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Abstract—Mobile network traffic data offers unprecedented
opportunities for innovative studies within and beyond networking.
However, progress is hindered by the very limited access that
the research community at large has to the real-world mobile
network data that is needed to develop and dependably test
mobile traffic data-driven solutions. As a contribution to overcome
this barrier, we propose CartaGenie, a generator of realistic
mobile traffic snapshots at city scale. Taking a deep generative
modeling approach and through a tailored conditional generator
design, CartaGenie can synthesize high-fidelity and artifact-free
spatial traffic snapshots using only contextual information about
the target geographical region that is easily found in public
repositories. Hence, CartaGenie allows researchers to create their
own realistic datasets of spatial traffic from open data about their
region of interest. Experiments with real-world mobile traffic
measurements collected in multiple metropolitan areas show that
CartaGenie can produce dependable network traffic loads for
areas where no prior traffic information is available, significantly
outperforming a comprehensive set of benchmarks. Moreover,
tests with practical case studies demonstrate that the synthetic
data generated by CartaGenie is as good as real data in supporting
diverse research-oriented mobile traffic data-driven applications.

Index Terms—Mobile network traffic data, Traffic snapshots,
Synthetic data generation, Deep generative models.

I. INTRODUCTION

Network traffic generated by mobile devices is an unprece-
dented, rich source of information on human activity and
movement [1], [2]. It has enabled studies on modelling mobility
and migration [3], [4], inferring commuting patterns, crowding
and inequities [5]–[7], monitoring demographic dynamics [8],
[9], detecting functional uses of urban areas [10], monitoring
road traffic [11], or planning transportation systems [12].
Networking use cases are also supported by traffic data, e.g.,
for planning infrastructure deployment [13], improving energy
efficiency [14], or optimizing novel paradigms [15].

Despite the breadth and importance of these applications, the
research community currently has very limited access to mobile
network traffic data. When access is granted, restrictive non-
disclosure agreements (NDAs) limit the analyses to narrowly
defined scopes and prevent further circulation of the data.

In this paper, we look at synthetic data generation as an
effective way to lower the access barrier to mobile traffic data.
In particular, we aim at synthetically generating realistic (and
open) snapshots of mobile traffic, i.e., datasets reporting the
spatial distribution of the traffic generated by all users in a
target geographical region where the information is aggregated
according to a specific tessellation of space. This type of data,

*These authors contributed equally to this work.

(a) Weekday (b) Weekend (c) Traffic patch (d) Context patch

Figure 1: (a), (b) Examples of mobile traffic snapshots, also
showing the spatiotemporal variation of the demand in City
A from our dataset. (c) Example of a mobile traffic patch, for
which the generation process is handled independently. (d) The
outer square outlines the wider context patch for the traffic patch
in (c), for one specific context attribute (population density).

exemplified in Figures 1a and 1b for two moments in time in the
same urban area, permits multiple aforementioned applications.

Importantly, we aim at ensuring that mobile traffic snapshots
can be generated for any given region from contextual infor-
mation that is easily obtained via public repositories, such as
demographics and land use databases. This allows researchers
to create their own realistic datasets of spatial mobile traffic
from open context data about a region of their interest.

Attaining the above goal, however, poses significant chal-
lenges. First, mobile traffic data exhibits hard-to-model char-
acteristics such as spatial correlations and skewness [16] and
traffic pattern fluctuations over time [17], as also seen in
Figures 1a and 1b. Second, the available contextual attributes
(interchangeably referred to as conditions in the rest of the
paper) can only partially explain the traffic in the corresponding
region, which is also driven by additional unobserved latent
factors. Third, the dependence of mobile traffic on conditions
is not deterministic, but inherently stochastic. Fourth, regions
of interest for traffic generation (e.g., cities) typically have
different spatial dimensions, which gives rise to the challenge
of synthesizing varied size traffic snapshots. We are unaware
of prior work that address the aforementioned challenges, as
more broadly discussed in §VII.

As a very first step towards solving the problem at hand,
we present CartaGenie (§II), a novel method rooted in deep
generative modelling for high-fidelity and generalizable syn-
thesis of city-scale mobile traffic snapshots from contextual
input. CartaGenie casts spatial traffic synthesis as a strongly
conditioned generation problem, and solves it via a tailored
deep convolutional neural network (CNN) architecture design.

Experiments based on multi-city mobile traffic measurements
from a major European operator, augmented with contextual



Figure 2: Spectrum of controllable data synthesis methods.

attributes from public sources (§III) lead to the following results
(§IV and §V): (i) CartaGenie successfully achieves the goal of
synthesizing traffic snapshots for new unseen cities solely based
on contextual inputs; (ii) in doing so, it achieves significantly
superior city-level fidelity compared to a range of benchmarks;
and, (iii) CartaGenie-generated synthetic traffic data provides
nearly indistinguishable results from those derived with real
data in practical application use cases, which demonstrates the
potential utility for research studies.

Upon publication of this work, we will make a synthetic
mobile traffic dataset generated using CartaGenie available to
the research community at https://github.com/netsys-edinburgh/
CartaGenie/. Specifically, this dataset will consist of week-
day/weekend daily and peak hour traffic snapshots for five
diverse sized cities in Germany, obtained with context data
for those cities (retrieved from public sources) as input to a
pre-trained CartaGenie model. We will also strive to make
CartaGenie available as a tool to the research community,
subject to clearance from the project sponsor and the operator.

II. METHOD DESIGN

A. Problem Statement

Let X = {X1, X2, . . . , XN} be a mobile network traffic
dataset that contains N sets of traffic snapshots, such that
each set is collected in a different geographical region*. The
data in region n ∈ {1, . . . , N} includes observations over
time Tn, hence Xn = {xn

1 ,x
n
2 , . . . ,x

n
Tn}. Each observation

xn
t ∈ ℜHn

x×Wn
x is modeled as a single channel image, whose

pixels values correspond to the network traffic load recorded
at each location in n at time t; Hn

x and Wn
x are the height and

width of the city n in pixels, which may differ between cities.
Each observation xn

t is associated with a set of A auxiliary
observations (or conditions), i.e., attributes that may partly
explain the volume of traffic generated by mobile users (e.g.,
population distribution in the region, land use characteristics,
or presence of points of interest). We denote the set of auxiliary
observations for each city n as its context, and represent it as
the set Cn = {cn1 , cn2 , . . . , cnTn}. Here, cnt = (vn, wt), where
vn ∈ ℜA×Hn

c ×Wn
c is a multi-channel image with one channel

per attribute, and Hn
c and Wn

c are the height and width of the
context in pixels, respectively; whereas, wt is a discrete time
context attribute that captures the time dimension t of the cnt .

Our goal is to design a model to generate synthetic network
traffic data smt ∈ ℜHm

s ×Wm
s for a previously unseen region m

*In this work, we will consider whole cities as the regions of interest, and
we will use the terms region and city interchangeably. However, the approach
we propose is general, and applies to other definitions of region.

Figure 3: Schematic of CartaGenie neural network architecture.
Tensor shapes are annotated in brackets, e.g., [26, 20, 20] means
a 3-dimensional tensor with its corresponding dimension sizes.

at a specified time* t and given auxiliary observations cmt , in
a way that synthetic samples smt exhibit similar characteristics
as the real training data X and are compatible with input cmt .

B. Proposed Solution: CartaGenie
The design of CartaGenie stems from the consideration

that the available conditions can only partially explain the
data to be generated, and there are unexplained parts, either
due to missing conditions or stochasticity, that we want our
synthesizer to model. From a data generation perspective, and
as shown in Figure 2, this calls for a strongly conditioned
model. We argue that alternative approaches are not well
suited for the problem of mobile traffic synthesis. On the
one hand, the complex and partly stochastic nature of the data
X (used for training) cannot be fully explained by conditions
C: hence, classical regression that lies at the right end of
the spectrum performs poorly, as we also experimentally
show in §IV. On the other hand, the free-form generation
approach that ignores conditions and tries to generate real
data distributions from only noise input lacks controllability
and discards valuable information: in §IV we show that
popular methods for ‘unconditioned’ generation at the left
end of the spectrum, such as Generative Adversarial Networks
(GANs) [18] and Variational Autoencoders (VAEs) [19], [20],
also yield lower traffic synthesis quality than CartaGenie.

CartaGenie is a conditional deep generator Gθ : c, z → x,
with a tailored Convolutional Neural Network (CNN) archi-
tecture, as depicted in Figure 3. It takes conditions c and a
latent variable z as input. Specifically, c is a combination
of spatial (v) and non-spatial (i.e., temporal, w) data; the
time context attribute w allows generating traffic snapshots
for specified time periods with different traffic patterns (e.g.,
compare Figures 1a and 1b). On the other hand, the latent
(or noise) variable z ∈ ℜDz captures unobserved conditions
beyond c and stochasticity, and is also non-spatial.

The non-spatial inputs z and w are processed via a special-
ized FiLM conditioning layer [21]. As detailed in §II-C, this

*We will focus our evaluation on two relevant definitions of time, i.e., daily
aggregates and peak traffic hours. Our model, however, is capable of generating
spatial mobile traffic snapshots at any given time granularity (weeks, days,
hours, etc.), only limited by the time-resolution of the training data.



design avoids naive conditioning on the latent variable (i.e.,
simply concatenating c and z), which weakens the conditioning
and is known to result in the neural network completely
ignoring stochasticity [22], [23]; our approach also provides an
elegant way of integrating the time context as a noise modulator.
The result of the separate convolutions along spatial and non-
spatial inputs are then merged via an affine transformation into
a hidden representation, which is then processed by stacked
convolution layers with size-1 kernels and batch normalization
(BN) layers in between, to produce the final sample s.

To allow generation of mobile traffic snapshots for cities
with varying spatial dimensions via a single generator model,
CartaGenie operates at a smaller patch level, an example of
which is in Figure 1c. Doing so has additional advantages in
terms of efficient training and avoiding overfitting, as elaborated
in the next section, although care needs to be taken to avoid
artifacts when sewing up generated patches to make up the city
level traffic map. To this end, CartaGenie ensures for each traffic
patch the corresponding context patch is sufficiently wider, as
illustrated in Figure 1d, to enable conditionally independent
pixel level generation; artifact-free generation then naturally
results from the Markov blanket property [24] (§II-D).

The learning process during model training is via minimizing
the expected reconstruction error between the real and synthe-
sized traffic maps, computed as the L1 distance, i.e., the sum of
absolute differences in corresponding individual pixel values of
the two maps. The model optimization is through stochastic gra-
dient descent, using mini-batches over different city, time and
patches. We provide a more detailed description of the model
architecture and training in a companion technical report [25].

C. Latent Variable Modeling with Time Input via FiLM Layer

How the latent variable (noise vector) z is integrated is an
important design choice for the conditional generator. If we
simply concatenate it (after reshaping) to the conditions c, the
generator tends to ignore the noise vector during training and
leads to deterministic outputs given c [22], [23]. Proposals
to instead use dropout layers as a source of stochasticity were
found not effective either [26]. In CartaGenie, we address the
problem by using the feature-wise linear modulation (FiLM)
conditioning layer [21]. When adapted to our case, the FiLM
layer takes two inputs h ∈ ℜNh×Wh×Hh and z ∈ ℜNz×1×1,
where h is an intermediate hidden representation of the spatial
context v that is encoded with our model. z is transformed using
a layer of neural network to µ ∈ ℜNh×1×1 (without activation)
and σ ∈ ℜNh×1×1 (with the softplus f(x) = log(1 + exp(x))
activation to ensure σ is positive). Then, an affine transfor-
mation is performed to h as h← σ(h− µ). Notice that all
individual pixels for each channel (corresponding to each spatial
context attribute) are transformed using the same shift and
scale, which means our z effectively models global variations.

Another issue concerns handling of time w, which is
non-spatial and is thus the same for all pixels of the traffic and
spatial context. We address this issue by using w to modulate
the latent variable z into a W -modal distribution, where
W denotes the number of values that w can take. For the

particular case when w is a binary variable (e.g., week day or
weekend day), we can use the transformation z ← 0.5+z−w;
when z is a unimodal distribution, this effectively makes
the input to the generator a bi-modal distribution so that the
model can learn different behavior depending on which of the
two values w takes (e.g., weekday traffic pattern vs. weekend
traffic pattern). In general, though, w can take any number
of discrete values, allowing our model to generate traffic
snapshots at any desired time granularity.

D. Artifact-Free Patch-Level Traffic Snapshot Generation

In CartaGenie, we perform model training and traffic gener-
ation at smaller patch level. For training, to create the samples,
we divide the Hn

x ×Wn
x pixels of the traffic data xn

t of each
city n in the training data into smaller traffic patches xn,l

t , l ∈
{1, . . . , L}. Figure 1c illustrates one sample patch in one of the
cities from our dataset. This approach has several advantages.
Firstly, different cities have diverse geographical span, hence
their traffic maps have varied spatial dimensions. Using fixed
smaller sized traffic patches as we do allows using the same
generator model architecture regardless of the city dimensions
considered for training or generation. Secondly, it allows using
diverse traffic patches from different snapshots together to
enable a more efficient training via stochastic gradient optimiza-
tion. Moreover, different local sub-regions of a same city can
have similar relationship between traffic and spatial conditions:
training at the level of patches can be then seen as a form of
weight-sharing – a type of regularization technique – to enforce
the model to learn the actual casual relationship between c
and x instead of memorizing the mapping. In our experiments,
we set xn,l

t ∈ ℜNx×Nx with Nx = 10, i.e., a 0.25× 0.25 km2

area covered by each patch. Consistently with the patch level
real training data, CartaGenie outputs synthetic data for each
traffic patch in the target city map, i.e., sn,lt ∈ ℜ10×10.

While patch-level synthetic traffic data can be accurate
locally, it has a potential downside when used to recreate city-
level traffic maps, as artifacts may appear at the boundary of
patches that are separately generated. To address this concern,
we take a conditionally independent pixel-level generation
approach. This may seem counter-intuitive given that we expect
pixels (especially the nearby ones) in a generated traffic map
to be correlated. Our approach, however, is in fact consistent
with this expectation and is rooted in the property of Markov
blanket [24], which in our setting translates to: if the context
patch corresponding to a traffic patch is large enough to cover
the Markov blanket of any pair of nearby traffic pixels, they
would be conditionally independent even when the marginal
distribution of these traffic pixels may be correlated. In short,
we assume that only a local region of condition pixels have
effect on traffic pixels, a reasonable assumption for our task.

In other words, when considering a traffic patch xn,l
t , only

the portion of the city-wide spatial context vn that is in
the geographical proximity of the patch stays relevant to the
learning process. We thus associate to each xn,l

t a trimmed
spatial context (which we call context patch) vn,l (spanning
all spatial context attributes) that includes a margin around the



traffic patch, as exemplified in Figure 1d. As outlined above,
this margin is required to ensure that the context surrounding
pixels at the border of xn,l

t is properly considered during the
learning process. Clearly, the number of context patches is the
same as that of traffic patches, i.e., L, and we denote by cn,lt =
(vn,l, wt) the complete spatiotemporal context corresponding to
xn,l
t . In our experiments, we set vn,l ∈ ℜNc×Nc with Nc=20.
To implement our above described conditionally independent

pixel generation idea, we need to ensure that: (1) for each traffic
patch, a corresponding but larger context patch is used; and (2)
the neural network generates each pixel independently given
the context patch. Therefore, in our architecture, we have the
first convolution layer to map the context into the same shape
of traffic patches by using a kernel size of Nc −Nx +1 = 11.
After the following FiLM layer, all convolutions layers have a
kernel size of 1, which independently process the intermediate
“hidden images” and output the synthetic traffic map.

III. EVALUATION METHODOLOGY

Here we outline our evaluation methodology, elaborating on
the mobile traffic & context data, metrics and baseline methods.

A. Data

1) Mobile Traffic Dataset: Our real-world mobile traffic data
was provided by a major mobile network operator. The dataset
covers 4 large cities in one country (indicated as Cities A, B, C,
and D), and consists in measurements of the mobile traffic load
generated by the whole subscriber base of the operator (which
has a 30% market ratio in the country), for 47 days. Each city
is divided into grid cells (pixels), each of size 250× 250 m2.
Different cities have different surface areas, resulting in 80×80
cells for both City A and City B, 128×96 cells for City C and
96× 80 cells for City D. For each cell, the traffic generated
by all local users is aggregated over fixed time intervals so as
to generate snapshots such as those in Figures 1a and 1b. By
default, we use 24-hour intervals for data aggregation, which al-
lows capturing the average daily load in the pixel; however, our
approach is agnostic to the aggregation interval duration, and
we also study ‘peak hour’ traffic snapshot generation to demon-
strate that our model can support different time granularities.

2) Datasets for Conditional Attributes: We condition the
synthetic traffic generation on contextual attributes. We specifi-
cally select attributes that are commonly available from public
sources, so as to make the approach as reusable as possible.

Population. This attribute represents the number of residents
in each grid cell, as reported in national census. By comparing
the heatmap of this attribute in Figure 4 with Figure 1a, we
note that population correlates with traffic in non-obvious ways.

Land use. These attributes represent the incidence of specific
types of land use in each grid cell. Land uses capture the
utilization of the territory, and highlight zones of the target
region with different purposes. We extract information on
the land use of four cities from the Copernicus Urban Atlas
2012 repository [27], and transform each land use type to
an attribute map where the value associated to a grid cell
represents the fraction of the cell covered by that land use

Figure 4: Scatterplots (left column): mobile traffic (y-axis)
versus attribute values (x-axis) for four conditional attributes in
all City A grid cells, with the resulting correlation coefficient.
Heatmaps (right column): geographical distribution of values
of conditional attributes, providing a visual comparison against
the mobile traffic observed in City A (Figure 1a).

type. Copernicus specifies a large number of land use types,
many of which yield no relevance for mobile traffic. In order
to avoid feeding CartaGenie with uninformative input, we filter
out land uses with near-zero Pearson’s correlation coefficient
with respect to the mobile traffic, while aggregating others that
are semantically similar. Finally, we retain 11 land use types:
(i) Continuous Urban Fabric, (ii) Discontinuous Dense Urban
Fabric, (iii) Discontinuous Medium Density Urban Fabric, (iv)
Discontinuous Low Density Urban Fabric, (v) Discontinuous
Very Low Density Urban Fabric, (vi) Isolated Structures, (vii)
Green Urban Areas, (viii) Industrial and Commercial Areas,
(ix) Air and Sea Ports (x) Leisure Facilities, and (xi) Non-
urban Barren Lands. Figure 4 shows attribute maps for a subset
of these land use types for City A.

Points of Interest (PoIs). PoIs indicate the presence of specific
categories of landmarks, and are complementary to population
and land use. We obtain PoI data from the OpenStreetMap
(OSM) initiative using the Overpass API [28], and transform
each PoI category into an attribute map by counting the number
of PoIs in the target category that are located in every grid
cell. Similarly to what we did for land uses, we filter out the
tens of insignificant PoI categories in the original data using



a correlation analysis with traffic. This results in retaining
14 PoI categories: (i) Tourism, (ii) Cafe, (iii) Parking, (iv)
Restaurant, (v) Post Office and Police Station, (vi) Traffic
signals, (vii) Office, (viii) Public transport, (ix) Shop, (x)
Secondary roads, (xi) Primary roads, (xii) Motorways, and
(xiii) Railway stations, and (xiv) Tram stops. Figure 4
illustrates attribute maps for two selected PoIs for City A.

Time. Mobile data traffic is inherently time-varying, and
different geographical distributions of the demand for mobile
services can be observed at different times. This suggests
conditioning the generation of synthetic data on a time
attribute. When considering daily traffic aggregates, we
use a binary time condition, which differentiates working
days (Monday to Friday) from weekend days (Saturday and
Sunday), as outlined in §II-C. We additionally present results
that focus on synthesizing peak hour traffic snapshots.

As described above, CartaGenie uses a total of 26 different
spatial conditions and 1 condition for time. An important
remark is that none of the attributes is correlated in a
straightforward way with the mobile traffic, as exemplified
by Figure 4 and extensively presented in [25]. This suggests
that no naive statistical model can be easily derived from any
of these individual attributes nor even an elaborate regression
model combining these attributes to produce a reliable traffic
estimate from the attributes, which justifies the sophisticated
and tailored approach we take in designing CartaGenie.

B. Evaluation Criteria

1) Quantitative fidelity metrics: Since we represent traffic
snapshots as images, image quality measures are an obvious
choice for evaluating the fidelity of our synthetic traffic
data. Specifically, we use two well established image quality
assessment measures: Peak Signal-To-Noise Ratio (PSNR)
and Structural Similarity Index Metric (SSIM). The metrics
PSNR(x, s) and SSIM(x, s) measure the similarity between
a pair of real and synthetic traffic images x and s.

In fact, in our setup, we have sets of traffic snapshots
for both real (e.g., from multiple days) and synthetic (e.g.,
from multiple runs of CartaGenie) data. Hence, x and s are
samples of two distributions p(x) and p(s). Quantifying the
extent to which these two distributions are similar is key to
assessing the fidelity of CartaGenie. To this end, we forward the
comparison problem to the optimal transport (OT) regime [29]
by using PSNR and SSIM as cost functions, and use the
resulting optimally-transported OT-SSIM and OT-PSNR metrics
to measure the fidelity of synthetic traffic with respect to the
real data. Intuitively, these OT variants find a binary pairing
matrix between two sets for which the sum of PSNR or SSIM
is maximized. OT is widely used to characterize the distance
between two distributions given finite samples [29].

2) Qualitative criteria: We provide visualizations and statis-
tics as a more intuitive way to assess the fidelity of the synthetic
data. Besides synthetic traffic maps, these qualitative metrics in-
clude: (a) time series of daily total traffic; (b) traffic histograms
at pixel level; and (c) histograms of total traffic at day level.

C. Benchmarks

We consider a range of benchmarks for comparative assess-
ment of CartaGenie, as outlined below and justified in §VI.

Pix2Pix. As we represent c and x as images with different
number of channels, we use the powerful Pix2Pix image-to-
image translation framework [22] as a representative state-of-
the-art approach. It has been successfully used in computer
vision tasks that are similar to our traffic generation problem.
These models are both conditional and stochastic, and provide
a deep network architecture tailored for image-to-image trans-
lation. We use the U-Net architecture [26] without one hidden
layer in the encoder and decoder to adapt it to 10× 10 images.

MLP and CNN Regression. A naive approach to solve
the traffic snapshot generation task is to train a model that
takes conditions c as input and predicts x. Common choices
for such a regression task are multi-layer perception (MLP)
neural networks and convolution neural networks (CNN). These
methods can be viewed as sophisticated variants of state-of-
the-art mobile traffic generation approaches [13]. However,
neither of them can model stochasticity, thus we expect them
not to be able to characterize important features of the data.
Comparing MLP and CNN regression also serves to show that
convolutions provide better modeling of spatial correlations.

Generative adversarial networks (GANs). We also evaluate
GANs on the traffic map generation task. In comparison to the
regression baseline, GANs model stochasticity by randomly
sampling latent vectors [18]. However, they aim at a free-
form generation, hence their outputs cannot be conditioned
on a context c. GANs let us show that conditions are indeed
required to synthesize high-fidelity traffic maps. We use the
standard DCGAN architecture [30] for an image size of 10×10.

Conditional GAN and Conditional VAE. We also consider
the conditional variant of GANs [31] as well as conditional
VAEs [32] among our benchmarks. As these two methods
can be easily added to CartaGenie by adapting the training
process and modifying the loss function, we consider them as
part of the ablation study of CartaGenie and report the results
summary (due to page limit).

IV. RESULTS

This section presents results assessing the fidelity and
generalizability of CartaGenie relative to benchmark methods
(§III-C). To this end, we use a ‘leave-one-city-out’ evaluation:
we use 3 cities for training and 1 for testing, and repeat this
for 4 times with a different test city each time, giving 4 results.

A. Generalization to unseen cities

Here we highlight the ability of CartaGenie to generalize
to unseen cities by training on three cities in the dataset and
generating traffic snapshots for the remaining city. We start
with qualitative results with CartaGenie in Figure 5 for two
arbitrarily picked test cities – City A and City B– due to space
limitation. In this figure, there are three sub-figures for each city.
The first two sub-figures, respectively, show synthesized traffic
maps with CartaGenie averaged over weekdays and weekends.
These maps show that CartaGenie successfully captures the



(a) Weekday – City A (b) Weekend – City A (c) Daily total traffic (City A)

(d) Weekday – City B (e) Weekend – City B (f) Daily total traffic (City B)

Figure 5: Generalization results using CartaGenie with City A and City B as test cities.

Table I: Quantitative fidelity results using
CartaGenie with different test cities.

Condition OT-PSNR↑ OT-SSIM↑

City A Weekday 24.73 0.651
Weekend 28.28 0.721

City B Weekday 32.00 0.797
Weekend 32.52 0.819

City C Weekday 28.49 0.783
Weekend 29.31 0.801

City D Weekday 29.68 0.806
Weekend 30.41 0.809

Table II: Quantitative comparisons between CartaGenie and benchmarks. Numbers
are average of 4 runs using 3 cities for training and 1 for testing.

Metric Condition Type GAN MLP CNN Pix2Pix CartaGenie

OT-PSNR↑
Weekday Train 20.99 27.61 32.88 31.04 32.41

Test 21.14 25.63 28.61 26.02 28.72
Weekend Train 22.61 28.09 33.13 31.21 32.38

Test 21.81 27.30 30.05 27.43 30.05

OT-SSIM↑
Weekday Train 0.43 0.72 0.85 0.82 0.86

Test 0.44 0.62 0.76 0.61 0.76
Weekend Train 0.45 0.71 0.85 0.81 0.84

Test 0.39 0.62 0.78 0.62 0.79
overall spatial pattern as well as differences in traffic patterns
over time (weekdays versus weekend days). We also provide
the total traffic per day over the entire city as a time series plot
for these two test cities (last sub-figure); these results further
show that CartaGenie successfuly captures traffic variations
across weekdays and weekends. We obtained similar results
with City C and City D as test cities.

We summarize the quantitative fidelity results in terms of
OT-PSNR and OT-SSIM for each test city in Table I. We see
that in most of the cases results are over the desired levels
– 25 in terms of OT-PSNR and around 0.8 for OT-SSIM [33].
Results are in the borderline for City A, which has markedly
different traffic patterns as reflected in Figure 5a. Specifically,
the high traffic level in the hotspot area in City A is much
larger than others. For this reason, the model fails to capture
or generate it as such pattern has not been seen in other cities
during training; this issue can be resolved if there is access to
more diverse training data. Also note that the performance for
weekends is consistently better than that of weekdays, likely
because there are less variations during weekends.

We now take a closer look at (mis-)matches in the distribution
between real and CartaGenie-generated synthetic traffic. Traffic
histograms at pixel level with CartaGenie show close alignment
with real data for all test cities, as shown in Figure 6, indicating
that CartaGenie can accurately capture the statistics of the
mobile traffic distribution at city scale. Note that for easier
readability, traffic here is shown in normalized scale (with
respect to global pixel level traffic volume). Figure 7 shows
histograms of total traffic at city level. We observe that

(a) City A (b) City B

(c) City C (d) City D

Figure 6: Traffic histogram at pixel level with CartaGenie.

CartaGenie successfully captures that there are two modes
in total traffic corresponding to weekday and weekend patterns.
The variation of each mode in the synthetic data is also close
to that of real data, except in one case (City C).

B. Comparison with benchmark methods

We now compare the fidelity and generalization performance
of CartaGenie against the four benchmarks, namely MLP and
CNN based regression, (unconditional) GAN, and Pix2Pix.

1) Qualitative comparisons: Figures 8, 9, 10 show the simi-
lar set of qualitative results to the previous section when using



(a) City A (b) City B

(c) City C (d) City D

Figure 7: Histogram of total traffic with CartaGenie.

City A as the held-out (i.e., test) city*. As it can be seen from
Figure 8, the generated city maps from GAN, MLP regression
and Pix2Pix are visually degraded compared to that with
CartaGenie (see Figures 5a and 5b). For GAN, as the model
is an unconditional generator, we do not expect it to be able to
generate the desired city map. For MLP regression, the use of
MLP fails to capture spatial correlation well. The poor perfor-
mance of Pix2Pix might be surprising as it is the state-of-the-art
image translation model. However, as previously discussed, our
tasks differs from image-to-image translation as the conditions
serve a different role in the data generation process. Especially
for pixels around the edges, for which the context is actually
missing in image-to-image translation framework. Lastly, the
relatively good visual performance of CNN regression is not
surprising as the CNN regression based architecture differs from
CartaGenie in two main ways: (i) it lacks the latent variable z
to model stochasticity; (ii) it does not obey the requirement for
conditionally independent pixel level generation (as discussed
in §II-D). For (i), we will see next that this approach fails to
altogether capture the variation in the data completely. For (ii),
we can see that there are visible artifacts of fine vertical and
horizontal mosaic in the city map (clearer when zoomed in).

We now look at Figure 9 and Figure 10, which show how
different benchmark methods capture the distribution aspects
of the data. Despite the poor visual results in Figure 8, GAN
performs reasonably well in capturing the data distribution,
especially in Figure 9. MLP regression and CNN regression
also capture pixel-level distribution to some extent – especially
for CNN regression, the performance is close to ours. However,
as shown by Figure 10, they fail to capture variation in time,
as by definition these approaches do not consider modeling
inherent stochasticity. Finally, although Pix2Pix takes the
conditional GAN approach which ideally should also model
the distribution, the use of dropout as a source of stochasticity
leads to degenerated performance in terms of variation in time,
which has also been observed in previous studies [22], [23],

*We omit results for other cities as they yield similar observations in terms
of qualitative differences with and among benchmark approaches.

Table III: Quantitative fidelity results using CartaGenie for
peak hour traffic snapshot generation with different test cities.

Condition OT-PSNR↑ OT-SSIM↑

City A Weekday 23.85 0.660
Weekend 29.75 0.786

City B Weekday 32.70 0.818
Weekend 35.75 0.872

City C Weekday 28.16 0.806
Weekend 31.53 0.840

City D Weekday 30.43 0.824
Weekend 31.78 0.820

[26]. Although this is not a major issue in the context of image
translation, correctly modelling stochasticity is important in
our setting. Crucially, correctly modeling variation caused by
time paves the way for CartaGenie to be used as a component
in a spatiotemporal model to control the dynamics of x via the
dynamics of z. Pix2Pix results additionally suffer from severe
edge effects (Figure 8).

2) Quantitative comparisons: Here we present results for
the quantitative fidelity metrics. We report the average of 4
results, each corresponding to a different test city. We report
both the training and testing performance, which, respectively,
show how well each model fits the data, and how well each
model generalizes to unseen cities. Table II summarizes these
performance results in terms of OT-PSNR and OT-SSIM; best
performing method in each case is highlighted in bold. Overall,
CartaGenie generally outperforms the benchmarks by a clear
margin, especially during test. The only exception is CNN
regression, which performs similarly to CartaGenie but fails
to model data stochasticity in data as per Figure 10c.
C. Additional Results

1) Peak hour snapshots: We demonstrate how CartaGenie
is agnostic to time granularity by generating peak hour traffic
snapshots. By analyzing the traffic dynamics at an hourly
level for each of the four cities in our dataset, we find that
traffic typically hits a peak at 12-1pm. We train CartaGenie to
generate traffic snapshots for that peak hour. Table III shows
quantitative fidelity results using CartaGenie to synthesize such
peak hour snapshots with different test cities. The results are
in general better than daily traffic snapshot synthesis in Table I.
We hypothesize this is because traffic patterns across a day
show more variations than in a peak hour.

2) Comparison with CGAN and CVAE: Two popular meth-
ods for (weakly) conditioned generation are CGAN and CVAE.
Compared to CartaGenie, CGAN has an extra adversarial loss
while CVAE uses the variational formulation for the input noise.
We have evaluated the benefit with these variants of CartaGenie
by: (1) adding an adversarial loss (to mimic CGAN); (2) using
an encoder to provide noise (CVAE); or (3) adding both. We
have observed little to marginal performance improvement with
these more complex training procedures (results omitted due
to lack of space) for the data we are using, which validates
our choice to simply train CartaGenie using L1 loss.

V. USE CASES

To assess the utility of the synthetic datasets generated by
CartaGenie to support data-driven research, we employ them



Weekday — Weekend

(a) GAN

Weekday — Weekend

(b) MLP regression

Weekday — Weekend

(c) CNN regression

Weekday — Weekend

(d) Pix2Pix

Figure 8: Generalization results using benchmark methods with City A as test city. For each sub-figure, from top to bottom are the
averaged synthetic city map for weekday (left) and weekend (right) and the time series plot of daily total traffic (bottom). Note
that the traffic scale in Figure 8a is different from the rest as the synthetic data in this case spans a wider range (see y-axis ticks).

(a) GAN (b) MLP reg.

(c) CNN reg. (d) Pix2Pix

Figure 9: Traffic histogram at pixel level with benchmarks.

(a) GAN (b) MLP reg.

(c) CNN reg. (d) Pix2Pix

Figure 10: Histogram of total traffic with benchmarks.

to inform models for (i) the planning of edge datacenters
in a mobile network, and (ii) the estimation of dynamic
presence in urban areas. We use CartaGenie-generated traffic
for previously unseen cities as input to these models; we then

compare the results against those obtained by feeding the same
models with the real traffic recorded by the operator. This lets
us study if the synthetic traffic data produced by CartaGenie
allows for a dependable evaluation of research solutions.

A. Network edge datacenter planning

Recent trends in mobile networking are fostering the
softwarization and virtualization of the infrastructure. At the
radio access, this has led to the emergence of functional split
paradigms, where communication tasks traditionally performed
in hardware at base stations are moved to edge datacenters [34].
The planning of the edge infrastructure must align to the
spatial distribution of traffic demands. A recent model for
the placement of datacenters can minimize the transmission
latency while balancing the load across facilities [35]. Given the
desired number of datacenters, the model identifies their ideal
locations and served spatial areas (e.g., base station coverage
zones, antenna sectors, or, as in our case, tiles of a geographical
tessellation corresponding to pixels).

Specifically, the model in [35] represents the system as a
graph where vertices map onto pixels pi,j ∈ P , each with
an expected daily traffic xi,j ; edges e(i,j)→(i′,j′) ∈ E link
pixels pi,j and pi′,j′ only if they are adjacent in space. Then,
it partitions the graph so that the total traffic generated by
the cells in each partition d ∈ D is balanced. This results in
a set of geographical regions (each a union of the cells in a
same partition) that can be associated to one edge datacenter:
intuitively, the baricenters of the cells in each cluster can be
mapped to the ideal positions where to deploy the datacenters.
More formally, the model defines graph partitioning as an
Integer Linear Programming (ILP) problem:

min
∑

e(i,j)→(i′,j′)∈E
ϕ(e(i,j)→(i′,j′))

s.t. (1− ϵ) ≤
∑

pi,j∈Pψ(pi,j , d) · xi,j

1
|D|

∑
pi,j∈Pxi,j

≤ (1 + ϵ), ∀d ∈ D∑
d∈D

ψ(pi,j , d) = 1, ∀pi,j ∈ P. (1)

Here, ϕ(e(i,j)→(i′,j′)) and ψ(pi,j , d) are decision variables set
to one if edge e(i,j)→(i′,j′) is cut by the partition, and if pixel



pi,j is associated with datacenter d, respectively; they are
zero otherwise. This means that ∀e(i,j)→(i′,j′) ∈ E , ∀d ∈ D,
ϕ(e(i,j)→(i′,j′)) takes a value one only if e(i,j)→(i′,j′) links
cells in partitions that are associated to different datacenters.

We assess the quality of the synthetic traffic generated by
CartaGenie to solve the problem of network edge datacenter
planning in (1). We first feed the synthetic traffic data to the
ILP problem, and solve it: this returns cell graph partitions
(hence datacenter locations) based on CartaGenie output.
Then, we enforce the CartaGenie-driven partitions on the
real-world traffic, and measure how balanced demands are
across datacenters, using Jain’s fairness index [36]. Finally, we
compare the result with the fairness index obtained when the
planning problem in (1) is solved using the actual traffic data.

Figure 11 shows results for two cities*, with 4 to 10 edge
datacenters.

The deployments driven by synthetic and real-world
traffic only differ by 1-3% in terms of fairness, proving that
CartaGenie can consistently enable dependable research based
on optimization models like that in (1).

B. Dynamic presence estimation

The estimation of human presence in metropolitan areas is
a challenging open problem in geo-informatics, which aims at
capturing fluctuations in the distribution of people occurring at
timescales of minutes, hours or days*. In this context, models
have been proposed that leverage mobile traffic as a proxy
for user presence, and map spatiotemporal variations in the
network activity onto population density dynamics.

We consider a recent multivariate regression model that
links mobile network traffic and activity levels to estimate
dynamic presence [9]. Formally, the model is defined as p =
exp(k1λ+ k2) ·xk3λ+k4 , where p is the population computed
as a power law of the mobile traffic volume x, λ is the activity
level computed as the mean number of network events (e.g.,
established calls) per subscriber, while k1, k2, k3, and k4 are
constant model parameters. In our case, x is the total traffic
observed in a single day, which allows inferring the average
daily distribution of people in the target urban region. We set
λ (the average activity level observed during a 24-hour period)
to 0.5, and all constants to the typical values indicated in [9].
Note that the returned p is inherently different from inhabitant
distributions captured, e.g., by census: indeed, p accounts for
the locations and activities of people during the whole day,
which results in a very diverse presence.

In order to assess the quality of CartaGenie for this use
case, we generate daily population estimates separately based
on (i) the synthetic traffic by CartaGenie and (ii) the actual
traffic recorded by the operator. We then compare the resulting
population densities in terms of OT-SSIM and OT-PSNR.

*Results are equivalent in City C and D, and are omitted due to space limits.
*It is worth noting that dynamic presence is a very different concept from

the static population density information that is available from census data,
and which we use as a contextual attribute input to CartaGenie. The latter
only capture home locations, whereas the former tries to model time-varying
distributions induced by individual mobility. Therefore, inference of dynamic
presence from population density is not possible.

Performance figures are summarized in Table IV, when the
mobile traffic in each reference city (in the columns) is
generated with CartaGenie trained on the other urban regions.
The results are very good overall, with OT-PSNR well above
26 in all cases, and OT-SSIM typically around 0.8.

VI. DISCUSSION

a) On modeling data with different time granularity: The
results in §IV demonstrate that CartaGenie can support traffic
snapshot generation at different time granularity (hourly in
§IV-C1 and daily in the rest of the section). To this end, only
hyper-parameters tuning (e.g., adapting the learning rate or the
size of the hidden layers) is needed, without any modification
to the CartaGenie architecture.

b) On temporal modeling of mobile traffic data: Note that
time is provided as an explicit condition in CartaGenie, since
the focus of this paper is about spatial modeling rather than
temporal modeling. In fact, reproducing temporal patterns of
mobile traffic data is a non-trivial task that requires dedicated
investigations; for analysis and a generation tool targeting
the temporal dimension of mobile traffic data, see, e.g.,
SpectraGAN [37].

c) On modeling extreme traffic variations: To model
and generate unforeseen or anomalous traffic patterns, e.g.,
during special events or capturing pandemic effect, it would
be necessary to consider additional contextual attributes such
that the model can learn the appropriate correlation. Due to
lack of training data with exceptional traffic variations, we do
not study this issue in the paper but it is an interesting one to
explore in future work.

d) On the choice of benchmark models: In §III, we mainly
consider well-established deep generative methods for sample
quality rather than more recent proposed deep generators that
aim to improve other aspects of deep generative modeling
such as tractability. In fact, as shown in a large-scale study of
adversarial generative models [38], legacy GANs perform very
well when compared to other more recently proposed methods
in terms of sheer image quality; therefore, traditional GANs
or methods based on GANs such as Pix2Pix serve as a strong
baseline for comparison in our context, where the fidelity of
the generated traffic is the key metric.

VII. RELATED WORK

Network traffic generation is a very different problem
depending on the dimension and scale it is tackled at. In its
most traditional form, traffic generation aims at creating packet-
level workloads for which several tools exist and are commonly
used in research and engineering (e.g., iperf [39], Ostinato [40],
D-ITG [41]) and also embedded in popular network simulators,
such as ns-3 [42] or OMNeT++ [43]. This form of traffic gener-
ation does not have a spatial dimension and as such accounting
for spatial correlations does not arise. Temporal correlations
are also mostly overlooked. In contrast, we tackle a different
and more complex challenge of generating the mobile traffic
volumes at city scale (across multiple users and flows) by faith-
fully modeling underlying spatial and temporal fluctuations.



City A City B

Figure 11: Jain’s Fairness Index of load across a varying number of edge
datacenters under real and CartaGenie-generated traffic.

Table IV: Difference between population estimates
computed using original versus synthetic traffic.

Condition OT-PSNR↑ OT-SSIM↑

City A Weekday 26.19 0.664
Weekend 27.72 0.720

City B Weekday 31.80 0.777
Weekend 32.00 0.804

City C Weekday 27.80 0.781
Weekend 30.53 0.804

City D Weekday 29.62 0.801
Weekend 30.23 0.803

Di Francesco et al. [13], in what is the only existing work
related to mobile network traffic generation to the best of our
knowledge, assemble a cellular dataset for a given region based
on estimated data demand per subscriber; for the latter, [13]
simply models the per-subscriber demand for the busy-hour
period across a given region from a real operator traffic dataset
as a probability distribution (specifically, log-normal) and then
“independently” samples from it when creating the dataset to
estimate the per-subscriber data demand at any given location.
In doing so, it implicitly makes an assumption that the peak
traffic generated by a mobile subscriber corresponds to their
residential location, which is seemingly incorrect especially
in urban regions. In sharp contrast, CartaGenie is a neural
network based data-driven method, that does not make any
such assumptions, preserves correlations and finer variations
in traffic over space and also models changes in traffic
patterns over time. Crucially, unlike [13], we also validate the
fidelity of CartaGenie against ground-truth information and
demonstrate it to be capable of generating realistic synthetic
traffic over previously unseen city-scale regions purely based
on publicly available contextual input.

DoppelGANger [44] is a recent work that shares the
same high-level goal as ours, that is to reduce the barrier to
data-driven research in networking and beyond via synthetic
data generation. DoppelGANger is however only broadly
related in that it exclusively focuses on time-series data (e.g.,
web article views over time, network monitoring data over
time). On the other hand, the spatial dimension features
prominently in our work as we aim at generating city-scale
mobile network data traffic for a given period of time, which
requires modeling inherent and complex context-dependent
correlations in mobile traffic across space and time.

Beyond the networking domain, our mobile traffic map
generation problem is broadly related to data generation
problems in two other domains – image synthesis in computer
vision and road traffic generation in the transportation domain.
Pix2Pix [22] is a representative example in the former case
which takes a conditional GAN approach for image generation
based on U-Net architecture [26]. As we show in our evaluation
results, Pix2Pix approach has two key limitations when applied
to the mobile traffic map generation problem compared to

our well tailored CartaGenie approach: (i) from using dropout
for stochasticity, it fails to model variation in the data; (ii)
it introduces artifacts when sewing a city traffic map from
generated traffic patches. For the case of road traffic generation,
TrafficGAN [45] is a representative example. Like Pix2Pix,
TrafficGAN also takes a conditional GAN approach but assumes
knowledge of traffic correlations among roads in the target
region for which (road) traffic needs to be generated. Such an as-
sumption is strong and unrealistic assumption in our setting. In
contrast, our CartaGenie method does not make any assumption
about the nature or knowledge of (mobile) traffic in the target
region and solely relies on easily available contextual input.

VIII. CONCLUSIONS

We have presented CartaGenie, a novel method rooted in
deep generative modeling, for synthesizing high fidelity city-
scale mobile network traffic snapshots. At its heart, CartaGenie
is a conditional generator with tailored convolutional neural
network model. CartaGenie requires only publicly available
contextual information of a region (e.g., city) such as population
density in order to generate realistic mobile traffic map for
that region. Our extensive evaluations based on real-world
mobile traffic measurement data show that CartaGenie is not
only able to generate city-scale mobile traffic snapshot data
that is superior in fidelity to a range of benchmark solutions
but also generalizes well in synthesizing mobile traffic maps
for unseen cities. The above strengths in turn allow synthetic
data generated with CartaGenie to be used for data-driven
applications in mobile networking and beyond in a way that is
indistinguishable from using actual data, as we demonstrate
through two use cases.
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