
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sedimentological data-driven bottom friction parameter
estimation in modelling Bristol Channel tidal dynamics

Citation for published version:
Warder, S, Angeloudis, A & Piggott, MD 2022, 'Sedimentological data-driven bottom friction parameter
estimation in modelling Bristol Channel tidal dynamics', Ocean Dynamics. https://doi.org/10.1007/s10236-
022-01507-x

Digital Object Identifier (DOI):
10.1007/s10236-022-01507-x

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Ocean Dynamics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 17. May. 2022

https://doi.org/10.1007/s10236-022-01507-x
https://doi.org/10.1007/s10236-022-01507-x
https://doi.org/10.1007/s10236-022-01507-x
https://www.research.ed.ac.uk/en/publications/f32e71e8-dfe3-4cd5-bfff-9d32151a1eca


Ocean Dynamics
https://doi.org/10.1007/s10236-022-01507-x

Sedimentological data-driven bottom friction parameter
estimation in modelling Bristol Channel tidal dynamics

Simon C. Warder1 · Athanasios Angeloudis2 ·Matthew D. Piggott1

Received: 22 June 2021 / Accepted: 12 March 2022
© The Author(s) 2022

Abstract
Accurately representing the bottom friction effect is a significant challenge in numerical tidal models. Bottom friction
effects are commonly defined via parameter estimation techniques. However, the bottom friction coefficient (BFC) can be
related to the roughness of the sea bed. Therefore, sedimentological data can be beneficial in estimating BFCs. Taking
the Bristol Channel and Severn Estuary as a case study, we perform a number of BFC parameter estimation experiments,
utilising sedimentological data in a variety of ways. Model performance is explored through the results of each parameter
estimation experiment, including applications to tidal range and tidal stream resource assessment. We find that theoretically
derived sediment-based BFCs are in most cases detrimental to model performance. However, good performance is obtained
by retaining the spatial information provided by the sedimentological data in the formulation of the parameter estimation
experiment; the spatially varying BFC can be represented as a piecewise-constant field following the spatial distribution
of the observed sediment types. By solving the resulting low-dimensional parameter estimation problem, we obtain good
model performance as measured against tide gauge data. This approach appears well suited to modelling tidal range energy
resource, which is of particular interest in the case study region. However, the applicability of this approach for tidal stream
resource assessment is limited, since modelled tidal currents exhibit a strong localised response to the BFC; the use of
piecewise-constant (and therefore discontinuous) BFCs is found to be detrimental to model performance for tidal currents.

Keywords Bottom friction · Manning coefficient · Calibration · Parameter estimation · Sedimentological data

1 Introduction

Numerical modelling of tides in coastal and estuarine
regions has applications in a wide variety of areas. An
application of particular interest is marine renewable energy,
with tidal modelling central to resource assessment for both
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tidal range (Adcock et al. 2015; Neill et al. 2018; Mackie
et al. 2020) and tidal stream-based energy projects (Vazquez
and Iglesias 2015; Wang and Yang 2020; Warder et al.
2021). With other applications of tidal models including
sediment and pollutant transport (Periáñez et al. 2013; Li
et al. 2018), fisheries and ecosystems (Marshall et al. 2017;
Whomersley et al. 2018) and hazards such as storm surge
(Flather 2000; Horsburgh and Wilson 2007; Warder et al.
2021), accurate numerical modelling of tides is highly
valuable.

However, such models are subject to a variety of uncer-
tainty sources. Modelling errors arise from assumptions
and simplifications in the governing equations, as well as
discretisation errors, limitations in model resolution and
imperfect model inputs. One particular source of uncer-
tainty, which is commonly addressed within the literature
using parameter estimation methods, is the bottom friction
coefficient (BFC). Friction between the ocean and the sea
floor arises due to a boundary layer at the sea bed, and
form drag due to bathymetry fluctuations. The process is
not explicitly resolved in numerical models, and is instead
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treated as a parameterised process, via any of several formu-
lations (Zhang et al. 2011). The value of the BFC therefore
cannot be directly measured in the field, but can under
certain assumptions be related to the roughness of the sea
floor surface (Soulsby 1990). However, in addition to spatial
variation due to bottom roughness, bottom friction param-
eters can also vary temporally (e.g. due to morphological
changes (Davies and Robins 2017) or seasonal changes in
hydrological conditions (Huybrechts et al. 2021)), as well
as with mesh resolution, and a number of other physi-
cal or numerical variables (Fringer et al. 2019). For these
reasons, bottom friction parameters are commonly treated
via model calibration methods, where their value is deter-
mined by minimising the misfit between model outputs and
observations, typically using data from tide gauges, acoustic
Doppler current profilers (ADCPs) or satellite altimetry.

Approaches to model calibration within the literature
vary widely in their complexity. Excluding studies dedicated
to parameter estimation, the most common approach
is to apply a spatially uniform BFC. In contrast, the
highest-complexity approach is to allow the BFC to
vary freely over the whole domain, and in this case,
it is common to supplement the observation data with
a form of regularisation, to avoid the problem of over-
fitting (Maßmann 2010). Intermediate complexity in the
friction coefficient can be achieved via several approaches.
Heemink et al. (2002) divide their model domain into
regions of similar influence on the model-observation misfit
using an adjoint gradient-based method, also taking into
account the physical properties of the system. Another
more common approach is the so-called independent points
scheme, where the friction coefficient field is specified
by interpolation between a selected set of ‘independent
points’ (Zhang et al. 2011; Chen et al. 2014). The locations
of these points can be distributed uniformly or according
to physical features such as the bathymetry gradient (Lu
and Zhang 2006). Similarly, Sraj et al. (2014) divide their
model domain by bathymetry contours in order to select a
low-dimensional parameter space for their spatially varying
BFC, while Mayo et al. (2014) propose the use of land use
data to inform the BFC.

Alternatively, sedimentological data can be used for the
purpose of constraining the spatial variation of the BFC, due
to the underlying physical relationship between sediment
type and the roughness of the sea bed, and hence the value
of the friction coefficient. Mackie et al. (2021) directly
apply Manning coefficients derived from sedimentological
data within a model of the Irish Sea, supplemented by
a localised BFC enhancement around a region of interest
which they tune for optimal model performance. Similarly,
Guillou and Thiébot (2016) utilise sedimentological data to
derive a spatially varying quadratic drag parameter for a
tidal stream power application off the coast of Brittany, and

subsequently perform a sensitivity analysis with respect to
the roughness length assigned to one of the sediment types.

Within this study, we explore the use of sedimentological
data within a BFC parameter estimation problem. We
perform a number of parameter estimation experiments,
utilising such data in different ways. By comparing model
performance using the results of each parameter estimation
experiment, the objective is to arrive at recommendations
regarding the use of sedimentological data in informing
bottom friction parameters.

A description of the case study region, numerical model
and data sources can be found in Section 2. Section 3
presents the Bayesian inference parameter estimation
method used, which is based on M2 and S2 harmonic
amplitude and phase data at 15 tide gauges within the
model domain. Calibration and validation results can be
found in Sections 4 and 5, respectively. In Section 6, we
apply the calibrated model to the estimation of tidal range
energy resource. The case study is primarily motivated
by tidal range energy, and hence the main focus is on
model comparisons with tide gauge data. However, in
Section 7, we explore model performance using tidal current
observations from an ADCP, as a step towards application
of the calibrated model to tidal stream resource assessment.
Finally, a discussion and conclusions can be found in
Sections 8 and 9, respectively.

2 Description of model and data

2.1 Model study region

The model study region consists of the Bristol Channel and
Severn Estuary, situated to the south-west of the UK, as
shown in Fig. 1. A macrotidal inlet offering significant tidal
range energy resource (Angeloudis and Falconer 2017), the
Bristol Channel is also of interest for tidal stream energy
(Vazquez and Iglesias 2015). Accurate tidal models of the
region are also relevant to flood risk studies (e.g. Lyddon
et al. (2018)) due to its susceptibility to storm surge (Proctor
and Flather 1989; Williams and Horsburgh 2013). A number
of flooding events have occurred in the area in recent years,
for example in the Somerset Levels (Smith et al. 2017), and
future flood risk is linked to climate change (Quinn et al.
2013). The region is also to be used as a case study for a
calibration and validation phase of the forthcoming SWOT
mission (NERC 2021).

The tidal dynamics in the region are dominated by the M2
and S2 constituents, whose average amplitudes within the
Bristol Channel are around 3.5 m and 1.2 m, respectively.
Within this work we also utilise observations of the N2 and
M4 constituents, whose amplitudes are around 0.6 and 0.2
m, respectively.
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Fig. 1 Mesh used for all
simulations within this paper.
Red circles: locations where
harmonic analysis data are
available. M2 and S2 harmonic
data at these locations are used
within this work for model
calibration, and N2 and M4 data
for validation. Yellow circles:
BODC tide gauge locations,
where timeseries data is
available. M2 and S2 data
derived from these timeseries
are used within this work for
validation. The coloured region
of the mesh indicates where a
spatially variable friction
coefficient is applied

2.2 The Thetis numerical model

Within this work we use Thetis, an unstructured-mesh
finite element coastal ocean model (Kärnä et al. 2018)
which utilises the Firedrake finite element code generation
framework (Rathgeber et al. 2016). We employ Thetis in its
two-dimensional configuration (as in Vouriot et al. (2019)),
which solves the nonlinear shallow water equations given
by

∂η

∂t
+ ∇ · (Hu) = 0, (1a)

∂u
∂t

+u·∇u+FC+g∇η = − τ b

ρH
+∇·(ν(∇u+∇uT )), (1b)

where η is the free surface elevation, H = η + h is the total
water depth, h is the bathymetry, u is the two-dimensional
depth-averaged velocity, FC is the Coriolis force, g is the
acceleration due to gravity, ρ is the water density (which
is taken as a constant), τb is the bottom stress due to
friction between the ocean and sea bed, and ν is the eddy
viscosity (which we assign a constant value of 1m2s−1).

We parameterise the bottom friction τb via a Manning’s n

formulation

τ b

ρ
= gn2

H
1
3

|u|u, (2)

where n is the Manning coefficient (units s m1/3). For
the purposes of model calibration within this work, n

depends on the sediment type found on the ocean bed (see
Section 2.3).

Since the Bristol Channel and Severn Estuary contain
significant intertidal regions, we include wetting and drying
within Thetis using the scheme of Kärnä et al. (2011), which
we summarise here. Under this scheme, a modification is
applied dynamically to the bathymetry in order to avoid
negative water depth. The modified bathymetry is given by

h̃ = h + f (H), (3)

such that the modified water depth is similarly given by

H̃ = H + f (H). (4)

The implementation of this scheme simply requires this
modified depth H̃ to be substituted for H in Eq. (1). The
function f (H) is chosen such that the modified water depth
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H̃ is always positive. Following Kärnä et al. (2011), we
use

f (H) = 1

2

(√
H 2 + α2 − H

)
, (5)

where α is a wetting-drying parameter which controls the
transition from wet to dry regions, and is user defined. In
general, smaller values of α result in more accurate results,
but there exists a minimum stable value which is related to
the mesh element size. In all Thetis simulations presented
herein, α is taken to be 1 m; this value was found through
preliminary experiments (not shown) to be close to the
minimum stable value for the selected mesh.

Mesh generation was performed using the Python
package qmesh (Avdis et al. 2018), which interfaces the
mesh generator Gmsh (Geuzaine and Remacle 2009). The
mesh, shown in Fig. 1, adopts a UTM30 coordinate
projection, and uses a variable mesh element size from
250 m in the inner Bristol Channel, to 8 km in open
regions, resulting in a total of 42,862 triangular elements.
Coastline data for mesh generation is from the Global
Self-consistent, Hierarchical, High-resolution Geography
Database (GSHHG) (Wessel and Smith 1996). Thetis is
run using a PDG

1 –PDG
1 discretisation, with a Crank-Nicolson

timestepping scheme with a timestep �t = 100 s. The
bathymetry is from 6-arcsecond resolution data available
from Digimap (Digimap 2016), and is shown in Fig. 2.

Tidal dynamics are introduced through a Dirichlet
boundary condition for the surface elevation η at the ocean
boundary, extracted from the TPXO database (Egbert and
Erofeeva 2002). The location of the ocean boundary of
the model domain was selected to be in reasonably deep
water, to minimise the influence of errors in this tidal
boundary forcing data. The tidal dynamics within the Bristol
Channel are dominated by the M2 and S2 constituents (with
amplitudes in excess of 1 m), with some contribution from
the N2, K2 and M4 constituents (amplitudes in the 10s
of cm), and no other constituents above 10-cm amplitude.
Due to their similar frequencies and the constraints of
the Rayleigh criterion, the K2 and S2 constituents require
long periods of observation/simulation to be resolved, and
we therefore neglect the K2 constituent. The M2, S2, N2
and M4 constituents are therefore the focus of model-
observation comparisons we perform within this study, and
thus we use the same four constituents to force the model at
its boundaries. The shallow-water M4 constituent is mostly
generated within the model domain and has small amplitude
on the boundaries, but is nevertheless included in the
boundary forcing. Model runs span a 5-day spinup period,
followed by two full spring-neap cycles (approximately 1
month).

2.3 Parameterising theManning coefficient

We employ a parameter estimation method in order to
calibrate the model with respect to the spatially varying
Manning coefficient, n. In order to constrain the parameter’s
spatial variation, we use sediment maps within the model
domain. In an approach similar to Mackie et al. (2021),
we use data from the British Geological Survey (British
Geological Survey 2021), which indicates the type of
sediment found at each point in the domain. The distribution
of sediment types is shown in Fig. 3 and summarised in
Table 1.

The Manning coefficient can in principle be determined
directly from the sediment type found at a given location,
via a lookup table for the median sediment grain size for
the corresponding sediment type. Denoting the median grain
size d50 (in m), the corresponding theoretical Manning
coefficient is given by

n(d50) = 0.04 6
√

2.5 d50 (6)

(Soulsby 1990). This results in the set of Manning
coefficients detailed in Table 1, which are consistent with
standard sediment-based values from other sources (e.g.
Arcement and Schneider (1989)). Throughout this paper,
we refer to the set of Manning coefficients computed via
Eq. 6 as the ‘standard’ or ‘theoretical’ sediment-based
parameters.

However, there is uncertainty inherent in the direct
application of Manning coefficients computed as above.
The bed friction term in the model governing equations must
ideally account for unresolved bathymetry and bedforms,
which are not accounted for within Eq. 6. Additionally, due
to numerical dissipation, it may be the case that the optimal
friction coefficients within a numerical model are smaller
than those corresponding to the true properties of the sea bed
(Fringer et al. 2019). Therefore, even when sediment data
is available (as is the case here), it is common within the
numerical modelling literature to perform model calibration
with respect to the bottom friction coefficient. Nevertheless,
the availability of sediment data can be used to constrain the
spatial variation of the bottom friction parameter, in order to
reduce the dimension of the parameter space for parameter
estimation.

Within this work, we perform several parameter estima-
tion experiments labelled A, B, C1 and C2 and described
below. In each case, the Manning coefficient in the outer
region of the model domain, indicated by the white region
of the mesh in Fig. 1, is held constant at n = 0.025 sm1/3.
Since model-observation comparisons are made only within
the Bristol Channel, the value for n within this outer region
was found to have only a very weak influence on the model
performance metrics, and a value of n = 0.025 sm1/3 was
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Fig. 2 Top: Bathymetry over the full model domain. Bottom: Bathymetry within the Bristol Channel and Severn Estuary. Coordinates are in the
UTM30 projection

found through preliminary experiments (not shown) to pro-
duce adequate results. The value for n inside the Bristol
Channel (coloured region in Fig. 1) is described below for
each experiment:

Experiment A: Estimation of a spatially uniform Man-
ning coefficient.

The simplest approach is to discard the sediment data
entirely, and estimate only a spatially uniform Manning
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Fig. 3 Spatial distribution of sediment types within the Bristol Channel, from the British Geological Survey (British Geological Survey 2021).
See also Table 1

coefficient (i.e. a single value), n0. This is a commonly
taken approach within the literature, especially where
more advanced model calibration is not directly the focus
of the work.

Experiment B: Estimation of a scaling factor for the
standard sediment-based Manning coefficients.

An alternative is to scale the Manning coefficients
given by Eq. 6 by a spatially uniform factor γ , such that

n(d50) = 0.04 γ
6
√

2.5 d50. (7)

The parameter estimation problem is to determine the
optimal value for γ . The motivation for this approach

Table 1 Sediment types defined by the British Geological Survey (British Geological Survey 2021), sorted by roughness length

Sediment ID Sediment name Area of Bristol Channel (km2) Theoretical n (sm1/3)

1 Bedrock 1090 0.049

2 Boulder 0 0.041

3 Cobble 0 0.033

4 Very coarse gravel 334 0.0275

5 Coarse gravel 1465 0.0245

6 Medium gravel 227 0.022

7 Fine gravel 34 0.020

8 Very coarse sand 831 0.018

9 Coarse sand 1775 0.016

10 Medium sand 192 0.014

11 Fine sand 1 0.0125

12 Very fine sand 87 0.011

13 Silt, clay, mud 190 0.0095

Theoretical values for the Manning coefficient n are calculated from Eq. 6. See Fig. 3 for the spatial distribution of the sediment types. Based on
Mackie et al. (2021)
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is that the sediment-based Manning coefficient is likely
to overestimate the required bottom friction, due to the
presence of numerical dissipation, but that the relative
values of the Manning coefficients based on the sediment
data may still be appropriate. This approach results
in the same number of degrees of freedom (one) in
the parameter estimation problem as experiment A,
but incorporates a priori knowledge about the physical
process of bottom friction.

Experiment C: Direct estimation of a small number
of Manning coefficients corresponding to groups of
sediment classes.

The third approach we take within this work is to
estimate three Manning coefficients (n1, n2, n3), each
corresponding to a group of sediment types. We choose
to group the sediment types into approximately equal
area (see Table 1), such that n1 corresponds to sediment
types 1–4, n2 to types 5–8, and n3 to types 9–13. This
grouping is shown in Fig. 4. While we could have used
the sediment data to divide the domain into more than
three subdomains, this would result in large variation in
subdomain area, with parameters corresponding to small
domain areas unlikely to be well constrained by the
observations.

We further subdivide this experiment into two. In
experiment C1, we use uniform priors for each parameter
within the Bayesian inference parameter estimation
algorithm we employ. In experiment C2, we use
the standard sediment-derived Manning coefficients to
construct Gaussian prior distributions for each parameter.

Alongside the results of each of the above parameter
estimation experiments, we also present results based on
a uniform Manning coefficient of 0.025 sm1/3 throughout
the model domain. This value is somewhat arbitrary,
but falls within the commonly used range of uniform

Manning coefficients within the literature. Results using this
uniform BFC represent a useful benchmark against which to
compare the performance resulting from each of the above
parameter estimation experiments.

2.4 Observation data

We use data from two sources for the purposes of model
calibration and validation, as indicated in Fig. 1:

1. 15 locations at which tidal harmonic data is available
(National Oceanography Centre, personal communica-
tion 2018), which are shown as red circles in Fig. 1. We
use the M2 and S2 harmonic amplitudes and phases at
these locations for the model calibration. N2 and M4
data at these locations are used for model validation.
The tidal harmonics at each observation location were
computed from tide gauge records between 1 month and
1 year in length, between 1960 and 1980.

2. Five tide gauges where quality controlled timeseries
surface elevation data are available from the British
Oceanographic Data Centre (BODC). These locations
are shown in Fig. 1 by yellow circles. The tidal
constituent data we use at these locations is from
a harmonic analysis of observations spanning a 10-
year period from 1997. We use M2 and S2 amplitude
and phase observations at these locations for further
validation of the calibrated models.

3 Parameter estimationmethod

There exist a large number of algorithms within the liter-
ature for estimating unknown bottom friction parameters.
In the simple one-dimensional case (i.e. using a spa-
tially uniform BFC), it is common to employ a simple

Fig. 4 Grouping of sediment
classes for the purposes of
parameter estimation
experiments C1 and C2. Yellow
corresponds to parameter n1,
green n2 and blue n3. In any
regions where sediment data is
unavailable, the default
Manning coefficient of
n = 0.025 sm1/3 is applied
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grid search. This involves simply running the numeri-
cal model with a small number of different BFC values,
and selecting the value which minimises a given mea-
sure of model-observation misfit. However, this approach
scales poorly with the number of parameters to be esti-
mated. The high-complexity approach (estimating an inde-
pendent BFC value at every mesh node) typically requires
numerical adjoint models, which constitute an efficient
technique for evaluating gradients of model outputs (typi-
cally a functional representing the model-observation mis-
fit) with respect to the control parameters, thus facilitating
the use of gradient-based optimisation methods for per-
forming model calibration (Maßmann 2010). The use of
intermediate-complexity BFC parameterisations is compat-
ible with a number of approaches, with adjoint (Zhang
et al. 2011) or other gradient-based methods (Sraj et al.
2014), Kalman filters (Mayo et al. 2014; Siripatana et al.
2017) and Markov Chain Monte Carlo (MCMC) methods
(Hall et al. 2011; Sraj et al. 2014) all employed within the
literature.

Within this work, we take a Bayesian inference approach
via an MCMC algorithm. We utilise a Gaussian process
emulator as an efficient surrogate for the full numerical
model. This is necessary because the MCMC algorithm
requires large numbers of model runs (typically O(106)),
which is not feasible with the full numerical model.
While our numerical model does have an adjoint model
available, the size of the parameter estimation problems
we solve within this work is relatively small and does not
warrant adjoint methods. Kalman filter approaches typically
require some tuning of algorithm parameters for optimal
performance (Siripatana et al. 2017). The MCMC approach
however is fairly straightforward and well suited to the size
of the problem considered here. Its results are simple to
interpret, and also yield a direct estimate of the uncertainty
in the estimated parameters.

The following exposition of the Bayesian inference
algorithm proceeds for parameter estimation experiment
C, since this is the most general case (estimating the
greatest number of parameters). The application of the
method to experiments A and B requires only minor
adaptation.

3.1 Bayesian inference

Within this work, the observation data we use for calibration
consists of M2 and S2 harmonic amplitudes and phases at
15 tide gauge locations (as indicated by the red circles in
Fig. 1).

We denote these four observations types by j =
1, 2, 3, 4, corresponding to M2 amplitude, S2 amplitude,
M2 phase and S2 phase, respectively. The observation data

is thus represented by four vectors yj , each of length
N = 15. For compactness, we denote the full set of
observations Y , a matrix with shape (4×N), whose rows are
given by the vectors yj . The corresponding model outputs
for observation type j are denoted fj (n). Bayes’ theorem
gives

	(n|Y ) ∝ L(Y |n)

3∏
i=1

qi(ni), (8)

where 	 is the posterior distribution of the parameters n =
(n1, n2, n3) given the observed data Y , L is the likelihood
of observing the outputs Y given the parameters n and qi is
the prior distribution for each of the parameters ni .

The likelihood L is estimated from the numerical
model. For observation type j , we assume that the model-
observation discrepancies, which are the components of the
vector yj −fj (n), are independent and identically distributed
variables with zero mean and variance σ 2

j . The likelihood
L(Y |n) is then given by

L(Y |n) =
4∏

j=1

[
(2πσ 2

j )−N/2 exp

(
−1

2

|yj − fj (n)|2
σ 2

j

)]
.

(9)

Since the σ 2
j values are unknown a priori, they are

treated as hyperparameters, i.e. they are included as addi-
tional parameters to be inferred by the inversion algo-
rithm. We denote the full vector of unknowns θ =
(n1, n2, n3, log σ 2

1 , log σ 2
2 , log σ 2

3 , log σ 2
4 ), and the full pos-

terior distribution is therefore given by

	(θ |Y ) ∝
4∏

j=1

[
(2πσ 2

j )−N/2 exp

(
−1

2

|yj − fj (n)|2
σ 2

j

)]

3∏
i=1

qi(ni)

4∏
j=1

qj (log σ 2
j ), (10)

where qj (log σ 2
j ) is the prior distribution of log σ 2

j .

3.1.1 Priors

For parameter estimation experiments A, B and C1, we use
uniform priors for the corresponding control parameters.
This is equivalent to setting qi(ni) = 1 in Eq. 10 (the
normalisation is not important). For parameter estimation
experiment C2, we use the ‘standard’ sediment-based
Manning coefficients of Table 1 to construct Gaussian priors
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for each of the Manning coefficients. That is, the priors are
given by

qi(ni) = 1

si
√

2π
exp

(
−1

2

(ni − μi)
2

s2
i

)
, (11)

where μi and si are the mean and standard deviation of the
prior distributions, whose values are summarised in Table 2.

For the unknown variances σ 2
j , the only prior constraint

is that they must be positive. For all parameter estimation
experiments within this study, we follow the approach of
Sraj et al. (2014) and assume Jeffreys priors (Sivia and
Skilling 2006), such that

qj (log σ 2
j ) = 1

σ 2
j

. (12)

3.2 Markov Chain Monte Carlo algorithm

A technique for sampling the posterior distribution given
by Eq. 10 is the Markov Chain Monte Carlo (MCMC)
method, which has the advantage that the constant of
proportionality in the equation need not be determined. We
use an implementation of the Random Walk Metropolis
Hastings MCMC algorithm (Hastings 1970), which is given
by Algorithm 1. The algorithm requires the selection of an
appropriate proposal distribution covariance matrix, �step,
governing the size of the random steps within the parameter
space. We set

�step = diag(0.0012, 0.0012, 0.0012, 0.12, 0.12, 0.12, 0.12)

(13)

so that the random steps in each of the Manning coefficients
have zero mean and a standard deviation of 0.001 sm1/3, and
the random steps in each value of log σ 2

j have zero mean
and a standard deviation of 0.1. These step sizes were found
to give satisfactory results, without the need for an adaptive
MCMC algorithm.

In the results presented here, we take M = 106 samples,
discarding the first 2 × 105 as a burn-in period, and the

Table 2 Mean (μ) and standard deviation (s) for the Manning
coefficient priors in experiment C2

Manning coefficient μi / sm1/3 si / sm1/3

n1 0.0395 0.0135

n2 0.0215 0.0045

n3 0.013 0.004

resulting chain of values n[k] generated by the MCMC
algorithm constitute samples from the posterior distribution.
The mean of these samples is taken as the best estimate of
the parameter values.

3.3 Gaussian process emulation

We employ a Gaussian process emulator (GPE) as
a computationally inexpensive surrogate for the full
numerical model. For parameter estimation experiment C,
this GPE is trained using 40 model runs with Manning
coefficient samples drawn from uniform prior distributions
in the range [0.01, 0.05], using Latin Hypercube Sampling
to evenly sample the three-dimensional parameter space.
Experiment A is a simplified version of experiment C,
and can therefore utilise the same GPE. For experiment B,
where the objective is to estimate the scaling parameter γ

(see Eq. 7), the GPE is trained using 10 samples for γ

drawn uniformly between 0.55 and 1.0, inclusive. Values
for γ smaller than 0.55 resulted in model instabilities due
to the very low friction coefficients in some regions. Once
trained, the GPE is substituted for f(n) within the MCMC
algorithm described above. Within this study, we use the
Python package GPy (GPy since 2012) for the construction
of GPEs.

The use of a GPE in place of the full Thetis model
introduces additional uncertainty. However, this uncertainty
can be directly estimated by the GPE. The GPE-introduced
covariances were typically around 10−6 m2 for emulated

amplitudes, and 2 × 10−3◦2
for emulated phases. Since the

model-observation variances (σ 2
j in the above description

of the Bayesian inference) were typically around 25 cm2

for amplitudes, and 6.25◦2 for phases, the additional
uncertainty introduced by the GPEs is small, and can be
neglected.
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4 Calibration results

4.1 Optimal parameters

The optimal Manning coefficient fields for each parameter
estimation experiment are shown in Fig. 5. Note that in
all cases, the value of the Manning coefficient outside the
Bristol Channel takes a fixed value of n = 0.025 s m1/3, as
described in Section 2.3. We make further comments on the
results from each experiment below.

Experiment A: Uniform parameter inside Bristol
Channel

The optimal uniform parameter within the Channel
(and its uncertainty) is given by n0 = 0.0274 ± 0.0003.
This value lies within the range of commonly used
uniform parameter values in the literature.

Experiment B: Scaling of ‘standard’ sediment-based
parameters

The MCMC algorithm returns a scaling parameter γ =
0.813 ± 0.013. This is consistent with the expectation
that the ‘standard’ sediment-based parameters are too
strongly dissipative, due to the presence of numerical
dissipation.

Experiment C1: Three-dimensional parameter space,
uniform priors

The values for each Manning coefficient returned
by the MCMC algorithm are n1 = 0.032 ± 0.002,
n2 = 0.021 ± 0.007, n3 = 0.025 ± 0.003. The
marginal posterior distributions for each parameter are
shown in Fig. 6. Each marginal distribution is obtained
by integrating the full posterior distribution over two
of the parameters, leaving the marginal PDF for each
parameter individually. The relative magnitudes of the
Manning coefficients returned by this experiment are
unexpected; given the sediment types corresponding to
each parameter, we would expect n1 > n2 > n3. We note
that the posterior distribution for n2 is very broad. The

Fig. 5 Manning coefficient fields used for model validation. a Standard sediment-based parameters. b Result of experiment A. c Result of
experiment B. d Result of experiment C1. e Result of experiment C2
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Fig. 6 Marginal posterior distributions for each parameter ni , from experiment C1

parameter estimation results are therefore not necessarily
inconsistent with this expectation, but the means of the
distributions do not fall in the expected order.

Experiment C2: Three-dimensional parameter space,
Gaussian priors

The values for each Manning coefficient returned by
the MCMC algorithm are n1 = 0.0317 ± 0.0016, n2 =
0.024 ± 0.004 and n3 = 0.0222 ± 0.0019. The marginal
posterior distributions for each parameter are shown in
Fig. 7, along with the prior distributions. The prior
distribution for n1 is very broad, with the observation
data able to achieve a far tighter constraint. For all
three parameters, the posterior distributions are narrower
than for experiment C1, due to the additional constraints
provided by the priors. Note also that the influence of
the priors is sufficient for the parameters to fall in the
expected order (n1 > n2 > n3), in contrast to experiment
C1.

4.2 Performance against calibration dataset

In this section, we summarise the performance of the model
with the Manning coefficient field resulting from each
parameter estimation experiment, as measured against the
calibration dataset (locations indicated by red circles in
Fig. 1). Results presented here are based on runs of the full
numerical model (not the GPE). The M2 and S2 amplitude
and phase RMSEs achieved with each coefficient field are
summarised in Table 3.

As described in Section 2.3, the uniform BFC of 0.025 s
m1/3 is used as a benchmark, with which we can compare
model performance using the other BFC fields. The
‘standard’ sediment-based parameters perform very poorly,
with significantly greater RMSEs than the benchmark run.
Experiment A (optimal uniform BFC) performs well and
achieves the overall lowest amplitude and phase RMSEs
for the S2 constituent, while the greatest improvement over

Fig. 7 Marginal posterior distributions for each parameter ni , from experiment C2. Dotted lines indicate the prior distributions for each parameter
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Table 3 Root mean squared errors (RMSEs) of the modelled M2 and S2 amplitudes (α) and phases (φ), for each Manning coefficient field,
aggregated across the calibration tide gauges (red circles in Fig. 1)

RMSE

Manning coefficient field M2 α (cm) M2 φ (◦) S2 α (cm) S2 φ (◦)

‘Standard’ sediment-based parameters 22.6 8.6 15.2 9.2

Experiment A 4.9 2.6 6.1 3.0

Experiment B 9.9 3.8 7.3 5.0

Experiment C1 3.4 2.5 6.1 3.1

Experiment C2 3.3 2.7 6.3 3.3

Uniform n = 0.025 sm1/3 11.4 2.9 6.3 5.1

Figures in bold indicate the best performance

the benchmark run is for the M2 amplitude. Experiment B
does not perform as well as experiment A, suggesting that
the direct use of sediment-derived coefficients (even when
scaled) is detrimental to model performance. Experiments
C1 and C2 both perform well. Experiment C1 performs best
overall, since its RMSEs are all within 0.1 cm or 0.1◦ of
the lowest achieved in all cases. This is to be expected,

since experiment C1 uses the greatest number of degrees
of freedom in representing the Manning coefficient, with
the fewest additional constraints (whereas experiment C2
includes Gaussian priors for the unknown parameters).

Figure 8 compares the modelled and observed M2 and
S2 amplitudes and phases for both the ‘standard’ and exper-
iment C1 cases. These results demonstrate the excessive

Fig. 8 Scatter plots of modelled
M2 and S2 amplitude and phase,
against observed values. Top:
using ‘standard’ sediment-based
parameters. Bottom: using result
from experiment C1. The
‘standard’ parameters
systematically underestimate the
observed amplitudes
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Fig. 9 Map of M2 amplitude model errors, using the ‘standard’
parameters. The errors increase in magnitude further into the channel

dissipation due to the ‘standard’ friction coefficients, result-
ing in underestimated amplitudes. Figure 9 indicates the
spatial distribution of the M2 amplitude errors within the
Bristol Channel using the ‘standard’ parameters, and shows
the increasing magnitude of the model errors further into the
channel, where the amplitude increases due to resonance.
The result of experiment C1 exhibits significantly reduced
scatter in Fig. 8, corresponding to the reduced RMSEs
summarised in Table 3.

5 Validation of calibratedmodels

Section 4.2 summarised model performance against the set
of data which was used directly within the model calibra-
tion. In this section, we make additional model-observation
comparisons in order to validate the calibrated models
resulting from each parameter estimation experiment.

5.1 Validation using additional harmonic
constituents

The parameter estimation algorithm used only the M2 and
S2 amplitude and phase data at the locations indicated by
red circles in Fig. 1. As described in Section 2.2, the N2 and
M4 constituents have amplitudes in the 10s of cm within

the model domain. These constituents are included in the
model boundary condition, and can be resolved by harmonic
analysis based on the 1-month model runs. We can therefore
make additional comparisons between the modelled and
observed amplitudes and phases for these two constituents.
These RMSEs are summarised in Table 4.

The ‘standard’ sediment-based friction field produces the
smallest N2 amplitude RMSE, in contrast with its poor
performance on all other error metrics. The benchmark run
(with uniform n = 0.025 sm1/3) produces the smallest N2
phase errors. Experiment B produces the smallest RMSEs
for the M4 amplitude, while experiment C2 produces the
smallest M4 phase RMSE. As was the case for the error
metrics against the calibration data, experiments C1 and C2
produce similar RMSEs. Overall, the N2 and M4 validation
metrics do not strongly favour a particular parameter
estimation experiment, and the N2 amplitude in particular
appears difficult to model accurately.

5.2 Validation using additional tide gauge locations

In this section, we compare model outputs with data from
the five BODC tide gauge locations (indicated by yellow
circles in Fig. 1). Data at these locations were not used in
the parameter estimation experiments.

The M2 and S2 amplitude and phase RMSEs aggregated
across these five tide gauges are summarised in Table 5
for each BFC field. We find that experiment C1 produces
the smallest values for all four RMSEs. Experiments A and
C2 also perform well. Experiment B produces a relatively
high M2 amplitude RMSE, but is still an improvement on
the benchmark n = 0.025 s m1/3 run. Model performance
for the N2 and M4 constituents at these validation tide
gauges follows a similar pattern to the performance at the
calibration gauges, and is therefore not shown.

These results suggest that over-fitting has not been an
issue in any of the parameter estimation experiments. The
N2 and M4 error metrics do not strongly favour any
particular BFC configuration, while the M2 and S2 error

Table 4 Root mean squared errors of the modelled N2 and M4 amplitudes and phases, for each Manning coefficient field, aggregated across the
calibration tide gauges (red circles in Fig. 1)

RMSE

Manning coefficient field N2 α (cm) N2 φ (◦) M4 α (cm) M4 φ (◦)

‘Standard’ sediment-based parameters 12.2 13.0 6.7 20.8

Experiment A 12.4 6.5 6.6 17.9

Experiment B 13.4 6.0 5.4 20.7

Experiment C1 12.6 6.1 5.8 17.9

Experiment C2 12.5 6.2 5.7 17.5

Uniform n = 0.025 s m1/3 13.2 4.9 6.0 19.0

Figures in bold indicate the best performance
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Table 5 Root mean squared errors of the modelled M2 and S2 amplitudes and phases, for each Manning coefficient field, aggregated across the
validation tide gauges (yellow circles in Fig. 1)

RMSE

Manning coefficient field M2 α (cm) M2 φ (◦) S2 α (cm) S2 φ (◦)

‘Standard’ sediment-based parameters 26.2 7.9 13.6 7.9

Experiment A 3.3 1.7 1.9 1.2

Experiment B 6.2 1.8 2.7 1.8

Experiment C1 2.6 1.4 1.7 0.7

Experiment C2 3.5 1.6 2.1 0.7

Uniform n = 0.025 sm1/3 8.0 1.8 3.7 3.8

Figures in bold indicate the best performance

metrics at new locations show improvements which are
consistent with the corresponding error metrics against the
calibration data.

Due to the similarity in the results of experiments C1 and
C2, throughout the remainder of this paper, we limit our
analysis to the ‘standard’ sediment-based parameters, and
the results from parameter estimation experiments A, B and
C1.

6 Implications for tidal range energy

In this section, we consider the mean modelled tidal
range energy, and its sensitivity to the bottom friction
parameterisation. At a given location, the mean tidal

range energy density (or potential energy density, PED) is
computed as

PED = 1

M

M∑
i=1

1

2
ρg(HWi − LWi)

2, (14)

where the sum is over M = 28 semidiurnal tidal periods
spanning a single complete spring-neap cycle, ρ is the
density of water and HWi and LWi are the high and low
water surface elevations from each semidiurnal cycle i,
respectively. The result has units of J m−2 per tidal cycle.

We compute the mean tidal range energy density at each
of the tide gauge locations shown in Fig. 1, using both the
model (with various friction parameters) and observations.
This energy density is computed from surface elevation

Fig. 10 Comparison of
modelled and observed mean
tidal range energy density over a
spring-neap cycle. The names of
each tide gauge location are
indicated
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Table 6 Root mean squared errors (RMSEs) of the modelled mean
tidal range energy densities, compared with observations at the tide
gauge locations

Manning coefficient field RMSE / kJ m−2

‘Standard’ parameters 44.3

Experiment A 10.4

Experiment B 16.5

Experiment C1 8.8

timeseries reconstructed from the M2 and S2 harmonic
constituents, since these constituents dominate the tidal
dynamics in the region and are well captured by the
model. A comparison between these modelled and observed
values is presented in Fig. 10. The ‘standard’ sediment
parameters result in a severe underestimate of the tidal
range energy density, while the other parameter sets all
perform reasonably well. As shown in Table 6, experiment
C1 produces the smallest tidal range energy density RMSE;
this is to be expected, since it also performs best in terms of
M2 and S2 amplitude and phase RMSEs.

Figure 11 shows the modelled mean tidal range energy
density, computed over the entire Bristol Channel, using
the BFC field from experiment C1. Figure 12 shows the
difference between the modelled mean tidal range energy
density for each other BFC field, and the result from BFC
field C1 (we use the model result from experiment C1 as
a central value for these different plots since it has the
lowest RMSE with respect to the available observations).
The results are consistent with those of Fig. 10, and the
spatial patterns can be explained by the BFC distributions
shown in Fig. 5. Figure 12a again demonstrates the under-
estimation of the available tidal range energy when using the
‘standard’ sediment-based parameters. Figure 12b shows
that the uniform parameter tends to overestimate the
tidal range energy density compared with parameters C1,
particularly in the central part of the channel. This central

Fig. 11 Mean tidal range energy density per tidal cycle, computed over
the entire Bristol Channel, using friction field C1 (spatially varying
calibrated parameter). This field results in the smallest RMSEs vs
observed tidal range energy density, and is therefore the best estimate
of the tidal range energy resource across the Bristol Channel

Fig. 12 Difference between modelled tidal range energy density: a
with ‘standard’ parameters and parameters from experiment C1; b
with parameters from experiments A and C1; c with parameters
from experiments B and C1. Note the different colour bar ranges
in each figure. We again observe that the ‘standard’ sediment-
based parameters underestimate the energy density compared with
the calibrated parameters, by an increasing amount further into the
Channel. In contrast, the uniform coefficient produces higher energy
densities in the central bedrock region of the channel, since it does not
impose higher friction here

region largely coincides with the presence of bedrock, i.e.
where the BFC within experiment A is smaller than within
C1, leading to the observed difference. This pattern is
largely reversed in Fig. 12c, corresponding to the difference
between experiments B and C1; experiment B produces
larger values for the BFC in the central rocky region than
experiment C1, and therefore produces smaller modelled
sea surface elevations. Towards the east end of the model
domain (further upstream), the relative values of the BFCs
are reversed, leading to a change in sign in the tidal
range energy difference plots. Overall, these results reveal
that the BFC has a somewhat localised effect on the
modelled tidal range energy density, although the long
tidal wavelength means that the differences in tidal range
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energy are much smoother than the differences between the
BFC fields themselves (which are piecewise-constant and
discontinuous).

7Modelling tidal currents

In this section, we perform further model validation
using available tidal current observations, and discuss the
application of the calibrated model to tidal stream resource
assessment. Freely available ADCP data is relatively scarce
within the study region, but here we make comparisons
with ADCP data collected at Minehead (shown as a purple
diamond in Fig. 14), on 30th July and 1st August 2001
(Stapleton et al. 2007; Liang et al. 2014). The ADCP
measured velocity at 6 depths, and has been depth-averaged
for numerical model comparisons.

Figure 13 compares modelled and observed current
speeds at the ADCP deployment location, for the four
model BFC configurations. In all cases, the model
overestimates the current speeds. One surprising result is
that the ‘standard’ sediment parameters, which previous
results suggest overestimate the bottom friction, produce
the greatest modelled velocity magnitudes at the ADCP
location. This can be explained by inspecting the friction
coefficient distributions of Fig. 5. The sediment types within
the region are shown in Fig. 14, with the ADCP location
indicated. The large region of high friction coefficient
in the centre of the channel (corresponding to bedrock,

sediment ID 1) acts to block the flow, driving higher currents
along the southern edge of the model domain, where the
sediments are finer and the BFC therefore smaller. This
blockage effect depends on the relative friction coefficients
between the bedrock region and the southern lower-friction
area. Since the ADCP is situated within this lower friction
region, the modelled velocities here are amplified by
higher values for the bedrock friction coefficient. This
explains why both the ‘standard’ sediment-based friction
parameters, and the result of experiment B, produce the
highest velocities at the ADCP location. For the parameters
resulting from experiment C1, the BFC values are less
extreme, and the blockage effect is therefore somewhat
reduced. The parameters from experiment A, corresponding
to a uniform BFC within the Bristol Channel, result in
the best performance at the ADCP location, because the
uniform BFC removes the blockage effect altogether.

This is further demonstrated by Figs. 15 and 16.
Figure 15 shows the mean modelled kinetic power density
across the model domain, using the C1 parameters, and
exhibits small-scale variability in the tidal stream resource,
due mostly to bathymetric and coastline features. Similar
to Fig. 12 for mean tidal range energy, Fig. 16 shows the
differences between the modelled mean tidal stream power
density for each BFC field, compared with the result from
BFC field C1. There is high spatial correlation between
these differences and the differences in the BFC fields (see
Fig. 5), revealing a strongly localised effect of the BFC on
the modelled tidal stream resource. In particular, Fig. 16b

Fig. 13 Comparison between
models with various friction
parameters, and depth-averaged
current speed data at Minehead
ADCP, from (Liang et al. 2014)
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Fig. 14 Sediment zones, zoomed in to the central part of the channel. The purple diamond indicates the ADCP location, which lies within a region
of relatively fine sediment

shows the difference in modelled mean tidal stream power
density between parameters A (uniform BFC) and C1, and
demonstrates the blockage effect described above, with the
uniform BFC producing lower velocities in regions of finer
sediment at the southern edge of the model domain.

Overall, the results of this section demonstrate the
increased complexity of tidal currents compared with
tidal elevations, with both the bathymetry and BFC
having a strong localised effect on model velocities. We
therefore conclude that calibration for tidal stream resource
assessment requires further work. Tidal current observations
spanning a broader spatial region are essential, and since
currents are typically influenced by localised features that
may well be underestimated in the interpolation of the
bathymetry data to the unstructured mesh, the use of higher

Fig. 15 Mean tidal stream kinetic power density, computed over the
entire Bristol Channel, using friction parameters from experiment C1

resolution in both the model mesh and the bathymetry may
be needed. Furthermore, while the use of two-dimensional
models is not uncommon for tidal stream energy studies
(e.g. (Serhadlıoğlu et al. 2013; Mejia-Olivares et al. 2018)),
the use of a three-dimensional model may be a prerequisite
to capture the key dynamics governing tidal currents at
energetic sites (Stansby 2006; Adcock et al. 2021).

8 Discussion

This study has compared various uses of sedimentological
data within BFC parameter estimation, using the Bristol
Channel and Severn Estuary as a case study region. We have
performed a number of parameter estimation experiments,
utilising the sedimentological data in different ways. These
calibration experiments can be considered to be zero-, one-
and three-dimensional parameter estimation problems.

The use of ‘standard’ sediment-derived BFC parameters
can be considered zero-dimensional, since this approach
does not involve the use of any tide gauge data to infer
any model parameters. Instead, theoretical values for the
BFC were applied directly to the numerical model, based on
the median grain size of the sediment found at each point
within the model domain. This resulted in excessive friction
parameters, leading to underestimation of tidal amplitudes.
This is consistent with the presence of numerical diffusion
within the model in addition to the bottom friction term
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Fig. 16 a Difference in modelled mean tidal stream power density
between ‘standard’ parameters and parameters C1. b Difference for
parameters A and C1. c Difference for parameters B and C1. Similarly
to the tidal range energy density, the tidal stream power density is
mostly underestimated by the ‘standard’ sediment-based parameters
compared with the calibrated parameters, with a particularly strong
local effect in the region of bedrock in the channel centre. However,
due to the blockage effect of increased friction in the centre of the
channel, the kinetic energy increases at the southern edge, where the
friction coefficient is smaller

within the governing equations; the optimal model BFCs
are smaller than would be expected from the physics of the
bottom friction effect (Fringer et al. 2019).

Parameter estimation experiments A and B are both one-
dimensional problems, but they take differing approaches.
In experiment A, a spatially uniform BFC was inferred,
whereas in experiment B, we took the sediment-derived
BFC as a starting point, scaling the BFC by a uniform
factor which was determined via the parameter estimation
algorithm. Between these experiments, the uniform BFC
(experiment A) produced better model performance, as
measured against both the calibration and validation tide
gauge data, than experiment B. This implies that scaling
by a constant factor is not sufficient to compensate

for the shortcomings of the theoretical sediment-derived
parameters, and therefore in modelling applications where
there is insufficient data for estimating more than one
parameter, or such calibration is considered unnecessary,
the commonly taken approach of a uniform BFC is most
suitable. There may exist some function of the theoretical
sediment-derived BFC (more complex than simple scaling
as performed here) which can produce better model
performance than a uniform BFC, but this would amount
to the estimation of more than one parameter. The model
performance with the optimal uniform BFC meets the
recommended accuracy criteria of Williams and Esteves
(2017), and we therefore conclude that the estimation of
a spatially uniform BFC is sufficient for many practical
purposes. This may particularly be the case when using a
calibration algorithm whose computational cost increases
with the number of parameters to be estimated (such as the
algorithm we use in this study), and given that reducing
model errors under one metric may be liable to increase
errors under another metric (such as is observed in this
study, where the spatially varying BFCs, calibrated using
tidal elevation data alone, perform worse in terms of tidal
currents).

In experiments C1 and C2, the sedimentological data
was used to divide the Channel into three subdomains,
corresponding to groups of sediment types, and a Bayesian
inference algorithm employed to estimate the optimal
BFC corresponding to each sediment group. Experiments
C1 and C2 differed in their choice of prior within the
Bayesian inference; experiment C1 used a uniform prior,
whereas experiment C2 used Gaussian priors based on
the theoretical sediment-derived BFC values. Due to the
increased dimension of the parameter space for experiments
C, their performance against both the calibration and
validation tide gauge data was better than experiments
A and B. Overall, experiment C1 produced slightly
better performance than experiment C2; this is further
evidence that the theoretical BFC values derived from the
sediment data are spurious in the context of numerical
model BFCs, which may be due to the presence of
other modelling errors. Nevertheless, the sediment data
provides a physically motivated decomposition of the
model domain for constraining the spatial variation of the
friction parameter, for applications where there is sufficient
observation data to calibrate the model with more than one
degree of freedom.

This study did not investigate the use of BFC parame-
terisations with more than three degrees of freedom. Doing
so could result in greater model performance, but could
encounter overfitting issues, and is ultimately limited by
the available observation data. Furthermore, since calibra-
tion implicitly compensates for a broad variety of mod-
elling errors, calibration with respect to a greater number
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of degrees of freedom will arguably become increasingly
disconnected from the underlying physics of the bottom
friction effect, thus making the sedimentological data less
useful in constraining the spatial variation of the BFC. The
results of this study suggest that, for small-dimensional
parameter estimation problems, the use of sediment data
for subdividing the model domain constitutes a practical
approach.

However, we acknowledge that even for the low-
dimensional parameter spaces we considered here, the
calibration problem will be affected by the presence of
a variety of sources of error (Green and McCave 1995;
Waldman et al. 2017). These sources include assumptions
made within the governing equations (e.g. the choice
between two- and three-dimensional models, barotropic vs
baroclinic models), discretisation errors, mesh resolution
(Hasan et al. 2012), unresolved bathymetry (e.g. sandbars
(Leuven et al. 2016)), other imperfect model inputs and
other unresolved or parameterised processes. However,
reductions in each of these uncertainties typically incur
additional computational cost, and/or require a greater
volume of observation/survey data. The modelling approach
and assumptions we have taken in this work are typical of
many tidal range energy studies (including several utilising
the same Thetis numerical model (Angeloudis et al. 2018;
Harcourt et al. 2019; Mackie et al. 2020; Baker et al. 2020)),
and we have sought to make the most of the available data.
This study has also neglected temporal dependence of the
BFC, e.g. within the spring-neap cycle, and has assumed
calm conditions with no wind or atmospheric pressure
forcing, or the propagation of storm surges from outside
the model domain. On longer time scales, differences
in the timing of observations may also be significant.
For example, the sedimentological data used within this
study was collected between 1977 and 1993, with the
tide gauge observations also spanning multiple decades,
whereas the bathymetry is likely to change on time scales
of years to decades due to both anthropogenic and natural
causes. Any calibrated BFC field is always specific to the
model configuration with which it was derived, and model
calibration should always be interpreted within the context
of these other sources of model error. However, the use of
spatially dependent BFC is common within the literature
(including within this model domain (Mackie et al. 2021)).
This study has attempted to make the most of limited data,
demonstrating that sedimentological data can be an effective
basis for constraining spatially varying BFCs.

Within this work, we utilised M2 and S2 harmonic
constituent data for model calibration. We acknowledge
that the model-observation errors for these constituents are
already small prior to calibration with a spatially varying
BFC, given the broader context of the other modelling errors
discussed above. However, this work has demonstrated that

small changes in the BFC can correspond to changes in
the tidal resonance, which is critical for the tidal dynamics
and hence the tidal renewable energy resource. N2 and M4
data were withheld from the calibration, for the purposes of
model validation. It is likely that incorporating all available
data within the parameter estimation process would be
beneficial, and may facilitate the estimation of a greater
number of unknown parameters. We also note that the use
of N2 data for validation was inconclusive in terms of
differentiating model performance with each BFC field.
Since the calibrated BFC fields will in part be compensating
for imperfect model boundary conditions, the failure of
M2- and S2-based calibration to improve the modelled
N2 constituent may suggest the presence of errors in the
boundary condition. It is certainly likely that calibration
with respect to the boundary condition could produce
additional improvements in model performance, but further
investigation of this aspect is left to future work.

The results of Section 6 reveal a somewhat localised
effect of the BFC on the tidal range energy resource.
This highlights the need for observations in regions of
interest, although this is mitigated by the relatively smooth
variation of tidal sea surface elevations. However, in an
application to modelling tidal stream resource, the highly
spatially variable nature of currents, which are affected by
local coastline and bathymetry features, exacerbates this
issue. Reliable tidal stream resource assessment therefore
requires higher-density observations in regions of interest.
The results of this study also suggest that the use of sediment
types to parameterise the spatial variation of the friction
parameter may not be appropriate when tidal currents are
of interest. This is because the tidal currents are affected
on small spatial scales by rapid changes in the BFC. We
have also observed the BFC exerting a non-local effect on
the tidal currents, where the use of high values for the
BFC in the centre of the Channel drives higher currents
along the southern edge of the Channel, where the BFC is
lower. This blockage effect results in the counter-intuitive
result that the ‘standard’ sediment-based BFC field, which
results in underestimated sea surface heights, actually
produces the highest current speeds at an ADCP situated
near the southern edge of the Channel. Model calibration
for tidal currents may require an alternative approach to
BFC parameterisation which avoids sharp changes in the
coefficient, e.g. via smoothing of the BFC field, or avoiding
piecewise-constant BFC fields entirely. This aspect requires
further work, and more extensive tidal current data.

The primary focus of this study was on model calibration
for tidal elevations, with an application to tidal range
energy. As noted above, the modelling approach taken in
this work is typical of many tidal range energy studies.
However, although two-dimensional models are commonly
used for tidal stream modelling (e.g. (Serhadlıoğlu et al.
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2013; Mejia-Olivares et al. 2018)), we note that the accurate
representation of tidal currents within and around candidate
sites for marine energy (e.g. in highly energetic sites),
warrants the use of three-dimensional models (Stansby
2006; Adcock et al. 2021). A direct comparison of two- and
three-dimensional models for representing tidal currents in
the Bristol Channel is beyond the scope of this study, and
would be limited by the present availability of tidal current
observation data, and in particular data that encompasses
both horizontal and vertical variations in currents. Since
the reduced computational cost of two-dimensional models
offers a significant advantage to calibration studies, further
work investigating the applicability of calibrated BFC
fields between two- and three-dimensional models might
be valuable. However, since calibration in part implicitly
compensates for unresolved dynamics and modelling errors,
any such applicability is likely to be limited. However,
the methodology of this work, based on the use of
sedimentological data for informing the spatial distribution
of BFC parameters, may be applicable to three-dimensional
models. Given the multiple scales that must be accounted for
in marine energy hydrodynamics, the calibration of far-field
two-dimensional models is also likely to maintain a role as
we move to 3D, in providing boundary conditions for more
computationally intensive assessments, which may need to
be reserved for near-field simulations.

9 Conclusions

This study has utilised sedimentological data within a
numerical model of the Bristol Channel and Severn Estuary,
in order to calibrate the model against available tide gauge
data. The direct use of theoretical Manning coefficient
values corresponding to the median grain size for each
sediment type results in severe underestimates of the sea
surface height, and consequently the tidal range energy
resource. This can be improved by the reduction of these
theoretical BFCs by scaling with a uniform factor, with
the factor determined via a Bayesian inference algorithm.
However, the resulting model performance can be further
improved by the use of a well-selected spatially uniform
BFC, confirming that when the data or computational
resources permit the solution of only a one-dimensional
parameter estimation problem, the spatially uniform BFC
approach remains the best option.

However, the results have demonstrated that the sedimen-
tological data can be used to produce a piecewise-constant
BFC according to three groups of sediment types. The solu-
tion of the resulting three-dimensional parameter estimation
problem results in significant improvements in model per-
formance over the uniform-BFC case, as measured against
both the calibration and validation tide gauge data.

The application of the numerical model to tidal
range resource assessment reveals a somewhat localised
sensitivity to the BFC, highlighting the need for observation
data in regions of interest. Due to the smaller-scale spatial
variation in tidal currents, this issue is greater for tidal
stream resource assessment, and we have also identified a
non-local effect where excessive BFC values in the centre
of the channel drive spuriously high currents in other
regions. Further work is required for tidal stream energy
applications. Such studies will require a greater volume
of ADCP data that is strategically acquired. Alongside
this direction, we also identify two key aspects of future
modelling work which should be undertaken for tidal stream
energy applications, namely the use of higher resolution
in both the model mesh and bathymetry data, and further
exploration of two- and three-dimensional approaches.
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