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A folded disk is bistable, as it can be popped through to an inverted state with elastic energy
localized in a small, highly-deformed region on the fold. Cutting out this singularity relaxes the
surrounding material and leads to a loss of bistability when the hole dimensions reach a critical
size. These dimensions are strongly anisotropic and feature a surprising re-entrant behavior, such
that removal of additional material can re-stabilize the inverted state. A model of the surface as a
wide annular developable strip is found to capture the qualitative observations in experiments and
simulations. These phenomena are consequential to the mechanics and design of crumpled elastic
sheets, developable surfaces, origami and kirigami, and other deployable and compliant structures.

The role of elastic singularities in the deformation
of thin sheets and shells is still poorly understood,
despite a quarter of a century of intense investigation
into their geometry and energetics [1–15]. Over the
years, several perspectives have emerged, viewing
these localized high-energy regions as a manifesta-
tion of spontaneous condensation of both curvature
and stretching [16–19], sources of rigidity [20–22], or
an organizing framework for random crumpling [23],
regular patterns [24, 25], or dynamics [26, 27]. Our
interest in the current study was driven by Witten’s
observation [28] that the excision of such regions of
focused elastic energy leads to significant relaxation
of neighboring regions of material, and the indica-
tion that such surgery should also modify the rigid-
ity and stability landscape of any surrounding struc-
ture. The proximity of the edge of regression, or
other virtual singularities living outside nominally
inextensible surfaces, has been qualitatively linked
to the structural stiffness response [29–31]. Another
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thread in this work is the question of multistabil-
ity of systems of creases and facets with competing
flexibilities, including origamic analogs of elastic sin-
gularities [32–39].

Our model system is a single fold in an elastic
disk, and the singular structure formed by popping
it through with a thumb. This is perhaps the sim-
plest bistable “foldable cone” examined in [37]. In
[40] it was noted that a small hole reduced the energy
barrier to pop through a fold to its inverted state,
but this was not pursued to its logical conclusion,
the complete elimination of the barrier with a suf-
ficiently large hole. In this note, we employ theory,
numerics, and experiment to capture the complex
behavior of a fold after removal of its singularity
and a variable zone of surrounding material. We
find that cutting a hole of sufficient size around the
singularity leads to a loss of bistability through a
fold bifurcation that destabilizes the inverted state.
There is significant anisotropy in the critical hole di-
mensions, such that a narrow slit aligned along the
crease can be as large as the disk without destroy-
ing bistability. We also observe a curious re-entrant
behavior of the stability diagram for small elliptical
holes aligned perpendicular to the crease, which can
in some parameter ranges more effectively eliminate
bistable behavior than a larger circular hole. We
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demonstrate the surprising applicability of a devel-
opable ribbon model to this class of wide, topologi-
cally annular shapes.

Experiments were performed on disks of radius
1 ≤ R ≤ 10 cm, thickness t = 0.005 in (0.127 mm),
0.003 in (0.076 mm), or 0.002 in (0.051 mm), and
prescribed central elliptical hole geometries (semi-
axes a and b perpendicular and parallel to the even-
tual crease), obtained by cutting (Cameo 3, Silhou-
ette America, Lindon, UT) polyester shim stock (Ar-
tus Corp., Englewood, NJ) and subsequently creas-
ing along a diameter using a vise set to a prescribed
position and held for two seconds. The structure was
then flexed by inverting it once or twice and allowed
to relax for five minutes before bistability tests were
performed, with the sample hanging such that the
crease was vertical to minimize gravitational effects
on the bistability of the thinnest sheets. We refer to
the simply creased state as the folded configuration
and the stable popped-through state as the inverted
configuration. When both stable states exist, they
are separated by an energy barrier corresponding to
another, unstable, equilibrium state. This barrier
was examined in [41] for a reduced model of the sur-
face with a single hole size. The folded state is char-
acterized by a rest crease angle γ0 over which we
have little control; thickness, disk size, and hole size
all contribute significantly to this value, which we
report as a range spanning multiple hole sizes for a
given sample set (measured from photographs of the
disks). The inverted state is characterized by a final
crease angle γf , which is observed to be a function
of radial position in experiments and numerics, and
an angle δ between a side of the crease and a line
connecting the ends of the two sides. Figure 1(a-
b) illustrates examples of the two states and asso-
ciated parameters for two different hole geometries.
The inverted configuration reflects a competition be-
tween the unknown and uncontrollable stiffness of
the crease and the bending resistance of the facets
comprising the remainder of the disk, such that the
overall disk size R is a relevant scale that we can
understand using the related concepts of “origami
length” [42] or “hinge index” [43]. We should ex-

pect an asymptotic approach to a linear scaling of
critical bistable hole size with the disk radius as the
latter grows and the crease becomes effectively rigid.
However, the interference of gravity also becomes
more important with increasing disk radius, setting
a practical limit for the experiments.

We employ an annular wide-strip model that
treats the punctured disk as a developable surface
outside of the crease, an approach that is reasonable
for static configurations of sufficiently thin elastic
sheets [12, 29, 30, 44–48]. In this model, we treat
the crease as a generator (zero-curvature direction)
with uniform final angle γf , an approximation we
will revisit shortly below. Full details of the model,
including boundary conditions and numerical imple-
mentation, can be found in Appendix A; we sketch
the important aspects here. The directrix r(s) forms
the outer circumference of one half of the symmetric
disk, parameterized by arc length 0 ≤ s ≤ πR, and
carries an orthonormal material (Darboux) frame of
curve tangent T = r′, where a prime denotes an s-
derivative, surface normal N , and surface tangent
normal B = T × N . The evolution of the frame
is given by T ′ = κnN − κgB, N ′ = −κnT + τgB,
B′ = κgT −τgN , where κn, κg = −1/R, and τg are the
normal curvature, geodesic curvature, and geodesic
torsion. As shown in Figure 1(c), generators lie in
the B+ηT direction, making a local angle β with the
directrix; η = cotβ = τg/κn. The shape is symmetric
and given by the embedding

X(s, v) = r(s) + v[B(s) + η(s)T (s)] , (1)

with 0 ≤ v ≤ V (s, η ;R,a, b) the coordinate
along the generator of implicitly treated length

V
√

1 + η2. This surface has mean curvature H =
κn(1+η2)

2[1+v[η′+κg(1+η2)]] and area element dA = [1 + v(η′ +
κg(1 + η2))]dsdv. Defining a crease stiffness per
unit length Kc and a facet bending rigidity D =
Et3/[12(1−ν2)] incorporating the Young’s modulus
E and Poisson’s ratio ν, the total elastic energy U of
a creased punctured disk can be written as an aug-
mented Wunderlich functional [30, 44, 49, 50] with
contributions from both crease and facets,

U

2D
= Kc

D
(R − b)∫

γf

γ0
sin(γ̃f − γ0)dγ̃f +

1

2
∫

πR

0
∫

V

0
(2H)2 dA ,

= KcR

D
(1 − b

R
) [1 − cos(γf − γ0)] + ∫

πR

0
YWds , (2)
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(a) (b) (c)

FIG. 1: Photographs of (a) folded and (b) inverted states of disks with different hole dimensions, showing
the disk radius R, hole semiaxes a and b perpendicular and parallel to the crease, rest and final crease angles
γ0 and γf , and an angle δ characterizing the inverted state. (c) Rendering of one half of an inverted state in
a developable strip model, bounded by the crease. The directrix is the outer circumference, parameterized by
0 ≤ s ≤ πR for one half of the disk, and carrying a Darboux frame (T ,N ,B). The generators make a local
angle β with the tangent.
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with Y = κ2
n(1+η2)2

2[η′+κg(1+η2)] and W = ln[1+ V (η′ + κg(1+
η2))]. The crease stiffness diverges as the origami
lengthD/Kc approaches zero with the thickness [42].
The crease contribution to the energy (2) only enters
the problem through the boundary conditions, and
does not appear in the Euler-Lagrange equations,
given by [44, 50]

F ′ = 0 , (3)

M ′ + T ×F = 0 , (4)

∂κn(YW ) − ηM1 −M3 = 0 , (5)

∂η(YW ) − (∂η′(YW ))′ − κnM1 = 0 , (6)

where forces and moments, normalized by D, have
components in the moving frame specified by F =
F1T + F2N + F3B and M = M1T +M2N +M3B.
Equations (3-6) for one half of the symmetric struc-
ture, along with an Euler angle description of the
moving frame, and boundary conditions imposed at
the crease, are solved using the continuation package
AUTO 07P [51].

To explore beyond the limitations of the devel-
opable model, as well as to allow independent con-
trol of rest crease angle, crease stiffness, and material
thickness not possible in experiments, simulations
were performed using the commercial finite element
(FE) software COMSOL Multiphysics 5.4, employ-
ing quadratic shell elements, linear-elastic material,
and creases introduced using a through-thickness
thermal gradient [38]. These simulations also avoid
self-contact effects that are an issue with experi-
ments at small hole sizes. Full simulation details
can be found in Appendix B.

Results from the developable model (3-6) are
shown in Figure 2(a-c) for circular holes (a = b), rest
crease angle γ0 = 45○, and several values of crease
stiffness KcR/D. Certain features are shared by all
the solution curves in parameter space. The stable
inverted state and another unstable state are lost
through a fold bifurcation at a critical hole size,
which shows only moderate variation with crease
stiffness. At the end of the unstable lower branch,
the curves terminate due to a failure of the embed-
ding of the developable surface as the edge of re-
gression approaches the sheet boundary. For stiffer
creases, a greater proportion of the energy U is as-
sociated with facet bending energy Ub rather than
the opening of the crease. At small hole sizes, the
crease energy increases rapidly, and the facet energy
does likewise for stiff creases but decreases for softer
creases. Renderings of stable, near-fold-point, and
unstable inverted states of the developable model
with γ0 = 45○ and KcR/D = 20 show the genera-

tors (black lines), edges of regression (red curves),
and color maps of twice the squared mean curva-
ture 2H2 (with R set to unity) that appears in the
facet energy. Further details of these solutions can
be found in Appendix C. A small hole size leads to
a shape similar to a generalized cone, which would
have a single point “inside” the annulus as its edge of
regression, rather than the cusped curve of the more
general structure. As the hole size increases, the
generators near the crease first align with it, becom-
ing “cylindrical” at a/R ≈ 0.116, echoing the qual-
itative features of the ridge relaxation observed in
Witten’s experiment [28]. Past this point, the gen-
erators near the crease converge towards the outer
perimeter of the annulus, so that a portion of the
edge of regression lies “outside” it. On a developable
strip, the bending moment is inversely proportional
to the distance of a point on a generator to the edge
of regression. Thus, we would expect that if the
developable constraint were relaxed to allow a non-
uniform crease angle γf , the inner part of the crease
would open to a wider angle than the outer part
for small holes and vice versa for large holes. In-
deed we observe this effect in experimental samples.
Results on this effect from a more quantitative anal-
ysis using FE are shown in Figure 2(d-e) for the sta-
ble inverted configuration and the unstable state on
the energy barrier, respectively, for several circular
hole sizes up to a value close to the loss of bista-
bility. A representative set of crease parameters are
used (the value R/20t can be considered an effective
crease stiffness for the FE results, as discussed in Ap-
pendix B). In the inverted configuration, the crease
angle variation along the normalized distance on the
crease YC/R from the center of the hole shows the
expected transition between inner and outer crease
opening as the hole size increases. The developable
assumption of constant crease angle works better for
large hole sizes. In contrast, the unstable equilib-
rium is always more open towards the outer edge of
the annulus. Curiously, the crease angle near the
hole in the unstable equilibrium is actually smaller
than the rest angle.

We next explore the anisotropic interaction be-
tween material removal and the elasticity of the
structure by considering elliptical holes with semi-
axes a perpendicular to and b parallel to the crease.
Bistability boundaries for the developable model are
shown in Figure 3(a) for several values of rest crease
angle γ0 and crease stiffness KcR/D. Also shown
are boundaries determined from experiments on two
thicknesses of material and from FE simulations of
one thickness and set of crease parameters. A quan-
titative comparison across the three approaches is

4



(a) (b)

(c)

(d) (e)

FIG. 2: (a) Developable strip solutions for circular holes of radius a, rest crease angle γ0 = 45○, and several
values of dimensionless crease stiffness KcR/D. The KcR/D =∞ curve is generated using a fixed (rigid)
crease angle. A stable and an unstable branch are created at the fold bifurcation, and the curves truncate
where the developable assumption fails. (b) Normalized bending energy Ub/D and normalized crease energy
Uc/D. (c) Renderings of stable, near-fold-point, and unstable states for the developable model with γ0 = 45○

and KcR/D = 20 showing generators (black lines), edges of regression (red curves), and color maps of twice
the squared mean curvature 2H2 with R set to unity. Generators near the crease align with it at
a/R ≈ 0.116. (d) Opening angle γf along the crease coordinate YC in finite element simulations of the stable
inverted state for several values of hole radius, an outer disk radius of 75 mm, a thickness of 0.127 mm, and a
crease angle of 48○ ± 1○. The effective crease stiffness is R/20t = 29.5. (e) Same for the unstable energy
barrier state. Bistability is lost between a = 10 and a = 11 mm. The nonsmoothness of the curves near the
boundaries is likely due to the finite mesh size, relatively large local deviations in the rest angle at the
boundaries, and the possible emergence of a secondary curvature along the crease [7].
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not possible. In experiments, the crease stiffness is
unknown and the rest angle has a strong dependence
on thickness and hole geometry; we report an aver-
age and standard deviation across a range of hole
sizes in order to treat hole size as if it were an inde-
pendent parameter. Thickness appears in the stiff-
ness in the developable model; a previous observa-
tion indicates that the origami length D/Kc ≈ 200t
for mylar (a polyester) sheets [42], although we note
that the geometry of the current problem is signif-
icantly different than that of the cited work. The
crease becomes effectively rigid as the thickness van-
ishes. The FE simulations use an angle close to one
of the developable solutions, with an effective stiff-
ness falling within a range in which the dependence
of the developable model on stiffness is very weak.
However, the qualitative behavior of all the bound-
ary curves is the same, and the quantitative spread
is fairly small within a wide range of reasonable pa-
rameters. Boundaries are shifted to larger hole sizes
by a smaller crease angle (sharper fold) or by a stiffer
crease; the experiments on thinner materials behave
accordingly as having both sharper folds and stiffer
creases. An unexpected re-entrant behavior of the
boundary curves is present in all three approaches:
theory, experiments, and simulations. This means
that in some parameter ranges, removing more ma-
terial actually leads to a reappearance of bistable
behavior. Fixing the length of the hole axis perpen-
dicular to the crease, elliptical holes with long axis
perpendicular or parallel to the crease can be monos-
table while less eccentric holes are bistable. It is also
apparent that long, slit-like holes along the crease do
not eliminate bistability, while small perpendicular
slits do. Solution curves, and renderings of stable in-
verted states near the bistability boundary, for the
developable model with γ0 = 45○ and KcR/D = 20,
are shown in Figure 3(b-c). Stable (upper) and un-
stable (lower) inverted states are seen to appear via
an isola-center bifurcation. The edges of regression
for elliptical hole inverted states can take more com-
plicated multi-cusp forms not observed with circular
holes. Further details of these solutions can be found
in Appendix C.

In conclusion, we have examined the excision of
high-energy material around an elastic singularity
formed by inverting a simply folded thin disk. This
process eliminates a source of rigidity, increasing
the flexibility of the system. It reorients the low-
curvature directions around the fold, influencing
the opening angle distribution and eventually elim-
inating the inverted state, and thus the bistability,
through a highly anisotropic mechanism re-entrant
in the space of hole geometric parameters. These

findings have consequences for the mechanical com-
pliance and energetics of perforated thin sheets, and
for the design of deployable structures, in which
fatigue of a highly stressed vertex is undesirable,
prompting the introduction of gaps. Beyond folded
and cut structures, similar mechanics is expected in
other compliant mechanisms featuring networks of
hinges, facets, and springs. Bistability and critical
hole dimensions are also influenced by the presence
of multiple folds or the addition or removal of angu-
lar sectors of material to adjust the strength of the
conical singularity, topics to be explored in detail in
a future study [54].
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(a)

(c)

(b)

FIG. 3: (a) Bistability boundaries for elliptical holes with semiaxes a perpendicular to and b parallel to the
crease, for the developable model for several values of rest crease angle γ0 and crease stiffness KcR/D,
experiments with two thicknesses (crease angles reported are average and standard deviation of 14 − 15
samples at each thickness across a range of hole sizes), and FE simulations for one choice of crease
parameters (using R = 75mm and t = 0.127mm, as in one set of experiments). (b) Solution curves, bounded
by fold bifurcations or points of failure of the developable assumption, and (c) renderings of stable inverted
states near the bistability boundary for the developable model with γ0 = 45○ and KcR/D = 20 showing
generators (black lines), edges of regression (red curves), and color maps of twice the squared mean
curvature 2H2 with R set to unity. Close-ups of the edges of regression show complex forms.

7



Appendix A: Numerical implementation of the
developable model

The inextensible strip model is formulated as a
two-point boundary value problem (BVP), which
can be parametrically studied using the continuation
package AUTO 07P [51]. This requires normalizing
the length of the integral interval to unity. This
additional step is not explicitly shown in the follow-
ing discussion, but can be achieved by replacing the
s−derivatives (primes) with derivatives with respect
to a normalized parameter s/smax (if s ∈ [0, smax]),
thereby multiplying the right hand sides of all equa-
tions by smax. We retain the disk radius R in the
descriptions below, although in our calculations we

set it equal to unity for simplicity.
To obtain inverted states, we begin with an annu-

lar sector of a flat disk subtending an angle ρ < π and
bend this into one half of a conical frustum, the ini-
tial solution for numerical continuation. The angle
ρ is arbitrary and simply serves to create a nonflat
conical starting point. Then the crease angle corre-
sponding to a perfectly stiff crease is introduced by
rotation of the ends of the sector, and ρ is increased
to π. The crease stiffness is relaxed by replacing the
boundary constraints on the crease angle with con-
ditions on the moment. Finally, the hole dimensions
are adjusted.

We employ Euler angles (ψ, θ, φ) to relate the di-
rector frame to a fixed Cartesian frame [52],

⎡⎢⎢⎢⎢⎣

−N
T
B

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

cosφ sinφ 0
− sinφ cosφ 0

0 0 1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

cosψ sinψ 0
− sinψ cosψ 0

0 0 1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

x̂
ŷ
ẑ

⎤⎥⎥⎥⎥⎦
. (A1)

As κn = −N ′ ⋅ T , κg = B′ ⋅ T , and τg = −B′ ⋅N , we
have

κn = φ′ + ψ′ cos θ ,

κg = −θ′ sinφ + ψ′ sin θ cosφ ,

τg = θ′ cosφ + ψ′ sin θ sinφ . (A2)

Figure 4 shows a Cartesian coordinate system
(x, y, z) and a sequence of rotations applied to de-
form the annular sector into one conical half of a
creased structure with axis z and bisected by the
x-z plane. The origin is at 1

2
(r(0) + r(ρR)).

For circular holes, the limit V of the generator co-
ordinate v can be obtained explicitly in terms of the
function η and the annular radii a and R [50]. How-
ever, for elliptical holes, V has a complicated depen-
dence on the backbone coordinate s and must be rep-
resented by an implicit function χ(V, s, η;a, b,R) = 0.
Using η = cotβ and λ = s/R, this is

χ(s, η, V (s, η)) = V 2 + (R2 − 2V R − b2) sin2 β

+[(b/a)2 − 1] [V cos(β + λ) +R sinβ sinλ]2 , (A3)

which simplifies considerably for circular holes, for
which a = b. We treat V as an independent variable
and turn the algebraic constraint χ = 0 into a dif-
ferential equation. Denoting explicit partial deriva-
tives by subscripts, we have V ′ = Vs + Vηη′ with
Vs = −χs/χV and Vη = −χη/χV obtained through
implicit differentiation [45]. We further differentiate

the algebraic constitutive law in (5) and combine
with (6) to obtain a first order ordinary differential
equation (ODE) for κn and a second order ODE for
η, and introduce another variable Ω (= η′) to con-
vert the latter to two first order ODEs. The system
is made autonomous by adding a trival differential
equation s′ = 1. Constants “lost” through differen-
tiation are added back using additional boundary
conditions. All of this is combined with equations

8
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FIG. 4: Euler angles are used to describe the sequential rotations of the director frame attached to the
outer circle of an annular sector, following a z-y-z (3-2-3) rotation convention. A Cartesian coordinate
system is placed with cone axis z and origin at 1

2
(r(0) + r(ρR)). (a) The annular sector has its director

frame attached to the outer circle; at the midpoint, (−N ,T ,B) are aligned with x, y, z. (b) The annular
sector is deformed into a conical frustum. The frame at each point is first aligned with the Cartesian axes in
a manner akin to the midpoint, then rotated about B(s) by ψ(s), and then about T (s) by θ(s). In this
step, ψ(s) is a linear function of s, and θ(s) is constant. (c) The crease angle is introduced by rotating the
director frame at the two ends about B(0) and B(ρR).
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(3-6), (A2), and r′(s) = T to form the full system,

F ′
1 − κnF2 + κgF3 = 0 ,

F ′
2 + κnF1 − κnηF3 = 0 ,

F ′
3 + κnηF2 − κgF1 = 0 , (A4)

M ′
1 − κnM2 + κgM3 = 0 ,

M ′
2 + κnM1 − κnηM3 − F3 = 0 ,

M ′
3 + κnηM2 − κgM1 + F2 = 0 , (A5)

η′ = Ω ,

(AE −C2)Ω′ = (CB −AI)Ω +AG −CJ ,
(AE −C2)κ′n = (IC −BE)Ω + JE −GC , (A6)

V ′ = − χs
χV
− χη
χV

Ω , (A7)

ψ′ = (τg sinφ + κg cosφ)/ sin θ ,

θ′ = τg cosφ − κg sinφ ,

φ′ = κn − (κg cosφ + τg sinφ)/ tan θ , (A8)

x′ = − sinψ cosφ − cosψ sinφ cos θ ,

y′ = cosψ cosφ − sinψ sinφ cos θ ,

z′ = sin θ sinφ , (A9)

s′ = 1 , (A10)

in which

A = YκnκnW ,

B = YκnηW + YκnWη + YκnWV Vη ,

C = Yκnη′W + YκnWη′ ,

I = Yη′ηW + Yη′Wη + Yη′WV Vη

+ YηWη′ + YWη′η + YWη′V Vη ,

E = Yη′η′W + 2Yη′Wη′ +Wη′η′Y ,

J = η′M1 − F2 + κg(M1 − ηM3) − YκnWV Vs ,

G = YηW + YWη + YWV Vη

− κnM1 − Yη′WV Vs − YWη′V Vs ,

Figure 5 shows the sequence of continuation steps
we use to obtain inverted solutions. A flat annular
sector subtending an angle ρ < π with a small circu-
lar hole a ≪ 1 can be bent into the conical frustum
of Figure 5b. This starting solution for continuation
is

F1 = 0 , F2 = 0 , F3 = 0 ,

M1 = 0 ,M2 = ln
a

R
,M3 = −

√
π2

ρ2
− 1 ln

a

R
,

κn =
1

R

√
π2

ρ2
− 1 , η = 0 , η′ = 0 ,

V = R − a ,

ψ = −π
2
+ π

ρR
s , θ = − sin−1

ρ

π
,φ = 0 ,

x = ρR
π

sin( π

ρR
s) , y = −ρR

π
cos( π

ρR
s) , z = 0 ,

with s ∈ [0 , ρR]. The ends of the sector are rotated
about themselves to introduce the rest crease angle
γ0 (Figure 5c). The boundary conditions are then

Fz(0) = 0 , Fy(0) = 0 ,

Mx(0) = 0 ,

κn(0)(1 + η2(0))2
η′(0) + κg(1 + η2(0))

W (η′(0), η(0))

− η(0)M1(0) −M3(0) = 0 ,

η(0) = 0 , η(ρR) = 0 ,

χ(V (0),0, η(0)) = 0 ,

ψ(0) = −π
2
, φ(0) = −(π

2
− γ0

2
) ,

ψ(ρR) = π
2
, φ(ρR) = (π

2
− γ0

2
) ,

x(0) = 0 , z(0) = 0, x(ρR) = 0 , z(ρR) = 0 ,

y(0) + y(ρR) = 0 ,

s(0) = 0 ,

where symmetry dictates the conditions on Fy(0) =
F (0) ⋅ ŷ, Fz(0) = F (0) ⋅ ẑ, and Mx(0) = M(0) ⋅ x̂.
At this point the boundary conditions constrain the
crease angle, so we have a perfectly stiff crease. In
the next step, we increase ρ to π by a simple rescaling
of s/smax. Then the actual crease stiffness is intro-
duced by replacing the two boundary conditions for
φ above with moment conditions

M3(0) =KcR/D(1 − b/R) sin [π − γ0 + 2φ(0)] ,
M3(πR) =KcR/D(1 − b/R) sin [π − γ0 − 2φ(πR)] ,

and decreasing KcR/D from a large value to the real
crease stiffness. Finally, the hole dimensions a and
b are continued to their real values.

The geometry of the strip is reconstructed as

10



FIG. 5: The inverted configuration is obtained through several continuation steps. (a) An annular sector
that subtends an angle ρ < π is (b) bent into a conical frustum with a central angle of π and (c) has its ends
rotated about themselves to introduce the crease angle γ0. Then (d) ρ is increased to π, (e) a finite crease
stiffness KcR/D is introduced, and (f) the hole dimensions a/R and b/R are varied.
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X(s, v) = r(s) + v[B(s) + η(s)T (s)] , (A11)

= (x − v[η(sinψ cosφ + cosψ sinφ cos θ) − sin θ cosψ])x̂
+ (y + v[η(cosψ cosφ − sinψ sinφ cos θ) + sin θ sinψ])ŷ
+ (z + v[η sin θ sinφ + cos θ])ẑ ,

with v ∈ [0, V ].
The edge of regression is

c(s) = r(s) + sinβ

β′ − κg
B(s) + η(s)T (s)
∣B(s) + η(s)T (s)∣

= r(s) − B(s) + η(s)T (s)
η′ + κg(1 + η2)

. (A12)

Its first derivative is c′(s) = ηκ2
g(1+η2)+η′′+3κgηη

′

[η′+κg(1+η2)]2 (B +
ηT ). At “cylindrical” points η′ = −κg(1 + η2), the
edge of regression goes off to infinity, and the mean
curvature is constant along the local generator. At
“conical” points η′′ = −3κgηη

′−ηκ2g(1+η2), the edge
of regression has a cusp. The generators can be
mapped onto the flat annular sector with tangent
t(s) and binormal b(s) using

X(s, v) = r(s) + v[b(s) + η(s)t(s)] , (A13)

= (R sinλ − v sinλ + vη cosλ)x̂
+ (−R cosλ + vη sinλ + v cosλ) ŷ ,

and the edge of regression onto it using

c(s) = r(s) − b(s) + η(s)t(s)
η′ + κg(1 + η2)

, (A14)

= (R sinλ + sinλ − η cosλ

η′ + κg(1 + η2)
) x̂

− (R cosλ + η sinλ cosλ

η′ + κg(1 + η2)
) ŷ .

Appendix B: Finite element simulations

Simulations were performed in the commercial fi-
nite element (FE) software COMSOL Multiphysics
5.4. We used quadratic shell elements with a linear
elastic Hookean material and geometrically nonlin-
ear kinematic relations, and searched for solutions
with the default stationary solver that implements
the nonlinear Newton method. Mesh refinement
studies were undertaken to ensure convergence of the
results. Symmetries of the disk were exploited so

that only one quarter of the domain required sim-
ulation. Aspects of the simulations are illustrated
schematically in Figure 6.

The disk dimensions were set to R = 75 mm and
t = 127µm, and the material properties used were a
Young’s modulus E = 3.63 GPa and Poisson’s ratio
ν = 0.4, consistent with reported material data and
previous measurements on polyester sheets.

The simulations consist of two steps. First, a
temperature-induced folding angle is set via a cou-
pled phase-field-like model, in which the effect of a
through-thickness temperature gradient is confined
to within the crease region. Then, with the two outer
crease ends vertically constrained, a downward force
is applied at both inner crease ends to deform the
structure from the folded configuration to the in-
verted configuration.

The temperature-induced creasing follows the
method introduced in [38]. An effective thermal ex-
pansion coefficient ρT takes the value 1 K−1 in a
strip of width βt and 0 elsewhere. In the present
work, we use β = 20, so that the width of the crease
is comparable with that of the plastic region of real
creases in mylar sheets [53]. The plate is subjected
to a through-thickness temperature difference ∆T
and responds with localized bending in the crease
region. Empirically, we have found that for folded
rectangular sheets, the rest crease angle γ0 is given
approximately by

γ0 = π − 1.4ρT∆Tβ . (B1)

By adjusting ∆T we are able to approximate a de-
sired rest crease angle. In the present work, while
aiming for a γ0 = 45○ we achieved γ0 = 48 ± 1○ with
most of the deviation occurring near the edges of the
crease.

During indentation, localized buckling can occur
for some hole geometries. To prevent this, founda-
tion springs in the x direction were attached to the
crease ends at the beginning of indentation, whose
stiffnesses decrease linearly with the vertical inden-
tation depth so that their effects vanish before snap-
ping occurs.
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FIG. 6: Aspects of FE simulations. (a) Geometry of the annulus. (b) Temperature-driven creasing. (c)
Folded configuration and indentation process. (d) Schematic force-displacement curve.
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We estimate an effective crease stiffness for com-
parison with the developable model by ignoring
boundary and ridge effects. Let the moment per
unit length of crease be

M = ∫
t/2

t/2
zσxxdz , (B2)

and the stress-strain relation be

σxx =
E

1 − ν2 (εxx − ε
0
xx) , (B3)

where ε0xx is the “rest strain” due to thermal expan-
sion. The strains are related to the crease angle by

εxx =
π − γ
βt

z . (B4)

Thus, the resultant moment on one half of the crease
is

M = −(R − b)D
βt

(γ − γ0) . (B5)

We can thus identify D
βt

with Kc in the developable

model, and R
βt

with the dimensionless crease stiffness

KcR/D, where β = 20 in the present work.

Appendix C: Details of developable solutions

Figures 7 and 8 provide details of the geometry of
configurations from Figures 2 and 3, respectively.
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FIG. 7: Details of the marked solutions in Figure 2. (a) Normal curvature κn. (b) Geodesic torsion τg. (c)
Zeroes of η′+κg(1+η

2
) correspond to cylindrical points, where the edge of regression goes off to infinity. (d)

Zeroes of η′′+3κgηη
′
+ηκ2

g(1+η
2
) correspond to conical points, where the edge of regression has cusps.
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FIG. 8: Details of the marked solutions in Figure 3. (a) Normal curvature κn. (b) Geodesic torsion τg. (c)
Zeroes of η′+κg(1+η

2
) correspond to cylindrical points, where the edge of regression goes off to infinity. (d)

Zeroes of η′′+3κgηη
′
+ηκ2

g(1+η
2
) correspond to conical points, where the edge of regression has cusps.
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mental study of developable cones. Physical Review
Letters, 80(11):2354–2357, 1998.

[5] E. Cerda and L. Mahadevan. Conical surfaces and
crescent singularities in crumpled sheets. Physical
Review Letters, 80(11):2358–2361, 1998.

[6] T. Mora and A. Boudaoud. Thin elastic plates: On
the core of developable cones. Europhysics Letters,
59(1):41–47, 2002.

[7] A. Lobkovsky, S. Gentges, H. Li, D. Morse, and
T. A. Witten. Scaling properties of stretch-
ing ridges in a crumpled elastic sheet. Science,
270(5241):1482–1485, 1995.

[8] B. A. DiDonna. Scaling of the buckling transition of
ridges in thin sheets. Physical Review E, 66:016601,
2002.

[9] T. Liang and T. A. Witten. Crescent singularities
in crumpled sheets. Physical Review E, 71:016612,
2005.

[10] S. M. Farmer and C. R. Calladine. Geometry of
“developable cones”. International Journal of Me-
chanical Sciences, 47:509–520, 2005.

[11] A. Nasto, A. Ajdari, A. Lazarus, A. Vaziri, and
P. M. Reis. Localization of deformation in thin shells
under indentation. Soft Matter, 9:6796–6803, 2013.

[12] J. Chopin and A. Kudrolli. Disclinations, e-cones,
and their interactions in extensible sheets. Soft Mat-
ter, 12:4457–4462, 2016.

[13] Y. Yang, M. A. Dias, and D. P. Holmes. Multistable
kirigami for tunable architected materials. Physical
Review Materials, 2:110601(R), 2018.

[14] M. Moshe, E. Esposito, S. Shankar, B. Bircan, I. Co-
hen, D. R. Nelson, and M. J. Bowick. Kirigami me-
chanics as stress relief by elastic charges. Physical
Review Letters, 122:048001, 2019.

[15] T. Elder, D. Rozairo, and A. B. Croll. Origami
inspired mechanics: Measuring modulus and force
recovery with bent polymer films. Macromolecules,
52:690–699, 2019.

[16] T. A. Witten. Stress focusing in elastic sheets. Re-
views of Modern Physics, 79:643–675, 2007.

[17] M. Das, A. Vaziri, A. Kudrolli, and L. Mahadevan.
Curvature condensation and bifurcation in an elastic
shell. Physical Review Letters, 98:014301, 2007.

[18] R. D. Schroll, E. Katifori, and B. Davidovitch. Elas-
tic building blocks for confined sheets. Physical Re-
view Letters, 106:074301, 2011.

[19] P. Mellado, S. Cheng, and A. Concha. Mechanical
response of a self-avoiding membrane: Fold colli-
sions and the birth of conical singularities. Physical
Review E, 83:036607, 2011.

[20] D. J. Balkcom, E. D. Demaine, M. L. Demaine, J. A.
Ochsendorf, and Z. You. Folding paper shopping
bags. In Origami4: Proceedings of the 4th Interna-
tional Meeting of Origami Science, Math, and Edu-
cation (OSME 2006), pages 315–334, 2009.

[21] T. Tallinen, J. Ojajärvi, J. A. Åström, and J. Timo-
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a developable Möbius band”. Journal of Elasticity,
119(1-2):23–34, 2015.

[50] M. A. Dias and B. Audoly. “Wunderlich, meet
Kirchhoff”: A general and unified description of
elastic ribbons and thin rods. Journal of Elastic-
ity, 119(1-2):49–66, 2015.

[51] E. J. Doedel, R. C. Paffenroth, A. R. Champneys,
T. F. Fairgrieve, Y. A. Kuznetsov, B. E. Oldeman,
B. Sandstede, and X. Wang. AUTO-07P: Continu-
ation and bifurcation software for ordinary differen-
tial equations.
indy.cs.concordia.ca/auto/ , 2007.

[52] A. E. H. Love. A treatise on the mathematical theory
of elasticity. Dover, New York, 1927.

[53] T. Jules, F. Lechenault, and M. Adda-Bedia. Lo-
cal mechanical description of an elastic fold. Soft
Matter, 15(7):1619–1626, 2019.

[54] T. Yu. Bistability and equilibria of creased annular
sheets and strips. arXiv:2104.09704, 2021.

18

http://arxiv.org/abs/2104.09704

	Cutting holes in bistable folds
	Abstract
	 Acknowledgments
	A Numerical implementation of the developable model
	B Finite element simulations
	C Details of developable solutions
	 References


