
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Integral use of immunopeptidomics and immunoinformatics for
the characterization of antigen presentation and rational
identification of BoLA-DR- presented peptides and epitopes

Citation for published version:
Fisch, A, Reynisson, B, Benedictus, L, Nicastri, A, Vasoya, D, Morrison, I, Buus, S, Ferreira, BR, de
Miranda Santo, IKF, Ternette, N, Connelley, T & Nielsen, M 2021, 'Integral use of immunopeptidomics and
immunoinformatics for the characterization of antigen presentation and rational identification of BoLA-DR-
presented peptides and epitopes', Journal of Immunology. https://doi.org/10.4049/jimmunol.2001409

Digital Object Identifier (DOI):
10.4049/jimmunol.2001409

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of Immunology

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 17. May. 2022

https://doi.org/10.4049/jimmunol.2001409
https://doi.org/10.4049/jimmunol.2001409
https://www.research.ed.ac.uk/en/publications/60d350d1-840f-4c22-92b8-a46eea8b81fd


 
 

1 

Integral use of immunopeptidomics and immunoinformatics 1 

for the characterization of antigen presentation and rational 2 

identification of BoLA-DR-presented peptides and 3 

epitopes1,2,3,4 4 

 5 

Andressa Fisch*,¡, Birkir Reynisson†,¡, Lindert Benedictus‡, Annalisa Nicastri§, Deepali 6 

Vasoya‡, Ivan Morrison‡, Søren Buus¶, Beatriz Rossetti Ferreira*, Isabel Kinney Ferreira de 7 

Miranda Santos||, Nicola Ternette§, Tim Connelley‡, Morten Nielsen†,#,^ 8 

 9 

* Ribeirão Preto College of Nursing, University of São Paulo, Av Bandeirantes 3900, Ribeirão Preto, 10 

Brazil 11 

† Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark 12 

‡ The Roslin Institute, Edinburgh, Midlothian EH25 9RG, UK 13 

§ The Jenner Institute, Nuffield Department of Medicine, Oxford, OX37BN, UK 14 

¶ Laboratory of Experimental Immunology, Department of Immunology and Microbiology, Faculty of 15 

Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark 16 

|| Ribeirão Preto Medical School, University of São Paulo, Av Bandeirantes 3900, Ribeirão Preto, Brazil 17 

# Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, CP1650 San 18 

Martín, Argentina 19 

Running Title: NetBoLAIIpan 20 

^ Corresponding author: mniel@dtu.dk 21 

¡ Shared first authorship 22 

                                                           
1 This work was supported in part by funds from the National Institute of Allergy and 

Infectious Diseases, National Institutes of Health, Department of Health and Human Services, 

under Contract No. HHSN272201200010C and from the Fundação de Amparo à Pesquisa do 

Estado de São Paulo – FAPESP (2015/09683-9) to BRF. 
2 The Bill & Melinda Gates Foundation and with UK aid from the UK Foreign, 

Commonwealth and Development Office (Grant Agreement OPP1127286) under the 

auspices of the Centre for Tropical Livestock Genetics and Health (CTLGH), established 

jointly by the University of Edinburgh, SRUC (Scotland’s Rural College), and the 

International Livestock Research Institute (the findings and conclusions contained within are 

those of the authors and do not necessarily reflect positions or policies of the Bill & Melinda 

Gates Foundation nor the UK Government). 
3 The BBSRC through the ISP award made to The Roslin Institute (BBS/E/D/20002174). 
4 AF was supported by FAPESP scholarships 2014/11010-9, 2017/21401-4 and 2018/23579-

8. 



 
 

2 

Abstract 23 

Major histocompatibility complex (MHC) peptide binding and presentation is the most 24 

selective event defining the landscape of T cell epitopes. Consequently, understanding the 25 

diversity of MHC alleles in a given population and the parameters that define the set of ligands 26 

that can be bound and presented by each of these alleles (the immunopeptidome) has an 27 

enormous impact on our capacity to predict and manipulate the potential of protein antigens to 28 

elicit functional T cell responses. Liquid chromatography-mass spectrometry (LC-MS) 29 

analysis of MHC eluted ligands (EL data) has proven to be a powerful technique for identifying 30 

such peptidomes, and methods integrating such data for prediction of antigen presentation have 31 

reached a high level of accuracy for both MHC class I and class II. Here, we demonstrate how 32 

these techniques and prediction methods can be readily extended to the bovine leukocyte 33 

antigen class II DR locus (BoLA-DR). BoLA-DR binding motifs were characterized by EL 34 

data derived from bovine cell lines expressing a range of DRB3 alleles prevalent in Holstein-35 

Friesian populations. The model generated (NetBoLAIIpan - available as a web-server at 36 

www.cbs.dtu.dk/services/NetBoLAIIpan) was shown to have unprecedented predictive power 37 

to identify known BoLA-DR restricted CD4 epitopes. In summary, the results demonstrate the 38 

power of an integrated approach combining advanced MS peptidomics with 39 

immunoinformatics for characterization of the BoLA-DR antigen presentation system and 40 

provide a novel tool that can be utilised to assist in rational evaluation and selection of bovine 41 

CD4 T cell epitopes.   42 

 43 

 44 

 45 

 46 

http://www.cbs.dtu.dk/services/NetBoLAIIpan
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Key Points 47 

● MS immunopeptidomics and motif characterization for 7 prevalent BoLA-DRB3 48 

molecules 49 

● The first pan-specific predictor, NetBoLAIIpan, for BoLA-DRB3 antigen presentation 50 

● NetBoLAIIpan demonstrated unprecedented CD4 T cell epitope prediction 51 

performance  52 

 53 

 54 

 55 

 56 

 57 

 58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 

 66 
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Introduction 67 

Major histocompatibility complex (MHC) genes play a vital role in the regulation of adaptive 68 

immunity. Whilst classical MHC class I genes are expressed on most nucleated cells, MHC 69 

class II (MHCII) molecules show a more restricted expression and are predominantly expressed 70 

on professional antigen-presenting cells such as dendritic cells, B-cells, and macrophages. The 71 

MHCII system enables peptides derived from both extracellular and intracellular proteins that 72 

have been delivered in the endocytic pathway to be loaded into the peptide-binding groove of 73 

MHCII molecules and be displayed as stable peptide-MHCII complexes (pMHCII) on the cell 74 

surface (1). CD4 T cells bearing cognate TCRs capable of binding specific pMHCII complexes 75 

can become activated and perform a range of functions, including supporting other immune 76 

effector cells such as macrophages, B cells and CD8 T cells (2). Thus, pMHCII molecules play 77 

a critical role in initiating and developing both humoral and cell-mediated adaptive immune 78 

responses.  79 

 80 

MHCII molecules are heterodimers composed of an α and β chain, each consisting of an 81 

extracellular domain, a transmembrane region, and an intracytoplasmic tail. The distal 82 

membrane domains (α1 and β1, respectively) form an open peptide-binding groove that binds 83 

peptides of variable length, mainly of 13–25 amino acid residues (3). The peptide-binding 84 

groove most often contains four major pockets that interact with the side-chains of anchoring 85 

residues located at positions 1, 4, 6, and 9 of the 9-mer binding-core of the bound ligand. These 86 

pockets thus determine the binding motif of the peptides that can be presented by an MHCII 87 

molecule (4, 5). A key feature of the MHC genes is the high level of polymorphism. For 88 

example in humans, three conventional MHCII heterodimers are expressed – DR, DQ and DP 89 

– and a total of ~2, ~2,500, ~100, ~1,200, ~80 and ~1,000 protein-coding variants of the α (A) 90 

and β (B) chain genes, DRA, DRB, DQA, DQB, DPA, and DPB respectively, have been 91 
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identified. Except for DRA, the polymorphism of MHCII genes is focused predominantly 92 

within the α1 and β1 domains (6), resulting in variations in the residues of the binding groove, 93 

and consequently determining the variable binding motifs and so the capacity of different 94 

MHCII molecules to bind different peptide sets.  95 

 96 

In cattle, there are only two categories of conventional MHCII molecules, BoLA-DR and 97 

BoLA-DQ (7). The DRB, DQA, and DQB genes are highly polymorphic, whilst, as in other 98 

species, the DRA gene is essentially monomorphic (8). Although there are three DRB loci, 99 

only DRB3 is considered to be functionally expressed since DRB1 is a pseudogene and DRB2 100 

is expressed at very low levels if at all (9). Consequently, the variability of expressed BoLA-101 

DR molecules can be characterized by sequencing of the DRB3 gene (10). The ability to 102 

perform rapid sequence-based typing of DRB3 using Sanger technology has resulted in DRB3 103 

being the most intensely studied bovine MHC gene (11–19), with 357 alleles registered in the 104 

IPD-MHC database (November 2020: https://www.ebi.ac.uk/ipd/mhc/group/BoLA/). 105 

 106 

Characterisation of the peptide repertoires presented by different MHCII molecules can enable 107 

the development of algorithms that predict potential MHC binding peptides within proteins 108 

rapidly. Integration of large data sets of peptides directly eluted off MHC molecules and 109 

sequenced by mass-spectrometry (MS), so-called eluted ligand (EL) data, have facilitated the 110 

generation of accurate MHC-binding prediction algorithms (20–27). Such in silico tools can 111 

accelerate antigen selection for vaccine development and are of particular relevance to vaccines 112 

against pathogens with large proteomes (e.g. eukaryotic parasites), where screening and 113 

selection of candidate antigens from a large number of expressed proteins would be a major 114 

obstacle.   115 

  116 

https://www.ebi.ac.uk/ipd/mhc/group/BoLA/
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Analysis and interpretation of EL data are made challenging by ambiguous ligand MHC 117 

assignment resulting from the multiple MHC molecules expressed on the surface of most cells. 118 

Several approaches have been proposed to address this, spanning from the engineering of cell 119 

lines and/or expressed MHC molecules to allow for analysis of ligands of single MHC 120 

specificities (single allele (SA) ligands) (23, 24, 28) to computational motif deconvolution 121 

techniques (21, 22, 29) handling more complex multi-allele (MA) datasets. Within the latter 122 

category, the machine learning framework NNAlign_MA (30) has been demonstrated to 123 

efficiently deconvolute MA ligand data obtained from samples expressing multiple MHC 124 

alleles, enabling the construction of improved pan-specific predictors for antigen presentation 125 

for both the MHC class I and class II systems (30–32). NNAlign_MA achieves this by 126 

annotating the MA data during training in a semi-supervised manner based on MHC co-127 

occurrence, MHC exclusion, and pan-specific binding prediction (30). This deconvolution 128 

expands the potential training data beyond binding affinity (BA) peptides and SA ligands to 129 

include the more complex and numerous MA ligands.  130 

 131 

EL data differs from BA data in the sense that it not only captures peptide-MHC binding but 132 

also signals related to antigen processing. Recent MHCII prediction models (20, 21, 32) have 133 

leveraged these kinds of data and improved the prediction of MHCII antigen presentation. 134 

 135 

Although most peptidome studies have focused on human and murine models, the technique 136 

can be equally applied to other species. In the context of livestock, we have earlier published 137 

studies demonstrating the ability to use mass spectrometry data to generate highly accurate 138 

prediction algorithms for BoLA-I molecules (33) which have been integrated into the 139 

NetMHCpan-4.1 server (31). Currently, there is no equivalent algorithm that can be used to 140 

predict peptide binding to BoLA-II molecules.  141 
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 142 

In this study, we have used mass-spectrometry to generate peptide elution data for BoLA-DR 143 

molecules and use the derived data to provide the first characterization of binding motifs of 144 

bovine MHCII and to demonstrate the development of the first available in silico method for 145 

accurate analysis of BoLA-DR ligands for rational CD4 T cell epitope prediction.  146 

 147 

 148 

 149 

 150 

 151 

 152 

 153 

 154 

 155 

 156 

 157 

 158 

 159 

 160 

 161 

 162 

 163 

 164 

Materials and Methods 165 

Animal and cell samples. 166 
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Brazilian Holstein-Friesian PBMC samples were obtained from frozen archived materials from 167 

animals within the herd at the University of Sao Paulo that had been included in previous 168 

experiments completed under approval from the Committee on the Ethics of Animals Research 169 

at the Nowavet Veterinary Clinical Studies CRO, Viçosa/MG, certificate numbers 56/2016 170 

(approved on 03 August 2016) and 36/2017 (approved on 09 June 2017). PBMC used for the 171 

characterization of BoLA-DR presented peptides from ovalbumin were isolated from a 172 

Holstein-Friesian animal from the University of Edinburgh herd with sampling conducted 173 

under a license granted under the UK Animal (Scientific Procedures) Act 1986. The Theileria 174 

annulata- and Theileria parva-infected cell lines used in this study had been established and 175 

characterised as part of previous studies and were maintained using routine and well-176 

established protocols (34). Briefly, cattle PBMC from animals of interest, expressing the 177 

relevant BoLA alleles, were isolated by Ficoll and co-cultured with suspensions of T. annulata 178 

or T. parva-infected ticks  to allow in vitro infection. The generated cell lines are transformed 179 

by the parasite and so proliferate indefinitely in vitro, while endogenously expressing high 180 

levels of MHCII (35).  While it is known that T. annulata infects mostly B-cells and myeloid 181 

cells and T. parva infects T-cells, no further characterization was performed in the cell lines 182 

used in this study. The optimisation and final protocol used to assess the capacity of PBMC 183 

and Theileria annulata-infected cell lines to take up ovalbumin and present peptides on BoLA-184 

DR molecules are described in Supplementary Figure 1.  185 

 186 

 187 

 188 

 189 

PBMC isolation, RNA extraction and cDNA synthesis. 190 
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Bovine PBMC were isolated by density gradient centrifugation using Ficoll Paque Plus (GE 191 

Healthcare Bio-Sciences, Amersham. UK) according to manufacturers’ instructions. RNA was 192 

extracted from PBMC using TRIzol (Thermo Scientific, Renfrew, UK) and cDNA synthesised 193 

using the GOscript Kit (Promega, Southampton, UK), both according to the manufacturers’ 194 

instructions. 195 

 196 

BoLA-DRB3 sequencing. 197 

For BoLA-DRB3 amplification, primers (For - CCAGGGAGATCCAACCACATTTCC; Rev 198 

- TCGCCGCTGCACAGTGAAACTCTC) incorporating Illumina adaptors and multiplex 199 

identifier tags were obtained from IDT (Leuven, Belgium). PCR was performed using Phusion 200 

High Fidelity PCR kit (New England Biolabs), and the reaction was carried out in a final 201 

volume of 40 μL containing 2 μL of cDNA, 5X Phusion HF Buffer, 0.8 U μL of Phusion DNA 202 

Polymerase, 3% DMSO, 0.4 mM of dNTP and 0.5 μM of each primer. The reaction was 203 

performed in a G-Storm Thermal Cycle System (G-Storm) programmed for one cycle at 98 °C 204 

for 30 s, followed by 30 cycles at 98 °C for 10 s, 61 °C for 30 s, and 72 °C for 45 s, with a final 205 

extension period at 72 °C for 10 min. 5 μl of PCR product from each sample were pooled 206 

together, run on a 1.5% agarose gel, and the band of the appropriate size was extracted and 207 

purified using the QIAquick PCR Purification Kit (Qiagen). A final purification using 208 

Agencourt AMPure XP Beads (Beckman Coulter) at a ratio of 1:1 beads to PCR product was 209 

conducted prior to quantification of the sample and submission to Edinburgh Genomics for 210 

sequencing on the Illumina MiSeq V.3 platform. Analysis of the data was conducted using a 211 

bespoke bioinformatics pipeline (Vasoya et al. in preparation). 212 

 213 

 214 

pBoLA-DR complexes purification. 215 
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Cultured cells (1x109) were washed twice with ice-cold PBS and then lysed in buffer (1% 216 

IGEPAL, 15mM TRIS pH 8.0, 300 mM NaCl and cOmplete protease inhibitor (Roche)) at a 217 

density of 2x108 cells/mL for 1 min, diluted with PBS 1:1 and solubilized for 45 min at 4 °C. 218 

Lysates were cleared by two-step centrifugation at 500g for 15 min at 4 °C and then at 15,000g 219 

for 45 min at 4 °C. For initial samples pBoLA-DR complexes were directly captured from the 220 

cleared lysates using 5 mg anti-BoLA-DR antibody (ILA21), immobilized in 1 mL of protein 221 

A resin (Amintra, Expedeon, Cambridge, UK). For later samples, pBoLA-DR complexes were 222 

captured from cleared lysates that had been depleted of peptide-BoLA-I (pBoLA-I) complexes 223 

by prior immunoprecipitation with 5 mg anti-BoLA-I antibody (ILA88), immobilized in 1 mL 224 

protein A resin.  Captured pBoLA-DR complexes were washed, and peptides eluted from 225 

BoLA-DR molecules using 10% acetic acid and the resulting proteins dried as described in 226 

(36). 227 

 228 

HPLC. 229 

The dried pBoLA-DRB3 complexes were resuspended in 150 μL of loading buffer (0.1% 230 

formic acid, 1% acetonitrile) and loaded onto a 4.6 × 50 mm ProSwiftTM RP-1S column 231 

(Thermo Scientific) for reverse-phase chromatography on an Ultimate 3000 HPLC system 232 

(Thermo Scientific). Elution was performed using a 0.5 mL/min flow rate over 5 min on a 233 

gradient of 2 to 35% buffer B (0.1% formic acid in acetonitrile) in buffer A (0.1% formic acid). 234 

Eluted fractions were collected from 1 to 8.5 min, for 30 s each. Protein detection was 235 

performed at 280 nm. Even and odd eluted fractions were pooled together, vacuum dried and 236 

stored at -80 °C until use. 237 

 238 

 239 

LC-MS/MS. 240 
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Dried samples were resuspended in 20 μL of loading buffer and analyzed in an Ultimate 3000 241 

nano UPLC system online coupled to an Orbitrap Fusion™ Lumos™ Tribrid™ Mass 242 

Spectrometer (Lumos) (Thermo Scientific) or Q Exactive™ HF Hybrid Quadrupole-Orbitrap™ 243 

Mass Spectrometer (HFX). Peptides were separated in a 75 μm × 50 cm PepMap C18 column 244 

using a 1 h linear gradient from 2 to 30% buffer B in buffer A at a flow rate of 250 nL/min 245 

(∼600 bar). Peptides were introduced into the mass spectrometer using a nano Easy Spray 246 

source (Thermo Scientific) at 2000 V. Subsequent isolation and higher energy C-trap 247 

dissociation (HCD) was induced in the 20 most abundant ions per full MS scan with an 248 

accumulation time of 120 ms and an isolation width of 1.2 Da (Lumos), or 1.6 Da (HFX). All 249 

fragmented precursor ions were actively excluded from repeated selection for 30 s. The mass 250 

spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via 251 

the PRIDE (37) partner repository with the data set identifier PXD024053. 252 

 253 

Mass spectrometry data analysis. 254 

The sequence interpretations of mass spectrometry spectra were performed using a database 255 

containing all bovine UniProt entries combined with entry P01012 for chicken ovalbumin (total 256 

of 41610 entries) and 4084 entries for Theileria parva Muguga proteome (38). The spectral 257 

interpretation was performed using de novo-assisted database search with PEAKS 10 258 

(Bioinformatics Solutions), in 'no enzyme' mode, with mass tolerances of 5 ppm for precursor 259 

ions and 0.03 Da for fragment ions. The data was further searched against 313 inbuild peptide 260 

modifications. 261 

 262 

 263 

Filtering of MS-identified peptides. 264 
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Previous to all analyses, the lists of peptides identified were filtered to remove: 1) peptides 265 

presenting post-translational modifications; 2) peptides with a peptide-spectrum matching 266 

score -Log10(P) < 15; 3) any peptides derived from T. parva Muguga, including the ones 267 

identified in both bovine and T. parva Muguga entries; and 4) peptides that shared a 9-mer 268 

overlap with the CD4 T-cell epitope benchmark. 269 

 270 

Model Training. 271 

All ligand data were filtered to include only peptides containing 13-21 residues, to exclude any 272 

residual potentially co-eluted MHCI peptides. Negative peptides were added as described 273 

earlier (32) by sampling random natural peptides from the bovine proteome (described below). 274 

Models were trained in a 5-fold cross-validation manner with partitions constructed from 9-275 

mer common-motif clustering, ensuring no overlap between test- and training-data. Three 276 

model architectures were used (20, 40, and 60 hidden neurons), each trained with ten random 277 

weight initialization, resulting in an ensemble of 150 networks. Models were evaluated in a 278 

percentile rank fashion, meaning that prediction scores are normalized against a distribution of 279 

prediction scores from random natural peptides. Rank scores are more interpretable than raw 280 

prediction scores and allow for fairer comparison across alleles. 281 

 282 

Two models were trained in this project, both using the NNAlign_MA machine learning 283 

framework (30). The first model (BoLA) was trained on the novel BoLA SA and MA EL data 284 

combined with the BA data from NetMHCIIpan-4.0 with an added set of BoLA BA data 285 

(roughly 250 measurements for each BoLA-DR molecules incorporating the three different 286 

BoLA-DRB3 alleles - generated in house). For the second model (All Data), the BoLA EL data 287 

were combined with all the EL data from the NetMHCIIpan-4.0 data set (human and murine 288 
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EL data) and the same BA data as the BoLA model. The BoLA and All Data models share 289 

partitions. 290 

 291 

Explicit encoding of ligand context was leveraged to capture antigen processing signatures, as 292 

previously described (20). Briefly, in context encoding 12 residues of the ligand and antigen 293 

are fed as input to the model, 6 are from the N-terminal region of the ligand (3 residues 294 

upstream of the ligand in the antigen and 3 N-terminal Peptide Flanking Regions (PFRs)), and 295 

6 are from the C-terminal region (3 C-terminal PFRs and 3 downstream of the ligand). 296 

 297 

Peptide lists resulting from BoLA-DR eluted ligand data are by nature only positive examples 298 

of ligands that interact with MHCII (excepting co-eluting peptide noise from assay). To train a 299 

peptide-MHCII interaction model, the training data must include examples of non-interacting 300 

peptides sampled from the same background as positive data. To achieve this, peptides (and 301 

their context, see above) were randomly sampled from the bovine proteome. Random negative 302 

peptides were made to follow a uniform length distribution of 13-21 residues, sampling for 303 

each length five times the number of peptides in the most commonly observed ligand length 304 

for a dataset. Negatives were sampled independently for each bovine dataset with a uniform 305 

length distribution so the model can learn the length distribution of ligands (27, 39). 306 

 307 

 308 

 309 

  310 
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Results 311 

Analysis of the BoLA-DRB3 repertoire in an experimental cohort of Brazilian 312 

Holstein-Friesians. 313 

The IPD-MHC database includes over 300 BoLA-DRB3 alleles, of which only a small subset 314 

could be included in this study. To identify the alleles that would be most relevant to ongoing 315 

experiments, a novel high-throughput MiSeq BoLA-DRB3 sequencing approach (Vasoya et 316 

al., in preparation) was used to examine the frequency of DRB3 alleles in a representative 317 

cohort of 30 Holstein-Friesian animals from the experimental herd at the University of São 318 

Paulo, Brazil. A total of 22 DRB3 alleles were identified, including a novel allele that had not 319 

been previously described (nDRB3.1). Typical of MHC allele distribution in most cattle 320 

populations, there was a small number of dominant alleles, DRB3*15:01, DRB3*01:01, 321 

DRB3*11:01, DRB3*14:01:01, and DRB3*12:01, which were present at a frequency of ≥5%, 322 

whilst the remaining 17 alleles were present at lower frequencies (Figure 1). 323 

 324 

Generation and analysis of MS data for BoLA-DR eluted peptides. 325 

Initial experiments to establish a BoLA-DR elution technique used O11 and 2229 Theileria 326 

annulata (TA) cell lines which had previously been confirmed to be homozygous for 327 

DRB3*10:01 and DRB3*11:01, respectively (Table I). The length distribution of the peptides 328 

obtained from the 2229TA and both replicates (n1 and n2) of O11TA cell lines was bi-modal. 329 

One peak, centred around 14-15mers was the size anticipated for MHCII ligands; the second 330 

peak, centred around 8-10mer peptides, was more consistent with the length distribution of 331 

MHCI ligands (Figure 2A), and it was speculated that this represented a substantial level of co-332 

purification of BoLA-I molecules during BoLA-DR immunoprecipitation. To investigate this, 333 

NetMHCpan-4.1 (31) was used to predict the binding potential of all 8-13-mer peptides in each 334 

of the MS data sets for each of the BoLA-I molecules expressed in the given cell line (Table 335 
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I). The sequence logos of these peptide sets (Supplementary Figure 2) showed remarkable 336 

similarity to the motifs previously described for the BoLA-I alleles in these haplotypes (30) 337 

and between 56.8-70.9% of the 8-13-mer peptides in each sample were predicted to be BoLA-338 

I binders (defined using a binding threshold of 5% rank). This corroborated the hypothesis that 339 

the majority of these peptides originated from co-precipitated BoLA-I ligands and their 340 

removal resulted in a substantial diminution of the 8-10mer peak (Figure 2B).  341 

To address the observed co-enrichment of pBoLA-I in pBoLA-DR immunoprecipitations, it 342 

was decided to apply a sequential immunoprecipitation protocol, starting with pBoLA-I 343 

complex depletion using an anti-BoLA-I monoclonal antibody (IL-A88), followed by pBoLA-344 

DR precipitation. This two-step protocol was applied to samples from a series of seven T. 345 

parva-infected cell lines (Table I) which expressed a range of DRB3 alleles present in our 346 

experimental cohort (*11:01, *10:01, *1501, *1201) or which were of interest because of 347 

ongoing T. parva CD4 T cell epitope identification studies that included these alleles (*16:01 348 

and *20:01). The total numbers of peptides identified in these samples ranged between 1280 349 

and 8335 (Table I), and the distribution of the peptide lengths is shown in Figure 2C. The 350 

results in this figure show a substantially lower representation of 8-10mer peptides, indicating 351 

successful reduction but not complete depletion of BoLA-I eluted peptides (Figure 2C). 352 

Analysis of the binding potential of the peptides in the 8-10mer peak confirmed that the 353 

majority were, in fact, still BoLA-I binders (Table I and Figure 2D); indicating that although 354 

the preliminary BoLA-I depletion had a profound effect on reducing peptides from co-eluted 355 

pBoLA-I, it did not eliminate them completely. Removal of predicted MHCI binders from the 356 

datasets (ranging in frequency from 0.9-8.9%, Table I) effectively abolished the 8-10mer peak 357 

(Figure 2D), establishing that i) combined BoLA-I depletion by prior immunoprecipitation and 358 

bioinformatic removal of predicted MHCI-binders provided the optimal results and ii) 359 

consistent with other MHCII molecules, BoLA-DRB3 molecules have a preference for binding 360 
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peptides of length 13-21 amino acids (after the combined filtering, 80.7% of the peptides fall 361 

in this length range). 362 

 363 

Motif deconvolution and prediction model generation from MS data sets of 364 

BoLA-DR eluted ligands. 365 

Using the MS BoLA-DR EL data sets, alternative models for BoLA-DRB3 motif 366 

deconvolution were assessed and a prediction model for BoLA-DRB3 ligands was developed. 367 

Details for the model training and model parameters are described in the materials and methods. 368 

In short, bovine ligand data was filtered only to include peptides of 13-21 residues and were 369 

used as positive data points, with negative data points added as previously described (32). Two 370 

models were trained: a ‘BoLA’ model using the novel BoLA-DR elution data combined with 371 

the BA (binding affinity) data from NetMHCIIpan-4.0 and a set of BA data covering three 372 

different BoLA-DRB3 alleles; and an ‘All Data’ model, which includes the BA and EL data of 373 

the BoLA model with added murine and human EL data from the NetMHCIIpan-4.0 data set. 374 

Both models were trained with and without assessing the ‘context’ of the peptide within the 375 

parent protein (MAC- and MA-models, respectively). Here, ligand context refers to including 376 

residues near the ligand termini, inside and outside the ligand, to capture signals of antigen 377 

processing. Further details on data partitioning, model training and context definition are 378 

provided in materials and methods. 379 

 380 

The results of the cross-validation evaluation measured in terms of the AUC are shown in 381 

Figure 3 and show clear differences in the performance of the models used. Firstly, for both 382 

the ‘BoLA’ and the ‘All Data’ models, every cell line data set displayed a higher AUC for the 383 

MAC-model than the MA-Model (p-value: 0.00097 in a binomial test counting number of cell 384 

lines with higher AUC for MAC-models versus MA-models). This agrees with earlier studies 385 
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for the human and mouse MHCII system (20, 32, 40), showing the value of incorporating 386 

encoding context into the prediction models. Secondly, the ‘BoLA’ MAC-model has 387 

significantly higher median AUC compared to the ‘All Data’ MAC-Model (p-value: 0.00195 388 

in a binomial test counting cell lines where ‘BoLA’ MAC-model has higher AUC compared to 389 

‘All Data’ MAC-model, excluding ties), indicating that inclusion of the human and murine 390 

training data had no benefit in the generation of a model for BoLA-DR binding prediction. This 391 

comparative evaluation clearly demonstrated the ‘BoLA-MAC’ model exhibited the best 392 

performance and so was selected for subsequent use.  393 

 394 

Examples of BoLA-DRB3 allele motif deconvolution from EL data-sets as performed by the 395 

BoLA-MAC model are shown in Figure 4. The motif deconvolution results for each sample 396 

included in this study are displayed in Supplementary Figure 3A, and the motifs for each of the 397 

seven BoLA-DRB3 alleles covered by the EL data (combining the data from all samples) are 398 

shown in Supplementary Figure 3B. As can be seen in Figure 4, the deconvolution results in 399 

well-defined motifs, with the anticipated preference for residues at positions 1, 4, 6 and 9 of 400 

the binding core and limited exclusion of non-conforming peptides (average of 8.6% of ligands 401 

assigned as contaminants in samples included in Figure 4). The data presented here also shows 402 

the ability of the deconvolution to discriminate the motifs of both BoLA-DRB3 alleles in 403 

heterozygous samples (495TP and 2123TP) as well as the consistency in the motifs for the 404 

same BoLA-DRB3 molecule obtained from different EL data-sets (e.g. BoLA-DRB3*10:01 in 405 

495TP and 5072TP). These observations are consistent across all of the samples included in 406 

this study, with non-conforming (trash) peptides constituting only ~12.5%, a high average 407 

Pearson correlation between motifs for the same BoLA-DRB3 molecule (0.92 for BoLA-408 

DRB3*10:01 and 0.908 for BoLA-DRB3*11:01, Supplementary Figure 4A), and a very high 409 

specificity being demonstrated for individual motifs  (PPV values in the range 0.751-0.868, 410 
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across the different deconvolutions, Supplementary Figure 4B). As such, the data confirms that 411 

the BoLA-MAC model permitted the generation of high resolution and reproducible BoLA-412 

DRB3 binding motifs from EL data. This model, renamed as NetBoLAIIpan, has been made 413 

publicly available at www.cbs.dtu.dk/services/NetBoLAIIpan. 414 

 415 

NetBoLAIIpan can be used to predict BoLA-DRB3 presented peptides derived 416 

from exogenous proteins.  417 

To extend our studies on the utility of the NetBoLAIIpan method developed above, the model’s 418 

ability to predict which peptides would be presented by BoLA-DR molecules from an 419 

exogenous protein was examined. Here, both PBMC (BoLA-DRB3*01:01 and *11:01) and the 420 

O11TA_n2 cell line (BoLA-DRB3*10:01) described above were pulsed with soluble 421 

ovalbumin (OVA, see materials and methods and Supplementary Figure 1 for details) before 422 

performing pBoLA-DR elution.  Only one OVA-derived peptide (“SSANLSGISSAESLK”) 423 

was identified in the O11TA sample, which demonstrated very poor predicted binding to 424 

BoLA-DRB3*10:01 with a predicted percentile rank value of 29.2%, strongly suggesting this 425 

peptide to be a contaminant co-purified during the BoLA IP enrichment and hence not a 426 

genuine BoLA presented peptide. In contrast, seven OVA-derived peptides were identified in 427 

the PBMC sample. Mapping the seven peptides onto the OVA protein sequence (Figure 5 - 428 

Inserted panel) shows that all the peptides clustered around the 9-mer core “INKVVRFDK”,  429 

located at OVA54-62, with a common motif IxxVxRxxK – matching the motif described in 430 

Supplementary Figure 3B for BoLA-DRB3*01:01. Also of interest is that six out of the seven 431 

ligands observed had proline in the C-2 position, which is a common feature in context motifs 432 

(20). The NetBoLAIIpan model was applied to predict potential DRB3*01:01 and 433 

DRB3*10:01 ligands in the OVA protein sequence. To achieve this, the OVA protein was in 434 

silico digested into overlapping 13-21-mer peptides, and binding to DRB3*01:01 and 435 

http://www.cbs.dtu.dk/services/NetBoLAIIpan
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DRB3*10:01 was predicted for each peptide with predicted ligands identified using a 1% rank 436 

score threshold; this resulted in the identification of 48 predicted ligands covering binding to 437 

both BoLA-DRB3 molecules. The MS identified and in silico predicted ligands were then 438 

stacked onto the OVA protein sequence, and a profile was calculated showing the relative 439 

number of measured and predicted ligands mapped to each amino acid position within the 440 

protein. The MS identified and in silico predicted ligand profiles demonstrated a striking 441 

concordance, with the MS identified peptides overlapping with the dominant peak of in silico 442 

predicted peptides (38 overlapping peptides located at positions 45-71) (Figure 5) (similar data 443 

were obtained using rank threshold values in the range 0.5-2.0%, results not shown), indicating 444 

that NetBoLAIIpan can accurately predict ligands derived from defined proteins that are 445 

experimentally shown by MS to be presented by BoLA-DR.  446 

 447 

Validation of the BoLA model for BoLA-DRB3 presented CD4 T cell epitope 448 

prediction.  449 

Next, the performance of NetBoLAIIpan was validated using a set of 25 BoLA-DR restricted 450 

T. parva CD4 T cell epitopes experimentally validated using T. parva-specific CD4 T-cell lines 451 

generated from immunised animals in a IFNγ secretion T cell assay (Morrison et al., manuscript 452 

in preparation, refer to Supplementary Table 1). Here, NetMHCIIpan-4.0 was included as a 453 

reference model to test the extent to which peptide presentation rules learned from human and 454 

murine data extrapolate to bovine epitopes. Each epitope source protein was in silico digested 455 

into peptide strings matching the length of the epitopes, and each peptide was then assigned 456 

the lowest predicted rank score from the set of 13-19-mers whose binding core overlapped with 457 

the peptide string. Next, the epitope’s F-rank value was calculated as the percentage of peptides 458 

with a greater prediction score than the epitope. Hence, a perfect prediction has an F-rank value 459 

of 0, and a random prediction presents a value of 50. Comparison of F-rank values obtained by 460 
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the different models for the set of T. parva epitopes (Figure 6), shows that the NetBoLAIIpan 461 

models with or without context achieved equivalent prediction performance both achieving a 462 

median F-rank value of 0.697% and median prediction percentile rank score for the epitopes 463 

of 0.2. In practical terms, these results translate into 12 out of 25 epitopes being ranked as the 464 

top predicted peptide within the given source protein. Both NetBoLAIIpan models achieved 465 

significantly better F-ranks compared to NetMHCIIpan-4.0 (p-values: <0.001 comparing the 466 

two NetBoLAIIpan models to NetMHCIIpan-4.0). The large difference in the performance of 467 

the NetMHCIIpan-4.0 and NetBoLAIIpan models clearly demonstrates the power of 468 

combining BoLA-DR EL data and advanced immunoinformatics to generate novel tools for 469 

characterizing antigen presentation epitope identification in the BoLA-DR system.  470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 

 483 

Discussion 484 



 
 

21 

A pre-requisite for the development of next-generation subunit vaccines is the identification of 485 

antigens containing epitopes that can be recognised by B cells, CD8 T cells and CD4 T cells, 486 

as appropriate for the immune response required. Several bioinformatic tools that enable the 487 

prediction of CD4 T cell epitopes in humans have been developed and the recent integration of 488 

large-scale MHC-eluted peptide data have led to a dramatic improvement in their performance 489 

(21, 24, 32). In contrast, there is a lack of equivalent bioinformatics tools designed specifically 490 

for bovine MHCII molecules, and since the currently available tools have not incorporated 491 

bovine MHCII EL data during their development, they perform with limited accuracy when 492 

applied to bovine data (as demonstrated in this study  - Figure 6). In previous studies, we have 493 

shown how the use of high-quality EL mass spectrometry data combined with advanced 494 

immunoinformatics and machine-learning techniques can further our understanding of the rules 495 

underlying MHC antigen processing and presentation, allowing the development of improved 496 

prediction methods for MHC ligands and T cell epitopes (30–32). Here, we have extended this 497 

work to cover, for the first time, BoLA-DR molecules.  498 

Results from our initial experiments indicated that the peptides isolated following pBoLA-DR 499 

immunoprecipitation were heavily contaminated with co-eluted pBoLA-I-presented peptides. 500 

This phenomenon has been reported previously in other studies using equivalent protocols for 501 

immunoprecipitation of MHCII molecules from human cell lines and has been hypothesised to 502 

reflect that the protocol for lysing the cells results in the immunoprecipitation of membrane 503 

fractions, which contain both MHCI and MHCII molecules (41, 42). In this study neither prior 504 

depletion of pBoLA-I (by immunoprecipitation) nor bioinformatic prediction and removal of 505 

BoLA-I contaminant ligands were completely effective in eliminating the BoLA-I-binding 506 

contamination when applied alone -  both left a remnant peak of 8-10-mer peptides. However, 507 

the combined use of these two approaches was successful in removing the 8-10-mer peptide 508 

peak, resulting in 13-21-mer dominated profiles characteristic of MHCII presented peptides. 509 
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On this basis, we would propose that future studies for BoLA-II immuno-peptidomics should 510 

routinely make use of both preliminary depletion of pBoLA-I complexes by use of an initial 511 

pBoLA-I immunoprecipitation step (consistent with recently developed approaches for human 512 

MHCII immuno-peptidomic studies (21, 43)), and in silico immunoinformatic BoLA-I peptide-513 

binding depletion using currently available prediction methods (31, 33) (or if working with cell 514 

lines expressing alternative BoLA-I haplotypes by generating BoLA-I peptide-binding motifs 515 

by subjecting the product of the preliminary pBoLA-I immunoprecipitation to elution, mass-516 

spectrometric analysis and subsequent motif deconvolution). 517 

In this study, we compared two models for developing the BoLA-DR prediction algorithm. The 518 

first of these was trained using EL data only from BoLA-DR, whilst the second was trained on 519 

the same data augmented by an exhaustive human (HLA) and murine (H-2) MHCII-eluted 520 

peptide dataset (both models also incorporated human, murine and a small amount of bovine 521 

BA data). A cross-validation evaluation demonstrated that the former model had superior 522 

performance, suggesting that integration of cross-species EL datasets was not beneficial to the 523 

accuracy of the results generated by this model. However, this evaluation was restricted to the 524 

limited set of BoLA-DRB3 alleles covered by the EL data generated in the current study, and 525 

it remains to be seen whether a model integrating cross-species EL data would allow improved 526 

prediction when extrapolated to data generated from samples expressing other BoLA-DRB3 527 

alleles. As over 300 BoLA-DRB3 alleles have been described at present, further evaluation of 528 

how best to incorporate inter- and intra-species data to improve the algorithm’s performance is 529 

warranted as it will not be feasible for BoLA-DR EL data to be generated for more than a subset 530 

of these alleles. The seven BoLA-DRB3 alleles included in this study were selected 531 

predominantly based on their frequency in the experimental herd of Holstein-Friesian cattle at 532 

the University of São Paulo (USP) (in combination with the availability of DRB3-genotyped 533 

TA/TP cell lines and validated BoLA-DRB3 presented epitope data). The cumulative total 534 
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frequency of these seven alleles in the samples of animals from the USP herd was ~48% and 535 

retrospective analysis of the University of Edinburgh herd shows that these alleles have an even 536 

higher representation (~67.9%). This is broadly in line with the frequencies observed in 537 

Holstein-Friesian herds across South America and other parts of the world (51.2-73%) (18). 538 

Analysis of the BoLA-DRB3 molecules in Holstein-Friesian animals is attractive for several 539 

reasons: i) due to the high levels of inbreeding, characterisation of a small number of DRB3 540 

alleles will allow comprehensive coverage of the breed (e.g. inclusion of another five DRB3 541 

alleles would give 77-98% coverage of Holstein-Friesian populations (18) and ii) as high-value 542 

dairy animals there is great interest in introducing Holstein-Friesians into low-income countries 543 

(frequently tropical) as part of the process of increasing agricultural productivity and food 544 

security; a major limitation to this process is the Holstein-Friesian susceptibility to many of the 545 

pathogens prevalent in regions of the world. Consequently, there is a particular interest in 546 

finding interventions, such as vaccination, that can be used to protect Holstein-Friesian animals 547 

in tropical environments.  548 

A critical and general issue for rational vaccine development is the identification of relevant 549 

antigens. Approaches dependent on conventional antigen-screening techniques have 550 

limitations, especially when applied to complex pathogens (e.g. eukaryotic pathogens), where 551 

the size of the proteomes makes a comprehensive analysis of the full potential antigen 552 

repertoire prohibitively expensive and laborious.  For such pathogens, bioinformatic tools that 553 

can help rationalise antigen screening assays and/or selection are of particular value and have 554 

a significant potential for accelerating vaccine development. A potential approach would be to 555 

use bioinformatics tools to predict which peptides from a candidate antigen would be present 556 

by BoLA molecules when delivered as a vaccine. To directly evaluate this, we examined 557 

NetBoLAIIpan’s ability to correctly identify the peptides from ovalbumin that had been pre-558 

loaded onto cell’s then subjected to MHC-elution analysis. A comparison of the set of eluted 559 
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peptides from a PBMC sample and the in silico predicted BoLA-DRB3 binding peptides 560 

demonstrated an exceptionally high level of concordance. However, in the experiment 561 

performed with the O11 cell line, only a single OVA peptide was identified. Subsequent 562 

evaluation using NetBoLAIIpan was not able to identify this peptide as a predicted ligand, 563 

suggesting that it was not sourced directly from O11 BoLA-DRB3 molecule DRB3*10:01, but 564 

rather could represent an OVA degradation peptide product co-purified during the BoLA IP 565 

enrichment. As the in-silico analysis further identified several DRB3*10:01 restricted strong 566 

binding peptide in the OVA sequence, the failure to discover OVA ligand in the O11 MS 567 

experiment strongly suggests that the uptake and presentation of OVA protein in this model 568 

was unsuccessful, supporting the idea of the previously identified peptide as a false ligand. 569 

These results illustrate the integral power of combining in-silico modelling and MS elution 570 

studies both for the exact stratification of false-positive sequences identified in such IP 571 

experiments due to co-purification, and to confirm the extent of true-positive peptide ligands. 572 

Further, this analysis suggests that the ability of NetBoLAIIpan to accurately model the 573 

peptides derived from an exogenously administered protein could be exploited to provide an 574 

efficient and inexpensive in silico preliminary evaluation of the potential immunogenicity of 575 

candidate antigens and so contribute to the rational selection of antigens (44) prior to 576 

undertaking expensive and laborious in vivo/in vitro experiments. In particular, such an 577 

analysis could be used to assess the MHC coverage of individual antigens, and thus inform the 578 

construction of optimal vaccine designs. An example of how such in silico analysis could be 579 

employed is given in Supplementary Figure 5. 580 

During the development of the prediction model, it was clear that the integration of signals 581 

relating to antigen-processing was beneficial. That is, the inclusion of information regarding 582 

the ‘context’ of the peptides (i.e. both the amino acid residues in the protein flanking the 583 

peptides and the amino acids at the termini of the peptide) significantly improved the power of 584 
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the models for predicting ligands. The NetBoLAIIpan model exhibited an unprecedented high 585 

performance when evaluated using a set of validated BoLA-DRB3 presented epitopes from T. 586 

parva, achieving a median F-rank score of 0.697% (corresponding to 12 out of 25 of the defined 587 

epitopes being the highest predicted peptides within the source protein). This performance was 588 

significantly higher than the 19.23% achieved by the previously available NetMHCIIpan model 589 

which had not been trained on the BoLA-DRB3 elution peptide data, demonstrating the utility 590 

of generating and incorporating these data sets. In line with earlier work, context did not impart 591 

the same benefit in the task of ranking CD4 epitopes as was found for ligand data. Here, the 592 

context model was found to perform equivalent to the non-context model. These results align 593 

with earlier work using the mouse and human MHC class II systems (20, 32, 40). Interestingly, 594 

however further improvements in epitope prediction could be obtained by ranking antigen 595 

peptides based on the number of binders within overlapping 13-19-mers. This method of 596 

assigning epitope ranks is based on the intuitive assumption that protein regions with multiple 597 

predicted binders have a greater chance of being presented by BoLA-DRB3 molecules. Using 598 

this approach, the median F-rank score was 0.362%, suggesting a non-trivial improvement in 599 

the prediction. However, further benchmarking on larger epitope sets to systematically evaluate 600 

the comparative performance of this methodology is needed before the recommendation that it 601 

is routinely adopted can be made. 602 

In conclusion, this study has proven the high value and important synergistic effect of 603 

combining peptide-MHC elution MS data and advanced immunoinformatics to characterize 604 

antigen presentation and perform ligand/epitope identification in the BoLA-DR system.  605 

 606 

 607 

 608 

 609 
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Figures 792 

Figure 1 - Frequencies of BoLA‐DRB3 alleles detected by a MiSeq genotyping approach in a subset of the 793 

experimental Holstein-Friesian cattle herd at the University of Sao Paulo (n=30). The frequency data is shown 794 

as a Pareto plot with the frequency of individual alleles displayed on the left vertical axis and the cumulative 795 

frequencies of the DRB3 alleles shown on the right vertical axis. Allele nDRB3.1 was a novel sequence. 796 

 797 

Figure 2 - Length distribution of BoLA-DR eluted peptides. Kernel density estimates comparing length 798 

distributions of BoLA-DR eluted peptides using different strategies for removal of BoLA-I eluted contaminants: 799 

(A) Direct pBoLA-DR elution; (B) Direct pBoLA-DR elution with subsequent removal of BoLA-I binders as 800 

predicted by NetMHCpan-4.1; (C) Initial immunoprecipitation to deplete pBoLA-I complexes. (D) Same as for 801 

panel (C) but with subsequent removal of BoLA-I binders as predicted by NetMHCpan-4.1. Due to failed pBoLA-802 

I depletion sample 2229TP is not represented in this figure. 803 

 804 

Figure 3 - Cross-Validation evaluation of bovine EL data. Models were evaluated on the BoLA-DR ligand 805 

data in a cross-validation manner. The boxplot shows the AUC per cell line sample for the BoLA and All Data 806 

models with and without context encoding (MAC-Model and MA-Model, respectively). Each point in the figure 807 

represents data from a single sample. Of note, the outlier sample with a cross-validated AUC performance below 808 

0.90 for the BoLA-MAC model was 2229TA; this sample had 27% ligands assigned as contaminants 809 

(Supplementary Figure 3A) causing the decrease in the observed AUC. 810 

 811 

Figure 4 - Examples of deconvoluted motifs derived from EL BoLA-DR datasets. From each cell line defined 812 

as being heterozygous for DRB3, two peptide-binding motifs were derived. Where cell lines express the same 813 

DRB3 allele, consistent motifs were identified (e.g., both 2123TP and 495TP express DRB3*11:01 and show a 814 

similar peptide-binding motif). Motifs were generated from ligands with a rank score of <20 for the context-815 

model. Ligands with a predicted rank >20 are assigned to the Trash cluster. Logos show alignments of predicted 816 

peptide binding cores where numbers in parentheses represent the number of peptides. 817 

 818 

Figure 5 - Profiles of predicted and measured OVA ligands in the PBMC sample. (Main Figure) The gray 819 

shaded area shows the relative number of measured EL ligands in the PBMC sample overlapping each position in 820 

the OVA sequence. The dotted line represents the mapping of 13-21-mers from the OVA sequence predicted with 821 
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a rank score < 1% for the BoLA-DRs expressed in the PBMC sample; the peaks at positions 6-23, 45-71, 196-822 

210 and 275-291 represent 5, 38, 1 and 4 predicted BoLA-DR binding peptides, each with median predicted rank 823 

scores of 0.64, 0.45, 0.82, and 0.56, respectively. (Inserted panel) Mapping of the seven OVA peptides measured 824 

in the PBMC sample. All but one of the peptides shared a binding core “INKVVRFDK” in positions 54-62 of the 825 

OVA sequence. 826 

 827 

Figure 6 - Comparison of different BoLA-DR prediction models using validated CD4 T cell epitopes.  828 

Distribution of percentage F-rank performance values for defined BoLA-DR presented T. parva epitopes using 829 

the NetBoLAIIpan and NetMHCIIpan-4.0 models with (Context) and without context (No Context). Prediction 830 

scores were assigned to each overlapping epitope length-matched peptide in the epitope source protein as 831 

described in the text. The y-axis is shown in log-scale and F-rank values below 0.1 are presented as 0.1005 to 832 

avoid non-defined values. 833 


