
sponding to successful evaluations remain within this recov-
ery zone.

CMA-ES experiment. Figure 6 shows that during the op-
timisation C_SMOOTH by CMA-ES the global misfit de-
creases significantly from 10−1 to ≈ 10−4 within the first
500 function evaluations. Subsequently progress slows down
as the misfit is reduced by only 1 more order of magnitude
over the next 1000 evaluations. Progress then significantly
improves, with the misfit decreasing from ≈ 10−5 to 10−9

within the final 500 evaluations. Note that the spikes in the
maximum global misfit near the 1650th evaluation was due
to the added penalty factor when one of the parameter val-
ues in this population had a value just outside of its allowed
range. While this experiment did not include noise, we note
that CMA-ES required 309 evaluations to reach the baseline
misfit, beyond which any misfit reduction would have been
within observational noise levels.

Figure 7 shows how the six parameters were optimised to-
wards the MOPS-ref target parameter values by CMA-ES.
The targets were found relatively quickly within the initial
500 evaluations for the parameters RO2:P, IC and b∗, corre-
sponding to the initial fast misfit reduction previously shown
in Fig. 6. The µZOO and kZOO targets were found next after
approximately 1000 evaluations, after which the optimiser
began tuning KPHY towards its target until it located after
1700 evaluations. If C_SMOOTH had been terminated once
the observational noise level was reached after 309 evalua-
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Figure 4. Optimised (cross markers) and starting (circle markers) parameters for all SMOOTH (orange), NOISY (magenta) and SPARSE
(green) twin experiments, shown for parameter (a) RO2:P [mmol O2 :mmol P], (b) IC [W m−2], (c) KPHY [mmol P m−3], (d) µZOO [d−1],
(e) kZOO [(mmol P m−3)−1 d−1] and (f) b∗. For C_SMOOTH multiple starting locations (small orange markers) are shown, as unlike DFO-
LS, CMAES selects 10 unconstrained randomised starting points. As CMA-ES is unconstrained, not all starting locations plot within the
parameter bounds, to which the y-axis limits are fixed. Also plotted are the MOPS-ref target parameter values and ±5 % recovery zone
(horizontal black dashed lines). For further information see Table C1.

tions, RO2:P, IC and b∗ would have been optimised to their
MOPS-ref values relatively well, while KPHY, µZOO and
kZOO would still be far from their target values.

DFO-LS experiments. To compare the performance of
DFO-LS with CMA-ES we carried out two optimisation ex-
periments with DFO-LS (D_SMOOTH1 and D_SMOOTH2)
starting from two different locations in parameter space, with
differing parameters controlling the DFO-LS trust region
shrinking speed. Optimisation D_SMOOTH1 had slower
trust region shrinking settings to allow it to better handle
an irregular misfit function. Figure 8 shows the compari-
son between both experiments’ reduction of the global mis-
fit. In both cases there was rapid initial misfit decrease from
near 10−1 to 10−3 within 30 model evaluations. Optimisa-
tion D_SMOOTH2 showed slightly slower misfit reduction,
needing 35 evaluations to reach the baseline misfit, while
D_SMOOTH1 only required 20 to reach the baseline, be-
yond which any misfit reduction is within observational noise
levels. In both D_SMOOTH1 and D_SMOOTH2 DFO-LS
managed to reduce the misfit to below 10−5 within 45–49
evaluations and then initiated restarts to reduce it further. As
D_SMOOTH1 performed slightly better than D_SMOOTH2,
especially between evaluations 15–45, D_SMOOTH1 trust

region shrinking settings were used as defaults for all subse-
quent experiments.

Figure 9 shows how the six parameters were opti-
mised towards the MOPS-ref target parameter values by
D_SMOOTH1 and D_SMOOTH2. In both experiments
within the first 30 evaluations RO2:P, IC, kZOO and b∗ were
optimised to relatively close to their targets, and µZOO within
the first 45 evaluations. The parameter the misfit function
was least sensitive to, KPHY, was successfully optimised by
D_SMOOTH1; however, was not successfully optimised at
all by D_SMOOTH2. If D_SMOOTH1 and D_SMOOTH2
had been terminated once reaching the noise baseline, after
20 and 35 evaluations respectively, RO2:P, IC, b∗ and kZOO
would have been optimised to their MOPS-ref values rela-
tively well.

3.3 DFO-LS experiments with observational
uncertainty

To assess the impact of observational uncertainty we carried
out three experiments in which DFO-LS was initialised from
the same starting location in parameter space, but with three
different realisations of random noise added to the observa-
tions (see Sect. 2.6). As seen in Fig. 10 DFO-LS managed to
reduce the misfit to very close to the average baseline misfit
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Figure 5. Number of evaluations required by the SMOOTH (orange), NOISY (magenta) and SPARSE (green) twin experiments to (a) reduce
the global misfit to below noise levels (baseline misfit) and (b–g) successfully recover each parameter. The red dashed line shows the
maximum number of evaluations allowed for DFO-LS experiments. Black arrows indicate (a) the baseline misfit was not reached, or (b–
g) the parameter was not recovered in that optimisation experiment. Note that the number of evaluations required by CMA-ES in experiment
C_SMOOTH always plotted above the break in the y axis. For further information see Table C2.

Figure 6. The reduction in global misfit of MOPS to the
twin MOPS-ref observations by CMA-ES for the experiment
C_SMOOTH. There were 10 MOPS evaluations within each CMA-
ES iteration (population λ= 10), ran in parallel. Plotted is the base-
line (horizontal black dashed line), minimum (black solid line) and
maximum (red dotted line) misfit of each population, with the area
between shaded yellow.

within 30 evaluations with a reduction in misfit from∼ 10−1

to∼ 10−3. Closer to the end of the optimisation runs, restarts
were initiated to encourage further misfit reduction, hence
the large variations in misfit. Figure 11 shows that the initial
misfit reduction corresponds to improved values for the pa-

rametersRO2:P, IC,KPHY and b∗. DFO-LS seems to compen-
sate for the noise by increasing the values for the parameters
µZOO and kZOO.

3.4 DFO-LS experiments with sparse observations

In a final set of experiments we examine whether DFO-LS
is able to successfully optimise MOPS given a sparse set of
observations (see Sect. 2.6). The experiments D_SPARSE1
and D_SPARSE2 were initialised from the same location in
parameter space as D_SMOOTH1 and D_SMOOTH2, re-
spectively, but the former were optimised using observa-
tions sub-sampled at grid points corresponding to locations
in the un-interpolated WOA18 database. In these experi-
ments no noise was added to the observations. Figure 12
shows that the two optimisations using full observations
(D_SMOOTH1 and D_SMOOTH2) converged to slightly
lower misfits than when using sparse observations. Figure 13
shows that D_SMOOTH1 successfully recovered all six pa-
rameters within 42 evaluations, while D_SPARSE1 only suc-
cessfully recovered RO2:P, IC and b∗ throughout the optimi-
sation. The above results would indicate a poorer optimisa-
tion when using sparse observations; however, when starting
from a different location in parameter space, D_SMOOTH2
successfully recovered five parameters within 44 evaluations,
while D_SPARSE2 recovered the same five after only 26
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Figure 7. Parameter tuning by CMA-ES for the experiments C_SMOOTH for the parameters (a) RO2:P, (b) IC, (c) KPHY, (d) µZOO,
(e) kZOO and (f) b∗. There were 10 MOPS evaluations within each CMA-ES iteration (population λ= 10), run in parallel. Plotted are the
parameter values associated with the minimum misfit of that population (thick black solid line), and the maximum and minimum of all
parameter values within that population (thin black solid lines), with the area between shaded yellow. Also plotted are the MOPS-ref target
parameter values and ±5% recovery zone (horizontal black dashed lines).

Figure 8. The reduction in global misfit of MOPS to the
twin MOPS-ref observations by DFO-LS for the experiments
D_SMOOTH1 (black line with crosses) and D_SMOOTH2 (blue
line with circles). Also plotted is the baseline misfit (horizontal
black dashed line). Vertical arrows indicate a soft restart, coloured
and marked according to each experiment. Note that every MOPS
evaluation has been plotted with a small marker; however, only
MOPS evaluations which resulted in a lower misfit than previously
seen in each optimisation experiment have been plotted with a solid
line.

evaluations. This suggests that even with sparse observations
it is possible to successfully optimise a global ocean biogeo-
chemical model such as MOPS.

4 Discussion

4.1 CMA-ES vs. DFO-LS optimisation performance

Our comparison of the two optimisation algorithms shows
that DFO-LS could recover all six target parameter values
within ∼ 40 evaluations of MOPS, while CMA-ES achieved
the same goal within ∼ 1700 evaluations. By “recover” we
mean optimised to within ±5 % (normalised by the parame-
ter range) of the target value. DFO-LS reduced the misfit to
below the observational uncertainty threshold within 20–35
evaluations, while CMA-ES required 309 evaluations. DFO-
LS is thus significantly more efficient for this particular prob-
lem and may, in general, be more practical for optimising
more than a small handful of parameters. However, we note
that the multiple evaluations CMA-ES requires can be run
in parallel. In contrast, DFO-LS, except for the initial n+ 1
evaluations, runs sequentially.

CMA-ES is a single-objective optimiser, while DFO-LS
can use information from multiple misfit values instead of
just one. Therefore it can exploit more information to allow
for a faster reduction in the misfit. Neither algorithm can
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Figure 9. Parameter tuning by DFO-LS for the experiments D_SMOOTH1 (black line with crosses) and D_SMOOTH2 (blue line with
circles) for the parameters (a) RO2:P, (b) IC, (c) KPHY, (d) µZOO, (e) kZOO and (f) b∗. Also plotted are the MOPS-ref target parameter
values and ±5% recovery zone (horizontal black dashed lines). Note that every MOPS evaluation has been plotted with a small marker;
however, only MOPS evaluations which resulted in a lower misfit than previously seen in each optimisation experiment have been plotted
with a solid line.

Figure 10. As in Fig. 8, but for experiments D_NOISY1 (black line
with crosses), D_NOISY2 (blue line with circles) and D_NOISY3
(red line with squares). Vertical arrows indicate a soft restart,
coloured and marked according to each experiment.

completely guarantee a global optimum solution, although
CMA-ES carries out a more global search than DFO-LS.
There is significant evidence DFO-LS can find the global op-
timum (Cartis et al., 2021), but to increase confidence in the
final solution it can be combined with a globalising method

such as starting from different points in parameter space or
using the DFO-LS restart functionality.

Both methods struggled with one of the parametersKPHY,
due to the misfit function’s low sensitivity to this param-
eter (as found by perturbing the parameter values in each
direction and computing the gradient). DFO-LS had not
begun to tune this parameter for one of the experiments
(D_SMOOTH2) before we terminated it at a maximum of 70
evaluations, although it did find KPHY when initiated from a
different starting point (D_SMOOTH1). CMA-ES also had
difficulty in tuning KPHY and only started optimising this
parameter after all the other parameters were recovered at
∼ 1200 evaluations. The maximum number of DFO-LS eval-
uations was set to 70 as it is a sequential algorithm; therefore
it was impractical to allow too many more evaluations. Had it
been allowed to run longer the expectation is it would begin
tuning KPHY once the other five were sufficiently tuned, as
was the case with CMA-ES. However, the computational ex-
pense of continuing DFO-LS to recover KPHY was deemed
too costly, particularly due to the fact that this parameter has
so little influence on the misfit function and therefore did not
impact the successful misfit reduction achieved by DFO-LS.
This low sensitivity to KPHY was also seen by Kriest et al.
(2017), who determined the surface observations contribute
too little to the total misfit, rendering the misfit function in-
sensitive to perturbations in parameters that mainly influence
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Figure 11. As in Fig. 9, but for the experiments D_NOISY1 (black line with crosses), D_NOISY2 (blue line with circles) and D_NOISY3
(red line with squares).

Figure 12. As in Fig. 8, but for experiments D_SMOOTH1
(black line with crosses), D_SPARSE1 (blue line with circles),
D_SMOOTH2 (red line with squares) and D_SPARSE2 (magenta
line with diamonds). Vertical arrows indicate a soft restart, coloured
and marked according to each experiment. Note that the baseline
misfit (horizontal black dashed line) was calculated using the full
grid noisy observations.

the surface ocean (e.g. KPHY). To help overcome this in fu-
ture work, one could put more weighting on surface data
when formulating the misfit.

4.2 Calibrating to uncertain observations

Real oceanic observations come with associated uncertainty
due to measurement error, temporal variations such as sea-

sonal and diurnal cycles, and meso-scale variability due to
factors such as eddies and the movement of fronts. Here we
have studied how this uncertainty raises the base of the mis-
fit function, below which any optimisation of the biogeo-
chemical model would be within the uncertainty level. We
determined this baseline for the misfit function (or termina-
tion threshold) using the standard deviations of the obser-
vational data; however, others have defined it as the global
optimum of a surrogate formulation of the biogeochemical
model (Sauerland et al., 2017). In the present case and with
the chosen set of oceanic observations, the model was signif-
icantly optimised before reaching levels of observational un-
certainty, particularly due to optimisation of the parameters
which the model is most sensitive to, as was determined by
perturbing each parameter while holding the others fixed and
calculating the misfit. In this case it was IC (the phytoplank-
ton half-saturation for light) and b∗ (the increase in particle
sinking speed with depth). Somewhat surprisingly, a param-
eter the model is less sensitive to, RO2:P (the ratio of oxygen
consumption to phosphate release during remineralisation),
was also well optimised before reaching the baseline. De-
spite the low sensitivity, possibly caused by narrow parame-
ter bounds, the high optimisation potential by this parameter
may be due to the fact that the misfit function includes both
oxygen and phosphate. It could also be due to the fact that
this parameter has a non-local effect, as it influences the flux
of oxygen and phosphate to the deeper ocean, hence to ocean
basins further along the “conveyor belt”. This is also the case
for b∗ (Kwon and Primeau, 2006; Kriest et al., 2012) but even
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Figure 13. As in Fig. 9, but for the experiments D_SMOOTH1 (black line with crosses), D_SPARSE1 (blue line with circles), D_SMOOTH2
(red line with squares) and D_SPARSE2 (magenta line with diamonds).

more so as it also influences the vertical flux of all three of the
tracers. In order to optimise less sensitive parameters before
reaching noise levels one could introduce more metrics into
the misfit calculation to help constrain these parameters, for
example phytoplankton and zooplankton data, or additional
oxygen constraints, such as the location of oxygen minimum
zones as done by Niemeyer et al. (2019).

4.3 Calibrating to sparse observations

We also investigated the ability of DFO-LS to optimise
MOPS in the presence of sparsity in the observational data.
The results shown here suggest that there is no significant
difference in the performance of DFO-LS when tuning to
data at every grid point versus a subset of grid points, in line
with earlier findings by Kriest et al. (2010). Interpolating can
introduce large errors, on the order of 20 % (Garcia et al.,
2018a, b), particularly in poorly sampled regions such as the
Southern Ocean. However, our experiments suggest that it is
possible to use un-interpolated observations, but it is impor-
tant to start the optimiser from multiple locations in param-
eter space, or to generously allow restarts, in the presence
of a complex misfit function with many local minima. These
multiple runs clearly can be run in parallel.

5 Summary

This study compared the efficiency and performance of two
derivative-free optimisation algorithms, CMA-ES and DFO-

LS, applied to MOPS, a global ocean biogeochemical model
with seven prognostic tracers. The two methods were used
to tune six of the parameters that control the behaviour of
MOPS. We found that DFO-LS has a significantly lower
computational cost when compared to CMA-ES, between
one and two orders of magnitude, which is important con-
sidering that global ocean biogeochemical models are com-
putationally expensive, as they must be integrated for several
thousand years to reach equilibrium. DFO-LS exploits more
information when minimising the misfit function and there-
fore has more scope for reducing the misfit faster than CMA-
ES. However, as DFO-LS is more of a local optimiser than
CMA-ES, it should be paired with a globalising method such
as starting from different initial points in parameter space,
which can easily be run in parallel.

Future work will involve applying DFO-LS to tune the
MEDUSA biogeochemical model (Yool et al., 2011, 2013)
to real observations. MEDUSA is more typical of the biogeo-
chemical models which are embedded within earth system
models (in the case of MEDUSA, UKESM) that are used to
project climate change.
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Appendix A: CMA-ES algorithm description

Below is a simplified description of the (µ/µW,λ)-CMA-ES
algorithm (Hansen, 2016).

Algorithm A1 (µ/µW,λ)-CMA-ES.

0: INPUT: Set initial parameters as in Table 1 of Kriest et al.
(2017), population size λ= 10, µ= λ/2, evolution paths, co-
variance matrix C= I, distribution mean, step size and maxi-
mum generation number.

1: while maximum generation is not reached and fitness distribu-
tion is not flat do

2: Sample population of new probability distribution
3: for k = 0,1,2, . . .λ do
4: Sample search point for this k
5: end for
6: Update probability distribution
7: Update the mean of the search distribution according to a

weighted average of the best half of the previously sampled
population

8: Update the overall standard deviation (“step size”)
9: Update evolution paths

10: Update covariance matrix
11: end while

Appendix B: DFO-LS algorithm description

Below is a simplified description of the DFO-LS algorithm
in the context of how it has been used in this study. Not all
technical details are included, such as safeguarding steps to
improve the geometry of points and the quality of the model;
therefore see the full description in Cartis et al. (2019).

Table B1. DFO-LS parameter settings for each optimisation experiment. All parameter settings are described in full in the DFO-LS user
manual, which is available for download alongside the DFO-LS software. * Group A: all experiments excluding D_SMOOTH2.

DFO-LS setting name Description Group A* D_SMOOTH2

maxfun Maximum number of true misfit function evaluations 70 70
obj_fun_has_noise Does the misfit function have stochastic noise? False False
rhobeg Normalised radius of parameter trust region at start 0.1 0.1
rhoend Normalised radius of parameter trust region for termination or restart 0.001 0.001
tr_radius.gamma_dec Ratio to decrease trust region radius (1k) in an unsuccessful iteration 0.98 0.5
tr_radius.alpha1 Ratio to decrease the lowest bound (ρk) for the trust region radius 0.9 0.1
tr_radius.alpha2 Ratio of ρk to decrease 1k by when ρk is reduced 0.95 0.5

Algorithm B1 DFO-LS.

Require: Number of parameters n, starting point x0 ∈ Rn, mini-
mum trust region radius (pend), if hard or soft restarts are al-
lowed (see Sect. 2.4.2), and maximum number of true misfit
function evaluations.

1: Evaluate the true misfit function at n+1 points within the initial
trust region to build the initial interpolation set {Y 0} (this can
be done in parallel).

2: for k = 0,1,2, . . . do
3: if we have exceeded the maximum number of true misfit

function evaluations then
4: terminate.
5: end if
6: Construct a quadratic approximation of the true misfit func-

tion.
7: Approximately solve the trust region subproblem to locate

the minimum of the approximation within the trust region
and get step sk to this point.

8: Evaluate the true misfit function at xk + sk .
9: if the misfit is significantly decreased then

10: Accept Step:
11: Set xk+1 = xk + sk .
12: if misfit decrease is not significant then
13: call a hard or soft restart if allowed, or terminate.
14: end if
15: Form {Y k+1} by replacing the worst point with the new

accepted point to maintain a set of n+ 1 points.
16: else
17: Reject Step:
18: Set xk+1 = xk and shrink the trust region.
19: if the trust region radius is smaller than pend then
20: call a hard or soft restart if allowed, or terminate.
21: end if
22: Make {Y k+1} = {Y k}.
23: end if
24: end for
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Appendix C: Optimisation results tables

Table C1. Optimised parameters for all twin experiments. Upper section shows parameter bounds and MOPS-ref target parameters to be
recovered. Lower section shows each experiment’s results. Columns 2–7: (first row) starting parameter values and (second row) optimised pa-
rameters for RO2:P [mmol O2 :mmol P], IC [W m−2], KPHY [mmol P m−3], µZOO [d−1], kZOO [(mmol P m−3)−1 d−1] and b∗. Column 8:
(first row) the starting global misfit and (second row) the lowest global misfit. n/a: not applicable for CMA-ES.

Parameters RO2 : P IC KPHY muZOO kZOO b* Misfit

Upper bound 200 48 0.5 4 10 1.8
Lower bound 150 4 0.0001 0.1 0 0.4
Target 170 24 0.03125 2 3.2 0.858 0

Experiments

C_SMOOTH Start n/a n/a n/a n/a n/a n/a 4.231×10−2

Optimised 170.003 24.001 0.031 2.000 3.200 0.858 2.909× 10−10

D_SMOOTH1 180.000 40.000 0.100 2.500 5.000 0.540 5.248× 10−2

170.401 24.026 0.051 2.062 3.448 0.860 4.143× 10−6

D_SMOOTH2 190.000 30.000 0.200 3.500 1.000 1.100 2.715× 10−1

169.875 23.663 0.153 2.013 3.211 0.859 6.747× 10−6

D_NOISY1 180.000 40.000 0.100 2.500 5.000 0.540 5.316× 10−2

170.812 23.856 0.024 2.531 5.629 0.870 8.050× 10−4

D_NOISY2 180.000 40.000 0.100 2.500 5.000 0.540 5.316× 10−2

168.116 25.321 0.007 2.086 4.634 0.852 8.717× 10−4

D_NOISY3 180.000 40.000 0.100 2.500 5.000 0.540 5.316× 10−2

169.234 23.011 0.053 2.714 6.352 0.878 8.215× 10−4

D_SPARSE1 180.000 40.000 0.100 2.500 5.000 0.540 5.427× 10−2

169.816 24.002 0.204 1.689 2.232 0.854 6.475× 10−5

D_SPARSE2 190.000 30.000 0.200 3.500 1.000 1.100 2.843× 10−1

170.022 23.610 0.150 2.077 3.415 0.861 9.691× 10−6

Table C2. Number of evaluations required to recover each parameter for all twin experiments. Columns 2–7: number of misfit function
evaluations required to successfully recover that parameter (“–”: never recovered). All evaluations required to recover a parameter which
were fewer than 40 are typed in bold font. Column 8: the maximum number of evaluations completed. Column 9: the evaluation which
provided the lowest or “best” global misfit. Column 10: the number of evaluations needed for the global misfit to be reduced below noise
levels (“–”: never reached the baseline).

Number of evaluations required to recover parameter Maximum Evaluation of Evaluations to

Experiment RO2 : P IC KPHY muZOO kZOO b* evaluations lowest misfit baseline misfit (7.0405× 10−4)

C_SMOOTH 420 370 1710 800 850 340 2000 1983 309
D_SMOOTH1 16 25 12 41 42 13 70 45 20
D_SMOOTH2 43 9 – 44 29 26 70 49 35
D_NOISY1 13 24 24 – – 12 70 29 –
D_NOISY2 38 39 43 11 – 12 70 43 –
D_NOISY3 25 24 57 – – 12 70 57 –
D_SPARSE1 18 46 – – – 20 70 62 21
D_SPARSE2 25 9 – 26 26 25 70 64 29
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Code and data availability. The base TMM and MOPS code used
for the ocean biogeochemical simulations are available to download
from https://doi.org/10.5281/zenodo.1246300 (Khatiwala, 2018).
Transport matrices and forcing fields required to perform the sim-
ulations can be downloaded from https://doi.org/10.5281/zenodo.
5517238 (Khatiwala, 2021). Modifications to the MOPS code for
the specific experiments described in this paper, along with model
output and scripts to recreate the figures shown here, are available
from https://doi.org/10.5281/zenodo.5517626 (Oliver et al., 2021).
The OptClim optimisation framework used in this study to couple
any climate model to any optimiser is available at https://doi.org/
10.5281/zenodo.5517610 (Oliver and Tett, 2021). This includes the
CMA-ES optimisation code taken from the Supplement of Kriest
et al. (2017) and adapted to work with OptClim.
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