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We present network embedding algorithms that capture information about a node from the local dis-

tribution over node attributes around it, as observed over random walks following an approach similar

to Skip-gram. Observations from neighborhoods of different sizes are either pooled (AE) or encoded

distinctly in a multi-scale approach (MUSAE). Capturing attribute-neighborhood relationships over mul-

tiple scales is useful for a range of applications, including latent feature identification across disconnected

networks with similar features. We prove theoretically that matrices of node-feature pointwise mutual

information are implicitly factorized by the embeddings. Experiments show that our algorithms are com-

putationally efficient and outperform comparable models on social networks and web graphs.

Keywords: node embedding, node classification, attributed network, dimensionality reduction.

1. Introduction

Node embedding is a fundamental technique in network analysis that serves as a precursor to numerous

downstream machine learning and optimisation tasks, e.g. community detection, network visualization

and link prediction [9, 27, 36]. Several recent network embedding methods, such as Deepwalk [27], and

Walklets [28], achieve impressive performance by learning the network structure following an approach

similar to Word2Vec Skip-gram [22], originally designed for word embedding. In these works, sequences

of neighboring nodes are generated from random walks over a network, and representations are distilled

from node-node proximity statistics that capture local neighbourhood information.

In real-world networks, nodes often have attributes (or features), e.g. in a social network nodes may

represent people and node attributes may capture a person’s interests, preferences or habits. Attributes

of a node and those of its local neighbourhood may contain information useful in downstream tasks.

Such neighborhoods can be considered at different path lengths, or scales, e.g. in a social network,

near neighbors may be friends, whereas nodes separated by greater scales may have looser friends-of-

friends associations. Attributes of neighbors at different scales can be considered separately (multi-

scale) or pooled in some way, e.g. weighted average. Node attributes can identify different network

© The author 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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structure, e.g. nodes with similar attributes are often more likely to be connected (known as homophily)

such that patterns of similar node attributes may identify a community. Alternatively, similar attribute

distributions over node neighbourhoods may identify similar network roles even at distant locations in

a network (Figure 1a), or in different networks.

Attributed network embedding methods [13, 19, 35, 39] leverage attribute information to supplement

local network structure, benefiting many applications, e.g. recommender systems, node classification

and link prediction [40–42]. Methods that consider a node’s attributes generalize those that do not, for

which a node’s “feature” can be considered a standard basis vector (i.e. the node-feature matrix is the

identity matrix).
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(a) Attributed example graph.
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(b) Densification of the target matrix.

Figure 1. Phenomena affecting and inspiring the design of the multi-scale attributed network embedding procedure. In Figure

1a attributed nodes D and G have the same feature set and their nearest neighbours also exhibit equivalent sets of features,

whereas features at higher order neighbourhoods differ. A multi-scale attributed node embedding method is able to represent

these differences and similarities in the embedding space. Figure 1b shows that as the order of neighbourhoods considered (r)

increases, the product of the adjacency matrix power and the feature matrix becomes less sparse. This suggests that an implicit

decomposition method would be computationally beneficial for learning an embedding.

Many embedding methods correspond to matrix factorization, indeed some attributed embedding

methods [40] explicitly factorize a matrix of node-attribute information. Word embeddings learned

using Skip-gram are known to implicitly factorize a matrix of pointwise mutual information (PMI)

of word co-occurrence statistics [18]. Related network embedding methods [9, 27, 29, 36] thus also

factorize PMI matrices that relate to the probability of encountering other nodes on a random walk [29].

Our key contributions are:

1. We introduce Skip-gram style embedding algorithms that consider attribute distributions over

local neighborhoods, both pooled (AE) and multi-scale (MUSAE), and their counterparts with

distinct proximal features attributed to nodes (AE-EGO and MUSAE-EGO).

2. We derive that the PMI matrices factorised by all embeddings in terms of adjacency and node-

feature matrix and show that popular network embedding methods DeepWalk [27] and Walklets

[28] are special cases of AE and MUSAE.

3. We show empirically that on real-world networks our algorithms outperform comparable methods

at predicting node attributes, computationally scalable and enable transfer learning.

4. We provide reference implementations of AE and MUSAE, together with the datasets used for

evaluation at https://github.com/benedekrozemberczki/MUSAE. The proposed embedding proce-

dures are also available in the open source Karate Club machine learning library [33].
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Table 1. A summary of existing node embedding techniques (proximity preserving and attributed) with respect to having (✔) and

missing (✘) desired properties. The time and space complexities are reported as a function of vertex and edge counts (|V| and

|E|), unique feature count |F|, average node feature count m, and embedding dimensions d.

Generic

Features

Multi

Scale
Implicit Proximal

Higher

Order
Inductive Non-linear

Space

Complexity

Time

Complexity

DeepWalk [27] ✘ ✘ ✔ ✔ ✔ ✘ ✔ O(|V| d) O(|V| d)

LINE2 [36] ✘ ✔ ✔ ✔ ✔ ✘ ✔ O(|V| d) O(|V| d)

Node2Vec [9] ✘ ✘ ✔ ✔ ✔ ✘ ✔ O(|V|3) O(|V| d)

Walklets [28] ✘ ✔ ✔ ✔ ✔ ✘ ✔ O(|V| d) O(|V| d)

NetMF [29] ✘ ✘ ✘ ✔ ✔ ✘ ✘ O(|V|2 d) O(|V|3 d)

HOPE [25] ✘ ✘ ✘ ✔ ✔ ✘ ✘ O(|V|2 d) O(|V|3 d)

GraRep [6] ✘ ✔ ✘ ✔ ✔ ✘ ✘ O(|V|2 d) O(|V|3 d)

TADW [39] ✔ ✘ ✘ ✘ ✔ ✘ ✘ O(|V|+ |F|) d) O(|V|2 |F| d)

ASNE [19] ✔ ✘ ✘ ✔ ✘ ✘ ✘ O(|V|+ |F|) d) O(|E| m d)

AANE [13] ✔ ✘ ✘ ✔ ✘ ✘ ✔ O(|V|2 m d) O(|V|2 m d)

BANE [40] ✔ ✘ ✘ ✘ ✔ ✘ ✘ O(|V|2 m d) O(|V|3 m d)

TENE [41] ✔ ✘ ✘ ✔ ✘ ✘ ✘ O(|V|+ |F|) d) O(|E| m d)

AE ✔ ✘ ✔ ✘ ✔ ✔ ✔ O((|V|+ |F|) d) O(|V| m d)

MUSAE ✔ ✔ ✔ ✘ ✔ ✔ ✔ O((|V|+ |F|) d) O(|V| m d)

AE-EGO ✔ ✘ ✔ ✔ ✔ ✘ ✔ O((|V|+ |F|) d) O(|V| m d)

MUSAE-EGO ✔ ✔ ✔ ✔ ✔ ✘ ✔ O((|V|+ |F|) d) O(|V| m d)

2. Related work

Efficient unsupervised learning of node embeddings for large networks has recently seen unprecedented

development. The current paradigm focuses on learning latent node representations such that those

sharing neighbors [9, 27, 32, 34], structural roles [3, 11, 12, 30] or attributes [35, 39, 40, 42] are close

in the latent space. Our work falls under the first and last of these categories.

2.1 A general overview

Several recent proximity-preserving node embedding algorithms are inspired by the Skip-gram model

[21, 22], which generates word embeddings by implicitly factorizing a matrix of shifted pointwise mu-

tual information (PMI) of word co-occurrence statistics extracted from a text corpus [18]. For example,

DeepWalk [27] generates a “corpus” of truncated random walks over a graph from which the Skip-gram

model generates proximity-preserving node embeddings. In doing so, DeepWalk implicitly factorizes

a PMI matrix that has been shown to correspond to the mean of a set of normalized adjacency matrix

powers (up to a given order) reflecting different path lengths of a first-order Markov process [29]. Such

averaging, or pooling treats neighbors at different path lengths (or scales) equally or according to fixed

weightings [9, 21]; whereas it has been found that an optimal weighting may be task or dataset specific

[1]. In contrast, multi-scale node embedding methods, such as LINE [36], GraRep [6] and Walklets [28],

learn separate lower-dimensional embedding components for each path length and concatenate them to

form the full node representation. Such un-pooled representations, comprising distinct but less informa-

tion at each scale, are found to give higher performance in a number of downstream settings, without

increasing the overall complexity or number of free parameters [6, 28, 36].

Attributed node embedding methods refine ideas from proximity-preserving node embeddings to
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also incorporate node attributes (equivalently, features or labels) [13, 19, 39–41]. Similarities between

both a node’s neighborhood structure and features contribute to determining pairwise proximity in the

latent space, although models follow quite different strategies to learn such representations. The (ar-

guably) simplest model, TADW [39], decomposes a convex combination of normalized adjacency ma-

trix powers into a matrix product that includes the feature matrix. Several other models, such as SINE

[42] and ASNE [19], implicitly factorize a matrix formed by concatenating the feature and adjacency

matrices. Other approaches such as TENE [41], formulate the attributed node embedding task as a joint

non-negative matrix factorization problem in which node representations obtained from sub-tasks are

used to regularize one another. AANE [13] uses a similar network structure based regularization ap-

proach, in which a node feature similarity matrix is decomposed using the alternating direction method

of multipliers. BANE [40], the method most similar to our own, learns attributed node embeddings that

explicitly factorize the product of a normalized adjacency matrix power and a feature matrix. Many

other methods exist, but do not consider the attributes of higher order neighborhoods [13, 19]. A key

difference between our work and previous methods is that we jointly learn distinct representations of

nodes and features.

The relationship between our pooled (AE) and multi-scale (MUSAE) attributed node embedding

methods mirrors that between graph convolutional neural networks (GCNNs) and multi-scale GCNNs.

The former, e.g. GCN [16], GraphSage [10], GAT [37], APPNP [17], SGCONV [38] and ClusterGCN

[7], create latent node representations that pool node attributes from arbitrary order neighborhoods,

which are then inseparable and unrecoverable. The latter, e.g. MixHop [2] and SIGN [31] learn latent

features for each proximity.

2.2 A desiderata based comparison

A node representation learning technique must have certain desired properties in order to generate ex-

pressive vertex features and have scalability. We summarized these beneficial properties of node em-

bedding techniques in Table 1 with the respective space and time complexities.

• Generic features: Generic vertex properties such as the income of users in a social network are

encoded when a node embedding is learned. These generic features are used to contextualize the

location of the node in the embedding space universally.

• Multi-scale: Information obtained from distinct proximities (e.g. random walk hops, shortest

path distance) is encoded by distinct groups of node embedding features. Using a multi-scale

node representation the micro-, meso-, and macroscopic context of a node can be discerned.

• Implicit: The decomposed target matrix is not calculated explicitly. This reduces the required

space and time complexity, which makes the embedding model applicable in practical large-scale

industrial settings.

• Proximal: The contextual proximity information (location in comparison to other vertices) about

the node is encoded when the node embedding is created. A proximal node embedding cannot be

inductive, as the proximal context is not be meaningful in disjoint graphs.

• Higher-order: The embedding encodes information from nodes that are not adjacent to a node.

For example, in random walk based contextualization the information is obtained from multiple

hops, not just the first step.
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• Inductive: The node embedding technique can map unseen nodes to the embedding space which

are not connected to the graph used for training. An embedding technique which contextualizes

the nodes based on the proximity to other nodes cannot be inductive.

• Non-linear: A node-node proximity score in the target matrix is not a linear function of the two

node embedding vectors. This property allows for super and sub linear proximity score encoding.

Data: G = (V,E) – Graph to be embedded.

{Fv}V – Set of node feature sets.

s – Number of sequence samples.

l – Length of sequences.

t – Context size.

d – Embedding dimension.

b – Number of negative samples.

Result: Node embedding g and feature embedding h.

1 for i in 1 : s do

2 Pick v1 ∈ V according to P(v)∼ deg(v)/vol(G ).
3 (v1,v2, . . . ,vl )← Sample Nodes(G ,v1, l)
4 for j in 1 : l− t do

5 for r in 1 : t do

6 for f in Fv j+r
do

7 Add tuple (v j , f ) to multiset D.

8 end

9 for f in Fv j
do

10 Add tuple (v j+r , f ) to multiset D.

11 end

12 end

13 end

14 end

15 Run SGNS on D with b negative samples and d dimensions.

16 Output gv, ∀v ∈ V, and h f , ∀ f ∈F = ∪VFv.

Algorithm 1: AE sampling and training procedure

3. Attributed embedding algorithms

Here we define our algorithms to jointly learn embeddings of nodes and attributes based on the structure

and attributes of local neighborhoods. The aim is to learn similar embeddings for nodes that occur in

neighborhoods of similar attributes; and similar embeddings for attributes that occur in similar neigh-

borhoods of nodes.

Let G =(V,E) be an undirected graph, where V and E are the sets of vertices and edges (or links),

and let F be the set of all binary node features. For each node v∈V, let Fv⊆F be the subset of features

belonging to v. An embedding of nodes is a mapping g : V→R
d that assigns a d-dimensional vector

g(v), or simply gv, to each node v and is fully described by a matrix G∈R|V|×d . An embedding of

the features (to the same latent space) is a mapping h : F→ R
d with embeddings denoted h( f )

.
=h f , as

summarised by a matrix H∈R|F|×d .

3.1 Attributed embedding

The Attributed Embedding (AE) method is described by Algorithm 1 and the main idea is figuratively

summarized in Figure 2a. With probability proportional to node degree, s starting nodes v1 are sampled
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from V (line 2). From each starting node, a node sequence of length l is sampled over G following

a first-order random walk (line 3). For a given window size t, iterate over the first l−t nodes of the

sequence v j, termed source nodes (line 4). For each source node, the subsequent t nodes are considered

target nodes (line 5). For each target node v j+r, the tuple (v j, f ) is added to the corpus D for each

feature f ∈Fv j+r
(lines 6-7). Each tuple (v j+r, f ) for features of the source node f ∈Fv j

is also added to

D (lines 9-10). Running Skip-gram on D with b negative samples (line 15) generates the d-dimensional

node and feature embeddings (G, H).

gv

{♠} {♣;♥}
{♠;♦}

The source node v One hop walk from v Two hop walk from v

(a) Pooled attributed embedding of node v.

g0
v g1

v g2
v

{♠} {♣;♥}
{♠;♦}

The source node v One hop walk from v Two hop walk from v

(b) Multi-scale attributed embedding of node v.

Figure 2. In Figure 2a we learn a pooled node embedding gv of the source node v ∈ V using features from the 1st and 2nd order

proximity. We learn gv by using the union of feature sets as a context which is defined by the multi-set {♠;♣;♥;♠;♦} which

contains features of the source node and nodes appearing in the random walk in one and two hops from the source. Comparatively,

in Figure 2b we learn a multi-scale embedding of the node by learning individual embeddings of for each proximity noted by

g0
v , g1

v and g2
v . These embeddings are contextualized by the features sets {♠}, {♣;♥} and {♠;♦} respectively. Concatenated

together g0
v , g1

v and g2
v forms the node embedding.
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3.2 Multi-scale attributed embedding

The AE algorithm pools features across neighborhoods of different proximity. Inspired by the per-

formance of (unattributed) multi-scale node embeddings, we adapt AE to learn multi-scale attributed

embeddings. The procedure is described by Algorithm 2 and the main idea is figuratively summarized

in Figure 2b. The embedding component of a node v∈V at proximity r∈{1, ..., t} is given by a mapping

gr : V→ R
d/t (where t divides d). Similarly, the embedding component of feature f ∈F at proximity

r is given by a mapping hr : F→ R
d/t . Concatenating the t components gives a d-dimensional embed-

ding for each node and feature. The Multi-Scale Attributed Embedding (MUSAE) method is described

by Algorithm 2. Source and target node pairs are generated from sampled node sequences as for AE

(lines 2-5). Each feature of a target node f ∈Fv j+r
is again considered, but tuples (v j, f ) are added

to a sub-corpus D r
→

(lines 6-7) and for each source node feature f ∈Fv j
tuples (v j+r, f ) are added to

another sub-corpus D r
←

(lines 9-10). Running Skip-gram with b negative samples on each sub-corpus

Dr =D r
→
∪D r

←
(line 17) generates the d

t
-dimensional components to concatenate.

Data: G = (V,E) – Graph to be embedded.

{Fv}V – Set of node feature sets.

s – Number of sequence samples.

l – Length of sequences.

t – Context size.

d – Embedding dimension.

b – Number of negative samples.

Result: Node embedding components gr and feature embeddings component hr, for r∈{1, ...,t}.

1 for i in 1 : s do

2 Pick v1 ∈ V according to P(v)∼ deg(v)/vol(G ).
3 (v1,v2, . . . ,vl )← Sample Nodes(G ,v1, l)
4 for j in 1 : l− t do

5 for r in 1 : t do

6 for f in Fv j+r
do

7 Add the tuple (v j , f ) to multiset D r
→

.

8 end

9 for f in Fv j
do

10 Add the tuple (v j+r , f ) to multiset D r
←

.

11 end

12 end

13 end

14 end

15 for r in 1 : t do

16 Create Dr by unification of D r
→

and D r
←

.

17 Run SGNS on Dr with b negative samples and d
t

dimensions.

18 Output gr
v, ∀v ∈ V, and hr

f , ∀ f ∈ F= ∪VFv.

19 end

Algorithm 2: MUSAE sampling and training procedure

4. Attributed embedding as implicit matrix factorization

The results of [18] showed that the loss function of Skip-gram with negative sampling (SGNS) is min-

imized if its two output embedding matrices W,C factorize a matrix of pointwise mutual information
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(PMI) of word co-occurrence statistics. Specifically, for a corpus D over a dictionary V with |V|= n,

SGNS (with b negative samples) generates embeddings ww, cc∈R
d (columns of W, C∈Rd×n) for each

target and context word w,c∈V, satisfying:

w⊤w cc ≈ log
( #(w,c)|D|

#(w)#(c)

)
− logb ,

where #(w), #(c) and #(w,c) denote counts of w, c and both words appearing within a sliding context

window. Considering
#(w)
|D| ,

#(c)
|D| ,

#(w,c)
|D| as empirical estimates of p(w), p(c) and p(w,c) respectively

gives the approximate low-rank factorization (since typically d≪n):

W⊤C≈ [PMI(w,c)− logb ]w,c∈V ,

The findings of [29] extended this result to node embedding models that apply SGNS to a “corpus”

generated from random walks over the graph. In the case of DeepWalk where random walks are first-

order Markov, the joint probability distributions over nodes at different steps of a random walk can be

expressed in closed form, and a closed form for the factorized PMI matrix follows. Here we derive the

matrices implicitly factorized by AE and MUSAE.

Notation: For a graph G =(V,E), |V|= n, let A∈Rn×n denote the adjacency matrix and D∈Rn×n

the diagonal degree matrix, i.e. Dv,v =deg(v)=∑w Av,w. Let c = ∑v,w Av,w denote the volume of G . We

define the binary attribute matrix F∈{0,1}|V|×|F| by Fv, f = 1 f∈Fv
, ∀v∈V, f ∈F. To ease notation, we

set P=D−1A and E=diag(111⊤DF), where diag indicates a diagonal matrix.

Interpretation: Assuming G is ergodic, p(v)= deg(v)
c

is the stationary distribution over nodes v∈V, i.e.

c−1D = diag(p(v)); and c−1A is the stationary joint distribution over consecutive nodes of a random

walk p(v j,v j+1). Fv, f can be considered a Bernoulli parameter of the probability p( f |v) of observing

feature f at a node v, hence c−1DF describes the stationary joint distribution p( f ,v) over nodes and

features. Accordingly, P is the transition matrix of conditional probabilities p(v j+1|v j); and E is a

diagonal matrix proportional to the (binary) probability p( f ) of observing feature f at the stationary

distribution. We note that p( f ) need not sum to 1, whereas p(v) necessarily must.

4.1 Multi-scale case (MUSAE)

We know that the SGNS aspect of MUSAE learns embeddings gr
v, hr

f that satisfy gr
v
⊤hr

f≈log
( #(v, f )r |Dr |

#(v)r#( f )r

)
−

logb, ∀v∈V, f ∈F. Our aim is to express this factorization in terms of known properties of the graph G

and its features.

LEMMA 4.1 The empirical statistics of node-feature pairs obtained from random walks give unbiased

estimates of the joint probability of observing feature f ∈F r steps (i) after; or (ii) before node v ∈ V,

as given by:

plim
l→∞

#(v, f )→
r

|D→
r
| = c−1(DPrF)v, f

plim
l→∞

#(v, f )←
r

|D←
r
| = c−1(F⊤DPr) f ,v

Proof. See Appendix A. �
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LEMMA 4.2 The empirical statistics of node-feature pairs obtained from random walks give unbiased

estimates of the joint probability of observing feature f ∈F r steps either side of node v∈V, given by:

plim
l→∞

#(v, f )r

|Dr |
= c−1(DPrF)v, f ,

Proof. See Appendix A. � Marginalizing gives unbiased estimates of stationary probability

distributions of nodes and features:

plim
l→∞

#(v)
|Dr |

= deg(v)
c

= c−1Dv,v

plim
l→∞

#( f )
|Dr |

= ∑
v| f∈Fv

deg(v)
c

= c−1E f , f

THEOREM 4.1 MUSAE embeddings approximately factorize the node-feature PMI matrix:

log
(
cPrFE−1

)
− logb, for r = 1, ... , t.

Proof.

#(v, f )r |Dr |
#( f )r#(v)r

=
( #(v, f )r

|Dr |

)
/
( #( f )r

|Dr |
#(v)r

|Dr |

)

p
−→

(
(cD−1)(c−1DPrF)(cE−1)

)

v, f

= c(PrFE−1)v, f

�

4.2 Pooled case (AE)

LEMMA 4.3 The empirical statistics of node-feature pairs learned by the AE algorithm give unbiased

estimates of mean joint probabilities over different path lengths:

plim
l→∞

#(v, f )
|D| = c

t

(
D(

t

∑
r=1

Pr)F
)

v, f

Proof. By construction, |D|=∑r |Dr|, #(v, f )=∑r #(v, f )r, |Dr|= |Ds| ∀ r,s∈{1, ..., t} and so |Ds|=
t−1|D|. Combining with Lemma 4.2, the result follows. �

THEOREM 4.2 AE embeddings approximately factorize the pooled node-feature matrix:

log
(

c
t
(

t

∑
r=1

Pr)FE−1
)
− logb .

Proof. Analogous to the proof of Theorem 4.1. �

REMARK 4.1 DeepWalk is a special case of AE with F=I|V|.

That is, DeepWalk is equivalent to AE if each node has a single unique feature. Thus E=diag(111⊤DI)=
D and, by Theorem 4.2, the embeddings of DeepWalk factorize log

(
c
t
(∑t

r=1 Pr)D−1
)
− logb, as derived

by [29].
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REMARK 4.2 Walklets is a special case of MUSAE with F=I|V|.

Thus, for r = 1, . . . , t, the embeddings of Walklets factorise log
(
cPrD−1

)
− logb.

REMARK 4.3 Appending an identity matrix I to the feature matrices F of AE and MUSAE (denoted

[F;I]) adds a unique feature to each node. The resulting algorithms, named AE-EGO and MUSAE-EGO,

respectively, learn embeddings that approximately factorize the node-feature PMI matrices:

log
(
cPr [F;I]E−1

)
− logb, ∀r∈{1, ..., t};

and log
(

c
t
(

t

∑
r=1

Pr) [F;I]E−1
)
− logb .

4.3 Complexity analysis

Assuming a constant number of features per source node, the corpus generation has runtime complexity

of O(s l t m
n
), where m=∑v∈V |Fv| the total number of features across all nodes (with repetition), q= |F|,

and n= |V|. With b negative samples, the optimization runtime of a single asynchronous gradient

descent epoch on AE and the joint optimization runtime of MUSAE embeddings is O(bd sl t m
n
). With p

truncated walks from each source node, the corpus generation complexity is O(pnl t m) and the model

optimization runtime is O(bd pnl t m). The runtime experiments (Section 5) empirically support this

analysis.

Corpus generation has a memory complexity of O(s l t m
n
) while the same when generating p trun-

cated walks per node has a memory complexity of O(pnl t m). Storing the parameters of an AE embed-

ding has a memory complexity of O((n+ q) ·d) and MUSAE uses O((n+ q) ·d) memory.

Table 2. Descriptive statistics of attributed benchmark social network and webgraph datasets.

Dataset Nodes
Clustering

Coefficient
Density Diameter

Unique

Features

Features

Per Node
Classes Task

Cora 2,708 0.094 0.002 19 1,432 18.174 7 Classification

Citeseer 3,327 0.130 0.001 28 3.703 31.610 6 Classification

Pubmed 19,717 0.054 0.001 18 500 50.511 3 Classification

Facebook 22,470 0.232 0.001 15 4,714 14.000 4 Classification

GitHub 37,700 0.013 0.001 7 4,005 18.312 2 Classification

LastFM Asia 7,624 0.179 0.001 15 7,842 395.378 18 Classification

Deezer Europe 28,281 0.096 0.001 21 30978 33.891 2 Classification

Wiki Chameleons 2,277 0.314 0.012 11 3,132 21.545 – Regression

Wiki Crocodiles 11,631 0.026 0.003 11 13,183 75.161 – Regression

Wiki Squirrels 5,201 0.348 0.015 10 3,148 26.474 – Regression

Twitch DE 9,498 0.047 0.003 7 3,169 20.396 2 Classification

Twitch EN 7,126 0.042 0.002 10 3,169 20.800 2 Classification

Twitch ES 4,648 0.084 0.006 9 3,169 19.391 2 Classification

Twitch FR 6,549 0.054 0.005 7 3,169 19.757 2 Classification

Twitch PT 1,912 0.131 0.017 7 3,169 19.944 2 Classification

Twitch RU 4,385 0.049 0.004 9 3,169 20.635 2 Classification

5. Experimental evaluation

We evaluate the representations learned by AE, MUSAE and their EGO extensions on several common

downstream tasks: node classification, regression, and transfer learning across networks. We also re-

port how number of nodes and dimensionality affect runtime. We use standard (well-established) node

classification webgraph benchmark datasets (Cora, Citeseer [20], Pubmed [24]) together with publicly
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available social network benchmarks – LastFM Asia, Deezer Europe [35]). We also utilized social net-

works and web graphs that we collected (e.g Twitch, Facebook, Github, Wikipedia). Table 2 shows

statistics of the datasets used for evaluation.

• Facebook: A page-page graph of verified Facebook sites. Nodes correspond to official Facebook

pages, links to mutual likes between sites. Node features are extracted from the site descriptions.

The task is multi-class classification of the site category.

• GitHub: A social network where nodes correspond to developers who have starred at least 10

repositories and edges to mutual follower relationships. Node features are location, starred repos-

itories, employer and e-mail address. The task is to classify nodes as web or machine learning

developers.

• LastFM Asia: An online social network of people who use the online music streaming site

LastFM and live in Asia. The links represent reciprocal follower relationships and the vertex fea-

tures describe the list of musicians liked by the users. The machine learning task is the prediction

of nationality for the users of the site.

• Deezer Europe: A user-user network of European members of the music streaming service

Deezer. The links represent mutual friendships of the users. Node features are artists liked by

the streamers and the related task is the classification of the users’ gender.

• Wikipedia graphs: Wikipedia page-page networks on three topics: chameleons, crocodiles and

squirrels. Nodes represent articles from the English Wikipedia (December 2018), edges reflect

mutual links between them. Node features indicate the presence of particular nouns in the articles

and the average monthly traffic (October 2017 - November 2018). The regression task is to predict

the log average monthly traffic (December 2018).

• Twitch social networks: User-user networks where nodes correspond to Twitch users and links

to mutual friendships. Node features are games liked, location and streaming habits. All datasets

have the same set of node features enabling transfer learning across networks. The associated

task is binary classification of whether a streamer uses explicit language.

Table 3. Hyperparameters of ode embedding techniques and the supervised downstream models (classifiers and regressors).

Parameter Notation Value

Dimensions d 128

Walk length l 80

Walks per node p 10

Epochs e 5

Window size t 3

Negative samples b 5

Initial learning rate αmax 0.05

Final learning rate αmin 0.025

Regularization coefficient λ 0.01

Norm mixing parameter γ 0.5

5.1 Hyperparameter settings

Table 3 (top) shows the hyperparameters used for our algorithms, which are consistent with other ran-

dom walk based approaches [9, 27, 28, 30]. Hyperparameters of other algorithms are in Appendices B
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and C. Downstream evaluation tasks use logistic and elastic net regression from Scikit-learn [26] with

standard library settings except for parameters reported in Table 3 (bottom).

5.2 Node attribute classification

Embedding algorithms take as input a network graph and node features. Classification performance is

evaluated by training l2-regularized logistic/softmax regression to predict a (test) attribute given a node

embedding. Table 4 compares our models to leading node embedding methods by micro averaged F1

score over 100 seeded splits (80% train - 20% test).

Whilst relative model performance varies slightly with dataset, the results show that our attributed

embeddings tend to outperform other unsupervised methods, with closest performance achieved by

ASNE and AANE. We also observe that (i) multi-scale embeddings tend to outperform their pooled

counterparts; (ii) the additional identity features of EGO models have no material impact on the task;

and (iii) attributed node embeddings that consider only first-order neighbours show weak performance.

As an upper bound comparison, we report performance of supervised methods, which shows a typical

performance advantage of ∼4% that can be within 1%.

Table 4. Node classification: average micro F1 on the test set score and standard error over 100 seeded runs (best unsupervised

result in red, best supervised result in blue, our proposed embedding methods in italics).

Facebook GitHub Twitch PT LastFM Deezer Cora Citeseer PubMed

DeepWalk .863± .001 .858± .001 .672± .007 .765± .003 .556± .001 .833± .004 .603± .007 .802± .001

LINE2 .875± .001 .858± .001 .670± .001 .842± .005 .565± .002 .777± .004 .542± .006 .799± .001

Node2Vec .890± .001 .859± .001 .686± .004 .791± .002 .563± .001 .840± .003 .622± .005 .810± .002

Walklets .887± .001 .860± .001 .671± .006 .849± .002 .562± .001 .843± .003 .630± .006 .815± .001

NetMF .795± .005 .839± .001 .647± .002 .826± .001 .561± .001 .748± .002 .616± .002 .773± .005

HOPE .702± .006 .800± .001 .623± .001 .764± .002 .562± .001 .716± .002 .583± .002 .705± .003

GraRep .878± .002 .854± .003 .614± .001 .813± .001 .563± .002 .732± .002 .637± .002 .784± .004

TADW .765± .002 .748± .001 .659± .005 .586± .003 .636± .002 .819± .004 .734± .004 .862± .002

AANE .796± .001 .856± .001 .661± .006 .750± .002 622± .001 .793± .001 .733± .004 .867± .001

ASNE .797± .001 .839± .001 .685± .006 .789± .002 .625± .001 .830± .003 .718± .004 .846± .002

BANE .868± .001 .762± .001 .664± .006 .581± .005 .558± .001 .807± .005 .713± .003 .823± .002

TENE .731± .002 .850± .001 .664± .006 .679± .002 .622± .003 .829± .005 .681± .003 .842± .001

AE .888± .001 .863± .001 .672± .004 .866± .001 .658± .001 .835± .005 .739± .005 .839± .002

AE-EGO .899± .001 .863± .001 .671± .007 .868± .001 .662± .001 .835± .006 .739± .005 .840± .003

MUSAE .887± .001 .864± .001 .672± .006 .870± .003 .662± .002 .848± .004 .742± .004 .853± .001

MUSAE-EGO .894± .001 .864± .001 .671± .002 .865± .002 .661± .001 .849± .004 .741± .004 .851± .002

GCN .932± .001 .865± .001 .695± .007 .874± .001 .635± .002 .879± .001 .742± .001 .875± .001

GraphSAGE .814± .002 .854± .001 .631± .004 .871± .001 .661± .002 .881± .001 .747± .001 .864± .001

GAT .919± .001 .864± .001 .678± .001 .864± .001 .625± .003 .867± .002 .740± .001 .869± .001

MixHop .941± .002 .850± .001 .630± .004 .888± .003 .667± .001 .859± .001 .780± .001 .891± .001

ClusterGCN .937± .001 .859± .001 .654± .001 .761± .002 .634± .002 .845± .001 .737± .001 .844± .001

APPNP .938± .001 .868± .001 .755± .001 .845± .002 .622± .002 .888± .001 .754± .001 .884± .001

SGCONV .836± .002 .829± .001 .663± .003 .846± .001 .601± .001 .878± .002 .763± .002 .807± .001
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Figure 3. The k-shot node classification performance for varying k, evaluated by average micro F1 scores in the test set over a 100

seeded train-test splits of the vertices.

We also test the few-shot learning ability of attributed embeddings by repeating the above experi-

ment, but training the logistic regression model with only k randomly selected samples per class. Results

for a representative selection of datasets and k∈{3, ...,30} are shown in Figure 3. Our attributed embed-

dings show a material performance improvement at few shot learning over other unsupervised methods,

particularly for the larger data sets (Facebook and Github). We also observe a modest performance

benefit for the EGO models, suggesting that the additional network structure they encode is useful when

data is limited.

Table 5. Node attribute regression with embedding features: average test R2 and standard error calculated from a 100 splits for

predicting monthly website traffic (best results in bold).

Wikipedia

Chameleons

Wikipedia

Crocodiles

Wikipedia

Squirrels

DeepWalk .375± .004 .553± .002 .170± .001

LINE2 .381± .003 .586± .001 .232± .002

Node2Vec .414± .003 .574± .001 .174± .002

Walklets .426± .003 .625± .001 .249± .002

NetMF .440± .003 .629± .002 .099± .002

HOPE .380± .002 .571± .001 .175± .001

GraRep .520± .004 .696± .002 .301± .001

TADW .527± .003 .636± .001 .271± .002

AANE .598± .007 .732± .002 .287± .002

ASNE .440± .009 .572± .003 .229± .005

BANE .464± .003 .617± .001 .168± .002

TENE .494± .020 .701± .003 .321± .007

AE .642± .006 .743± .003 .291± .006

AE-EGO .644± .009 .732± .002 .283± .006

MUSAE .658± .004 .736± .003 .338± .007

MUSAE-EGO .653± .011 .747± .003 .354± .009

5.3 Node attribute regression

We compare the ability of our attributed embeddings against those of other unsupervised methods at

predicting real valued node attributes. For each model, we train embeddings on an unsupervised basis

and learn regression parameters of an elastic net to predict the log average web traffic (attribute) of

each page (node) of the Wikipedia datasets (created for this task). Table 5 reports average test R2

(explained variance) and standard error over 100 seeded (80% train - 20% test) splits. This shows that:
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(i) our attributed embeddings tend to outperform all other methods at the regression task; (ii) multi-

scale methods (e.g. MUSAE) tend to outperform pooled methods (e.g. AE); (iii) the additional network

information of the EGO models appears beneficial, but only in the multi-scale case. Overall, MUSAE-

EGO outperforms the best baseline for each dataset by 2-10%.
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Figure 4. Transfer learning: mean micro F1 score and standard error over 10 runs with the Twitch Portugal and Russia datasets

as target and each other dataset as the source graph. Reference lines show performance for random guessing (red) and fully

re-training on the target graph (blue).

5.4 Transfer learning

Neighbourhood based methods such as DeepWalk [27] learn node embeddings, typically with no mech-

anism to relate the embeddings of distinct graphs. Thus a regression model learned to predict attributes

from node embeddings for one graph (as in any of the previous tasks) will not generally perform well

given the node embeddings of another graph. The attributed models MUSAE and AE, however, learn rep-

resentations of both nodes and features, in principle enabling information to be shared between graphs

with common features. That is, if node and feature embeddings and a regression model are learned for

a source graph S with feature set F, then node embeddings can be learned for a target graph T (with

the same features F) that fit with the feature embeddings learned for S and so also its regression model.

This amounts to transfer learning, or zero-shot attribute prediction on the target graph. The informa-

tion shared between graphs allows nodes of T to be embedded into the same latent space as those of

S . Since other unsupervised embedding methods do not learn explicit feature embeddings, they do not

enable such transfer learning.

The Twitch datasets contain disjoint vertex sets but a common set of features F. To perform transfer

learning, we: (i) learn node and attribute embeddings for a source graph; (ii) train a regression model

to predict a test attribute f /∈F; (iii) re-run the embedding algorithm on a target graph but with feature

embedding parameters fixed (as learned in step (i)); and (iv) use the regression model to predict attribute

f for target graph nodes. Figure 4 shows micro F1 scores and standard error (over 10 runs) for the Twitch

Portugal and Russia datasets as target and each other dataset as source graphs. The results confirm

that MUSAE and AE learn feature embeddings that transfer between graphs with common features.

Specifically, we see that performance always beats random guessing (red line) and that in some cases

compares closely to re-training the feature embeddings and regression on the target graph (blue line).

5.5 Scalability

We demonstrate the efficiency of our algorithms with synthetic data, varying the number of nodes and

features per node. Figure 5 shows the mean runtime for sets of 100 experiments on Erdos-Renyi graphs

with the number of nodes as indicated, 8 edges per node and the indicated number of unique features

per node uniformly selected from a set of 211. We used the hyperparameters in Table 3 except that we

perform a single epoch with asynchronous gradient descent.
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Figure 5. Training time as a function of average feature count and number of nodes. Dashed lines are linear runtime references.

For both AE and MUSAE, we see that (i) runtime is linear in the number of nodes and in the average

number of features per node; and (ii) increasing the number of cores does not decrease runtime as the

number of unique features per vertex approaches the size of the feature set. Observation (i) agrees with

our complexity analysis in Section 4.3.

6. Discussion and conclusion

We present attributed node embedding algorithms that learn local feature information on a pooled (AE)

and multi-scale (MUSAE) basis. We augment these models to also explicitly learn local network in-

formation (AE-EGO, MUAE-EGO), blending the benefits of attributed and proximity-preserving al-

gorithms. Results on a range of datasets show that distinguishing neighbourhood information at dif-

ferent scales (MUSAE models) is typically beneficial for the downstream tasks of node attribute and

link prediction; and that the supplementary network information encoded by EGO models typically

improves performance further, particularly for link prediction. Combining both, MUSAE-EGO out-

performs other unsupervised attributed algorithms at predicting attributes and matches performance of

proximity-preserving embeddings in link prediction. Furthermore, by learning distinct node and fea-

ture embeddings, the AE and MUSAE algorithms enable transfer learning between graphs with common

features, as we demonstrate on real datasets.

We derive explicit pointwise mutual information matrices that each of our algorithms implicitly

factorise to enable future interpretability and potential analysis of the information encoded (e.g. as

possible for Word2Vec [4]) and its use in downstream tasks. We see also that two widely used proximity-

preserving algorithms [27, 28] are special cases of our models. All of our algorithms are efficient and

scale linearly with the numbers of nodes and features per node.

A. Proofs

LEMMA 4.1 The empirical statistics of node-feature pairs obtained from random walks give unbiased

estimates of the joint probability of observing feature f ∈F r steps (i) after; or (ii) before node v ∈ V,

as given by:

plim
l→∞

#(v, f )→
r

|D→
r
| = c−1(DPrF)v, f

plim
l→∞

#(v, f )←
r

|D←
r
| = c−1(F⊤DPr) f ,v

Proof. The proof is analogous to that given for Theorem 2.1 in [29]. We show that the computed
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statistics correspond to sequences of random variables with finite expectation, bounded variance and

covariances that tend to zero as the separation between variables within the sequence tends to infinity.

The Weak Law of Large Numbers (S.N.Bernstein) then guarantees that the sample mean converges to

the expectation of the random variable. We first consider the special case n= 1, i.e. we have a single

sequence v1, ...,vl generated by a random walk (see Algorithm 1). For a particular node-feature pair

(v, f ), we let Yi, i ∈ {1, ..., l− t}, be the indicator function for the event vi = v and f ∈Fi+r. Thus, we

have:

#(v, f )→
r

|D→
r
| = 1

l−t

l−t

∑
i=1

Yi, (A.1)

the sample average of the Yis. We also have:

E[Yi] =
deg(v)

c
(PrF)v, f =

1
c
(DPrF)v, f

E[YiYj] = Prob[vi=v, f ∈Fi+r,v j =v, f ∈F j+r]

= deg(v)
c

︸ ︷︷ ︸

p(vi=v)

Pr
:v

︸︷︷︸

p(vi+r |vi=v)

diag(F: f )
︸ ︷︷ ︸

p( f∈Fi+r |vi+r)

P
j−(i+r)
:v

︸ ︷︷ ︸

p(vj=v|vi+r)
︸ ︷︷ ︸

p(vj=v, f∈Fi+r |vi=v)

Pr
v:F: f

︸ ︷︷ ︸

p( f∈Fj+r|v j=v)

for j > i+ r. This allows us to compute the covariance:

Cov(Yi,Yj) = E[YiYj]−E[Yi]E[Yj ]

= deg(v)
c

Pr
v:diag(F: f )

(
P

j−(i+r)
:v − deg(v)

c
111
)

︸ ︷︷ ︸

tends to 0 as j−i→∞

Pr
v:F: f , (A.2)

where 111 is a vector of ones. The difference term (indicated) tends to zero as j− i→ ∞ since then

p(v j = v|vi+r) tends to the stationary distribution p(v) = deg(v)
c

, regardless of vi+r. Thus, applying the

Weak Law of Large Numbers, the sample average converges in probability to the expected value, i.e.:

#(v, f )→
r

|D→
r
| = 1

l−t

l−t

∑
i=1

Yi
p
→ 1

l−t

l−t

∑
i=1

E[Yi] =
1
c
(DPrF)v, f

A similar argument applies to
#(v, f )←

r

|D←
r
| , with expectation term 1

c
(F⊤DPr) f ,v. In both cases, the argument

readily extends to the general setting where n > 1 with suitably defined indicator functions for each of

the n random walks (see [29]). �

LEMMA 4.2 The empirical statistics of node-feature pairs obtained from random walks give unbiased

estimates of the joint probability of observing feature f ∈F r steps either side of node v∈V, given by:

plim
l→∞

#(v, f )r

|Dr |
= c−1(DPrF)v, f ,
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Proof.

#(v, f )r

|Dr |
=

#(v, f )→
r

|Dr |
+

#(v, f )←
r

|Dr |

= 1
2

( #(v, f )→
r

|D→
r
| +

#(v, f )←
r

|D←
r
|

)

p
→ 1

2

(
1
c
(DPrF)v, f +

1
c
(F⊤DPr) f ,v

)

= 1
2c

(
DPrF+Pr⊤DF

)

v, f

= 1
2c

(
(DPr +(A⊤D−1)rD)F

)

v, f

= 1
2c

(
(DPr +D(D−1A⊤)r)F

)

v, f

= 1
c
(DPrF)v, f .

The final step follows by symmetry of A, indicating how the Lemma can be extended to directed graphs.

�

B. Embedding Model Hyperparameters

Our purpose was a fair evaluation compared to other node embedding procedures. Because of this

we used hyperparameter settings that give similar expressive power to the competing methods with

respect to target matrix approximation [9, 27, 28] and number of dimensions. We used the model

implementations available in the open-source library Karate Club [33].

• DeepWalk [27]: We used the hyperparameter settings described in Table 3. While the original

DeepWalk model uses hierarchical softmax to speed up calculations we used a negative sampling

based implementation. This way DeepWalk can be seen as a special case of Node2Vec [9] when

the second-order random walks are equivalent to firs-order walks.

• LINE2 [36]: We created 64 dimensional embeddings based on 1st and 2nd order proximity and

concatenated these together. Other hyperparameters were taken from the original work.

• Node2Vec [9]: Except for the in-out and return parameters that control the second-order random

walk behavior we used the hyperparameter settings described in Table 3. These behavior control

parameters were tuned with grid search from the {4,2,1,0.5,0.25} set using a train-validation

split of 80%− 20% within the training set itself.

• Walklets [28]: We used the hyperparameters described in Table 3 except for window size. We

set a window size of 4 with individual embedding sizes of 32. This way the overall number of

dimensions of the representation remained the same.

• NetMF [29]: We used the hyperparameters described in the respective paper, created 128 dimen-

sional node embeddings with a window size of 5.

• HOPE [25]: We utilized the normalized neighbourhood overlap as a proximity measure and the

hyperparameters described in Table 3.

• GraRep [6]: Just as in case of the multi-scale method Walklets [28] we decided to set a window

size of 4 with individual embedding sizes of 32.
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• The attributed node embedding methods AANE, ASNE, BANE, TADW, TENE all use the hyper-

parameters described in the respective papers except for the dimension. We parametrized these

methods such way that each embedding used in the downstream tasks is 128 dimensional.

C. Supervised Model Hyperparameters

Each model was optimized with the Adam optimizer [15] with the standard moving average parameters

and the model implementations are sparsity aware modifications based on PyTorch Geometric [8]. We

needed these modifications in order to accommodate the large number of vertex features – see the unique

features column in Table 2. Except for the GAT model [37] we used ReLU intermediate activation

functions [23] with a softmax unit in the final layer for classification. The hyperparameters used for the

training and regularization of the neural models are listed in Table A.6.

Table A.6. Hyperparameter settings used for training the graph neural network baselines.

Parameter Value

Epochs 200

Learning rate 0.01

Dropout 0.5

l2 Weight regularization 0.001

Depth 2

Filters per layer 32

Except for the APPNP model each baseline uses information up to 2-hop neighbourhoods. The

model specific settings (when we needed to deviate from the basic settings) are listed in Table A.6 were

the followings:

• Classical GCN [16]: We used the standard parameter settings described in this section.

• GraphSAGE [10]: We utilized a graph convolutional aggregator on the sampled neighbourhoods,

samples of 40 nodes per source, and the standard settings.

• GAT [37]: The negative slope parameter of the leaky ReLU function was 0.2, we applied a single

attention head, and used the standard hyperparameter settings.

• MixHop [2]: We took advantage of the 0th, 1st and 2nd powers of the normalized adjacency matrix

with 32 dimensional convolutional filters for creating the first hidden representations. This was

fed to a feed-forward layer to classify the nodes.

• ClusterGCN [7]: Just as [7] did, we used the METIS procedure [14] to decompose the graph.

We clustered the graphs into disjoint clusters, and the number of clusters was the same as the

number of node classes (e.g. in case of the Facebook page-page network we created 4 clusters).

For training we used the earlier described setup.

• APPNP [5, 17]: The top level feed-forward layer had 32 hidden neurons, the teleport probability

was set as 0.2 and we used 20 steps for approximate personalized pagerank calculation.

• SGCONV [38]: We used the 2nd power of the normalized adjacency matrix for training the node

classifier.
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17. Klicpera, J., Bojchevski, A. & Günnemann, S. (2019) Predict then Propagate: Graph Neural Networks meet

Personalized PageRank. In International Conference on Learning Representations.

18. Levy, O. & Goldberg, Y. (2014) Neural Word Embedding as Implicit Matrix Factorization. In Advances in

Neural Information Processing Systems.

19. Liao, L., He, X., Zhang, H. & Chua, T.-S. (2018) Attributed Social Network Embedding. IEEE Transactions

on Knowledge and Data Engineering, 30(12), 2257–2270.

20. Lu, Q. & Getoor, L. (2003) Link-based classification. In International Conference on Machine Learning.

21. Mikolov, T., Chen, K., Corrado, G. & Dean, J. (2013a) Efficient Estimation of Word Representations in Vector

Space. In International Conference on Learning Representations, Workshop Track Proceedings.



20 of 20 ROZEMBERCZKI ET AL.

22. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. & Dean, J. (2013b) Distributed Representations of Words

and Phrases and Their Compositionality. In Advances in neural information processing systems.

23. Nair, V. & Hinton, G. E. (2010) Rectified Linear Units Improve Restricted Boltzmann Machines. In Interna-

tional Conference on Machine Learning.

24. Namata, G., London, B., Getoor, L., Huang, B. & EDU, U. (2012) Query-driven active surveying for collective

classification. In International Workshop on Mining and Learning with Graphs.

25. Ou, M., Cui, P., Pei, J., Zhang, Z. & Zhu, W. (2016) Asymmetric Transitivity Preserving Graph Embedding. In

Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 1105–1114.

26. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,

Weiss, R., Dubourg, V. et al. (2011) Scikit-learn: Machine learning in Python. Journal of machine learning

research, 12(Oct), 2825–2830.

27. Perozzi, B., Al-Rfou, R. & Skiena, S. (2014) Deepwalk: Online Learning of Social Representations.. In

International Conference on Knowledge Discovery andData Mining.

28. Perozzi, B., Kulkarni, V., Chen, H. & Skiena, S. (2017) Don’t Walk, Skip!: Online Learning of Multi-scale

Network Embeddings. In International Conference on Advances in Social Networks Analysis and Mining.

29. Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K. & Tang, J. (2018) Network Embedding as Matrix Factoriza-

tion: Unifying Deepwalk, LINE, PTE, and Node2Vec. In International Conference on Web Search and Data

Mining.

30. Ribeiro, L. F., Saverese, P. H. & Figueiredo, D. R. (2017) Struc2Vec: Learning Node Representations from

Structural Identity. In International Conference on Knowledge Discovery and Data Mining.

31. Rossi, E., Frasca, F., Chamberlain, B., Eynard, D., Bronstein, M. & Monti, F. (2020) SIGN: Scalable Inception

Graph Neural Networks. arXiv preprint arXiv:2004.11198.

32. Rozemberczki, B., Davies, R., Sarkar, R. & Sutton, C. (2019) GEMSEC: Graph Embedding with Self Clus-

tering. In Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks

Analysis and Mining 2019, pages 65–72. ACM.

33. Rozemberczki, B., Kiss, O. & Sarkar, R. (2020) Karate Club: An API Oriented Open-source Python Frame-

work for Unsupervised Learning on Graphs. In Proceedings of the 29th ACM International Conference on

Information and Knowledge Management (CIKM ’20), page 3125–3132. ACM.

34. Rozemberczki, B. & Sarkar, R. (2018) Fast Sequence Based Embedding with Diffusion Graphs. In Interna-

tional Conference on Complex Networks, pages 99–107.

35. Rozemberczki, B. & Sarkar, R. (2020) Characteristic Functions on Graphs: Birds of a Feather, from Statistical

Descriptors to Parametric Models. In Proceedings of the 29th ACM International Conference on Information

and Knowledge Management (CIKM ’20), page 1325–1334. ACM.

36. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J. & Mei, Q. (2015) Line: Large-Scale Information Network

Embedding. In International Conference on World Wide Web.
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