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ABSTRACT: In this paper we present PyKrev, a Python library for the analysis of complex mixture FT-MS data. PyKrev is a 
comprehensive suite of tools for analysis and visualisation of FT-MS data after formula assignment has been performed. These com-
prise: formula manipulation and calculation of chemical properties, intersection analysis between multiple lists of formulas, calcula-
tion of chemical diversity, assignment of compound classes to formulas, multivariate analysis and a variety of visualisation tools 
producing van Krevelen diagrams, class histograms, PCA score and loading plots, biplots, scree plots and UpSet plots. The library is 
showcased through analysis of hot water green tea extracts and Scotch whisky FT-ICR-MS datasets. PyKrev addresses the lack of a 
single, cohesive toolset for researchers to perform FT-MS analysis in the Python programming environment encompassing the most 
recent data analysis techniques used in the field.   

INTRODUCTION  
Fourier-transform mass spectrometry (FT-MS) offers the reso-
lution and mass accuracy necessary for the molecular charac-
terisation of chemical species contained within complex mix-
tures[1–3].  It is routinely used in the analysis of natural organic 
matter[4, 5], food and beverages[6, 7] or petroleum fractions[8].  
Interrogation of large datasets produced by FT-MS necessitates 
the use of advanced chemoinformatic tools. Several such tools 
have already been developed. Most of these are web based[9, 
10], or command line based programs[11, 12] allowing users to 
analyse their data with little to no programming experience.  
However, oftentimes these rigid products do not fulfil all re-
search needs. Performing data analysis within a programming 
environment allows more flexibility and capacity for customi-
sation compared to using software with a fixed user interface. 
In the field of FT-MS data analysis, there is generally a lack of 
tools for users who wish to perform their analyses in a program-
ming environment. Notably, to address such needs, an R pack-
age, ftmsRanalysis, was recently published[13]. 
Here we present PyKrev, a Python library that provides a com-
prehensive set of tools for the analysis of processed FT-MS 
data. Our library is designed to be used after formula assign-
ment has been performed, and performs subsequent data analy-
sis, statistical inquiry and data visualisation. PyKrev does not 
include tools for raw FT-MS data processing, however other 
tools for this exist, including the open source libraries 
SPIKE[14] and CoreMS[15]. Both support signal processing 
and peak picking, and CoreMS includes formula assignment. A 

complete, Python-based programmatic data analysis workflow 
may couple CoreMS to PyKrev. 

A primary advantage of data analysis in Python is access to well 
documented libraries that provide sophisticated tools for nu-
merical[16] and scientific[17] computation, including machine 
learning[18]. Novel aspects of the PyKrev library include mass 
filtering, intersection analysis and advanced visualisation, anal-
ysis of chemical diversity, statistical ordination and the ability 
to generate and quantitatively compare different compound 
classifications. Whilst many of these functions exist in disparate 
packages, or are accessible to skilled programmers, PyKrev 
brings together this combination of tools in an accessible, but 
flexible, library for the first time.  
METHODS 
PyKrev is available to install through the Python Package In-
dex; its full documentation can be found on the GitHub page: 
https://github.com/Kzra/pykrev. PyKrev was written in Python 
3.6 and requires the following Python dependencies to be avail-
able: NumPy[16], SciPy[17], pandas[19] and Matplotlib[20]. 
Specific versions of dependencies are detailed in the online doc-
umentation. 
PyKrev contains a collection of modules defining functions for 
processing and visualizing FT-MS data, grouped into three 
packages: “Formula”, “Diversity” and “Plotting”. A description 
of the module organisation is given in S.I. Table 1, and, where 
applicable, each function can be tested against provided litera-
ture data; these tests are available in the “Tests” package.  

https://github.com/Kzra/pykrev


 

For input data, most functions in PyKrev require lists of molec-
ular formula with corresponding arrays of monoisotopic peak 
intensities and m/z values. PyKrev does not perform formula 
assignment routines as there already exists powerful open ac-
cess algorithms to perform this[21–23]. Input data can be parsed 
directly from the .csv output of formula assignment with For-
mularity software[22] using read_formularity.py or 
read_batch_formularity.py in the Formula package, or manu-
ally imported into a Python environment. While the library was 
designed with FT-ICR or Orbitrap instruments in mind, the li-
brary is analyser independent and will work, in principle, on any 
assigned mass list.  
 
RESULTS/DISCUSSION 
The capabilities of PyKrev are demonstrated using FT-ICR-MS 
datasets obtained on (i) hot water extracts of green tea bags bur-
ied in peatland soils. Teabags were buried at a depth of 8 cm in 
three different peatlands, referred to a ‘A’, ‘B’ and ‘C’; (ii) Four 
different Scotch whisky samples labelled ‘W1 – ‘W4’ analysed 
using four complementary ionization techniques. A full descrip-
tion of the acquisition parameters of the green tea and whisky 
MS data have been published[6, 7]. Formula were assigned to 
calibrated lists of m/z values using Formularity software[22] 
with the following elemental rules (green tea: O > 0, N <= 8, P 
& S = 0, Scotch whisky: O>0, N<2, S<=2, P<1); all the subse-
quent analysis was performed using PyKrev.   
FORMULA 
PyKrev can be used to perform a variety of formula manipula-
tion such as stoichiometric analysis, mass analysis and intersec-
tion analysis (S.I. Table 1). This includes the ability to filter out 
suspected interference from high molecular weight doubly 
charged  ions[24], calculation of double bond equivalent[25], 
two forms of the aromaticity index[25, 26], nominal oxidation 
state of carbon[27] and Kendrick mass defect[28].  
PLOTTING  
Plotting in PyKrev is based on the Application Programming 
Interface (API) of the Matplotlib[20] library. PyKrev can create 
a range of van Krevelen style diagrams (i.e. O/C vs H/C scatter 
plots). It is also possible to plot centroid mass spectra, histo-
grams of atomic class, mass and mass error, bar charts of com-
pound class assignments and Kendrick mass defect plots[28]. 
Figure 1 shows a subset of available plots.  

 
Figure 1. A selection of plots made in PyKrev on the green tea da-
taset. Top: van Krevelen scatter plot with formulas coloured by 
Gaussian kernel density estimation using SciPy[17]. Middle: histo-
gram of monoisotopic masses with an overlaid line depicting the 
probability density function estimated via Gaussian kernel density. 
Bottom: compound classes assigned to formulas using the ‘MSCC’ 
algorithm (not matched: formula was not assigned a compound 
class, double matched: formula was assigned to two compound 
classes)[29]. 

PyKrev can visualise set analysis between multiple lists of for-
mulas, by plotting the missing or unique formula in each list on 
a van Krevelen diagram or creating an UpSet plot[30] using the 
UpSetPlot Python library[31] (Figure 2). 



 

 
Figure 2 UpSet plot comparing intersections of three green tea 
samples made with PyKrev and UpSetPlot. The distribution of dou-
ble bond equivalent and oxygen count of the formula in each inter 
section are provided in corresponding violin plots above. The vio-
lin plot combines a box plot (grey interior) with a mirrored kernel 
density estimate of the parameter distribution (coloured edge).  

DIVERSITY  
PyKrev can calculate a range of diversity metrics (akin to bio-
logical diversity metrics) based on lists of molecular formula 
and peak intensities. This technique has been applied previously 
in the study of dissolved organic matter (DOM)[32, 33]. Alpha 
diversity metrics such as Shannon-Wiener diversity[34]  and 
Gini-Simpson diversity[35] are based on the number (richness) 
and relative intensity of a set of formulas in a sample, and com-
pute diversity irrespective of the atomic composition of the for-
mula present.  
Functional diversity, computed using Rao’s quadratic en-
tropy[36][37], accounts for chemical properties by measuring 
the expected difference of a property (e.g. C number, double 
bond equivalent) if two formulas in a list were to be sampled 
with replacement.  
PyKrev can be used to assign a putative compound class to for-
mulas using the following classifications: multi-dimensional 
stoichiometry[29], aromaticity index[38], H/C and O/C ra-
tios[22] and compound matching to the KEGG compound da-
tabase[39]. 
Finally, PyKrev can assist with multivariate analysis when 
comparing multiple lists of formula. It is possible to create an 
ordination matrix in which the rows are a set of all formulas 
across all samples and the column values are the reported peak 

intensities of formulas in a given sample. Users can impute a 
custom value in place of compounds that are absent. A variety 
of peak intensity normalisation techniques can be computed on 
the ordination matrix (e.g. z-score standardization, sum relative 
intensity, unit vector relative intensity[40]), including the abil-
ity to subset data prior to generating normalization factors [41, 
42].  Principal component analysis (PCA) can then be per-
formed using the algorithm implemented in Scikit-learn[18].  
Following PCA, it is possible to visualise PCA results using 
score and scree plots, biplots and loading plots. Figure 3 shows 
a selection of loading plots created with PyKrev  and Mat-
plotlib[20] on the Scotch whisky dataset. Loadings describe 
how much each feature in the model, in this case each molecular 
formula, contributes to each principal component. In Figure 3, 
the plots on the left show the loadings based on mass, oxygen 
class or compound class (in the latter two cases the loadings of 
all formula within a class are summed). The plots on the right 
show the scores of the samples, with randomly jittered x-axis 
positions, on the first two principal axis. This layout makes it 
easier to ascertain the relative contribution of a chemical prop-
erty to the sample separation produced by PCA.  

 
Figure 3 Loading plots for the first (PC1) and second (PC2) prin-
cipal components from PCA of the Scotch whisky dataset. In each 
case the loading plot is shown on the left and the coordinates of the 
samples on the first two principal components are plotted on the 
right (coordinates on the y-axis, randomly selected x-axis positions 
to avoid point overlap). Four whisky samples (W1 -W4) were ana-
lysed using different ionization techniques, ESI: Electrospray ioni-
zation, LDI: Laser desorption ionization, APCI: Atmospheric pres-
sure chemical ionization, APPI: Atmospheric pressure photoioni-
zation. Top: A mass spectrum of loadings across all formula. Mid-
dle: The sum of loadings for each oxygen class across all formula. 
Bottom: The sum of loadings in each compound class, assigned us-
ing H/C and O/C ratios[22] based on Formularity classification.  

 



 

CONCLUSION 

We believe that PyKrev is a useful and accessible tool for sci-
entists who wish to work in Python with complex and rich da-
tasets measured by FT-MS. PyKrev is one of a suite of emerg-
ing tools that enable researchers to make the most of FT-MS 
processed data without resorting to costly proprietary software 
whilst retaining a minimal number of components in a program-
mable workflow. 
The open source nature and simple implementation of the PyK-
rev library provide a large capacity for updates capturing future 
advances in the field of FT-MS data analysis. We heartily en-
courage collaboration and contributions to the library by spe-
cialists working in this field.  

ASSOCIATED CONTENT  
Supporting Information 
PyKrev is available at https://github.com/Kzra/pykrev alongside a 
user guide on how to use the library, and specific guides on per-
forming PCA and creating UpSetPlots with PyKrev.   
A description of PyKrev module organisation and core functional-
ity is given in S.1. Table 1 (.pdf).   
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