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Abstract

This paper proposes a spatial discrete survival model to estimate the time to

default for UK mortgages. The model includes a flexible parametric link function

given by the Generalised Extreme Value Distribution and a dynamic spatially vary-

ing baseline hazard function to capture neighbourhood effects over time. We incor-

porate time and space varying variables into the model. The gains of the proposed

model are illustrated through the analysis of a dataset on around 74,000 mortgage

loans issued in England and Wales from 2006 to 2015.

Keywords: conditional autoregressive model, survival model, spatial contagion, mort-

gage defaults.

1 Introduction

Although there is a vast literature on scoring models for mortgage loans (e.g. Kelly, 2011;

Tong et al., 2012; Wagner, 2004), there is little work that addresses spillover effects in

modelling mortgage risk. The last financial crisis showed the effects of contagion or so

called ’spillover or contagion effects’ - how the deterioration of a borrower’s future ability
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to honour his/her mortgage debt obligation can affect the ability of other borrowers

that usually live in the same neighbourhood. Different kinds of contagion effects for

mortgage loans have been analysed so far in the literature. Goodstein et al. (2017)

obtain evidence of spillover effects only between strategic defaulters (borrowers that can

be influenced in their decision) but they are not significant for defaults that are the

result of inability to pay (borrowers that had no choice). Guiso et al. (2013), Seiler et

al. (2013), Towe and Lawley (2013) found that homeowners with negative equity are

more likely to strategically default if they know or they are neighbours of others who

have done so.

Gupta (2019) analyses contagion effects for foreclosures (taking possession of a mort-

gaged property when the borrower fails to keep up their mortgage payments). The author

identifies a few potential mechanisms through which foreclosures can affect the propen-

sity to default of their neighbours. First, foreclosures can reduce the market price of

neighbouring homes, which represents an incentive to default due to the negative equity

(Schuetz et al., 2008). Moreover, financial institutions may deny refinancing oppor-

tunities to borrowers from areas that have previously experienced foreclosure activity.

Finally, foreclosures could lead to an increase in crime, vandalisation and other activities

that could depreciate the property value of a specific area. Pence (2006) also analysed

data on US foreclosures and obtained that in states where laws favoured borrowers, the

supply of mortgage credit may decrease because lenders may face higher costs.

Not only mortgages, but also other kinds of debts can show spillover effects. For

example, loans to firms could be characterised by contagion effects as the economic

distress from one company could propagate to another one (Calabrese et al. 2019;

Giesecke and Weber, 2006). Longstaff (2010) found strong evidence of contagion in

different financial markets of collateralised debt obligations (CDOs) through liquidity

and risk-premium channels.

To the best of our knowledge, this is the first paper that introduces spillover effects

in survival analysis to predict the default probability of mortgage loans. To understand

the importance of contagion, we highlight that there are several possible mechanisms
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through which a distressed property can affect the prices of nearby houses. The exterior

appearance of distressed properties can deteriorate because such properties could expe-

rience neglect, abandonment or vandalism. Several papers (Harding et al. 2009; Lin

et al., 2009; Immergluck and Smith, 2006) obtain a negative relationship between the

number of nearby foreclosures and the prices of non-distressed properties. There is a

vast literature on housing spillover effects that has been summarised by Schwartz et al.

(2003). Some authors, i.e. Clauretie and Daneshvary (2009) and Agarwal et al. (2012),

highlight the importance of controlling for neighbourhood and spatial effects to analyse

the effects of foreclosed properties on nearly non-distressed properties.

One of the widely used approaches to capture spillover effects is to include fixed

effects based on the property location. Agarwal et al. (2012) follow this approach using

the concentration of foreclosures in the same zip code, finding that an increase in the

local foreclosure rate raises the probability of borrower default. They find that subprime

mortgages are highly concentrated in some zip codes, so showing significant neighbour-

hood effects. Harding et al. (2012) control for location fixed effects by including zip code

dummy variables and they are significantly different from zero. The main disadvantage

of this methodology is that it requires a high number of fixed effects to capture the

local nature of spillover effects in real estate. To overcome this drawback, we analyse

the underlying spatial process of the propensity to default, analogously to Zhu and Pace

(2014). Using a cross-sectional analysis, Zhu and Pace (2014) show that a probit model

with spatially dependent disturbances increases the predictive accuracy compared to the

probit model with independent errors. We extend this approach in three main directions.

The first methodological innovation of this paper is to use a flexible asymmetric link

function instead of the probit model as it is more suitable for binary unbalanced data, as

few authors have already shown in a non-spatial context (Calabrese et al. 2015; Wang

and Dey, 2010). As the number of defaulted properties in a portfolio is much lower than

the frequency of non-distressed mortgage loans, the sample of good and bad loans is

usually highly unbalanced. To extend this approach to a longitudinal framework, the

second contribution of this paper is to propose a survival model with spatial dependence
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and the flexible skewed link function. Since the initial work of Narain (1992), the survival

approach has been widely used in credit risk modeling (Andreeva et al., 2005, 2007;

Banasik et al., 1999; Bellotti and Crook, 2009 and 2013; Crook and Bellotti, 2010;

Djeundje and Crook, 2019; Leow and Crook, 2016). Divino and Rocha (2013) show

that survival analysis improves the accuracy of a scoring model in comparison with that

obtained by a cross-sectional logistic regression. Analogously to most of the models used

in the literature (Dirick et al., 2016), we also include time-varying covariates in survival

model.

The third methodological innovation of this paper is that the coefficients of the pro-

posed model can vary over space and over time. Some authors have used models with

time-varying coefficients to predict corporate defaults, for example Hwang (2012) used

them to investigated the effects of macroeconomic variables on firm-specific character-

istics. For retail banking, Leow and Crook (2016) built two survival models based on

accounts opened before and after the financial crisis and show that the parameters of the

two models are statistically significantly different. In a recent work, Djeundje and Crook

(2019) show that time-varying coefficients in a survival model increase the goodness of

fit and the predictive accuracy of a scoring model.

We call the model proposed in this paper the Spatial Generalised Extreme Value Sur-

vival (SGEVSUR) model. We apply our proposal to a large dataset of 74,081 mortgage

loans issued in England and Wales from June 2006 to December 2015. The SGEVSUR

model outperforms the probit model with temporal, spatial and spatial-temporal com-

ponents over different time horizons (12, 24 and 36 months). In the empirical analysis we

find that the AUC of the spatial-temporal model with the GEV link function

is always lower than the AUC with either spatial or temporal components for

all the time horizons. We cannot reject (with α = 0.1) the null hypothesis that the

Area Under the Curve (AUC) of the GEV model with only spatial component is sta-

tistically significantly different from the AUC of the GEV model with only the temporal

component. However, we can reject this hypothesis (with α = 0.01) if we compare the

spatial-temporal and the temporal GEV or the spatial-temporal and the spatial model.
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The rest of the article is structured as follows: Section 2 presents the SGEVSUR

model and the estimation procedure. This is followed by data description, empirical

results, model fit and performance in Section 3, while the last Section 4 concludes with

discussion. Appendix 1 explains in details the sampling procedure for estimating the

SGEVSUR model and Appendix 2 contains some tables and plots.

2 A spatial discrete survival model for rare events

Some authors (Banasik et al., 1999; Bellotti and Crook, 2009; Djeundje and Crook, 2019;

Stepanova and Thomas, 2002) use survival analysis not only to predict the probability

that a borrower will default but also to assess the dynamical behaviour of the probability

of default over the future. Suppose we have a portfolio of n mortgages over a geographical

region S = {s1, s2, ..., sns} with ns areas. Let ti be the observed number of months since

the i-th mortgage account was open, known as duration time. As mortgage account

records are discrete and usually monthly reported, we assume that the random variable

Ti that represents the duration time has a discrete domain where ti ∈ {1, 2, ..., nt}. As

we know the postcode area for each property, we consider a discrete domain for space

S. Let xit = [1, x1iti , x2iti , ..., xpiti ] denote the vector of p time-dependent covariates for

mortgage i at time ti.

We define a binary random variable Yit for the default event with Yit = 1 if the

borrower defaults at time t and Yit = 0 otherwise. We assume that default is an absorbing

state, this means that there are no cured cases. We consider the conditional default

probability of a mortgage loan as

P{Yit = 1|Yiq = 0 ∀q < t; xit, si, t} = p(xit, si, t).

In survival analysis, p(xit, si, t) is known as a discrete-time hazard rate and it represents

the probability of defaulting on the repayment of the mortgage for the property i at

month t given that the property was not in a distressed state until the month t− 1.

Two widely used approaches to model the hazard rate p(xit, si, t) for discrete time

are the probit (Chang et al., 2013) and the logit model (Allison, 1982; Homes and Held,
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2006). In a non-spatial cross-sectional framework, some papers (Calabrese et al. 2015;

King and Zeng, 2001; Wang and Dey, 2010) show that the logit and the probit models

are inaccurate if the binary classification is strongly unbalanced, such as in scoring

models for the mortgage market. The characteristics of the minority class, represented

by defaulters in our application, are more informative than those of the majority class

(non-defaulters). The features of defaulters are given by the values of the response curve

close to 1. If we use a symmetric link function that approaches the extreme values 0 and

1 at the same rate, the probability of default is underestimated for the actual defaulters,

as shown by Calabrese and Osmetti (2013) on empirical data.

Several methods have been proposed to deal with this drawback. The widely used

approach is to use sampling to obtain balanced classes (Sahare and Gupta, 2012). We

cannot apply a sampling method with spatial data because it can change the spatial

dependence structure in the data. In a non-spatial context, some authors suggest the

use of the Generalised Extreme Value (GEV) cumulative distribution function (Calabrese

et al. 2015; Wang and Dey, 2010) to increase the weight given to the event with lower

frequency, represented by the distressed properties Yit = 1 in this analysis. We choose

this random variable because we focus the attention on the right tail of the response

curve and the GEV distribution has been widely used in the literature to model the

tail of a distribution (Kotz and Nadarajah, 2000). An important advantage of the GEV

distribution is that it is very flexible with a parameter controlling the tail size and the

shape (Dey and Yan, 2016). Calabrese and Elkink (2016) employ the GEV distribution

for a spatial cross-sectional approach.

Li at al. (2016) use the GEV distribution to model the logarithm of time ln(T ) in

a spatial continuous time survival model. Instead, in this paper we consider a spatial

discrete time survival framework and we suggest modelling the conditional probability

of default p(xit, si, t) using the GEV distribution as follows

p(xit, si, t) = FGEV [x′itβ(si, t)] =


exp

{
−
[
1 + τ

(
x′itβ(si,t)−µ

σ

)]− 1
τ

+

}
τ 6= 0

exp
[
− exp

(
−x′itβ(si,t)−µ

σ

)]
τ = 0

(1)

where τ denotes the shape parameter, µ ∈ R the location parameter, σ ∈ R+ the scale
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parameter and x+ = max(x, 0). It is important to highlight that the GEV distribution

has a support that depends on the parameter τ .

- If τ > 0, the Fréchet distribution is obtained with a finite lower end-point at

µ− σ/τ .

- If τ < 0, the Weibull distribution is obtained with a finite upper end-point at

µ− σ/τ .

- If τ = 0, the Gumbel distribution is obtained with infinite support.

Without lost of generality, analogously to Andreeva et al. (2016) and Calabrese et

al. (2015), we consider µ = 0 and σ = 1 as the coefficients β can be changed to take

into account any choice of µ and σ. Let β(si, t) = [β0(si, t), β1(si, t), ..., βp(si, t)]
′ be the

vector of regression coefficients for the location s and time t.

In equation (1), for (x1it = 0, x2it = 0, ..., xpit = 0) we obtain the baseline risk β0(s, t)

that varies with both space and time. We relate the baseline risk to a spatial spillover

effect µ0(s) and to a temporal effect γ0(t) by

β0(s, t) = η0 + µ0(s) + γ0(t)

where η0 is the overall average. Analogously, each covariate effect

βj(s, t) = ηj + µj(s) + γj(t) (2)

for j = 1, 2, ..., p is modelled similarly1.

Two main models have been used to analyse the spillover effects µj(s) in equation

(2) known as the conditionally and simultaneously autoregressive models, i.e. CAR

and SAR models (Wall, 2004). We use a CAR model in this paper as it represents an

attractive approach to handle complicated joint statistical relationships using a set of

conditional dependencies and it is computationally very convenient (Barnerjee et al.,

2015 p. 155).

1To limit the number of parameters, we do not include space-time interaction terms.
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The CAR model was originally developed by Besag (1974) and it represents a larger

class than SAR models (Barnerjee et al., 2015 p. 87). An additional difference between

the CAR and the SAR specifications is that in the former the distribution for the depen-

dent variable is specified and it induces a distribution for the disturbances. The latter

specification reverses this designation providing a distribution for the disturbances which

induces a distribution for the dependent variable (Barnerjee et al., 2015 p. 83).

Let Ws be an exogenous square matrix of order ns known as a spatial adjacency

matrix. The generic element ws,s′ is equal to one when s and s′ are neighbours, that is

s′ ∼ s and zero otherwise. A second matrix Ds is a diagonal matrix with elements on

the main diagonal given by
∑

s′ 6=sws,s′ = ms, where ms is the number of neighbours2 of

region s. The joint distribution of the spatial effects µj = [µj1, µj2, ..., µjns ]
′ is given by

(Banerjee, 2004)

µj ∼MVN(0, σ2sj(Ds − ρsjWs)
−1)

with s′ 6= s and j = 1, 2, ..., p, where MVN stands for Multivariate Normal Distribution,

ρsj ∈ [0, 1] is the spatial autocorrelation parameter, s′ ∼ s indicates that regions s and

s′ are neighbours, msis the number of neighbours of the region s and the parameter

σ2sj > 0 controls the amount of variation between the random effects. The conditional

distribution of the spatial effect µj(·) for the j-th covariate is assumed to be

µj(s)|{µj(s′)}s′∼s ∼ N

(
ρsj

∑
s′∼s µj(s

′)

ms
,
σ2sj
ms

)
. (3)

This is a standard definition of a CAR model widely used by scholars (e.g. Barnerjee

et al., 2015; Wall, 2004; Zhu and Pace, 2014). Barnerjee et al. (2015, p. 82) explain that

ρsj
∑
s′∼s µj(s

′)
ms

can be viewed as a reaction function where ρsj is the expected proportional

reaction of µj(s) to
∑
s′∼s µj(s

′)
ms

. Therefore, we are modelling the spatial effect µj(s) such

that its mean is a proportion of the average of its neighbours’ spatial effects. If ρsj = 0,

the spatial effects µj(s) become independent. The conditional variance in equation (3)

is inversely proportional to the number of neighbours, so that the more neighbours an

area has, the greater the precision for the effect of that area.

2We assume that ms > 0 for any s ∈ S.
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We assume that the temporal effects γj = [γj(1), γj(2), ..., γj(T )]′ of the j-th covariate

in equation (2) follow a first-order autoregressive model. Let t and t′ denote different

periods of time and Wt be the temporal adjacency matrix where the element wt,t′ is

equal to one if |t− t′| = 1, otherwise zero. We define Dt as a diagonal matrix where the

elements on the main diagonal are given by
∑

t′ 6=twt,t′ = 2.

The temporal effects γ are jointly distributed as a multivariate normal

γj ∼MVN(0, σ2tj(Dt − ρtjWt)
−1),

where ρtj is the temporal autocorrelation parameter and σ2tj is the variance parameter

with j = 1, 2, ..., p.

The conditional distribution of the temporal effect γj(·) for the j-th covariate is

assumed to be

γj(t)|{γj(t′)}t′∼t ∼ N

(
ρtj

γj(t− 1) + γ(t+ 1)

2
,
σ2tj
2

)
with t′ 6= t, where ρtj ∈ [0, 1] is the temporal autocorrelation parameter, t′ ∼ t

indicates that |t − t′| = 1 and the parameter σ2tj > 0 controls the amount of variation

between the random effects.

To avoid identifiability issues, we add sum-to-zero constraints for the random ef-

fects (Gelfand and Sahu, 1999). We call the proposed model the Spatial GEV survival

(SGEVSUR) model.

2.1 Prior, likelihood and posterior distributions

As time to default can be subject to right censoring, let δi be the right-censoring indica-

tor, where δi = 1 if the borrower is observed to default on the mortgage and δi = 0 if the

time to default is right-censored (the mortgage debt is fully paid or the payments are

still being made). Let Ti denote the corresponding failure or censoring time. We assume

that the censoring mechanism is random and noninformative as defined by Kalbfleisch

and Prentice (2002, pp 53 and 195).

Let the parameter vector be θ = (ρ′s,ρ
′
t,η
′, (σ2

s)
′, (σ2

t )
′)′. Analogously to Andreeva

et al. (2016) and Calabrese et al. (2015), we fix a value of the parameter τ and we
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estimate the parameter vector θ using a Gibbs sampling. We explain in the following

section that we use a deviance criterion to choose τ .

The survival function S(·) for the i-th right-censored observation is

P (T̃i > t) = S(t,θ) =
t∏

ti=1

[1− p(ti,θ)], (4)

where T̃i is the underlying uncensored time to default and the probability of default

p(ti,θ) is defined in equation (1). Let D = (n,y, X, δ) denote the observed data. There-

fore, the likelihood function is given by

L(D|θ) =
n∏
i=1

{[p(ti,θ)]δi [S(ti,θ)]1−δi}

and the log-likelihood function is

`(D|θ) = log[L(D|θ)] =
∑

i:defaulted

p(ti,θ) +
∑

i:nondefaulted

S(ti,θ).

The posterior distribution of θ is thus given by

π(θ|D) =
L(D|θ)π(θ)∫

θ L(D|θ)π(θ)dθ

where π(·) is the prior for the parameter vector θ. As
∫
θ L(D|θ)π(θ)dθ does not have an

analytic closed form, we use the Gibbs sampling algorithm (Ibrahim et al. 2001, p.19)

to sample from the posterior distribution π(θ|D).

Under the assumption that the prior distributions for parameters ρs,ρt η,σ
2
s ,σ

2
t are

independent, we use proper and weak informative priors on all the parameters to assure

parameter identifiability, in line with Chang et al. (2013), Li et al. (2016) and Wang et

al. (2010). Particularly, we assign priors for the individual parameters of the model as

follows:

• the mean ηj defined in equation (2) is distributed as ηj ∼ N(0, 1002) (Chang et

al., 2013);

• the precision parameters 1/σ2sj and 1/σ2tj are distributed as Gamma(a1 =

0.5, b1 = 0.005)3 (Chang et al., 2013);

3We also considered two additional priors for 1/σ2
sj and 1/σ2

tj given by Gamma(a1 = 0.03, b1 = 0.005)

and Gamma(a1 = 0.1, b1 = 0.0001). We obtained nearly identical results to the original prior.
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• we discretise the prior to 1,000 equally-spaced points over [0,1] for ρsj and ρtj to

facilitate the MCMC sampling. We choose uninformative priors where ρsj , ρtj ∼

Beta(1, 1) (LeSage and Pace, 2009, Chapter 5).

Wang and Dey (2010) show that the posterior distributions under the GEV link are

proper for many non-informative priors.

In the following section we explain the procedure to estimate the 2(ns + nt) + p

parameters (ρs,ρt,η,σ
2
s ,σ

2
t ) that represent the parameter vector θ.

2.2 The estimation procedure

The binary dependent variable Yi in a Bayesian approach can be considered as an indi-

cator of a continuous latent variable Y ∗it (LeSage and Pace, 2009, p.281) such that

Yi =

 1, Y ∗i > 0

0, otherwise.
(5)

Considering Y ∗ as an additional set of parameters to be estimated, the posterior distribu-

tion for the parameters θ conditioning on both Y and Y ∗ becomes a Bayesian regression

model with a continuous dependent variable (Albert and Chib, 1993). This approach

has been already used for different link functions, such as the Student-t (Albert and

Chib, 1993), a generalised Student-t (Kim et al. 2008), the Gosset and the Pregibon

functions (Koenker and Yoon, 2009) and a new skewed link model (Chen et al. 1999).

A GEV link function leads to a truncated GEV distribution (TGEV) for the latent

variable y∗it given by

Y ∗it ∼ GEV (x′itβ(si, t), τ, µ = 0, σ = 1)I(y∗it > 0) if yi = 1

Y ∗it ∼ GEV (x′itβ(si, t), τ, µ = 0, σ = 1)I(y∗it < 0) if yi = 0.
(6)

The first step of the estimation procedure for the SGEVSUR model is to choose a

value for the parameter τ . The skewness and approaching rate to 1 and 0 of the link

function depend on τ (Calabrese et al., 2015). If τ is negative, the conditional probability

of default p(xit, si, t) defined in equation (1) approaches 0 slowly and 1 more rapidly

compared to the log-log curve. If τ is positive, we obtain the opposite. As the sample
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is highly unbalanced with a low percentage of 1, we need a curve which approaches 1

more sharply, given by negative values for the parameter τ . For this reason, we try out

the values of τ in the set (−1,−0.9,−0.6,−0.3).

For a fixed value of τ , we apply the Gibbs sampling (Casella and George, 1992) to

obtain the posterior distributions of the parameter set θ. We consider 10,000 iterations

and we ignore the first 2,000 as burn-in.

We start the MCMC algorithm choosing the following starting values for the param-

eters4 analogously to Chang at al. (2013)

βj(s, t) = 0 for all j, s, t, ρ
(0)
s = 0, ρ

(0)
t = 0, η(0) = 0 , σ

(0)
s = 1, σ

(0)
t = 1.

At each iteration r = 1, 2, ..., R, each parameter θ
(r)
i of the vector θ is sampled from

f(θ
(r)
i |θ

(r−1)
−i , X) conditional on both the covariates X and the vector of the remaining

parameters at their current values θ
(r−1)
−i = [θ

(r)
1 , ...,θ

(r)
i−1,θ

(r−1)
i+1 , ...,θ

(r−1)
d ]′. At each

iteration r, we compute the residual without the parameter θ
(r)
i

ε
(r)
it = Y ∗it − x′itβ∗(si, t)

where β∗(si, t) denote the coefficient vector with the term under investigation set to zero.

For example, if we are investigating ηj , the equation (2) becomes β∗j (si, t) = µj(s)+γj(t)

We provide the conditional density functions of the parameters in the SGEVSUR

model and the sequence followed to sample them in Appendix 1.

After estimating the vector parameter θ for a fixed τ , we apply the described estima-

tion procedure for different τs and we choose the value of τ that minimises the Deviance

Information Criterion (DIC) (Zhu and Carlin, 2000; Spiegelhalter et al., 2002) defined

as

DIC = G+ F

where G is the posterior expectation of the deviance DE (G = Eθ/D[DE]) and represents

the fit of the model, while F is the difference between the expected deviance and the

4We estimate the models for different starting values: βj(s, t) = 1 for all j, s, t, ρ
(0)
s = 0.25,0.5;

ρ
(0)
t = 0.25,0.5; η(0) = 1 ; σ

(0)
s = 2; σ

(0)
t = 2 and we increase the burn-in number of iterations to

5,000. We obtain that the results are robust for different starting values and burn-in number of iterations.

These results are available upon request to the authors.
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deviance evaluated at the posterior expectations and captures the complexity of the

model given by the effective number of parameters. The posterior distribution of the

deviance statistic is

DE(θ) = −2 log[L(D|θ)] + 2 log[h(D)]

where L(D|θ) is the likelihood function and h(D) is a standardising function of the data.

3 Empirical analysis

3.1 Data description

We have a large dataset of 74,081 mortgage loans provided by a financial institution in

England and Wales covering the period from June 2006 to December 2015. The data

consist of monthly behavioural data. Consistent with Basel II (BCBS, 2005), a mortgage

loan is defined in default when it fails to make the payments for at least three consecutive

months. We apply this definition of default and we compute the number of defaulted

loans over the total number of mortgages (74,081) and we obtain a percentage of default

equal to 1.806%. The default is considered as an absorbing state, this means that

there are not cured cases in the dataset. The dependent variable Y is coded as 1 if the

borrower is in default on her mortgage loan, 0 otherwise.

The postcodes in the UK are alphanumeric codes. The first part of the

postcode has between two and four characters and the second three charac-

ters. One or two letters of the first part of the postcode indicates a postcode

area. It could represent a city (such as L for Liverpool) or a region (such as

HS for Outer Hebrides) or a part of London (such as W for part of central

and part of west London). We know the postcode area of the property. The dataset

is spread over 106 postcode areas. We report the mortgage distribution in Table 8 and

the map in Figure 1 in Appendix 2.

We estimate the model using the data observed from June 2006 to December 20125.

5Given the last financial crisis in 2008, we check if the results are robust for a different time period.

We estimate the model on a training sample from January 2009 to December 2012 and we test it on a
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Table 1: Description of the explanatory variables. The letter (T) in the second column

denotes a time-varying variable. The data source of the macroeconomic variables is the

Office of National Statistics, UK.

Variable Description

LTV Ratio of the loan amount over the valuation of the property at completion

Applicants Number of mortgage applicants

Balance Mortgage balance (T)

Repayment Minimum contractual repayment (T)

Interest Interest rate on the mortgage loan (T)

Property Estimated value of the property (T)

Marital Marital status of the first applicant at origination:

married (1) or single, separated, divorced, widowed, cohabiting or other

Buy to let Property is buy to let: yes (1) or no (0)

Type Type of mortgage repayment: Repayment (1) or interest only and split (0)

Fixed Type of mortgage product:

Fixed (1) or flexible, tracker, variable, discount and further advance (0)

Flexible Type of mortgage product:

Flexible (1) or fixed, tracker, variable, discount and further advance (0)

Tracker Type of mortgage product:

Tracker (1) or fixed, flexible, variable, discount and further advance (0)

HPI House price index (T)

Production Index of all UK production, not seasonally adjusted (T)

UN Unemployment rate for people aged 16 and over, seasonally adjusted (T)

IR Interest rate, selected UK retail banks base rate (T)

Consumer Consumer price index (% change) (T)
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Table 2: Descriptive statistics for the training sample.

Variable Mean Std Dev Median Minimum Maximum

LTV 59.864 21.689 61.290 0.273 96.888

Applicants 1.540 0.516 2.000 1.000 4.000

Balance 97,469 69,402 83,028.720 -10,8740.060 2,502,093

Repayment 503 3,357 438.910 0.000 5,705,002

Interest 0.043 0.011 0.047 0.000 0.218

Property 186,584 214,700 151,104.210 0.000 46,385,190

Marital 0.484 0.500 0.000 0.000 1.000

Buy to let 0.244 0.429 0.000 0.000 1.000

Type 0.620 0.485 1.000 0.000 1.000

Fixed 0.540 0.498 1.000 0.000 1.000

Flexible 0.102 0.303 0.000 0.000 1.000

Tracker 0.149 0.356 0.000 0.000 1.000

HPI 2.434 6.678 3.700 -15.600 10.800

Production 102.102 5.124 99.400 95.200 111.700

UN 6.781 1.166 7.300 5.100 8.500

IR 1.761 2.537 0.500 0.500 5.750

Consumer 2.537 1.262 2.500 -0.100 5.200
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Table 3: Goodness of fit for the SGEVSUR model for τ=-0.30.

SGEVSUR model G F DIC

Spatial-Temporal 39,755 681 40,436

Temporal 41,113 315 41,428

Spatial 41,709 398 42,106

To avoid a spurious indication of performance we assess the forecast accuracy using an

out-of-time sample relating to January 2013 to December 2015. This provides up to 36

months of test data, which represents a long period for forecasts. To ensure that the test

sample is also out-of-sample, mortgage loans originated from 2006 to 2012 and still active

after 2012 are considered right-censored data in the training set. All the mortgage loans

in the test sample are issued from January 2013. This procedure gives 46,386 and 27,695

loans in the training and test samples respectively. Table 1 provides the description of

the explanatory variables and Table 2 presents some descriptive statistics on the training

sample.

3.2 Estimation results

To choose the value of τ , we compute the DIC6 for values of the parameter τ in the set

(−1,−0.9,−0.6,−0.3). We obtain that the model with the best goodness of fit is for

τ = −0.30. As Table 3 shows, the SGEVSUR model with both the spatial and temporal

components shows the highest fit to the training sample.

Table 4 around here

We report in Table 4 the average value over time and/or region of the posterior mean

of the parameter estimates for the SGEVSUR model with τ=0.-30. Some predictors show

sample from January to December 2013. The results, available upon request to the authors, are similar

to those reported in the paper.
6We report the DIC results for the SGEVSUR model with spatial-temporal components for different

values of τ in Table 10 in Appendix 2.
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similar behaviours in the three models (temporal, spatial and spatial-temporal models),

such as the Buy to Let dummy variable that is significant in the spatial and spatial-

temporal models with an inverse relationship with the default risk. Also, the balance

owing on a mortgage is an important risk factor in all the analysed models but the sign

of this parameter estimate is coherent with the expectations only for the model with

both spatial and temporal components.

The most interesting result is for the variable Loan to valuation: this variable be-

comes significant only if we consider the spatial component in the scoring model . Several

studies in the US have shown the importance of this variable (e.g. Kau et al., 2011; Zhu

and Pace, 2014) as home-owners may be most likely to decide to default on their mort-

gage in neighbourhoods where the majority of the borrowers have high loan to valuation

ratios (Agarwal et al., 2011 and Harding et al., 2009).

When the coefficients of the scoring model are space-varying, the property value

shows a negative significant relationship with the propensity to default on the mortgage

loan. Otherwise, this relationship becomes positive and non-significant if we consider

only time-varying coefficients. Also Lin et al. (2009), Immergluck and Smith (2006)

documented a negative relationship between sales prices and the number of nearby fore-

closures for US properties.

As the macroeconomic variables vary only over time and not over space in this scoring

model, most of them (HPI, UN, IR) are significant risk factors only if we introduce the

temporal component. The importance of these variables is highlighted by several studies,

Ambrose and Diop (2014), Bellotti and Crook (2009) among others. The first plot in

Figure 3 in Appendix 2 shows the posterior mean of the parameter β for West London

over time and the second plot the posterior mean of the parameter β on June 2006 over

space for the variable Contractual Repayment.

Table 5 around here

We report the estimates of the spatial ρs and temporal ρt autocorrelation parameters

in Table 5. If the risk factor does not change over time or over space, we cannot compute

the temporal or the spatial autocorrelation parameter. Table 4 shows several interesting
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results. The variables N of applicants, Married, Buy To Let and the dummies related to

the type of mortgage repayment (Repay, Fixed , Flexible, Tracker) show all significant

spatial autocorrelation parameters. We can expect that similar number of applicants

and marriage status are concentrated in the same neighbourhoods, for example families

prefer to buy a property in residential areas. Similar considerations are valid also for

the dummies Buy To Let, Repay, Fixed, Flexible and Tracker. Consistent with expec-

tations, most of the macroeconomic variables show a significant temporal first order

autocorrelation parameter ρt.

We report in Table 9 in Appendix 2 the I-statistic for the parameter ρs and ρt
7. This

is a convergence diagnostic of the parameter estimates proposed by Raftery and Lewis

(1992) that should be smaller than 5.

Figure 2 in Appendix 2 shows the posterior distributions of the spatial ρs and tem-

poral ρt autocorrelation parameters for the variables Contractual payment and Property

value in the SGEVSUR model with spatial-temporal components.

3.3 Model performance

In this section we compare the performance of the SGEVSUR with those of the probit

models with spatial, temporal and spatial-temporal components. We estimate the probit

models using the same procedure described in Section 2.2 where the equation (6) becomes

Y ∗it ∼ N(x′itβ(si, t), σ = 1)I(y∗it > 0) if yi = 1

Y ∗it ∼ N(x′itβ(si, t), σ = 1)I(y∗it < 0) if yi = 0.
(7)

The expression (7) represents a univariate normal distribution with mean x′itβ(si, t) and

variance 1 that is truncated to the left at 0 if yi = 1 and to the right at 0 if yi = 0

(LeSage and Pace, 2009 pp. 283).

As we explained in Section 3.1, to avoid sample dependency we estimate the models

using observations from June 2006 to December 2012 and we evaluate the predictive

accuracy on data from January 2013 to December 2015. Because the forecasting horizon

7The authors have also computed the I-statistic for η,σ2
s ,σ

2
t and they are always smaller

than 5. The results are available upon request from the authors.
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is shorter than the time horizon used to estimate the model, we know the values of the

parameters βj(s, t) in equation (2) where t represents duration time.

For assessing the predictive accuracy, we compute a few standard measures used

in the literature (Tong et al., 2012) and in the industry such as the AUC and the

Kolmogorov-Smirnov (KS) statistic. We also consider the H measure proposed by Hand

(2009, 2010) as it is not sensitive to the empirical score distributions of the default

and non-default groups8. Analogously to Bellotti and Crook (2009), we choose 0.05

as severity ratio that represents the ratio between the misclassification cost of a non-

default and that of a defaulter. Following Zhu and Pace (2014), we compute also the

misclassification rates (M) for defaults where the true status is default but the model

predict non-default. We compute the cut-off using the equation in Krzanowski and Hand

(2009, p. 172) that accounts for imbalanced data.

Table 6 around here

Table 6 reports the AUC, KS, H and M measures for different forecasting time

horizons (12, 24 and 36 months). Using a GEV link function instead of a Gaussian

function drastically increases the predictive accuracy of a scoring model for a short time

horizon as 12 months. Figure 4 shows the ROC curves for the SGEVSUR and the probit

models with spatial-temporal components for a time horizon of 12 months.

Figure 4 around here

The difference between the performance measures of these two models decreases

as the time horizon increases. Table 6 also shows that the predictive accuracy of the

SGEVSUR model decreases faster than that for the probit model as the time horizon

increases. If we focus our attention on the GEV link function, Table 6 shows

that the AUC for the models with spatial-temporal components is always

lower than those with only spatial or temporal components. However, the

spatial-temporal models show the lowest misclassification rates (M) for de-

faults. This means that GEV models with only spatial or only temporal

components perform better than spatial-temporal models in classifying both

8We use the R package hmeasure to compute the AUC, KS and H measure.
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defaulters and non-defaulters for different thresholds. Conversely, the spatial

temporal approach outperforms the other GEV models in classifying defaults

for a specific threshold. We obtained similar in-sample results9.

To understand if the AUCs of the spatial-temporal (ST), temporal (T) and spatial

(S) GEV models are statistically different, we apply the DeLong-DeLong test10 (DeLong

et al., 1988). We perform a two-sided test for the difference in AUC where the null

hypothesis is that the AUCs of the two models are equal. If we define

uD,ND =

 1, ifsD < sND

0 ifsD ≥ sND,

then the test statistic Û of Mann-Whitney is

Û =
1

NDNND

n∑
(D,ND)

uD,ND

where the sum is over all pairs of defaulters (D) and non-defaulters (ND) in the sample.

The DeLong-DeLong test statistic T is defined as

T =
Û1 − Û2√

V ar(Û1) + V ar(Û2)− 2cov(Û1, Û2)

where V ar(Û1), V ar(Û2) and cov(Û1, Û2) are computed in Engelmann et al. (2003).

This test statistic is asymptotically distributed as a normal distribution.

Table 7 shows that if we compare the S and the T models, the p-value for each time

horizon increases as the time horizon increases. Also the p-value of the difference in AUC

between the ST and S models increases as the forecasting horizon increases. Finally, we

obtain stronger evidence against the null hypothesis if we compare the ST and T models

instead of the S and T models as the p-value in the first case is always lower than that

in the latter comparison. The p-value of the comparison between ST and S models is

lower than the p-value for comparing S and T models for all the time horizons.

Table 7 around here

9The in-sample results are available upon request to the authors.
10We use the function roc.test in the R package pROC.
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If we perform the DeLong-DeLong test for comparing the AUC of the

SGEVSUR and the AUC of the probit model, we obtain that we reject

the null hypothesis at a significance level of 0.05 for the time horizon of 12

months. We can also reject the null hypothesis at the 0.1 significance level

for 24 and 26 months.

4 Conclusion

In this paper we propose a scoring model for mortgage loans introducing spillover effects

in survival analysis. As the sample of good and bad loans is usually highly unbalanced,

the first innovation of this paper is to use a flexible asymmetric link function. The second

innovation is to include spatial dependence in the longitudinal framework to present the

strong empirical evidence of contagion effects in distressed properties (e.g. Agarwal et

al., 2012; Harding et al. 2009; Lin et al., 2009; Immergluck and Smith, 2006). The

third methodological innovation of this manuscript is to consider coefficients that can

vary both over time and over space. We call the proposed model the Spatial Generalised

Extreme Value Survival (SGEVSUR) model.

From an applied perspective, we analyse a large dataset of 74,081 mortgage loans

issued in England and Wales from June 2006 to December 2015. The time horizon is very

interesting since it includes the financial crisis of 2008. In order to capture the economic

cycle, we include some macroeconomic variables in the scoring model (Bellotti and Crook,

2009). A crucial result of this analysis is that we improve the forecasting accuracy of

classic alternatives, such as probit model with spatial and temporal components. Finally,

we perform hypothesis tests to check if the differences between the AUCs of spatial-

temporal, temporal and spatial GEV models are statistically significantly different from

zero. We find that the spatial-temporal model predicts more accurately than either the

temporal or the spatial models alone, but that there is no difference in accuracy between

the purely spatial and the purely temporal models.
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Appendix 1

We follow the following sequence to sample each parameter of the SGEVSUR model

conditioned on all others:

(1) we sample the latent variable Y
∗(r)
it from a truncated GEV distribution

TGEV(x′itβ
(r−1)(si, t), τ, µ = 0, σ = 1) following equation (6);

(2) we sample the average η
(r)
j for each covariate j from

N

( ∑n
i=1

∑ti
t=1 xjitε

(r)
it∑n

i=1

∑ti
t=1 x

2
jit + 1/1004

,
1∑n

i=1

∑ti
t=1 x

2
jit + 1/1004

)
(8)

where ε
(r)
it = Y

∗(r)
it − x′itβ

∗(r)(si, t) and β∗(r)(si, t) is β(r)(si, t) with the element

under consideration set to zero.

(3) we sample the spatial effect µ
(r)
j for each covariate j fromN([P

(r)
j +Q

(r)
j ]−1R

(r)
j , [P

(r)
j +

Q
(r)
j ]−1) where Q

(r)
j = (Ds − ρ

(r)
sj Ws)/σ

2(r)
sj , Pj is a diagonal matrix where the

generic element s-th (with s = 1, 2, ..., ns) is given by
∑

i|si=s
∑ti

t=1 x
2
jit and R(r) is

the diagonal matrix where the generic element s−th is given by
∑

i|si=s
∑ti

t=1 x
2
jitε

(r)
it ;

(4) we sample the temporal effect γ
(r)
j for each covariate j fromN([P

(r)
j +Q

(r)
j ]−1Rj , [P

(r)
j +

Q
(r)
j ]−1) where Q

(r)
j = (Dt − ρ(r)tj Wt)/σ

2(r)
tj , P

(r)
j is a diagonal matrix where the

generic element t-th (t = 1, 2, ..., T ) is given by
∑

i|ti≥t x
2
jit and R

(r)
j is the diagonal

matrix where the generic element s-th is given by
∑

i|ti≥t x
2
jitε

(r)
it ;

(5) we sample σ
2(r)
sj from InvGamma(ns/2 + a1,µ

′
j(Ds − ρ(r)sj Ws)µj/2 + b1);
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(6) we sample σ
2(r)
tj from InvGamma(nt/2 + a1,γ

′
j(Dt − ρ(r)tj Wt)γj/2 + b1).

(7) we sample ρ
(r)
sj and ρ

(r)
tj from two discrete conditional distributions proportional

to the product between the discrete Beta(1, 1) distribution function and the CAR

density.

We obtain the posterior distribution (8) as follows

π(η
(r)
j |D) ∝

n∏
i=1

{[p(ti,θ)]δi [S(ti,θ)]1−δi}π(η
(r)
j )

∝ exp

{
−
∑n

i=1

∑ti
t=1 x

2
jit

2

n∑
i=1

ti∑
t=1

xjitε
(r)

}
exp

{
− 1

2 · 1004
η
2(r)
j

}

∝ exp

{
−1

2

(
n∑
i=1

ti∑
t=1
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}
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η
2(r)
j − 2η

(r)
j

∑n
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∑ti
t=1 xjitε

(r)
it∑n
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∑ti
t=1 x

2
jit + 1/1004

]}

= exp

−1

2

(
n∑
i=1

ti∑
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x2jit + 1/1004

)[
η
(r)
j −

∑n
i=1

∑ti
t=1 xjitε

(r)
it∑n
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∑ti
t=1 x

2
jit + 1/1004

]2.
We compute the posterior distributions for the spatial effect µ

(r)
j , the

temporal effect γ
(r)
j and the variances σ

2(r)
sj and σ

2(r)
tj following Chang et al

(2013) and Banerjee et al (2004).
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Figure 1: The mortgage distribution for postcode areas in England and Wales.
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Table 4: Posterior mean of the parameter β(s, t) for the SGEVSUR model (τ=-0.30)

with temporal, spatial and spatial-temporal components. The significance levels are

based on approximations under the normality assumption of the parameter estimates

in conjunction with the mean and the standard deviation of each parameter chain.

∗p− value ≤ 0.1; ∗∗p− value ≤ 0.05

Variable Spatial-temporal model Temporal model Spatial model

Intercept -1.9515∗∗ -1.9753∗∗ -1.9495∗∗

Loan to valuation 0.0003∗∗ 0.0001 0.0003∗∗

N of applicants -0.0026 0.0041 -0.0057

Balance 3.4330·10−6 ∗∗ -1.6861·10−7 ∗∗ -5.4612·10−8 ∗∗

Contractual repayment -5.7456 ·10−6 -2.5280·10−5 3.8781·10−5 ∗∗

Interest rate 0.3470∗∗ 0.3244 ∗∗ 0.1439∗

Property value -6.4591·10−8 ∗∗ 2.1821·10−8 -1.5957·10−7 ∗∗

Married 0.0002 0.0005 -0.0007

Buy To Let -0.0086∗ -0.0071 -0.0044 ∗

Repay -0.0095∗ -0.0068 -0.0135

Fixed -0.0118 -0.0064 -0.0025

Flexible -0.0053 -0.0028 -0.0018

Tracker -0.0070 -0.0018 -3.2935·10−8

HPI 0.0013∗ 0.0002∗ 0.0002

Production -0.0003 0.0003 -0.0003

UN 0.0015∗ 0.0046 ∗ -0.0021

IR 0.0011∗∗ 0.0063∗ -0.0030

Consumer -0.0011 -0.0017 -0.0030 ∗
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Table 5: Posterior mean of the spatial ρs and temporal ρt autocorrelation parame-

ters for the GEV model with temporal, spatial and spatial-temporal components. The

significance levels are based on approximations under the normality assumption of the

parameter estimates in conjunction with the mean and the standard deviation of each

parameter chain. ∗p− value ≤ 0.1; ∗∗p− value ≤ 0.05

Variable Spatial-temporal model Temporal model Spatial model

Spatial Temporal Temporal Spatial

aut par aut par aut par aut par

Loan to valuation 0.2179 0.2336

N of applicants 0.3797∗ 0.3607∗

Balance 0.2205 0.1668 0.1674 0.2220∗

Contractual repayment 0.2156 0.1687 0.1686 0.2142

Interest rate 0.4494∗ 0.4905∗∗ 0.4018∗ 0.4369∗∗

Property value 0.2092∗∗ 0.1688∗ 0.1737∗ 0.2305∗

Married 0.3677∗ 0.3530∗

Buy To Let 0.3749∗ 0.3842∗

Repay 0.3812∗ 0.4431∗

Fixed 0.3926∗ 0.3890∗

Flexible 0.4228∗ 0.4100∗

Tracker 0.3790∗∗ 0.3647∗

HPI 0.2458∗ 0.2114

Production 0.1758 0.1696

UN 0.2798∗ 0.3197∗

IR 0.3233∗ 0.3417∗

Consumer 0.2415∗ 0.2404
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Table 6: Forecasting accuracy measures for the SGEVSUR (τ=-0.30) and probit model

with fixed parameters over time and over space (Independent) and with temporal, spatial

and spatial-temporal components for different forecasting time horizons (12, 24 and 36

months).

Model Time Measure Spatial- Temporal Spatial Independent

horizon Temporal

SGEVSUR 12

AUC 0.8250 0.8328 0.8305 0.7853

KS 0.5778 0.5765 0.5828 0.5521

H 0.0984 0.1121 0.0983 0.0723

M 0.3695 0.4049 0.4130 0.4239

probit 12

AUC 0.7267 0.7041 0.7162 0.6736

KS 0.4044 0.3359 0.3907 0.3125

H 0.0343 0.0365 0.0336 0.0215

M 0.4130 0.4239 0.4293 0.4375

SGEVSUR 24

AUC 0.7332 0.7376 0.7362 0.7029

KS 0.4736 0.4743 0.4784 0.4471

H 0.0743 0.0845 0.0742 0.0624

M 0.3109 0.3435 0.3658 0.3862

probit 24

AUC 0.6672 0.6651 0.6576 0.6263

KS 0.3327 0.2876 0.3274 0.2710

H 0.0263 0.0222 0.0273 0.0203

M 0.3618 0.3658 0.3780 0.3841

SGEVSUR 36

AUC 0.7250 0.7275 0.7291 0.6945

KS 0.4552 0.4469 0.4584 0.4268

H 0.0697 0.0771 0.0695 0.0616

M 0.3126 0.3427 0.3710 0.3823

probit 36

AUC 0.6610 0.6622 0.6638 0.6519

KS 0.2865 0.2884 0.3158 0.2573

H 0.0250 0.0261 0.0201 0.0192

M 0.3653 0.3710 0.3804 0.387932



Table 7: The DeLong-DeLong test for comparing the AUC of the SGEVSUR (τ=-0.30)

with temporal, spatial and spatial-temporal components for different forecasting time

horizons (12, 24 and 36 months). The p-values are computed following the approach

described in Sun and Xu (2014) and implemented in the function roc.test of the R

package pROC.

Time horizon Compared models p-value

12

Spatial vs Temporal 0.192

Spatial-Temporal vs Temporal 0.061

Spatial-Temporal vs Spatial 0.068

24

Spatial vs Temporal 0.226

Spatial-Temporal vs Temporal 0.098

Spatial-Temporal vs Spatial 0.077

36

Spatial vs Temporal 0.234

Spatial-Temporal vs Temporal 0.072

Spatial-Temporal vs Spatial 0.115
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Table 8: The mortgage distribution for postcode areas in England and Wales.

Postcode Frequency Postcode Frequency Postcode Frequency Postcode Frequency

AL 162 E 582 MK 460 SP 150

B 2246 EC 22 N 511 SR 214

BA 626 EN 216 NE 1193 SS 330

BB 367 EX 736 NG 1166 ST 925

BD 492 FY 289 NN 492 SW 734

BH 459 GL 1304 NP 3122 SY 1124

BL 335 GU 478 NR 688 TA 346

BN 625 HA 267 NW 279 TD 13

BR 207 HD 259 OL 469 TF 479

BS 1678 HG 152 OX 581 TN 435

CA 304 HP 294 PE 718 TQ 412

CB 293 HR 471 PL 628 TR 526

CF 10985 HU 440 PO 608 TS 522

CH 1344 HX 181 PR 577 TW 299

CM 487 IG 182 RG 635 UB 211

CO 313 IP 514 RH 344 W 337

CR 224 KT 374 RM 310 WA 729

CT 327 L 830 S 1090 WC 12

CV 1007 LA 281 SA 5706 WD 215

CW 446 LD 255 SE 760 WF 381

DA 260 LE 949 SG 319 WN 357

DE 740 LL 2660 SH 1 WR 463

DH 270 LN 266 SK 751 WS 492

DL 386 LS 701 SL 238 WV 425

DN 752 LU 216 SM 149 YO 668

DT 204 M 1130 SN 504

DY 550 ME 379 SO 466
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Figure 2: Posterior distributions for the temporal ρt and the spatial ρs autocorrelation

parameters in the SGEVSUR model with spatial-temporal components.
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Table 9: The I-statistic for the parameter ρs and ρt . This is a convergence diagnostic of

the parameter estimates proposed by Raftery and Lewis (1992) that should be smaller

than 5. We use the function Raftery.Diagnostic in the R package coda.

Variable Spatial-temporal model Temporal model Spatial model

Spatial Temporal Temporal Spatial

aut par aut par aut par aut par

Loan to valuation 1.2751 1.3046

N of applicants 1.3245 1.3632

Balance 1.1858 1.2427 1.3332 1.4874

Contractual repayment 1.2101 1.3648 1.4385 1.5516

Interest rate 1.3524 1.2638 1.2486 1.3823

Property value 1.1742 1.2651 1.3045 1.2807

Married 1.2513 1.3468

Buy To Let 1.4027 1.4471

Repay 1.3213 1.3458

Fixed 1.2592 1.2844

Flexible 1.3731 1.4266

Tracker 1.2513 1.2236

HPI 1.3249 1.3888

Production 1.1271 1.1733

UN 1.2715 1.2932

IR 1.4838 1.3944

Consumer 1.3711 1.2546
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Table 10: Goodness of fit for the SGEVSUR models with spatial-temporal components

for τ=-0.30, -0.6,-0.9,-1 for the training sample.

τ DIC

-1 40,562

-0.9 40,505

-0.6 40,481

-0.3 40,436

0 20 40 60 80

−
4e

−
05

−
3e

−
05

−
2e

−
05

−
1e

−
05

0e
+

00
1e

−
05

contractual repayment

be
ta

(a) β over time for West London

0 20 40 60 80 100

−
1e

−
05

−
5e

−
06

0e
+

00
5e

−
06

1e
−

05

contractual repayment

be
ta

(b) β over regions on June 2006

Figure 3: Posterior mean of the parameter β varying over time and over space for the

variable contractual repayment in the SGEVSUR model.
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Figure 4: ROC curves for the SGEVSUR and probit models with spatial-temporal com-

ponents for a time horizon of 12 months.
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