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Application of Machine Learning Techniques in
Railway Demand Forecasting

November 13, 2019

Abstract

Demand forecasting lies at the heart of any revenue management system. It
aims to estimate the quantity of a product or service that will be purchased in the
future. In this paper, we perform railway demand forecasting for a major European
railroad company by taking various contributing parameters into account. Using
state-of-the-art machine learning methods and various heuristic feature construction
techniques, remarkable results with high forecast accuracy and reasonable computa-
tional complexity are achieved. To have multipurpose results, the current problem
is explored in two different aggregation levels. Although this paper is focused on
demand forecasting in railway industry, the studied methodologies can easily be
extended to other transportation or hospitality businesses.

Index Terms— Revenue Management, Demand Forecasting, Feature Engineer-
ing, Machine Learning

1 Introduction

Revenue Management (RM) is the application of various analytical tactics and mathe-
matical approaches with the aim of predicting customer behavior at the micro-market
level while optimizing price and availability of products [I]. RM tasks are shaped by vari-
ous components including customer segmentation, demand forecasting, pricing techniques
and inventory control management.

Demand forecasting plays a vital role in any traditional revenue management system.
All the models aiming to answer the question “How to determine the most efficient capac-
ity allocation and pricing decisions?”rely on the predicted demand as the main building
block of an RM system. As emphasized by McGill et al. [2], all RM decisions are made
based on different forecasts, particularly, customer demand which provides input data for
the capacity and pricing optimization module. Forecasting future demand is a complicated
task due to uncertainties caused by the firm’s decisions and external factors [3].

Companies can improve the quality of their pricing and capacity control systems by
increasing the accuracy of their predicted demand. Over the years, a fundamental collec-
tion of forecasting methods has been developed and new improvements have continued to



evolve. Some of these forecasting methods are based on solid mathematical and statisti-
cal foundations while some others are largely heuristic in nature. In terms of forecasting
methods, since a large number of forecasts have to be made during a limited time period;
thus, fast, accurate and simple methods are preferred in RM [4].

One of the early works on statistical demand forecasting in airline industry using time
series data was done by Sen [6]. Since then, there have been numerous “time series analysis
”-based studies with the aim of improving the forecast accuracy and achieving more stable
and generalizable models [7], [§] and [9], [I0]. A well-known and extensively explored time-
series analysis method is AutoRegressive Integrated Moving Average (ARIMA) [5], which
is a generalization of AutoRegressive Moving Average (ARMA) to non-stationary data.

Over the years, various booking models have been explored, models such as pickup,
advanced pickup and booking profile which are based on registered bookings over time,
and can be of the additive or multiplicative type [11]. More detailed information on these
models could be found in the literature [12], [I3], [I4]. Simple and weighted averages are
also among the popular demand forecasting methods which were outperformed by pickup
models [I5]. Cleophas et al. [34] summarized recent developments in demand forecasting
for airline revenue management.

One of the recent categories of models addressing demand prediction in RM is Ma-
chine Learning (ML). ML methods [37] are mathematical tools with the core objective of
learning to generalize from experience. They mainly rely on the underlying patterns and
characteristics of historical data in order to minimize prediction errors of unseen data. In
general, ML algorithms are classified into two main categories: supervised learning and
unsupervised learning. The goal of supervised learning is to infer a functional mapping
according to a set of input-output training examples. Unsupervised learning, on the other
hand, discovers patterns and structures hidden in data without having access to labeled
output.

Classical statistics-based methods, such as time series, may struggle to cope with
high-dimensional data sets and sometimes fail to respond accurately to sudden changes.
Machine learning methods, however, are more flexible when dealing with sudden changes
in the format of data, missing information, and high-dimensional data sets [11].

Demand forecasting, as a regression prediction problem, has been also studied exten-
sively with the help of various ML techniques. For instance, Ziekow et al. [16] used ML
methods to evaluate the use of disaggregated smart home sensor data for household-level
demand forecasting. ML methods are also used for urban water demand forecasting in
situations with limited data availability. These methods were tested using three years of
daily water demand and meteorological data for the city of Calgary in Alberta, Canada
[T7]. A thorough review paper on the application of machine learning models to commer-
cial building electricity load forecasting was published by Yildiz et al. [I8].

Booking demand forecast is also one of the crucial decision-making challenges in ser-
vice industries which is extensively studied through ML techniques. In an interesting
study, Sanz-Garcia et al. [19] developed a hybrid method to estimate hotel room reserva-
tions that explores the effects of last-minute reservations. A very recent study on hotel
reservation management has been published by da Conceicao Antonio [20] as his PhD
thesis, which emphasizes on using ML to predict booking cancellations. With a focus on



service companies, Shadi Sharif et al. [21] analyzed and categorized various statistical
and ML techniques used for demand forecasting in revenue management.

In this paper, we forecast the future number of bookings for a major railroad company
by taking various contributing factors into account. In order to do so, we use different
ML approaches along with heuristic feature engineering techniques.

Forecasting is a complex task, however, it can be broken down into simpler steps. We
perform our forecasting task in two aggregation levels. These levels are created based on
the zonal data and used to demonstrate the overall performance of the prediction models.
At each level, the forecast is considered good if it is accurate, plausible, simple, quick and
flexible.

Overall, this research intends to contribute to the application of ML techniques in RM.
More specifically, it addresses the problem of demand forecasting in revenue management
by proposing:

e new heuristic feature engineering techniques including shallow and deep features,
e cxploring the importance of accurate clustering and its integration into data, and

e implementing state-of-the-art machine learning methods in order to discover com-
plex hidden patterns of data and improve the accuracy of predications.

The remainder of this paper is organized as follows: Section 2 provides problem de-
scription in course of which general definitions and problem settings are explained in
detail. In Section 3, we discuss the details of various types of preprocessing, machine
learning and feature engineering techniques which will be used in this paper. In Section
4, the numerical results of applying such methods in both aggregation levels of data are
demonstrated and analyzed. Finally, the concluding comments are outlined in Section 5.

2 Problem Definition

We start with introducing some technical terms and general definitions which will be used
throughout this paper. Afterwards, we will go through the details of demand forecasting
problem in the context of railway industry.

e Market: an origin-destination pair between which the passengers wish to travel

Itinerary: a specific sequence of legs on which passengers travel from their origin to
their ultimate destination

DBD: number of days before departure

Booking horizon: time horizon in which bookings are open

Booking period: booking horizon between each two subsequent DBDs



e Time-range: a predefined time horizon during the departure day which is an aggre-
gation of departure times

e Demand: expected demand of a product in a market which depends on itinerary,
time range and period

e Fare Class: different prices for the same itinerary, usually distinguished from one
another by the set of restrictions that firms impose

e Product: an itinerary and fare class combination

To have a reliable multipurpose forecast, we treat the data in two different aggregation
levels. One of the main reasons for forecasting the potential demand in different levels
is to meet the railroad company’s specific needs. For instance, for overall planning of all
trains, it is sufficient to have a less detailed estimated values. However, it is necessary to
perform a more comprehensive forecast for inventory control and pricing purposes.

In this problem setting, DBDs are defined as of 120 days before departure date. The
period between DBD119 and DBD-1 (i.e., departure date) is divided into 20 booking pe-
riods. Note that booking periods are not necessarily of the same length. In the beginning
of the horizon, booking periods consist of several days; however, they become shorter as
we get closer to the departure date and get as short as one day within the last few days
before the departure day.

Level 1

This level provides an overall view of the data. In this top-level, the historical booking
information are aggregated by booking periods. We would like to forecast the total number
of bookings for all trains departing on a specific departure date and within a certain time
range. For example, the illustrated area in Figure [I| presents the total number of bookings
that we aim to forecast for a given departure date in the time range of 7:00 am - 9:00 am.
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Figure 1: Demand forecasting in Level I



Level 11

In level II, we add the dimension of booking period to level I data. Consequently,
in this level, the prediction models aim to compute the total number of bookings within
each booking period for all trains leaving in a specific time range of a certain departure
date. Figure [2] shows the total number of bookings for a given departure date in the time
range of 7:00 am - 9:00 am that was particularly booked in the booking period between
two consequent DBDs of 90 and 50.
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Figure 2: Demand forecasting in Level 11

3 Solution Methods

In this section, we explain the details of preprocessing steps, model selection process
and feature engineering techniques used for railway demand forecasting. Our dataset
consists of two years of historical booking data (i.e., 2013 and 2014) collected from travels
between two major European cities, which is provided to us by a major European railroad
company. The objective is to predict the potential demand of the future bookings based
on the historical data in two different aggregation levels.

3.1 Preprocessing

Data preprocessing is a process to transform raw data into a format that is usable as an
informative input to predictive models. Industrial datasets usually require various steps
of preprocessing such as data cleaning (e.g., missing values imputation and noisy data
smoothing), data transformation (e.g., normalization and aggregation), data reduction,
and data discretization.

We start data preprocessing with verifying data type and data representation consis-
tency. Our initial raw dataset consists of a few attributes including departure date and
time, booking periods and potential period demand with no missing values.



We extract useful information from the departure date feature and construct new
attributes; namely, month, week number, week day and date value. The first three provide
us with intuitive and valuable knowledge regarding departure dates. Moreover, the date
value is a numerical representation of the departure date that shows the number of seconds
since 1970. This method of representation helps us to preserve intervals and keep the order
of events.

As the next step, we perform data discretization, a method to reduce the number of
values of a continuous feature by dividing it into predefined number of intervals. In this
step, we split each departure day into six time ranges based on the popularity of departure
times (e.g., 19:00-23:59 is one of the time ranges).

Many machine learning models require numerical values as their input, and this trans-
lates into the necessity of transforming categorical features into numerical ones. Depend-
ing on the nature of the categorical data, we have various options to do so such as one
hot encoding and integer number assignment.

One hot encoding is one of the most well-known encoding schemes used to transform
a single categorical variable into its corresponding binary variables. Each binary variable
takes “1”when its associated category is present, and “0”otherwise [23].

For example, categorical features such as month and weekday could be integrated
into the data using one hot encoding technique. However, it may result in dimension
augmentation. This should not be problematic since we have a large enough number
of samples to avoid overfitting. The categorical booking periods attribute; however, is
different as there is an order in it which allows for assignment of integer numbers.

As an initial clean format of data available to us, we can perform an outliers detection
algorithm now. Outliers are extreme perturbations in the data caused by occasional
unpredictable events. Outlier detection is considered an extremely important step since
outliers can impose remarkable noise on the mean and variance of the entire dataset and
distort the real pattern of the data. In this study, we use modified Z-score to detect and
then remove extreme outliers.

Z-score or standard score [36] discovers by centering and rescaling of data, and then,
detecting the points that are far from the mean. When using mean and standard devi-
ation themselves are directly affected by outliers, this method is not robust enough. In
modified z-score, although the intuition is the same, we use the median and Median Ab-
solute Deviation (MAD) to measure central tendency and dispersion, respectively. Thus,
modified z-score turns out to be a more robust method in terms of detecting outliers [22].

Upon completion of this step, the data is ready for further analysis.

3.2 Model Selection

We start this section with a brief review of ML models that will be extensively used in
this paper. Afterwards, we explain the model selection process for level I and level 11
data. Finally, we describe the feature engineering process for level II data.



3.2.1 Model Description

Many tasks in machine learning can be expressed as a classification or a regression prob-
lem. Regression estimates the conditional expectation of a dependent variable given the
independent ones whereas classification predicts categorical class labels.

The simplest regression model is linear regression which is capable of capturing linear
relationships between predictors and target, but we mainly deal with more complex and
nonlinear tasks such as demand forecasting in the real world.

In general, tree-based models and Neural Networks (NNs) are two main categories
of models used for demand forecasting in the literature. Both of them are supervised
learning methods used for regression and classification purposes. The intuition behind
NNs is to extract linear combinations of inputs as derived features, and then, to model
the target as a non-linear function of those features [24].

A Decision Tree (DT), as a building block of any tree-based method, is a decision
making tool that uses a tree-like model to estimate the value of a target variable by
learning simple decision rules deduced from data attributes. DTs are the foundation of
very powerful predictive models such as tree-based bagging and boosting ensemble models
[37].

Bagging (bootstrap aggregating) is an ensemble averaging meta-algorithm that im-
proves the prediction accuracy by reducing variance [32]. In decision tree-based bagging,
each bootstrapped sample is used as a training set to grow a decision tree, and the result
is the average over the predictions of all trees. Random forests, also known as random
decision forests, is a practical ensemble method designed based on the bagging idea [26].

Boosting methods are built sequentially over weak regressors in order to reduce the bias
[33]. The final meta-algorithm is a linear weighted combination of the base estimators with
a reduced generalization error. One of the most well-known boosting models is Gradient
Boosting Trees (GBT) which is a generalization of boosting to arbitrary differentiable loss
functions using decision trees as base estimators [25].

3.2.2 Model Selection

In this section, we describe the model selection process in the level I and the level II data.
Level 1

We start model selection with the level I data. Note that the data used in this level
are already preprocessed, the outliers have been removed and the basic features such as
time range added to ensure improved performance of any ML method we may choose.
Having a top level aggregated data, we expect that application of a proper ML method
will result in an acceptable performance.

Once we applied various ensemble tree-based and neural networks methods on level I
data, we achieved sufficiently good results with both NNs and GBT. Since the acquired
performance was considered to be efficient according to the industry’s guidelines, we fo-
cused on level II as a more detailed and complex level.



Level 11

We start model selection of level IT with evaluating various regression methods in order
to compare their performances and achieve a benchmark for more advanced techniques.
On this level, among the initially tested methods, GBT outperforms others.

For this aggregation level, considering the fact that the data are more complex, the
common ML regressors do not improve the results more than a certain limit. Thus, various
combinations of different models such as regular and weighted mixture of regressors are
explored. Among these models, stacking, also known as stacked generalization, provides
the most accurate predictions while keeping the processing time in a reasonable range.

Stacking is a meta-learner that consists of multiple model mixtures. The idea is to
learn a function that combines the predictions of the individual regressors and feed them
as input into the final meta learner. This method was originally introduced in 1992
by David H. Wolpert [27] for a classification task. Algorithm [1| represents the general
approach to a regression task.

Algorithm 1 Stacking algorithm

1: Train n different regressors Ry, Ry, ..., R, (the base regression models).
2: Obtain predictions of each regressor.

3: Form a new dataset using predicted values: the meta data.

4: Train a separate regressor on the meta data: the meta regressor.

In summary, each base regressors prediction is used as a new feature in the meta
dataset (e.g., data fed into the meta regressor), then, a meta regressor is applied to
the meta data. Figure |3| illustrates an schematic view of stacking algorithm, where,
R1,R2, ..., R5 refer to base regressors.

——» Final Result

Meta Data
Meta Regressor|

Initial Dataset

Figure 3: An schematic view of stacking algorithm

Although stacking outperforms all other examined regression methods, the high com-
plexity of level II data necessitates further accuracy of forecasting results to ensure that
the obtained predictions are a useful source of reliable information for industrial purposes.



3.3 Feature Engineering

Feature engineering is the process of using domain knowledge to design attributes that
improve the performance of machine learning algorithms. We start with shallow features,
which consider shallow characteristics hidden in the data and can be easily extracted from
the dataset. Deep features, on the other hand, are the ones that require an algorithmic
approach to be constructed, and unlike the shallow ones, they aim to capture deeper
characteristics of the data.

Note that we perform feature engineering only on level II data since we have already
achieved desirable results on level I thanks to selecting proper ML methods.

Shallow Features

At this step, shallow features are explored. Since ML algorithms are designed to
capture hidden characteristics of the data, having more informed attributes will increase
the possibility of discovering such characteristics.

By using shallow features, we intend to capture the trends of bookings for each de-
parture date starting as of 120 days before the departure date. We define an observation
date as the date on which we are observing a snapshot of the bookings made so far for
all the departure dates. An observation date can be any day during the year.

Four new features are also constructed in addition to the observation date attribute.
We divide the 120-day booking window prior to each departure date into four 30-day
periods and dedicate one attribute to every single one of them. Each attribute indicates
the total number of bookings made during its associated month. The observations occur
every seven days that means our data are updated on a weekly basis.

For example, if a departure date is July 1st, we will have four new features for the
bookings made during March, April, May, and June, separately. If our observation date
is some time prior to March 1st, the features will have zero values because the booking
has not started for this specific departure date yet.

By moving forwards within the booking window, the booking information will be
updated every seven days. For instance, having an observation on April 7th means we
have full information regarding total bookings made in March for the departures on July
1st. However, at this point, only one week of data is available for the month of April, and
the rest of attributes (i.e., one and two months prior to the departure date) are zero.

These features extracted valuable information from our dataset and improved the
accuracy of demand estimation.

Another category of shallow features is external features. We gathered some external
data that may affect bookings such as weather abnormalities in the departure and the
arrival cities (e.g., snow storm, extreme heat warning, flooding, etc.) along with max,
min, and mean temperatures on the departure day. Although weather forecast might not
be accurate long ahead of the departure date, it is still an easily accessible data and can
be updated anytime needed.



Deep Features

We realized that having proper clusterings of data, as an added feature, would reduce
the forecast error significantly. To examine this assumption, K-means clustering is applied
to the dataset while having access to the target variable, and the cluster labels are added
as a new feature to the whole dataset. This results in achieving the lowest bound of error
and validates our initial assumption.

K-means [35] is a simple unsupervised learning method that clusters unlabeled given
points into K-predefined number of clusters using an expectation-maximization algorithm.
Starting with randomly defined K centroids, the data points are assigned to the closest
centroids so that each group creates a cluster. At the next step, the model recalculates K
new centroids and assigns the closest points to them, resulting in a new set of K clusters.
This loop runs until centroids do not move anymore.

In order to find the optimal number of clusters, the K-means algorithm is pipelined to
a supervised regression method (Any appropriate regression method is applicable at this
step, including random forests.) for evaluating the errors of each value of K. The “elbow
method”is used to find the optimal K.

To take advantage of this finding in regular settings, where the target variable is not
provided, the following steps are taken. First, using K-means method, the train set is
clustered into k predefined clusters and the obtained labels are considered as a new target
variable for the train set. Afterwards, test data are classified into the same cluster labels.
Finally, the cluster numbers are added to the original test and train sets and we proceed
with the regression problem. Note that in step 4, the accuracy of classification task is as
important as that of the final regression problem and it can be performed using various
ML techniques such as stacking.

Algorithm [2| displays the steps of generating a clustering-based feature.

Algorithm 2 Clustering-based Feature Construction

Cluster train data into K predefined clusters using K-Means algorithm.

Modify train set by removing the demand feature from the dataset.

Consider cluster labels as the new target variable in the train set.

As a classification task, classify test data into the same K cluster labels.

Use the predicted labels as a new feature in both original train and test sets.

Apply a regression model (e.g., stacking) to the dataset with the new added feature.

In the next section, we provide numerical results associated with the selected models
and added features.

4 Numerical Results

We start this section with a general analysis of data. Afterwards, we explain the choice
of error evaluation metrics. As the next step, we report the results of various demand
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forecasting techniques used to predict the number of bookings in different aggregation
levels of data: level I and level II.

The computational operations have been carried out on a 2.9 GHz 5-core computer
with 16 GB of RAM and the codes are written in Python 3.5. Moreover, we use 2013
dataset for training and validation, and 20% of the data from the first quarter of 2014
dataset is considered to be the test set.

In this study, we focus on tree-based methods and neural networks as two common
categories of regression methods to tackle the demand forecasting problem. The ensemble
tree-based methods we explore are either bagging methods such as Random Forests (RF)
[26] and Extremely Randomized Tress (ERT) [29] or boosting methods such as Gradient
Boosting Trees (GBT) [25] and AdaBoost [30].

Evaluation Metrics

Calculating demand forecast accuracy is a process of determining the accuracy of
predicted demand compared to actual customer demand. In this paper, we use both
Weighted Average Percentage Error (WAPE) and Root Mean Square Error (RMSE) met-
rics to measure the accuracy of our demand forecasting methods.

WAPE is the quotient of the sum of the absolute deviations divided by the total actual
demand. The equation is as follows:

Z?:l ’F (2 Ai’
Z?:l A;
where, A and F' represent actual and predicted values of demand, respectively. In

general, WAPE is easy to understand and interpret because it measures the error in the

percentage format. Moreover, since the denominator is a sum over all actual values,

WAPE is capable of handling small or zero actual demands. This is an important feature

in our case since in some circumstances we have actual demand of zero.
RMSE;, on the other hand, is the standard deviation of the residuals.

WAPE = x 100 (1)

RMSE = | 137 (F - 4)° @)

=1

Here again, A and F' denote actual and predicted values of demand, respectively. As
the above equation indicates, since the residuals are squared before they are averaged,
the RMSE gives a moderately high weight to large errors. Consequently, when large er-
rors are particularly undesirable (e.g., in demand forecasting tasks), RMSE could be the
evaluation metric of the choice.

Data Analysis

As data visualization is a critical tool for data analysis, we provide some useful insights
into the structure and patterns of our dataset.
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Figure [4] shows the actual cumulative demand for each time range as we start from the
initial booking period of DBD119-DBD90 and end on the departure date DBD0O-DBD-1.
Obviously, bookings increase significantly as we get closer to the departure date.

This figure also illustrates the differences in the customers’ booking behaviors in var-
ious time ranges. The time range of 16:00 - 19:00 is the most popular one and 09:00 -
12:30 is the second most demanded option. That is, throughout the year, most on-demand
travels happen either in the evening or right before noon.
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Figure 4: Total actual cumulative bookings by booking period and time-range

The trend in the number of bookings based on booking periods and time ranges is
illustrated in Figure )l Note that only the data of one month is displayed for the sake of
clarity and simplified representation. This graph shows a meaningful difference between
the number of bookings occurred in early morning compared to the rest of the day.

During the illustrated month, in almost all time ranges, the bookings follow a similar
pattern: starting low in booking demand, reaching the first peak within the initial couple
of booking periods, breaking the trend and hitting the minimum about a week before the
departure date, and finally raising and reaching the highest number of bookings on the
exact departure date.

The picks of this pattern can be explained by the price-sensitive and time-sensitive
customers’ behavior: price-sensitive customers tend to purchase their ticket much earlier
in the booking horizon and time-sensitive customers (i.e., business travelers) book closer
to the departure date.
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Figure 5: Total actual bookings trend by booking period and time-range (May).

Results of Level I Data

After preprocessing step and data analysis, we explore various ML methods on level
I data including various ensemble tree-based methods and NNs. Among them, GBT and
NNs outperform others. Although GBT achieved only slightly more accurate results than
NNs did, we pick GBT as the best performing model.

Industry-wise, there should be a trade-off between the time and efforts dedicated to
tuning a model on the one hand, and robustness and accuracy of the results on the other
hand. Having almost the same level of computational complexity and accuracy, the NN
requires very precise tuning to provide the same results as GBT does. Overall, GBT is
more robust and generalizable for the purpose of this problem.

The experiments show that in our case study, ERT is competitive with NNs but not as
accurate as GBT. Table [1| provides the results of applying all learning methods to level I
data. As illustrated, with a WAPE test result of 10.21%, GBT outperforms other models.
Note that the processing time for all applied methods of level I is around one minute.
Thus, processing time is not a contributing factor in model selection at this step.

Considering various factors, including acceptable accuracy, computational complexity
and robustness, GBT satisfies the company’s requirements and we explore the more com-
plex data of level II in the next section.

Results of Level II Data

On this level, we evaluate the performance of the same ensemble tree-based and NNs
methods as in level I data. Here again, we observe that GBT outperforms other regressors.
However, the achieved results are much less accurate with a higher percentage of the errors
due to finer level of aggregation and increased level of data complexity. We use the results
of this step as a benchmark to compare with those of the future steps.

13



Table 1: Results of learning methods on level I data

WAPE WAPE RMSE RMSE
Test % Train %  Test Train

NNs 1078 % 714 %  96.78  72.10
AdaBoost 1218 % 830 % 119.26 91.08
ERT 11.65 % 813 % 105.76  86.21
RF 13.46 % 9.89 % 141.70 100.31
GBT 1021 % 7.12%  91.03  69.85

Algorithm

Table [2| provides results of applying all learning methods to level II data after initial
preprocessing and outlier removing. As demonstrated, at this level, the boosting methods
(i.e., AdaBoost and GBT) are very competitive in terms of accuracy.

Table 2: Results of learning methods on level II data
WAPE WAPE RMSE RMSE Processing Time

Algorithm

Test %  Train %  Test  Train (min.)

NNs 3754 % 35.86 % 19.31  18.10 2.40
AdaBoost 36.49 % 36.31 % 18.87  18.61 3.54

ERT 3888 % 37.04 % 2052 19.11 2.15

RF 40.11 % 38.76 % 2237 20.19 2.04

GBT - BENCHMARK 3590 % 35.08 % 18.83  18.51 3.34

Having the benchmark and best performing regressor at this step, we can explore the
effects of outlier removal that we used as the last step of preprocessing section. That is,
we apply GBT on fully preprocessed data except for the outliers removal, and then, we
compare the results to the ones achieved after detecting and removing the outliers. Table
shows performance improvement of GBT as a result of outliers removal.

Table 3: GBT result improvement due to outliers removal

WAPE WAPE RMSE RMSE
Test % Train %  Test Train

GBT - Before outliers removal 51.03 % 50.49 % 27.65  27.28
GBT - After outliers removal 359 % 35.08 % 18.83 18.51

Algorithm

At the next step of the model selection process, we examine the effects of combining
various regressors. The motivation behind this idea is that methods like averaging helps
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with decreasing the prediction error by reducing variance. To do so, we start with com-
puting predicted demand using selected regressors. At the next step, we average over the
predicted values. As an example, Table [4] shows the error reduction using averaging over
three regressors: RF, GBT, and ERT.

Table 4: GBT result improvement due to averaging over predictions of regressors

WAPE WAPE RMSE RMSE Processing Time

Algorithm

Test % Train %  Test  Train (min.)
GBT - BENCHMARK 359 % 35.08% 18.83  18.51 3.34
Mixture of Regressors 29.01 % 2856 % 15.61  15.32 7.58

Weighted averaging is another technique used to reduce errors; however, the slight
accuracy improvement depends on precise weight assignment. The preference is to find a
more robust method of a noticeably higher performance.

According to Table [5] stacking results in a remarkably better performance by decreas-
ing the WAPE test result to 23.76%. Although it requires longer processing time, it is
still much lower than the industrial computational complexity limits.

Table 5: Performance improvement as a result of applying stacking to level II data
WAPE WAPE RMSE RMSE Processing Time

Algorithm

Test % Train %  Test  Train (min.)

GBT - BENCHMARK 359 % 35.08% 18.83  18.51 3.34
Mixture of Regressors 29.01 % 28.56 % 15.61  15.32 7.58
Stacking 23.76 % 2399 % 13.01  12.98 11.31

The main challenge in improving the results of stacking algorithm lies in the choice of
base estimators and the meta regressor. This issue is still referred to as “black art”in the
literature. Although there have been some attempts to automate this process or to define
a criterion for selection process, no satisfying method has been developed so far [28].

In this study, we use GBT, ERT, Linear regression, RF and KNN as base regressors
and RF as the meta regressor. Note that KNN stands for K-Nearest Neighbors [31] and
is a simple yet powerful supervised learning method for both classification and regression
tasks. In a regression problem, given an example to predict, KNN performs based on
finding K most similar examples from the training data, called nearest neighbors, and
estimates its value as an aggregation of the target values associated with its nearest
neighbors.

In stacking, each one of the implemented regressors contributes to capturing underlying
characteristics of data using different methodologies. Thus, having various categories
of regressors increases the overall performance of stacking method. For example, we
include ensemble tree-based (both boosting and bagging), linear regression and K-nearest
neighbors methods in the base regressors.
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We explored other various innovative methods in order to combine different regressors
such as weighted stacking and double stacking. In weighted stacking, the predictions of
each base regressor (i.e., features of the meta data) are given normalized weights. To
assign weights automatically, we use the feature importance characteristic of RF. When
applied to data, RF is capable of assigning importance values to each feature within
the dataset. In double stacking, we consider meta data as an initial dataset for another
stacking method. In both cases, we decided to ignore the negligible improvements to keep
the method simple for industrial purposes and avoid increasing the processing time.

Table[6] demonstrates the results of applying shallow features to our dataset. Although
the accuracy increase using shallow features is not as high as when stacking is used, this is
a single step of the feature engineering process and we expect that the overall combination
of shallow and deep features lead to satisfying final results.

Table 6: Performance improvement as a result of applying shallow features to level II data
WAPE WAPE RMSE RMSE Processing Time

Algorithm Test % Train %  Test  Train (min.)

GBT - BENCHMARK 35.9% 35.08% 18.83 18.51 3.34
Mixture of Regressors 29.01 % 28.56 % 15.61  15.32 7.58
Stacking 23.76 % 2399 % 13.01  12.98 11.31
Shallow Features 21.24 % 2018 % 1225  11.64 24.30

As explained in Section |3.3] accurate clustering has a significant role in improving the
performance of demand forecasting. To validate the clustering effect experimentally, we
clustered our dataset into K = 10 groups using K-means clustering method while having
access to the actual target variable.

Table 7: Accuracy improvement as a result of adding optimal clustering feature

WAPE WAPE RMSE RMSE
Test % Train %  Test Train

Stacking 359 % 35.08% 18.83 18.51
Stacking with optimal clustering 9.65 % 9.66 %  4.76 4.74

Algorithm

Note that this experiment is performed separately and exceptionally in order to val-
idate the assumption about the importance of clustering-based feature, and it was not
integrated into any parts of our actual methods. As a result of this experiment, the
forecast test error dramatically drops to below 10% WAPE, which validates our initial as-
sumption. The comparison of stacking results before and after adding optimal clustering
feature is demonstrated in Table [1

We constructed the deep feature based on this finding. The forecast accuracy improve-
ment using deep feature is demonstrated in Table [§] Using clustering-based feature, we
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successfully reduced the WAPE test and train results to 18.78% and 16.92%, respectively.

Table 8: Performance improvement as a result of applying deep feature to level II data
WAPE WAPE RMSE RMSE Processing Time

Algorithm Test % Train %  Test  Train (min.)

GBT - BENCHMARK 359 % 35.08% 1883 1851 3.34
Mixture of Regressors 29.01 % 2856 % 15.61  15.32 7.58
Stacking 23.76 % 23.99 % 13.01 12.98 11.31
Shallow Features 21.24 % 2018 % 12.25  11.64 24.30
Deep Feature 18.78 % 16.92 % 11.31  10.62 36.15

In summary, using various preprocessing, machine learning and feature engineering
techniques, we reduced WAPE test result from the benchmark of 35.9% to 18.78% which
is a remarkable result for this aggregation level. Meanwhile, we succeeded to keep the
processing time within the acceptable range according to the transportation company’s
time constraints and limitations.

5 Conclusion

Demand forecasting is a crucial part of any traditional revenue management system. In
this research, we addressed the problem of demand forecasting in the context of railway
industry.

To gain multipurpose forecast information, we tackled this problem using two different
aggregation levels of data: level I and level II, with the former being the top level that
provided an overall view of the data and the latter a more complex level because of having
an additional dimension of booking period. Dealing with lower degree of complexity in
level I, we achieved our desired results by performing proper preprocessing steps and
applying ensemble tree-based methods.

In level II, however, outstanding results were obtained by combining a wide variety
of preprocessing, machine learning and feature engineering techniques. We not only used
various state-of-the-art machine learning methods, but also developed two different types
of heuristic features; namely, shallow features and deep features. The former aims to
discover shallow characteristics of data, while the latter is dedicated to extract more
complex information.

We realized that having proper and accurate data clusters as features could signifi-
cantly reduce the forecast error. The deep attribute is mainly constructed based on this
discovery. We successfully reduced the forecasting test WAPE result of level II data from
the benchmark of 35.9% to 18.78%, while keeping the processing time and overall model
performance in a reasonable range.
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