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ABSTRACT Acoustic and visual sensing can support the contactless estimation of the weight of a
container and the amount of its content when a person manipulate them. However, opaqueness and
transparencies (both of the container and of the content) and the variability of materials, shapes and sizes
make this problem challenging. In this paper, we present an open framework to benchmark methods for the
estimation of the capacity of a container, and the type, mass, and amount of its content. The framework
includes a dataset, well-defined tasks and performance measures, baselines and state-of-the-art methods,
and an in-depth comparative analysis of these methods. Deep learning with neural networks with audio
alone or a combination of audio and visual data are used by the methods to classify the type and amount
of the content, either independently or jointly. Regression and geometric approaches with visual data are
preferred to determine the capacity of the container. Results show that classifying the content type and
level with methods that use only audio as input modality achieves a weighted average F1-score up to 81%
and 97%, respectively. Estimating the container capacity with vision-only approaches and filling mass with
audio-visual, multi-stage algorithms reaches up to 65% weighted average capacity and mass scores.

INDEX TERMS Acoustic signal processing, image and video signal processing, audio-visual classification,
object properties recognition

I. INTRODUCTION

PEOPLE interact daily with household containers, such
as cups, drinking glasses, mugs, bottles and food boxes.

Methods to estimate the physical properties (e.g., weight
and shape) of these containers could support human-robot
cooperation [1]–[5], video annotation and captioning. Meth-
ods should generalize to unknown container instances and
operate with only limited prior knowledge, such as generic
categories of containers and contents [1], [6], [7]. However,
the material, texture, transparency and shape vary consid-
erably across containers and may change with the content.
Furthermore, the content may not be visible due to the

opaqueness of the container or because of hand occlusions.
For these reasons, the predictions of the properties of con-
tainers is a very challenging task. The combination of sensing
modalities, such as RGB images, depth, and audio, may help
to overcome the challenges mentioned above. For example,
noisy scenarios, already filled containers with absence of
sound, occlusions, or transparent objects whose depth data
may be highly inaccurate [8].

Existing methods focus on object recognition, object shape
and size reconstruction in 3D, as well as pose estimation of
a variety of objects using visual data and objects standing on
a surface [9]–[16]. Object properties, such as transparency,
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FIGURE 1. The multi-modal, multi-sensor system used to record a person
manipulating a container and its content. The system includes two third-person
view cameras (at the two sides of the robot), a first-person view camera
mounted on the robot, a first-person view from the body-worn camera on the
person and a 8-microphone circular array (placed next to the robot arm).

are often tackled independently with ad-hoc designed ap-
proaches [8], [17]–[19]. Methods that estimate only the con-
tent level usually tackle the problem either using a single
image [7], [20], exploiting temporal information from se-
quences of RGB or RGB-D data to track the change in the
amount during a mechanical action [21]–[23], or processing
the sound signals generated by the contact of the content with
a container during a manipulation [24]–[27]. For example,
the level of unknown liquids within containers standing on
a surface is regressed or classified by using approaches such
as Kalman Filter and recurrent neural networks (e.g., with
a Long Short-Term Memory unit) with edge features or
spectrograms [22], [23], [27].

Recognizing the content type within a container is a well-
investigated problem for general food recognition using vi-
sual information [28]–[30]. However, these approaches are
often designed and evaluated on different scenarios, on a
single specific physical property, with limited variability in
the data. Recognizing different high-level properties, such as
the amount and type of multiple materials, the capacity of
the container, and the overall weight of the object (i.e., the
container with its content) is not yet well-investigated.

In this paper, we present a novel, open framework for the
design, evaluation, and comparison of methods that estimate
the physical properties of household containers and their
content, when a person manipulates the container (see Fig. 1).
The framework includes a multi-modal dataset, well-defined
tasks and corresponding performance measures, as well as
baselines for estimating the type and amount of the content
(Sec. II). We also review state-of-the-art methods that used
the CORSMAL framework (Sec. III) and we carry out an in-
depth comparative analysis of these methods (Sec. IV). Fi-
nally, we discuss future directions research directions based
on the experience of an international benchmarking chal-
lenge1 organized using the framework (Sec. V).

1https://corsmal.eecs.qmul.ac.uk/challenge2020.html

II. BENCHMARKING FRAMEWORK
A. CONTAINERS, FILLINGS, SCENARIOS
The dataset includes audio-visual-inertial recordings of peo-
ple manipulating a range of containers that vary in shape,
size, material, transparency, and deformability, and a set of
contents under different scenarios with increasing level of
difficulty due to the type of occlusions.

CORSMAL Containers Manipulation [31] is a dataset con-
sisting of 1,140 audio-visual recordings with 12 human sub-
jects manipulating 15 containers, split into 5 cups, 5 drinking
glasses, and 5 food boxes. These containers are made of
different materials, such as plastic, glass and cardboard. Each
container can be empty or filled with water, rice or pasta at
two different levels of fullness: 50% and 90% with respect to
the capacity of the container. The combination of containers
and contents results in a total of 95 configurations acquired
for three scenarios with an increasing level of difficulty
caused by occlusions or subject motions.

In the first scenario, the subject sits in front of the robot,
while a container is on a table. The subject either pours the
content into the empty container, while avoiding touching the
container, or shakes an already filled food box. Afterwards,
the subject initiates the handover of the container to the robot.
In the second scenario, the subject sits in front of the robot,
while holding a container before starting the manipulation.
In the third scenario, a container is held by the subject while
standing to the side of the robot, potentially visible only on
the third-person camera view. After the manipulation, the
subject takes a few steps and initiates the handover of the
container in front of the robot. Each scenario is recorded with
two different backgrounds and under two different lighting
conditions. The first background condition involves a plain
tabletop with the subject wearing a texture-less t-shirt, while
the second background condition involves the table covered
with a graphics-printed tablecloth and the subject wearing
a patterned shirt. The first lighting condition is based on
artificial illumination as provided by lights mounted on the
ceiling of the room. The second lighting condition uses two
controlled artificial lights placed at the sides of the robot and
illuminating the area where the manipulation is happening.
Each subject executed the 95 configurations for each scenario
and for each background/illumination condition2.

B. SENSOR DATA AND ANNOTATION
The dataset was acquired with 4 multi-sensor devices, Intel
RealSense D435i, and an 8-element circular microphone
array. Each D435i device consists of 3 cameras and provides
spatially aligned RGB, narrow-baseline stereo infrared, and
depth images at 30 Hz with 1280x720 pixels resolution. One
D435i is mounted on a robot arm that does not move during
the acquisition and provides a more realistic view of the
operating area from the robot perspective. Another D435i

2Ethical approval (QMREC2344a) was obtained at Queen Mary Univer-
sity of London, and consent from each person was collected prior to data
collection.

VOLUME 11, 2021 3

https://corsmal.eecs.qmul.ac.uk/challenge2020.html


Xompero et al.: The CORSMAL benchmark for the prediction of the properties of containers

is chest mount by the person to provide a first-person view,
while the remaining two devices are placed at the sides of
the robot arm as third-person views that look at the operating
area. The microphone array is placed on a table and consists
of 8 Boya BY-M1 omnidirectional Lavelier microphones
arranged in a circular shape of radius 15 cm. Audio signals
are sampled synchronously at 44.1 kHz with a multi-channel
audio recorder. All signals are software-synchronized with
a rate of 30 Hz. The calibration information (intrinsic and
extrinsic parameters) for each D435i and the inertial mea-
surements of the D435i used as body-worn camera are also
provided.

The annotation of the data includes the capacity of the
container, the content type, the content level, the mass of the
container, the mass of the content, the maximum width and
height (and depth for boxes) of each object. Fig. 2 shows the
total object mass across containers and their contents.

The dataset is split into training set (684 recordings of 9
containers), public test set (228 recordings of 3 containers),
and private test set (228 recordings of 3 containers). The
containers for each set are evenly distributed among the three
categories. The annotations of the container capacity, content
type and level, and the masses of the container and content
are provided publicly only for the training set.

C. TASKS AND PERFORMANCE SCORES

We define three tasks for the framework, namely the classifi-
cation of the amount of content (Task 1), the classification of
the content type (Task 2), and the estimation of the capacity
of the container (Task 3). We refer to the amount of content
as filling level and to the type of content as filling type.

In Task 1, a container is either empty or filled with an
unknown content at 50% or 90% of its capacity. There
are three classes, Λ = {empty , half − full , full}. For each
configuration j, the goal is to classify the filling level (λj ∈
Λ). In Task 2, containers are either empty or filled with
an unknown content. There are four filling type classes,
T = {none, pasta, rice,water}. For each configuration j,
the goal is to classify the type of filling, if any (τ j ∈ T ).
For these two tasks, we compute precision, recall, and F1-
score for each class k across all the configurations belonging
to class k, Jk. Precision is the number of true positives over
the total number of true positives and false positives for each
class k (Pk). Recall is the number of true positives over the
total number of true positives and false negatives for each
class k (Rk). F1-score is the harmonic mean of precision and
recall for each class k and defined as

Fk = 2
PkRk

Pk +Rk
. (1)

We then compute the weighted average F1-score, F̄1, across
the K classes,

F̄1 =

K∑
k=1

JkFk

J
, (2)

where J =
∑K

k=1 Jk is the total number of configuration and
Jk is the subset of configurations belonging to class k. Note
that K = 3 for filling level classification, whereas K = 4 for
filling type classification.

In Task 3, containers vary in shape and size. For each
configuration j, the goal is to estimate the capacity of the
container (γj ∈ R>0, in milliliters). For capacity estimation,
we compute the relative absolute error between the estimated
capacity, γ̃j , and the annotated capacity, γj , for each config-
uration, j,

εj =
|γ̃j − γj |

γj
. (3)

We then compute the average capacity score, C̄, as

C̄ =
1

J

J∑
j=1

1e−ε
j

, (4)

The indicator function 1 ∈ {0, 1} is 0 only when the capacity
(mass) of the container in configuration j is not estimated.

The weight of the object, ω ∈ R>0 (in Newtons), is the
sum of the mass of the (empty) container, mc ∈ R>0 (in
grams), and the mass of the (unknown) filling, mf ∈ R>0

(in grams), multiplied by the gravitational earth acceleration,
g = 9.81 m/s−2,

ω = (mc +mf )g. (5)

While we do not require the mass of the empty container to
be estimated, we expect methods to estimate the capacity of
the container and to determine the type and amount of filling
to estimate the mass of the filling. For each configuration j,
we then compute the filling mass as

mj
f = λjγjD(τ j), (6)

where D(·) selects a pre-computed density based on the
classified filling type. The density of pasta and rice is com-
puted from the annotation of the filling mass, capacity of
the container, and filling level for each container. Density of
water is 1 g/mL. For filling mass estimation, we compute the
relative absolute error between the estimated, m̃j

f , and the
annotated filling mass, mj

f , for each configuration, j, unless
the annotated mass is zero (empty filling level),

εj =


0, if mj

f = 0 ∧ m̂j
f = 0,

m̃j
f , if mj

f = 0 ∧ m̃j
f 6= 0,

|m̃j
f−m

j
f |

mj
f

, otherwise.
(7)

Similarly to the average capacity score, we compute the
average filling mass score, M̄ .

Note that we will present the scores as percentages when
discussing the results in the comparative analysis.

D. BASELINES
CORSMAL provides along with the framework a set of 13
audio and video baselines for the filling level and filling type
classification.
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FIGURE 2. The mass of objects (container and content) in the training set of the CORSMAL Containers Manipulation dataset. The class empty corresponds to the
mass of the container, which is known. Legend: Empty, P5, P9, R5, W5, R9, W9,

As audio-only baselines, we compute traditional acoustic
features, such as spectrograms, zero-crossing rate (ZCR),
Mel-frequency Cepstrum Coefficients (MFCCs), chromo-
gram, Mel-scaled spectrogram, spectral contrast, and tonal
centroid features (tonnetz), and classify filling type and
level jointly. For MFCCs, the 1st to 13th coefficients are
used, whereas the 0th coefficient is discarded. Similar to
the baselines for the environmental sound classification [32],
three baselines use k-Nearest Neighbour (kNN) [33], Support
Vector Machine (SVM) [34], and Random Forest (RF) [35],
respectively, as classifiers whose input is given by the mean
and standard deviation of the MFCCs and ZCR features
across multiple audio frames. Other 3 baselines extract a fea-
ture vector consisting of 193 coefficients from the mean and
standard deviation of the MFCCs, chromogram, Mel-scaled
spectrogram, spectral contrast, and tonnetz across multiple
audio frames, as commonly used in the literature [36]–[39].
For simplicity, we refer to this set of acoustic features as
AF193 in the rest of the paper. From the comparison in [40],
we select three baselines that use spectrograms as input
to the classifiers. The spectrograms are cropped, resized
and reshaped into a vector of dimension 9,216. To remove
redundant information, three additional baselines perform
dimensionality reduction with Principal Component Analysis
(PCA) on the reshaped spectrograms, retaining only the first
128 components.

As vision-only baseline, we use two CNNs to perform
an independent classification of filling level and filling type
from a single image, following previous works [7], [20].
Unlike [20] that used transfer learning and [7] that combined
transfer learning with adversarial training, we re-trained
ResNet-18 architectures [41] using a subset of frames3 se-
lected within the video recordings of our training set and
cropped to a rectangular area around the container [7]. On

3Data available at: https://corsmal.eecs.qmul.ac.uk/filling.html

the test sets, the baseline is applied to each camera view
independently: an image crop is extracted from the last frame
using Mask R-CNN [9] and the segmentation mask with
the most confident class between cup and wine glass is
selected. The output classes of the two CNNs include an
additional class, opaque, to handle cases where containers
are not transparent and vision alone fails to determine the
content type and level [7], [20].

III. METHODS
We briefly review state-of-the-art methods that used the
CORSMAL framework for the estimation of the filling level,
filling type, and container capacity [40], [42]–[45]. For sim-
plicity, we refer to the 6 methods as M1, M2 [42], M3 [43],
M4 [44], M5 [45] and M6 [40]. These methods address filling
type and filling level classification either independently, e.g.,
when only one of the two properties is necessary for the target
application, or jointly, e.g., when both properties are nec-
essary for accurately estimating the total object weight. We
discuss the methods based on the modalities used as input,
the features extracted, and the type of approach (regression,
classification, or geometry-based).

Table 1 summarizes the methods discussed in this section.

A. INDEPENDENT FILLING LEVEL AND FILLING TYPE
CLASSIFICATION
For filling type classification, methods preferred audio as
input modality and adopted either only CNNs, CNN with
RNN, or CNN followed by majority voting as classification
approaches [42], [44], [45]. For filling level classification,
some methods used also visual data in combination with
audio data [43], [45]. Methods computed either traditional,
learned, or both traditional and learned acoustic features. Tra-
ditional acoustic features, such as MFCCs, spectral character-
istics, ZCR, chroma vector and deviation, are computed from
short-term windows. Long-term features can be obtained by
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TABLE 1. Methods for filling level, filling type, and container capacity estimation. Methods are evaluated on the CORSMAL Container Manipulation dataset.

Ref. FL FT CC Description App JLT L Gr A R D Temp.

M6 [40]
Cropped, resized, reshaped spectrogram + kNN/SVM/RF C – –
Cropped and resized spectrogram + CNN C – –
Cropped and resized spectrogram + Hierarchy of 3 CNNs C – –

M1 STFT + FCNN C – –

M2 [42] MFCCs + CNN C – –
CNN with region of interest and bounding box size R – – 1 1

M3 [43] Spectrogram + object-specific MLP selected via majority voting of per-frame object
detection across multiple views

C 4 –

Gaussian processes R – – 4 –

M4 [44]
Multi-channel spectrogram + CNN + LSTM C – –
Multi-channel spectrogram + CNN + majority voting C – –
Point cloud + 3D cuboid approximation G – – 1 1

M5 [45]
R(2+1)D+GRU (video), CNN+GRU (audio), A34F+RF (audio), Late fusion (averaging) C 1 –
CNN+GRU (audio), A34F+RF (audio), Late fusion (averaging) C – –
Energy minimization + 3D cylinder approximation G – – 2 –

KEY – FL: filling level estimation, FT: filling type estimation, CC: container capacity estimation, App: approach, JLT: joint filling type and level classification, A: audio,
R: number of used RGB views, D: number of views used with depth data, L: liquids, Gr: granular materials, Temp.: temporal, C: classification, R: regression, G: projective
geometry, CNN: convolutional neural network, STFT: short-term Fourier transform, FCNN: fully connected neural network, MLP: multi-layer perceptron, LSTM: Long-
Short Term Memory, GRU: Gated Recurrent Unit, kNN: k-Nearest Neighbour, SVM: support vector machine. RF: random forest, A34F: 34 audio features [46] consisting
of zero crossing rate, energy, entropy of energy, spectral centroid, spectral spread, spectral entropy, spectral flux, spectral rolloff, Mel-frequency Cepstrum Coefficients
(MFFCs), chroma vector and chroma deviation.

summarizing the short-term features from longer windows of
the input audio signal and by including additional statistics,
such as mean and standard deviation. Learned features are
extracted by CNNs from multi-channel or mono-channel
audio signals that are post-processed into spectrograms or
log-Mel spectrograms [44], [45]. To handle audio signals of
different duration in the dataset, long audio signal can be
truncated to a pre-defined duration and zero-padding is added
to shorter signals [42], [44].

M1 trained a 5-layers fully connected neural network,
which takes STFT features as input, with Adam opti-
mizer [47] and dropout [48] on the last hidden layer to reduce
overfitting.

M2 [42] addressed only filling type classification and con-
catenated 40 normalized MFCCs features that are extracted
from all audio frames in a window size of 20 ms at 22 kHz,
with a maximum length of 30 s. The concatenated features
are provided as input to a CNN for directly classifying the
filling type (one-to-one sequence classification). The CNN
consists of 2 convolutional layers and 1 fully connected layer,
(86,876 trainable parameters).

M4 [44] used all the 8 audio signals from the microphone
array to compute log Mel-scaled spectrograms with STFT
and 64 filter banks for filling type and filling level classifi-
cation. A sliding window on the cropped spectrogram with
75% overlap forms overlapping audio frames consisting of
3D tensors, where the third dimension is given by the 8
audio channels. Each window is provided as input to a CNN
consisting of 5 blocks, each with 2 convolutional and 1 batch
normalization layers followed by a max-pooling layer. The
CNN is complemented by 3 fully connected layers for the
filling type classification of each audio frame and followed
by the majority voting. The CNN has a total of 13 layers
with 4,472,580 trainable parameters. The same extracted

features are also used as input to the three stacked LSTMs
for the filling level classification. The three stacked LSTMs
are trained with a set of 100 audio frames and contain 256
hidden states, resulting in 2,366,211 trainable parameters.

M3 [43] trained multi-layer perceptrons (MLPs) that are
specific only to each object category (cup, drinking glass,
food box) and for either filling level or filling type classifica-
tion. Each MLP has 3 layers with 3,096 nodes in the first hid-
den layer and 512 in the last hidden layer. The total number of
trainable parameters is 20,762,288. The MLPs takes as input
a spectrogram computed from a multi-channel sound signal
re-sampled at 16,600 Hz and converted into mono-channel by
averaging the samples across channels. Only the last 32,000
samples are retained and converted into a spectrogram as
audio feature via Discrete Fourier Transform. To select which
MLP to use at inference time, regions of interest (ROIs) are
detected in all frames of the image sequences of all four
views in our dataset by using YOLOv4 [49] pre-trained on
MS COCO [50]. The class category (cup, drinking glass,
food box) is determined by a majority voting of randomly
sampled frames (65% of all frames).

M5 [45] used both traditional and learned acoustic features
for filling type classification, whereas visual features are
extracted in addition to the acoustic features for filling level
classification. Multiple classifiers, each associated with each
feature, are used to output the class probabilities and the
average across the classifiers is computed to determine the
final class for either filling level or filling type. For the
acoustic features, the multi-channel input audio signal is
converted into a mono-channel by averaging the samples
across channels. MFCCs, energy, spectral characteristics, and
their statistics from 50 ms windows of the input signal are
computed as short-term traditional features. The features are
concatenated in a 136-dimensional vector used as input to a
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RF classifier. The number of trees of the RF classifier is auto-
matically set during training by selecting the value between
(10, 25, 50, 100, 200, 500) that achieves the highest accuracy
in validation. For the learned features, the mono-channel
signal is re-sampled at 16 kHz and converted into log-Mel
spectrograms from 960 ms windows of the re-sampled signal.
Each spectrogram is provided as input to a VGG-based model
[51] that is pre-trained on a large dataset (e.g., AudioSet [52])
and computes a feature vector of dimension 128. The learned
features are then provided as input to a GRU model [53] that
has 5 layers and a hidden layer of size 512 to handle the
intrinsic temporal relations of the signals. The model has a
total of 7,291,395 trainable parameters. Visual features are
extracted from the image sequences of all camera views by
using R(2+1)D [54], a spatio-temporal CNN that is based on
residual connections [41] and 18 (2+1)D convolutional layers
that approximate 3D convolution by a 2D convolution (spa-
tial) followed by a 1D convolution (temporal). R(2+1)D is
pre-trained for action recognition on Kinetics 400 [55], takes
as input a fixed window of 16 RGB frames of 112×112 pixel
resolution, and outputs a 512-dimensional feature vector.
Long temporal relation between the features of each window
are estimated by using a RNN with a GRU model that has
3 layers and a hidden dimension of size 512 (4,729,347
trainable parameters). The GRU models from each camera
view are jointly trained and their logits are summed together
before applying the final softmax to obtain the class proba-
bilities from the visual input. For filling type classification,
the probabilities resulting from the last hidden state of the
GRU network and those resulting from the RF are averaged.
For filling level classification, the probabilities resulting from
the RF classifier and the GRU models for both the audio
and visual features are averaged together to compute the final
class. The RF classifier and all the GRU models are trained
independently for filling type classification and filling level
classification by using 3-fold validation strategy.

B. JOINT FILLING TYPE AND LEVEL CLASSIFICATION
Jointly estimating the filling type and level can avoid in-
feasible cases, such as an empty water or half-full none.
Different traditional classifiers and existing CNNs that use
spectrograms as input have been analyzed and compared in
[40], especially when different containers are manipulated by
a person with different content types, such as both liquids and
granular materials.

Because of the different container types and corresponding
manipulation, M6 [40] decomposed the problem into two
steps, namely action recognition and content classification
and devised three independent CNNs. The first CNN (action
classifier) identifies the manipulation performed by the hu-
man, i.e., shaking or pouring, and the other two CNNs are
task-specific and determine the filling type and level. The
CNN for action recognition (pouring, shaking, unknown) has
4 convolutional, 2 max-pooling, and 3 fully connected layers;
the CNN for the specific action of pouring has 6 convolu-
tional, 3 max-pooling, and 3 fully connected layers; and the

CNN for the specific action of shaking has 4 convolutional,
2 max-pooling, and 2 fully connected layers. The choice of
which task-specific network should be used is conditioned by
the decision of the first CNN. When the action classifier does
not distinguish between pouring or shaking, the approach
associates the unknown case to the class empty.

C. CAPACITY ESTIMATION

We categorize the methods in regression [42], [43] and
geometric-based approaches [44], [45]. These methods use
either RGB, RGB and depth data, or multiple RGB images
from our dataset.

Regression approaches use either deep CNNs [42] or
distribution fitting via Gaussian processes [43]. M2 [42]
trained a CNN architecture consisting of 4 convolutional
layers, each followed by batch normalization [56], and 3 fully
connected layers (532,175 trainable parameters). The CNN
takes as input a ROI and its normalized relative size, and
then regresses the capacity of the container limited to 4000
mL, accordingly to the range of capacities in our dataset.
The ROI is computed from the contour features of a depth
image selected from the frame with the most visible pixels
of the frontal, fixed view and assuming a maximum depth
of 700 mm. M4 [43] regressed the container capacity using
Gaussian processes depending on the container category. To
model multiple multi-variate Gaussian functions for each
container type, the container type is recognized by detecting
multiple ROIs in all frames of all image sequences as done
for filling type and level classification.

Geometric-based approaches approximate the container to
a primitive shape in 3D, such as cuboid or cylinder [8], [44],
[45]. The shape is represented as a point cloud obtained
directly from RGB-D data or computed via energy-based
minimization to fit the points to the real shape of the object
as observed in the RGB images of a wide-baseline stereo
camera and constrained by the object masks [8], [45]. The
capacity is then computed as a by-product, e.g., by finding
the minimum and maximum values for each coordinate in
3D [44] or using volume formulas specific for the prim-
itive shape [45]. The approximated primitives can lead to
inaccurate capacities: a cuboid representation could result
in an overestimated capacity and hence re-scaling would be
necessary [44]; a cylinder representation may not generalize
to different shapes than rotationally symmetric objects. To
handle occlusions caused by the human hand manipulating a
container, [44] selects the RGB-D frame with a single silhou-
ette having the largest number of pixels and post-processes
the point cloud to deal with inaccuracies in the segmentation.
[45] averages the capacity estimations computed at different
frames of the image sequences in the stereo views, as the
approach assumes the container to be fully visible.

IV. COMPARATIVE ANALYSIS
We compare and analyze the performance of the 6 state-of-
the-art methods and the 13 baselines on the public test set,
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the private test set, and their combination of the CORSMAL
Containers Manipulation dataset [31].

A. IMPLEMENTATION DETAILS
M2 trained the CNN for filling type classification with SGD
optimizer, a fixed learning rate of 2.5×10−4 and momentum
of 0.9, and a batch size of 16. M4 sets the frame length to
25 ms, the hop-length of 10 ms, and the number of samples
for the Fast Fourier Transform to 512 for computing the
STFT. During training, M4 crops audio signals based on
manual annotations of the starting and ending of the manip-
ulation. The network for filling level classification is trained
by using cross-entropy loss and ADAM optimizer [47] with
a learning rate of 0.1× 10−4 and a mini-batch size of 32 for
200 epochs.

B. RESULTS FOR FILLING LEVEL CLASSIFICATION
Table 2 compares the performance of all baselines and
methods except M2 that did not address the task. M4, M5
and M6 achieve the highest accuracy with 80.84, 79.65,
and 78.65 F̄1 on the combined test set, respectively. This
performance is almost twice higher than M1 and M3 and
shows that using only audio as input modality is sufficient
to achieve an accuracy higher than 75 F̄1. M5 is also using
visual information from the RGB sequence of all the four
camera views, but the similar performance to M4 and M6
suggests that audio features are dominant in determining
the classification decision. M6 is the best performing in the
private test set (81.46 F̄1), whereas M4 is the best performing
in the public test set (82.63 F̄1). Interestingly, both methods
selected a fixed portion of the audio signal, transformed into
a spectrogram, where the manipulation of the container by
the human subject was more likely to occur (see Fig. 3).
However, M6 chose to provide the full trimmed spectrograms
as input to the three CNNs, whereas M4 adopted a temporal
approach with a sliding window to provide portions of the
log-Mel spectrogram to a CNN and an LSTM. Both are
shown to be valid methods assuming that the whole audio
signal is available and the manipulation is completed.

The confusion matrices in Fig. 4 show that M4 and M6 do
not confuse the class empty, whereas M5 mis-classifies some
empty configurations as half-full. Not surprisingly, most of
the confusions occur between the classes half-full and full
for all methods. M4 and M5 are more accurate than M6 in
recognizing the class half-full, but M6 is more accurate in
recognizing the class full. M3 mis-classifies the true class
empty as half-full for 40% of the times and as full for 33%
of the times, and the class full is confused with half-full for
75% of the times. M3 recognizes the container categories
cup, drinking glass and food box with 92%, 73%, and 88%
accuracy, respectively, in the training set. Errors in the cate-
gory recognition may lead to wrong classifications by the se-
lected category-specific MLP-based classifier, which is also
trained with limited and selected data. The CNN of M1 made
erroneous predictions across all classes, except for empty that
was never predicted as half-full but only confused with full.

TABLE 2. Filling level classification results (Task 1). Baselines and
state-of-the-art methods (MX with X ranges from 1 to 6) are ranked by their
score in the combined test set.

Method Input modality Test set

A R1 R2 R3 R4 Public Private Combined
Mask + RN 25.12 21.99 23.68
Mask + RN 36.52 25.52 31.46
Spect. + PCA + SVM 30.08 31.99 31.64
Random – – – – – 33.35 41.86 37.62
Spect. + PCA + kNN 39.03 37.16 38.31
Mask + RN 48.90 26.73 39.00
M3 [43] 44.31 42.70 43.53
Spect. + PCA + RF 46.79 42.46 44.66
Spect. + RF 45.43 45.59 45.49
Mask + RN 58.51 32.93 47.00
M1 50.73 47.08 48.71
Spect. + SVM 47.66 51.54 49.67
AF193 + kNN 55.49 53.22 54.47
Spect. + kNN 59.15 53.47 56.38
ZCR + MFCCs + kNN 63.63 54.97 59.35
AF193 + SVM 60.77 58.57 60.09
ZCR + MFCCs + SVM 66.27 57.19 61.87
AF193 + RF 64.18 63.94 64.74
ZCR + MFCCs + RF 70.04 63.11 66.80
M4 [44] 82.63 74.43 78.56
M5 [45] 78.14 81.16 79.65
M6 [40] 80.22 81.46 80.84
Best performing method highlighted in bold.
KEY – A: audio, RX: RGB for view X (1,2,3,4), Mask + RN: Mask
R-CNN + ResNet-18, ZCR: zero crossing rate, MFCCs: Mel-frequency
cepstrum coefficients, Spect.: spectrogram, RF: random forest, SVM: sup-
port vector machine, kNN: k-nearest neighbor, PCA: principal component
analysis, AF193: 193 audio features consisting of MFCCs, chromogram,
Mel-scaled spectrogram, spectral contrast, and tonal centroid.

The vision-only baseline (using the first camera view, on the
left side of the robot arm) confused 81% of the times the class
empty with half-full in addition to mis-classification between
half-full and full, making the performance of the baseline
only 10 F̄1 points higher than a random classifier (37.62 F̄1).

C. RESULTS FOR FILLING TYPE CLASSIFICATION
Table 3 shows that M4, M6, and M5 are the best performing
with 96.95 F̄1, 94.50 F̄1, 94.26 F̄1 scores on the combined
test set (as for filling level classification). Audio is the pre-
ferred modality by all the methods except M3 that conditions
the selection of the audio-based classifier to the recognition
of the container category from visual data. As for filling level
classification (43.53 F̄1), selecting which classifier to use is
likely to be the main source of error for the classifications
of M3 (41.83 F̄1), whereas using only audio is sufficient
to achieve performance close to 100 F̄1 score. If the audio
modality was not available, both filling level and filling
type classifications would be very challenging using only
visual data. M1 and M2 achieve 75.24 F̄1 and 86.89 F̄1,
respectively, but lower of about 20 and 10 percentage points
(pp), respectively, than M4. The table also shows that the
performance of the baselines varies from random results
to almost the same performance as the best performing
M4. Using the spectrogram as an input feature (either after
reshaping the spectrogram into a vector or after applying
PCA to select the first 128 components) to any of the three
classifiers, namely kNN, SVM, or RF, is the worst choice.
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On the combined test set, the lowest performance is obtained
by Spectrogram + PCA + SVM with 24.20 F̄1, whereas
the highest performance is obtained by Spectrogram + kNN
with 64.55 F̄1. Classic audio features, such as MFCCs and
ZCR, are more discriminative and sufficient to achieve per-
formance higher than 78 F̄1 for the three classifiers. Simply
using ZCR and MFCCs with RF can achieve 91.31 F̄1, which
is close to the performance of the three top methods (M5,
M6, M4) that are using CNNs and LSTMs. On the contrary,
performance decreases when using a larger set of features,
such as tonal centroid, spectral contrast, chromogram, Mel-
scaled spectrogram, and MFCCs.

Fig. 5 shows the confusion matrices of the methods. M4
made a few mis-classifications for the class rice with none
and pasta, and for the class water with none. M6 confused
4% pasta with rice, 4% rice with pasta, 7% pasta with water,
and 2% water with none. The confusion between water and
none could be expected due to the low volume of the sound

produced by the water, whereas the confusion of water with
rice might be caused by the glass material of the container
and noise background. The largest confusion for M5 is given
by the erroneous prediction of rice with pasta (13%). As
for filling level classification, M1 and M3 have large mis-
classifications across different classes, with M3 that could not
predict water for any audio input.

D. RESULTS FOR CAPACITY ESTIMATION
We compare the results of M2, M3, M4, and M5, in terms
of the average capacity score. We also report the results of
a pseudo-random generator (Random) that draws the predic-
tions from a uniform distribution in the interval [50, 4000]
based on the Mersenne Twister algorithm [57]. We then
analyze and discuss the statistics of the absolute error in
predicting the container capacity for each testing container
as well as for each filling type and level.

Table 4 shows that M2 achieves the best score with
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TABLE 3. Filling type classification results (Task 2). Baselines and
state-of-the-art methods (MX with X ranges from 1 to 6) are ranked by their
score in the combined test set.

Method Input modality Test set

A R1 R2 R3 R4 Public Private Combined
Mask + RN 14.12 11.23 12.70
Mask + RN 21.14 9.04 15.63
Mask + RN 28.75 15.54 22.90
Mask + RN 30.85 13.04 23.05
Spect. + PCA + SVM 20.57 27.60 24.20
Random – – – – – 21.24 27.52 24.38
Spect. + PCA + kNN 24.47 28.34 26.53
Spect. + PCA + RF 28.75 37.79 33.32
Spect. + SVM 39.39 41.81 40.61
M3 [43] 41.77 41.90 41.83
Spect. + RF 47.98 47.68 47.82
Spect. + kNN 60.50 68.58 64.55
AF193 + SVM 64.92 79.72 72.86
M1 78.58 71.75 75.24
AF193 + kNN 76.84 75.96 76.41
ZCR + MFCCs + SVM 84.23 71.96 78.67
ZCR + MFCCs + kNN 88.19 79.23 83.73
M2 [42] 81.97 91.67 86.89
AF193 + RF 88.36 87.46 87.88
ZCR + MFCCs + RF 92.97 89.74 91.31
M5 [45] 93.83 94.70 94.26
M6 [40] 95.12 93.92 94.50
M4 [44] 97.83 96.08 96.95
Best performing method highlighted in bold.
KEY – A: audio, RX: RGB for view X (1,2,3,4), Mask + RN: Mask
R-CNN + ResNet-18, ZCR: zero crossing rate, MFCCs: Mel-frequency
cepstrum coefficients, Spect.: spectrogram, RF: random forest, SVM: sup-
port vector machine, kNN: k-nearest neighbor, PCA: principal component
analysis, AF193: 193 audio features consisting of MFCCs, chromogram,
Mel-scaled spectrogram, spectral contrast, and tonal centroid.

66.92 C̄, 67.67 C̄, and 67.30 C̄ for the public test set, private
test set, and the combined test set, respectively, when using
only depth data from the fixed frontal view. All methods
achieve a performance score that is twice higher than the
random solution (24.58 C̄ for the combined test set): M4
has the lowest score (54.79 C̄), whereas M5 and M3 obtain
60.57 C̄ and 62.57 C̄, respectively. Fig. 6 shows the statistics
(minimum, maximum, median, 25th and 75th percentiles) of
the relative absolute errors for each container in the test
sets of the dataset. M2 has the lowest median error for all
containers, except for the private containers C14 and C15.
The variation of the error across configurations is either
smaller than the variation of the other methods or lower than
the median value of the other methods. M5 is more consistent
in estimating the same container shape and capacity for most
of the configurations related to containers C12 and C15. M5
also have the largest variations for C10 and C14; M3 for C12

TABLE 4. Container capacity estimation results (Task 3). Methods ranked by
the average capacity score on the combined test set.

Method Input modality Test set

R1 D1 R2 D2 R3 D3 R4 D4 Public Private Combined
Random – – – – – – – – 31.63 17.53 24.58
M4 [44] 57.19 52.38 54.79
M5 [45] 60.56 60.58 60.57
M3 [43] 63.00 62.14 62.57
M2 [42] 66.92 67.67 67.30
Best performing method highlighted in bold.
KEY – RGB (R) or depth (D) modality for view X (1,2,3,4)

and C15; and M4 for C11. Interestingly, M3 have a median
error lower than M4 and M5 for C13 and achieve the lowest
median error with a small variation across configurations for
C14. However, we can observe that in general the relative
absolute error across containers is around or higher than 0.5.

In addition to the comparison across containers, Fig. 7
shows the relative absolute errors grouped by filling type and
level for each method. We can observe that most of the errors
are in the interval [0.3,0.8], and the methods have similar
amount of variations between the 25th and 75th percentiles,
but differences are in the median error and the maximum
error (excluding outliers). M2 achieves the lowest median
error (always lower than half of the real container capacity)
and smaller variations (25th-75th percentiles), whereas M3
have similar results for rice full. M4 has the largest errors
for empty, pasta half-full, pasta full, rice half-full, and rice
full. M5 has the largest errors for water half full and water
full.

E. RESULTS PER SCENARIO AND PER CONTAINER
Table 5 analyzes and compares the performance scores of the
methods grouped by scenario and containers for all the three
tasks. M4, M5, and M6 increase their F̄1 for filling level
classification on the testing containers from scenario 1 to
scenario 3, showing how audio information is robust despite
the increasing difficulty due to the in-hand manipulation
(scenario 2 and 3) and larger distance (scenario 3). However,
M6 decreases by almost 2 pp from scenario 1 (78.52 F̄1) to
scenario 2 (76.92 F̄1). M1 is affected by the in-hand manipu-
lation and distance, decreasing from 52.90 F̄1 in scenario 1 to
45.46 F̄1 in scenario 3. M3 achieve the highest accuracy for
scenario 2 (51.34 F̄1), increasing by 11.51 pp compared to
scenario 1 (39.83 F̄1), but decreasing to 35.92 F̄1 in scenario
3 (likely caused by the errors in recognizing the container
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category). For filling type classification, the performance of
M4, M5, and M6 is higher than 90 F̄1 across the scenarios,
but the trend is the opposite of filling level classification. M5
and M6 decrease in F̄1 from scenario 1 to scenario 3, whereas
M4 achieves the highest accuracy in scenario 2 (98.07 F̄1).
M3 and M1 show the same behavior for filling level and
type classification with a large decrease in scenario 3 by
15.31 pp and 22.16 pp compared to scenario 1, respectively.
For capacity estimation, M3 and M4 are less affected by
the variations across the scenarios, whereas M2 is the best
performing in scenario 1 (68.81 C̄) and scenario 2 (73.70 C̄)
but decreases by 9.42 pp in scenario 3 compared to scenario
1. M2 is based only on the frontal depth view, where the
subject is not visible for most of the time. This challenges
the method to detect the object in the pre-defined depth range.
M5 is affected by the increasing challenges across scenarios,
decreasing from 66.51 C̄ in scenario 1 to 55.68 C̄ in scenario
3. This shows the limitations of the underline approach [8]
that was designed for objects free of occlusions and standing
upright on a surface.

The performance across containers varies between the
methods. Testing containers 12 and 15 are the most chal-
lenging for M3, M4, M5, M6, when classifying the filling
level, whereas M1 achieves its best performance on both
containers. M4 and M5 have the largest decrease with the
score in the interval [40,50] F̄1 compared to the interval [75-

TABLE 5. Comparison of the task performance scores between methods for
each scenario and for each testing container.

Method S1 S2 S3 C10 C11 C12 C13 C14 C15

T1

M1 52.90 47.37 45.46 48.69 46.78 58.27 41.43 38.89 62.58
M3 [43] 39.83 51.34 35.92 35.24 36.59 22.86 33.74 33.74 26.33
M4 [44] 75.41 77.70 82.54 92.85 89.25 46.67 86.85 74.16 45.92
M5 [45] 75.87 80.89 82.03 83.12 90.48 41.26 88.09 90.36 47.68
M6 [40] 78.52 76.92 86.84 83.12 88.10 64.98 89.16 78.28 74.99

T2

M1 81.22 77.01 66.06 86.42 69.33 79.67 87.38 55.60 72.77
M2 [42] 90.68 84.57 85.41 77.29 80.60 91.58 94.02 94.09 85.03
M3 [43] 44.06 51.21 28.75 21.72 26.54 86.98 20.33 34.13 79.45
M4 [44] 97.35 98.07 95.45 97.63 98.82 96.72 100.00 97.66 87.96
M5 [45] 96.70 94.76 91.32 96.44 97.62 84.81 97.63 98.81 84.45
M6 [40] 96.70 95.43 91.27 91.58 96.41 98.33 97.62 85.61 100.00

T3

M2 [42] 68.81 73.70 59.39 66.02 69.14 65.08 79.75 61.12 59.94
M3 [43] 64.33 60.41 62.96 60.99 66.21 61.30 71.90 76.75 28.02
M4 [44] 55.45 55.34 53.57 59.62 61.70 47.47 53.77 58.29 42.17
M5 [45] 66.51 59.51 55.68 60.71 62.43 57.71 53.37 54.75 78.82

KEY – S: scenario, C: container, T: task.

93] F̄1 for the other containers. M6 outperforms all the other
methods with 64.98 F̄1 and 74.99 F̄1 for containers 12 and
15. For filling type classification, M3 obtains 86.98 F̄1 and
79.45 F̄1 for containers 12 and 15, respectively, and less
than 30 F̄1 on the other containers. Because of the dataset
structure, M3 can recognize the box class and the filling type
for that class, but the method cannot easily distinguish filling
type and level for drinking glasses and cups. Overall, other
methods achieve a score higher than 70 F̄1 across containers.
M4 achieves 100 F̄1 on container 13 and M6 on container 15.
M4 is the best performing for containers 10 and 11, whereas
M5 is the best for container 14. Containers 12 and 15 are
the most challenging for M5; container 14 for M6; container
15 for M4; containers 10, 11, and 15 for M2. M1 ranges
between 55.60 F̄1 and 87.38 F̄1 across containers, with the
drinking glasses being the most challenging and obtaining
69.33 F̄1 for container 11 and 55.60 F̄1 for container 14.
For capacity estimation, M2 achieves the best performance
on containers 10 (66.02 C̄), 11 (69.14 C̄), 12 (65.02 C̄), and
13 (79.75 C̄), M3 on container 14 (76.75 C̄), and M5 on
container 15 (78.82 C̄). M3 achieves higher average capacity
score on the private cup and drinking glass than the public
containers, but the score drops to 28.02 C̄ for the container
15. M4 performs worse on the private testing containers than
the public testing containers, with the lowest scores on the
boxes (containers 12 and 15). M5 also performs worse for
the drinking glass and cups in the private test set than the
public test set. Surprisingly, the best score of M5 is on the
box container 15 (78.82 C̄) despite the modeled shape is a
3D cylinder.

F. RESULTS ON THE OVERALL FILLING MASS

We discuss the overall performance of the methods based
on their results on estimating the filling mass. Methods that
estimated either of the physical properties in our framework
(e.g., M1, M2, and M6) are complemented by the random
estimation of the missing physical properties to compute the
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TABLE 6. Comparison of the filling mass estimation results. Methods are
ranked by their score on the combined test sets of the CORSMAL Containers
Manipulation dataset. Note that scores are weighed by the number of tasks
addressed by the methods.

Method Task Test set

T1 T2 T3 Public Private Combined
M6 [40] 28.25 21.89 25.07
M1 29.25 23.21 26.23
Random 38.47 31.65 35.06
M2 [42] 38.56 39.80 39.18
M3 [43] 52.80 51.14 53.47
M4 [44] 63.32 61.01 62.16
M5 [45] 64.98 65.15 65.06

filling mass4. Table 6 shows that methods addressing only
filling type and level classification achieve a lower score
than a random guess for each task. Given the multiplicative
formula of the filling mass estimation (see Eq. 6), even a few
errors in these classification tasks can lead to a low score in
the filling mass estimation, especially when combined with
the random estimation of the container capacity. However,
improving the capacity estimation is an important aspect
to achieve more accurate results (and higher score) for the
filling mass estimation (see M2). M3, M4, and M5 addressed
all three tasks and achieved 53.47 M̄ , 62.16 M̄ , and 65.06 M̄ ,
respectively. Overall, methods perform better on the public
test set than the private test set, except for M2 and M5 that
achieve similar performance in the two test sets. We can
observe that the more accurate predictions in the container
capacity help M3 to obtain 53.47 M̄ despite the classifica-
tion errors for filling level and type. The high classification
accuracy on filling level and type, combined with a similar
score for the capacity estimations with respect to M3, makes
M4 and M5 the best performing in filling mass estimation.
The similar scores for container capacity and filling mass
estimation shows how important it is to accurately predict
the capacity in order to correctly estimate the filling mass.

V. CONCLUSION
We presented the open CORSMAL framework to benchmark
methods for estimating the physical properties of different

4Note that for the organized challenge, the score is weighted by the
number of completed tasks and hence results here are reported in the same
manner.

containers while they are manipulated by a person with
different content types. The framework includes a dataset, a
set of tasks and performance measures, and several baselines
that use either audio or visual input. The framework supports
the contactless estimation of the weight of the container, in-
cluding its content (if any), despite variations in the physical
properties across containers and occlusions caused by the
hand manipulation. We performed an in-depth comparative
analysis of the baselines and state-of-the-art methods that
used the framework. The analysis showed that using only
audio as input is sufficient to achieve a weighted average F1-
score above 80% for filling type and level classification, but
the good performance could be limited to the sensor types
and setup of our dataset. Methods that use audio alone are
robust to changes in the container type, size, and shape, as
well as pose during the manipulation. Moreover, filling type
and level estimation can benefit from each other to avoid
unfeasible solutions [40]. Container capacity is the most
challenging physical property to estimate with all methods
affected by large errors and a maximum score of 65%. Per-
formance on this task also affects the successive estimation of
the filling mass. The design of a method that can generalize
across the different containers and scenarios, especially for
container capacity estimation and partially for filling level
classification, is still challenging. Future directions involve
the exploration of fusion and learning methods with both
acoustic and visual modalities to support the contactless
estimation of the physical properties of containers and their
content.
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