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Abstract

In many practical scenarios, including finance, environmental sciences,
system reliability, etc., it is often of interest to study the various
notion of negative dependence among the observed variables. A new
bivariate copula is proposed for modeling negative dependence between
two random variables that complies with most of the popular notions
of negative dependence reported in the literature. Specifically, the
Spearman’s rho and the Kendall’s tau for the proposed copula have
a simple one-parameter form with negative values in the full range.
Some important ordering properties comparing the strength of nega-
tive dependence with respect to the parameter involved are considered.
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2 On a Bivariate Copula

Simple examples of the corresponding bivariate distributions with pop-
ular marginals are presented. Application of the proposed copula is
illustrated using a real data set on air quality in the New York City, USA.

Keywords: Air quality, Inference function for margins, Kolmogorov-Smirnov
test, Negatively ordered, Negatively quadrant dependent.

1 Introduction

Copulas provide an effective tool for modeling dependence in various mul-
tivariate phenomena in the fields of reliability engineering, life sciences,
environmental science, economics and finance, etc (Cooray, 2019; Fontaine,
Frostig, & Ombao, 2020; Joe, 2015, Ch-7). Specifically, in recent decades,
bivariate copulas were used to generate bivariate distributions with suit-
able dependence properties (Bairamov & Kotz, 2003; Durante, Foscolo,
Rodŕıguez-Lallena, & Úbeda-Flores, 2012; Finkelstein, 2003; Lai & Xie, 2000;
Mohtashami-Borzadaran, Amini, & Ahmadi, 2019). The detailed discussion of
historical developments, obtained results and perspectives along with the up
to date theory can be found in Durante and Sempi (2015) and Hofert, Kojadi-
novic, Machler, and Yan (2018). It should be noted that most copulas available
in the literature possess some limitations in modeling negatively dependent
data, which is a certain disadvantage, as negative dependence between vital
variables is often encountered in real life.

Lehmann (1966) introduced several concepts of negative dependence for
bivariate distributions. Later, Esary and Lehmann (1972) and Yanagimoto
(1972) extended the corresponding definitions and developed stronger notions
of bivariate negative dependence. See Balakrishnan and Lai (2009) for detailed
discussion on popular dependence notions and their applications in the con-
text of continuous bivariate distributions. Scarsini and Shaked (1996) provided
a detailed overview of the corresponding ordering properties for the mul-
tivariate distributions. These results provide useful tools for describing the
dependence properties of copulas with respect to a dependence parameter.
However, only a few bivariate copulas that allow for a simple and meaningful
analysis of this kind have been developed and studied in the literature so far.
The Farlie-Gumbel-Morgenstern (FGM) family of distributions exhibits nega-
tive dependence, but the Spearman’s rho for this family lies within the interval
[−1/3, 1/3] (Schucany, Parr, & Boyer, 1978). Bairamov and Kotz (2000) and
Bekrizadeh, Parham, and Zadkarmi (2012) have considered the four-parameter
and the three-parameter extensions of the FGM family proposed by Sar-
manov (1996), with Spearman’s rho lying within the interval [−0.48, 0.50] and
[−0.5, 0.43], respectively. To address this issue Amblard and Girard (2009) pro-
posed another extension, but its application is limited because of a singular
component that is concentrated on the corresponding diagonal. Some other
extensions of the FGM copula are discussed in Ahn (2015) and Bekrizadeh and
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Jamshidi (2017). Hürlimann (2015) have proposed a comprehensive extension
of the FGM copula with the Spearman’s rho and Kendall’s tau attaining any
value in (−1, 1). However, the dependence properties and ordering properties
of these copulas are not well studied in the literature. Recently, Cooray (2019)
proposed a new extension of FGM family which exhibits negative dependence
among the variables in a very strong sense. However, its Spearman’s rho and
Kendll’s tau are restricted to [−0.70, 0] and [−0.52, 0], respectively.

Thus, it is quite a challenging problem to construct a flexible bivariate cop-
ula with the correlation coefficient that takes any value in the interval (−1, 0).
Moreover, it is not sufficient just to suggest this type of copula, but it is
essential to describe its properties (including relevant stochastic comparisons)
especially in the case of strong notions of dependence. In many real life sce-
narios, paired observations of non-negative variables possess strong negative
dependence. For example, rainfall intensity and duration are jointly modeled
incorporating their negative dependence for the study of derived flood fre-
quency distribution (Kurothe, Goel, & Mathur, 1997). This paper is motivated
by a real case study on air quality for New York Metropolitan area where the
joint distribution of the wind speed and ozone level exhibits strong negative
dependence (See Section 7). We believe that the current study meets to some
extent this challenge, as we propose an absolutely continuous negatively depen-
dent copula that satisfies most of the popular notions of negative dependence
available in the literature with correlation coefficients in the interval (−1, 0).

The paper is organized as follows. In Section 2, we describe the baseline (for
the proposed copula) distribution and discuss some basic properties including
conditional distributions and correlation coefficients. Various notions of nega-
tive dependence in the context of the proposed copula and ordering properties
are considered in Section 3 and Section 4, respectively. Section 5 provides some
examples of negatively dependent standard bivariate distributions. The esti-
mation methodologies are discussed in Section 6. As an illustration, we provide
a real case study in Section 7. Finally, some concluding remarks are given in
Section 8.

2 The Bivariate Copula

Bhuyan, Ghosh, Majumder, and Mitra (2020) proposed a negatively dependent
bivariate life distribution that possesses tractable closed-form expressions for
the joint distributions and exhibits various strong notions of negative depen-
dence reported in the literature. Most importantly, the correlation coefficient
may take any value in the interval (−1, 0). One of the marginal distribution
is Exponential and the other belongs to skew log Laplace family (Dixit &
Khandeparkar, 2017). We utilize the negative dependence structure inherent
in this model and formulate a copula with strong negative dependence. The
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joint distribution function and the marginal distributions are given by

H(x, y) =


yλ − e−λx +

λ

(λ+ µ)yµ

[
e(λ+µ)x − yλ+µ

]
, 0 < y ≤ 1, x > − log y

1− e−λx − λ

(λ+ µ)yµ

[
1− e−(λ+µ)x

]
, x > 0, y > 1,

(1)

and F (x) = 1 − e−λx for x > 0, and G(y) =
µ

(λ+ µ)
yλ1(0 < y ≤ 1) +[

1− λ

(λ+ µ)yµ

]
1(y > 1), respectively, where λ, µ > 0. Note that F (·) and

G(·) are continuous. We first find the quasi-inverse functions of F (·) and G(·)
and ‘put’ those into the arguments of the joint distribution function H(·, ·)
given by (1). Then by Corollary 2.3.7 of Nelsen (2006, p-22), we obtain the
following copula

Cλ,µ(u, v) =



v − (1− u) +
λµ

µ
λ

(λ+ µ)1+
µ
λ

(1− u)1+
µ
λ v−

µ
λ ,

0 < v ≤ µ

µ+ λ
, 1− (λ+ µ)v

µ
< u < 1,

u− (1− v)
[
1− (1− u)1+

µ
λ

]
,

0 < u < 1,
µ

µ+ λ
< v < 1.

(2)
Now using the reparameterization µ = θλ, in (2), we rewrite Cλ,µ as

Cθ(u, v) =



v − (1− u) +
θθ

(1 + θ)1+θ
(1− u)1+θv−θ,

0 < v ≤ θ

1 + θ
, 1− (1 + θ)v

θ
< u < 1

u− (1− v)
[
1− (1− u)1+θ

]
,

0 < u < 1,
θ

1 + θ
< v < 1,

(3)
for θ > 0. It is easy to verify that Cθ(u, v), given by (3), satisfies the following
conditions: (i) Cθ(u, 0) = 0 = Cθ(0, v), (ii) Cθ(u, 1) = u, Cθ(1, v) = v, for any
u, v in I = [0, 1], and (iii) Cθ(u2, v2)− Cθ(u2, v1)− Cθ(u1, v2) + Cθ(u1, v1) ≥
0, for any u1, u2, v1, v2 in I with u1 ≤ u2 and v1 ≤ v2. In Figure 1-2, we
provide graphical presentation of the proposed copula for different values of
the dependence parameter θ.

The survival copula, is the function C̄ which couples the joint survival
function to its marginal survival functions. It is easy to show that C̄ is a copula,
and is related to the copula C via the equation C̄ = u+v−1+C(1−u, 1−v). See
Nelsen (2006, p-32) for details. The survival copula and the density function
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(a) Copula plot for θ = 0.1
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(b) Copula plot for θ = 1
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(c) Copula plot for θ = 5
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(d) Copula plot for θ = 10

Fig. 1 Graphical plots of Cθ for different choices of θ on an unit square.

of the proposed copula Cθ(u, v) are given by

C̄θ(u, v) =


θθ

(1 + θ)1+θ
u1+θ(1− v)−θ, 0 < v ≤ θ

1 + θ
, 1− (1 + θ)v

θ
< u < 1

vu(1+θ), 0 < u < 1,
θ

1 + θ
< v < 1,
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(a) Contour plot for θ = 0.1
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(b) Contour plot for θ = 1
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(c) Contour plot for θ = 5
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(d) Contour plot for θ = 10

Fig. 2 Contour plots of Cθ for different choices of θ.

and

cθ(u, v) =


θ1+θ

(1 + θ)θ
(1− u)θv−(1+θ), 0 < v ≤ θ

1 + θ
, 1− (1 + θ)v

θ
< u < 1

(1 + θ)(1− u)θ, 0 < u < 1,
θ

1 + θ
< v < 1,

(4)
respectively.

2.1 Conditional Copulas

The conditional copula of U given V = v, is as follows. For 0 < v ≤ θ
(1+θ) ,

Cθ(u | v) = 1− θ(1+θ)

(1 + θ)(1+θ)
(1− u)(1+θ)v−(1+θ), 1− (1 + θ)v

θ
< u < 1, (5)
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whereas for θ
(1+θ) < v < 1,

Cθ(u | v) = 1− (1− u)(1+θ), 0 < u < 1. (6)

The conditional mean and variance of U | V = v are given by

E[U | V = v] =


1− (1 + θ)2v

θ(θ + 2)
, 0 < v ≤ θ

1 + θ

1

θ + 2
,

θ

1 + θ
< v < 1,

and

V ar[U | V = v] =


(1 + θ)3v2

θ2(θ + 2)2(θ + 3)
, 0 < v ≤ θ

1 + θ

θ + 1

(θ + 2)2(θ + 3)
,

θ

1 + θ
< v < 1,

respectively.

Remark 1 The regression of U on V = v is linearly decreasing in v for 0 < v ≤ θ
θ+1 ,

and independent of v for θ
θ+1 < v < 1. Also, it is interesting to note that the

conditional variance of U | V = v is an increasing function of v and bounded from
above by θ+1

(θ+2)2(θ+3)
.

The conditional copula of V given U = u, is given by

Cθ(v | u) =


1− θθ

(1 + θ)θ
(1− u)θv−θ,

(1− u)θ

(1 + θ)
< v ≤ θ

1 + θ

1− (1 + θ)(1− v)(1− u)θ,
θ

1 + θ
< v < 1

(7)

The conditional mean and variance of V | U = u, are given by

E[V | U = u] =
(1− u)θ

2(1− θ)
− 2θ2(1− u)

1− θ2
,

for θ ̸= 1, and

V ar[V | U = u] = −
(1 + θ)(1− u)θ

[
2− θ + θ2(2− 6u) + 3θ3u

]
3(θ − 2)(θ2 − 1)2

+
θ3(1− u)2

(θ − 2)(θ2 − 1)2

− (1 + θ)2(1− u)2θ

4(θ2 − 1)2

for θ ̸= 1, 2, respectively.
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Remark 2 The regression of V on U = u is strictly decreasing in u.

One can use the conditional copula of U given V = v, provided in (5) and
(6), to simulate from the proposed copula Cθ, given by (3), using the following
steps.

Step I. Simulate vi and u∗
i independently from standard uniform distribution.

Step II. If vi ≤ θ
θ+1 , then solving Cθ(u | vi) = u∗

i from (5), we get ui = 1−( θ+1
θ )vi(1−

u∗
i )

1
1+θ ;

else, solving Cθ(u | vi) = u∗
i from (6), we get ui = 1− (1− u∗

i )
1

1+θ .
Step III. Repeat Step I and Step II n times to obtain independently and identically

distributed realizations (ui, vi), for i = 1, 2, . . . , n from Cθ.

A similar algorithm can be elaborated to simulate from Cθ based on the con-
ditional copula of V given U , provided in (7).The associated R programme for
the aforementioned algorithm are provided in the Supplementary material. The
Scatter plots based on 500 simulated observations using the aforementioned
algorithm for four different values of θ are given in Figure 3. As expected, the
data points are getting closer to the diagonal v = −u for higher values of θ.

2.2 Basic Properties

In this Subsection, we present three important propositions related to the
proposed copula. The detailed proofs are presented in Appendix A.

Proposition 1 The copula Cθ, defined in (3), is decreasing with respect to its depen-
dence parameter θ, i.e., if θ1 ≤ θ2 then Cθ2(u, v) ≤ Cθ1(u, v), for all (u, v) ∈ I2 =
[0, 1]× [0, 1].

Proposition 2 The copula Cθ, defined in (3), is sub-harmonic, i.e., ∇2Cθ(u, v) ≥ 0.

Proposition 3 The copula Cθ, defined in (3), is absolutely continuous.

2.3 Measures of Dependence

Measures of dependence are commonly used to summarize the complicated
dependence structure of bivariate distributions. See Joe (1997, Ch-2), Nelsen
(2006, Ch-5) and Hofert et al. (2018, Ch-2) for a detailed review on measures
of dependence and its associated properties. In this section, we derive the
expressions of the Kendall’s tau and the Spearman’s rho for the proposed
copula Cθ. Essentially, these coefficients measure the correlation between the
ranks rather than actual values of X and Y . Therefore, these coefficients are
unaffected by any monotonically increasing transformation of X and Y .
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(a) Scatter plot for θ = 0.1
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(b) Scatter plot for θ = 1
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(c) Scatter plot for θ = 5
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(d) Scatter plot for θ = 10

Fig. 3 Scatter plots based on 500 simulated observations from Cθ for different choices of θ.

Definition 1 Let X and Y be the continuous random variables with the dependence
structure described by the copula C. Then the population version of the Spearman’s
rho for X and Y is given by

ρ :=

∫ 1

0

∫ 1

0
uvdC(u, v)− 3 =

∫ 1

0

∫ 1

0
C(u, v)dudv − 3

Proposition 4 Let (X,Y ) be a random pair with copula Cθ. The Spearman’s rho is
given by

ρ =
2(3 + 3θ + θ2)

2 + 3θ + θ2
− 3,

which is a decreasing function in θ and takes any values between -1 and 0.

Definition 2 Let X and Y be the continuous random variables with copula C. Then,
the population version of the Kendall’s tau for X and Y is given by

τ := 4

∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1
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Fig. 4 Plot of Spearman’s rho and Kendall’s tau against the dependence parameter θ.

Proposition 5 Let (X,Y ) be a random pair with copula Cθ. Then the Kendall’s tau
is given by

τ =
−θ

(1 + θ)
,

which is a decreasing function in θ and takes any values between -1 and 0.

In Figure 4, we have plotted the Spearman’s rho and the Kendall’s tau
against the dependence parameter θ. It is easy to see that the Spearman’s rho
is less than the Kendall’s tau for all θ > 0.

3 Connections with notions of Negative
Dependence

As discussed in Subsection 2.3, the Spearman’s rho and the Kendall’s tau mea-
sure the correlation between two random variables. However, it is possible that
these random variables may have the strong correlation, but possess the weak
association with respect to different notions of dependence or vice versa. In this
section, we discuss several relevant notions of negative dependence, namely
Quadrant Dependence, Regression Dependence and Likelihood Ratio Depen-
dence, etc., and explore whether the corresponding properties are satisfied by
the proposed copula or not. First, we provide the definitions of the aforemen-
tioned dependence notions as discussed in Nelsen (2006) and Balakrishnan and
Lai (2009).
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Definition 3 Let X and Y be continuous random variables with copula C. Then

1. X and Y are Negatively Quadrant Dependent (NQD) if P (X ≤ x, Y ≤ y) ≤
P (X ≤ x)P (Y ≤ y), for all (x, y) ∈ R2, where R2 is the domain of joint dis-
tribution of X and Y , or equivalently a copula C is said to be NQD if for all
(u, v) ∈ I2, C(u, v) ≤ uv.

2. Y is left tail increasing in X (LTI(Y | X)), if P [Y ≤ y | X ≤ x] is a
nondecreasing function of x for all y.

3. X is left tail increasing in Y (LTI(X | Y )), if P [X ≤ x | Y ≤ y] is a
nondecreasing function of y for all x.

4. Y is right tail decreasing in X (RTD(Y | X)), if P [Y > y | X > x] is a
nonincreasing function of x for all y.

5. X is right tail decreasing in Y (RTD(X | Y )), if P [X > x | Y > y] is a
nonincreasing function of y for all x.

6. Y is stochastically decreasing in X denoted as SD(Y | X), (also known as
negatively regression dependent (Y | X)) if P [Y > y | X = x] is a nonincreasing
function of x for all y.

7. X is stochastically decreasing in Y denoted as SD(X | Y ), (also known as
negatively regression dependent (X | Y )) if P [X > x | Y = y] is a nonincreasing
function of y for all x.

8. LetX and Y be continuous random variables with joint density function h(x, y).
Then X and Y are negatively likelihood ratio dependent, denote by NLR(X,Y),
if h(x1, y1)h(x2, y2) ≤ h(x1, y2)h(x2, y1) for all x1, x2, y1, y2 ∈ I such that
x1 ≤ x2 and y1 ≤ y2.

Now in the following theorems, we establish that the proposed copula Cθ

satisfies all the aforementioned dependence properties. The detailed proofs are
provided in Appendix B.

Theorem 6 Let X and Y be two random variables with copula Cθ. Then (i) X and
Y are LTI(Y | X), (ii) X and Y are LTI(X | Y ), (iii) X and Y are RTD(Y | X),
and (iv) X and Y are RTD(X | Y ).

Theorem 7 Let X and Y be two random variables with copula Cθ. Then (i) X and
Y are SD(Y | X), and (ii) X and Y are SD(X | Y ).

Theorem 8 Let X and Y be two random variables with copula Cθ. Then X and Y
are NLR.

Remark 3 Two random variables X and Y with copula Cθ are NQD. This directly
follows from Theorem 8. See the interrelationships between different concepts of
negative dependence summarised in (Balakrishnan & Lai, 2009, p-130) for details.
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4 Ordering Properties

In Section 3, several negative dependence properties of the proposed copula
Cθ has been investigated for the fixed θ > 0. In this section, we discuss the
ordering properties of the proposed copula Cθ, which provides a precise (and
also intuitively expected) notion for one bivariate distribution being more pos-
itively or negatively associated than another. For this purpose, we first recall
the definitions of the dependence orderings for bivariate distributions. These
definitions describe the strength of dependence of a copula with respect to
its dependence parameter θ. Lehmann (1966) was first to introduce the NQD
and NRD notions. Following this notions, Yanagimoto and Okamoto (1969)
introduced the ordering properties as defined below.

Definition 4 Let F and G be two bivariate distributions with the same marginals.
Then F is said to be smaller than G in the NQD sense denoted as F ≺NQD G if

F (x, y) ≥ G(x, y) ∀x and y.

Definition 5 Let F and G be two bivariate distributions with the same marginals,
and let (U, V ) and (X,Y ) be two random vectors having the distributions F and
G, respectively. Then F is said to be smaller than G in the NRD sense, denoted by
F ≺NRD G or (U, V ) ≺NRD (X,Y ) if, for any x1 ≤ x2,

F−1
V |U (u | x) ≥ F−1

V |U (v | x
′
) =⇒ G−1

V |U (u | x) ≥ G−1
V |U (v | x

′
)

for any u, v ∈ I, where FV |U denote the conditional distribution of V given U = u

and F−1
V |U denote its right-continuous inverse. Equivalently, F ≺NRD G if and only

if G−1
Y |X

[
FV |U (y | x) | x

]
is decreasing in x for all y (Fang & Joe, 1992).

Later, Kimeldorf and Sampson (1987) have introduced and studied in detail
the notion of the Negatively Likelihood Ratio dependence ordering that is
described in the following definition. Let the random variables X and Y have
the joint distribution G(x, y). For any two intervals I1 and I2 of the real line,
let us denote I1 ≤ I2 if x1 ∈ I1 and x2 ∈ I2 imply that x1 ≤ x2. For any two
intervals I and J of the real line let G(I, J) represent the probability assigned
by G to the rectangle I × J .

Definition 6 Let F and G be two bivariate distributions with the same
marginals, and let (U, V ) and (X,Y ) be two random vectors having the distri-
butions F and G, respectively. Then F is said to be smaller than G in the
NLR dependence sense, denoted by F ≺NLR G or (U, V ) ≺NLR (X,Y ) if
F (I1, J1)F (I2, J2)G(I1, J2)G(I2, J1) ≥ F (I1, J2)F (I2, J1)G(I1, J1)G(I2, J1) when-
ever I1 ≤ I2 and J1 ≤ J2. When the densities F and G exist and denoted by
f and g, respectively, then the aforementioned condition equivalently is written as
f(x1, y1)f(x2, y2)g(x1, y2)g(x2, y1) ≥ f(x1, y2)f(x2, y1)g(x1, y1)g(x2, y1) whenever
x1 ≤ x2 and y1 ≤ y2.
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In the following theorems, we derive the sufficient conditions under which
one bivariate distribution will be more negatively associated than another. The
detailed proofs of the following theorems are presented in Appendix C.

Theorem 9 If θ1 ≤ θ2, then Cθ1(u, v) ≺NQD Cθ2(u, v).

Theorem 10 If θ1 ≤ θ2, then Cθ1(u, v) ≺NRD Cθ2(u, v).

Theorem 11 If θ1 ≤ θ2, then Cθ1(u, v) ≺NLR Cθ2(u, v).

5 Examples

Traditionally, bivariate life distributions available in the literature are pos-
itively correlated (Balakrishnan & Lai, 2009). However, in many real life
scenarios, paired observations of non-negative variables are negatively cor-
related (Bhuyan et al., 2020). For example, the rainfall intensity and the
duration are jointly modeled incorporating their negative dependence for the
study of the corresponding flood frequency distribution (Kurothe et al., 1997).
Gumbel (1960) and Freund (1961) have proposed the bivariate Exponential
distributions with lower bound of the correlation coefficient as −0.4. In this
section, several specific families of bivariate distributions are generated using
the proposed copula (3) with different choices for marginal distribution. For
modelling purposes, the Lognormal, Weibull, and Gamma distributions are
popular among practitioners in the fields of engineering, medical science, and
environmental science (Poboč́ıková, Sedliačková, & Michalková, 2017; Ramos,
Nascimento, Ferreira, Weber, & Santos, 2019; Sharma, Sharma, Khare, & Kwa-
tra, 2016). We consider these choices as baseline distribution. We first define a
bivariate Weibull and bivariate Gamma distribution. Then we consider a case
when the marginals are different, one from the Lognormal and another from
the Weibull family. It should be noted that the resulting bivariate distributions
can be described implementing all notions of negative dependence discussed
in Section 3 and 4.

Example 1 Bivariate Weibull distribution: A family of bivariate Weibull
distributions based on the proposed copula Cθ, with marginals F (x) =[
1− e−(λ1x)

δ1
]
1(x > 0), and G(y) =

[
1− e−(λ2y)

δ2
]
1(y > 0), is given by

h(x, y) =


δ1δ2λ

δ1
1 λ

δ2
2 θ

θ+1

(1 + θ)θ
xδ1−1yδ2−1

(
e−(λ1x)

δ1

1− e−(λ2y)δ2

)1+θ

, 0 < y ≤ ϕ1, x > ϕ2(y)

δ1δ2λ
δ1
1 λ

δ2
2 (1 + θ)xδ1−1yδ2−1e−(λ2y)

δ2
(
e−(λ1x)

δ1
)1+θ

, x > 0, y > ϕ1
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where ϕ1 =
1

λ2
[log(1 + θ)]

1
δ2 , ϕ2(y) =

1

λ1

[
log

(
θ

(1 + θ)(1− e−(λ2y)δ2 )

)] 1
δ1

, λi >

0, δi > 0 for i = 1, 2.

Example 2 Bivariate Gamma distribution: A family of bivari-
ate Gamma distributions based on the proposed copula Cθ, with

marginals F (x) =
[∫ x

0
1

Γ(α1)
βα1
1 xα1−1e−β1x

]
1(x > 0), and G(y) =[∫ y

0
1

Γ(α2)
βα2
2 yα2−1e−β2y

]
1(y > 0), is given by

h(x, y) =



βα1
1 βα2

2 θ1+θxα1−1yα2−1e−(β1x+β2y)

Γ(α1)Γ(α2)(1 + θ)θ

[
1− γ1(α1, β1x)

Γ(α1)

]θ [
γ2(α2, β2y)

Γ(α2)

]−(1+θ)

,

0 < y ≤ ξ2, ξ1(y) < x < η

βα1
1 βα2

2 (1 + θ)

Γ(α1)Γ(α2)
xα1−1yα2−1e−(β1x+β2y)

[
1− γ1(α1, β1x)

Γ(α1)

]θ
,

0 < x < η, ζ1 < y < ζ2,

where ζ1 = γ−1
2

(
θ

1 + θ

)
, ζ2 = γ−1

2 (Γ(α2)), ξ2 = γ−1
2

(
Γ(α2)θ

1 + θ

)
, η = γ−1

1 (Γ(α1)),

ξ1(y) = γ−1
1

[
Γ(α1)

(
1− (1 + θ)γ2(α2, β2y)

θΓ(α2)

)]
, γi(αi, βi) =

∫ βi

0 tαi−1e−tdt, αi > 0,

βi > 0 for i = 1, 2.

Example 3 Bivariate Lognormal-Weibull distribution: A family of bivari-
ate distribution with one marginal from Lognormal distribution and another
from Weibull distribution based on the proposed copula Cθ, with marginal

distribution functions F (x) = 1
2

[
1 + erf

(
ln x−µ√

2σ

)]
1(x > 0), and G(y) =[

1− e−(λy)δ
]
1(y > 0), is given by

h(x, y) =



δλδθθ+1

σ
√
π(1 + θ)θ2

2θ+1
2

yδ−1e−(λy)δ

x
(
1− e−(λy)δ

)1+θ

[
1− erf

(
lnx− µ√

2σ

)]θ
,

0 < y ≤ ψ1, ψ2(y) < x < ψ3

δ(1 + θ)λδ

σ
√
π2

2θ+1
2

yδ−1e−(λy)δ

x

[
1− erf

(
lnx− µ√

2σ

)]θ
,

x > 0, y > ψ1

where ψ1 = 1
λ [log(1 + θ)]

1
δ , ψ2(y) = exp

[
µ+ σ

√
2 erf−1

{
1− 2(1+θ)

θ

(
1− e−(λy)δ

)}]
,

ψ3 = µ + σ
√
2 erf−1 ( 1

2

)
, λ > 0, δ > 0, −∞ < µ < ∞, σ > 0, and

erf(x) = 2√
π

∫ x
0 e

−t2dt.

Remark 4 The bivariate Weibull (in Example 1) and the bivariate Gamma (in Exam-
ple 2) reduce to bivariate Exponential distribution for δ1 = δ2 = 1, and α1 = α2 = 1,
respectively.
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6 Estimation Methodology

In a classical parametric setting, a straightforward approach is to estimate the
dependence parameter and the parameters associated with the marginals using
maximum likelihood method. This method is theoretically valid but there are
some practical limitations. Firstly, the estimation of the dependence param-
eter θ depends on the parametric assumptions made on the marginals and
the estimate of θ will be biased if the marginals are misspecified. The second
drawback is computational as the log-likelihood function involves potentially
large number of parameters and high-dimensional optimization is known to
be challenging. See Hofert et al. (2018, Ch-4) for details. To avoid aforemen-
tioned computational burden Joe (1997) proposed a two stage method known
as inference function for margins (IFM). This estimation method is based on
two separate maximum likelihood estimations of the univariate marginal distri-
butions, followed by an optimization of the bivariate likelihood as a function of
the dependence parameter. Similar to maximum likelihood estimate, the esti-
mate of θ based on IFM may be biased if the margins are partially misspecified
(Hofert et al., 2018, p-136). Although the IFM has computational edge, it is
less efficient compared to the maximum likelihood estimate (Joe, 2015, Ch-5).

We propose to use a method that close in spirit to the method of infer-
ence function for margins but avoids the issue with misspecified marginals for
the estimation of θ. In contrast to IFM, we do not maximize the bivariate
likelihood. Instead, we determine the dependence parameter using method of
moments (Hofert et al., 2018, p-141). The method of fitting a bivariate dis-
tribution with marginals Fηi

(·), indexed by parameter ηi for i = 1, 2, involves
the following steps:

(i) Obtain the estimates η̂i for i = 1, 2 using maximum likelihood method.

(ii) Estimate of θ is given by θ̂ = −τn
1+τn

, or obtained by solving ρn =

2(3 + 3θ̂ + θ̂2)

2 + 3θ̂ + θ̂2
− 3, where τn and ρn are sample version of Kendall’s τ and

Spearman’s ρ, respectively.
(iii) Obtain the fitted bivariate distribution by putting Fη̂1

(·), and Gη̂2
(·), and θ̂

in (3).

These steps are easy to execute and familiar to the practitioners of different
fields of science. This method allows the copula to adequately approximate the
dependence structure of the bivariate data, which is of prime concern from a
practical point of view.

7 Application

7.1 Exploratory Data Analysis

For an illustrative data analysis based on the proposed copula, we consider
a data set on daily air quality measurements for 153 days in the New York
Metropolitan Area from May 1, 1973, to September 30, 1973. Information on
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average wind speed (in miles per hour) and mean ozone level (in parts per
billion), were obtained from the New York State Department of Conservation
and the National Weather Service, USA. This data set is named ‘airquality’
and openly available in the R package ‘datasets’. See Chambers, Cleveland,
Kleiner, and Tukey (1983, Ch 2-5) for the detailed description of the data.
Ozone in the upper atmosphere protects the earth from the sun’s harmful rays.
On the contrary, exposure to ozone also can be hazardous to both humans
and some plants in the lower atmosphere. Variations in weather conditions
play an important role in determining ozone levels (Khiem et al., 2010; Topcu,
Anteplioglu, & Incecik, 2003). In general, the concentration of the ozone level
is affected by wind speed. High winds tend to disperse pollutants, which in
turn dilute the concentration of the ozone level. However, stagnant conditions
or light winds allow pollution levels to build up and thereby, the ozone level
too becomes larger. Environmental scientists and meteorologists are interested
in the study of the effect of a wind speed on the distribution patterns of ozone
(Gorai et al., 2015) levels. For our analysis, we consider 116 observations dis-
carding the missing values and presented the scatter plot of average wind speed
versus ozone levels in Figure 5(a). It indicates strong negative dependence,
and we find that Spearman’s rho and Kendall’s tau coefficients are -0.59 and
-0.43, respectively. Further, we apply the methodology proposed by Lu and
Ghosh (2021) based on Kolmogorov–Smirnov (KS), Anderson–Darling (AD),
and Cramér-vonMises (CvM) discrepancy measures to test the hypothesis if
the true underlying copula satisfies the NQD property. The p-values corre-
sponding to KS, AD and CvM tests are 0.893, 0.571, and 0.861, respectively,
affirm a strong notion of negative dependence between average wind speed and
ozone levels in the NQD sense.

7.2 Modeling Wind Speed and Ozone Level

In the field of engineering and environmental science, Lognormal, Weibull, and
Gamma distributions are widely used for modeling wind speed recorded in
the same location (Dhiman, Deb, & Balas, 2020; Monjean & Robyns, 2015;
Poboč́ıková et al., 2017; Ramadan, Ebeed, Kamel, & Nasrat, 2020; Shepherd,
1978). These distributions are also used for modeling the level of various pol-
lutants and ozone level (Mishra et al., 2021; Sharma et al., 2016; Souza et al.,
2018). Therefore, we consider these three models for estimation of the parame-
ters associated with the marginal distributions of the wind speed and the mean
ozone level. Based on the Akaike information criterion, the Gamma distribu-
tion fits both marginals better as compared with other choices. The maximum
likelihood estimates of the shape and the scale parameters are obtained as 7.171
and 1.375, respectively, for the wind speed, and the same for the mean ozone
levels are 1.7 and 24.775, respectively. The estimate of the dependence param-
eter is obtained as θ̂ = 0.765. Therefore, the joint distribution of wind speed
and the mean ozone level is represented by the bivariate Gamma distribution
provided in Example 2, and presented graphically in Figure 5(b). Following
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Balakrishnan and Ristic (2016), we then use bootstrap based Kolmogorov-
Smirnov test to check whether the Gamma distribution is a good fit for the
marginals. Also, we evaluate the goodness of fit of the proposed copula based
on Kolmogorov-Smirnov statistic utilising the bootstrap algorithm proposed
by Genest, Quessy, and Rémillard (2006). We find the proposed model fits the
data reasonably well. The R programme related to the proposed estimation
methodology are provided in the Supplementary material. In Figure 5(c) we
present the contour plot of the the distribution of wind speed and mean ozone
level. It indicates that the concentration of mean ozone level varies from 6-30
ppb when the wind speed is within 7-16 mph. The estimated conditional distri-
butions of the mean ozone level keeping the wind speed fixed at the empirical
first decile (5.7 mph), median (9.7 mph), and ninth decile (14.9 mph) are pre-
sented in Figure 5(d). It is easy to see that the distribution of the mean ozone
level decreases stochastically (in the sense of the usual stochastic order) as the
wind speed increases. This visual representation of the regression dependence
property indicates that the ozone level distributions below the level of 60 ppb
differ significantly with wind speed. This can assist in formulating policies and
guidelines to choose between locations to avoid health hazards related to high
ozone levels.

8 Concluding Remarks

We construct the new flexible bivariate copula for modeling negative depen-
dence between two random variables. Its correlation coefficient takes any value
in the interval (−1, 0), which was not the case for other copulas reported in the
literature. It is important to note that the Spearman’s rho and the Kendall’s
tau have a simple one-parameter form with negative values in the full range.
The properties of the proposed copula is an agreement with most of the popu-
lar notions of negative dependence available in the literature, namely quadrant
Dependence, regression dependence and likelihood ratio dependence, etc. It
is an interesting problem to consider a semi-parametric generalisation of the
proposed copula and investigate its associated properties. Another possible
direction of future research could be a multivariate extension of the proposed
copula using the approaches considered by Fischer and Köck (2012) and (Mazo,
Girard, & Forbes, 2015).

For an illustrative data analysis based on the proposed copula, we consider
a data set on daily air quality measurements for New York Metropolitan Area.
Based on the observed data, we find that wind speed and ozone levels strongly
dependent in the NQD sense. We consider three different models (Lognormal,
Weibull, and Gamma distributions) for estimation of parameters associated
with the marginal distributions of the wind speed and the mean ozone level.
It is shown that the Gamma distributions fits better for both marginals and
that the distribution of the mean ozone level decreases stochastically (in the
sense of the usual stochastic order) as the wind speed increases. The scope of
the proposed copula goes far beyond this particular application. For example,
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(a) Scatter plot of wind speed versus ozone.
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Fig. 5 Results based on the analysis of New York air quality data.

biomedical researchers can utilize the proposed copula in studying the nega-
tive association between BMI and glycated proteins (Espasand́ın-Domı́nguez
et al., 2019). One can also extend the proposed copula to asses and model
the nonlinear and asymmetric negative dependence over time in security and
commodity markets (Liu, Ji, & Fan, 2017).

Appendix A

A1. Proof of Proposition 1.

Case I. For 0 < v ≤ θ
1+θ , and 1− (1+θ)v

θ < u < 1, we have

∂Cθ

∂θ
=

θθ

(1 + θ)(1+θ)
(1− u)(1+θ)v−θ

[
log

(
θ

1 + θ

)
+ log(1− u)− log(v)

]
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≤ θθ

(1 + θ)(1+θ)
(1− u)(1+θ)v−θ

[
log

(
θ

1 + θ

)
+ log

[
(1 + θ)v

θ

]
− log(v)

]
,

since (1− u) ≤ (1 + θ)v

θ
= 0

Case II. For 0 < u < 1, and θ
1+θ < v < 1, we have

∂Cθ

∂θ
= (1− u)(1+θ)(1− v) log(1− u) ≤ 0.

Now combining Case I and II, we have
∂Cθ

∂θ
≤ 0 for all (u, v) ∈ I2, which

implies Cθ is decreasing in θ.

A2. Proof of Proposition 2.

Case I. For 0 < v ≤ θ
1+θ , and 1− (1+θ)v

θ < u < 1, we have

∇2Cθ(u, v) =
∂2Cθ(u, v)

∂u2
+

∂2Cθ(u, v)

∂v2

=
θ(1+θ)

(1 + θ)θ

[
(1− u)(θ−1)v−θ + (1− u)(1+θ)v−(2+θ)

]
≥ 0

Case II. For 0 < u < 1, and θ
1+θ < v < 1, we have

∇2Cθ(u, v) =
∂2Cθ(u, v)

∂u2
+

∂2Cθ(u, v)

∂v2

= θ(1 + θ)(1− u)(θ−1)(1− v) ≥ 0

Now from Case I and II we can write ∇2Cθ(u, v) ≥ 0 for all (u, v) ∈ I2, and
hence the result follows.

A3. Proof of Proposition 3.
To establish the absolute continuity of the proposed copula Cθ, it is required

to show ∫ u

0

∫ v

0

∂2

∂s∂t
Cθ(s, t)dtds = Cθ(u, v),

for every (u, v) ∈ I2.

Case I. For 0 < v ≤ θ
1+θ , and 1− (1+θ)v

θ < u < 1, we have

∫ u

0

∫ v

0

∂2

∂s∂t
Cθ(s, t)dtds =

∫ u

1− (1+θ)v
θ

∫ v

θ(1−s)
(1+θ)

θ1+θ

(1 + θ)θ
(1− s)θt−(1+θ)dtds

=

∫ u

1− (1+θ)v
θ

[
1−

(
θ

1 + θ

)θ

(1− s)θv−θ

]
ds
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=

∫ (1+θ)v
θ

1−u

[
1−

(
θ

1 + θ

)θ

zθv−θ

]
dz (where z = 1− s)

= v − (1− u) +
θθ

(1 + θ)1+θ
(1− u)1+θv−θ = Cθ(u, v).

Case II. For 0 < u < 1, and θ
1+θ < v < 1, we have

∫ u

0

∫ v

0

∂2

∂s∂t
Cθ(s, t)dtds =

∫ u

0

∫ θ
(1+θ)

θ(1−s)
(1+θ)

θ1+θ

(1 + θ)θ
(1− s)θt−(1+θ)dtds

+

∫ u

0

∫ v

θ
(1+θ)

(1 + θ)(1− s)θdtds

=

∫ u

0

[
1− (1− s)θ

]
ds+

∫ u

0

[v − θ(1− v)] (1− s)θds

= u− 1

1 + θ
+

(1− u)θ+1

θ + 1
+ [v − θ(1− v)]

[
1− (1− u)(θ+1)

]
1 + θ

= u− (1− v)
[
1− (1− u)(θ+1)

]
= Cθ(u, v).

Therefore, the results follows by combining Case I and II.

Appendix B

B1. Proof of Theorem 6.
(i) To establish LTI(Y | X), it is sufficient to show that for any v in I, C(u,v)

u
is nondecreasing in u (Nelsen, 2006, Theorem 5.2.5, p-192). For 0 < u < 1,
and θ

1+θ < v < 1, we have

∂

∂u

[
C(u, v)

u

]
=

(1− v)[1− (1− u)θ(1 + θu)]

u2
.

Now we need to prove that [1 − (1 − u)θ(1 + θu)] > 0. Define
h(u) := (1 − u)θ(1 + θu). Observe that h(0) = 1, h(1) = 0, and h(u) is a
decreasing function in u, since h

′
(u) = −θ2(1 + θ)u(1 − u)(θ−1) < 0 for all

u ∈ (0, 1). Therefore, ∂
∂u

[
C(u,v)

u

]
> 0.

Similarly, for 0 < v ≤ θ
1+θ , and 1− (1+θ)v

θ < u < 1, it can be shown that

∂

∂u

[
C(u, v)

u

]
= −

θθ

(1+θ)(1+θ) (1 + θu)(1− u)θ + v(1+θ) − vθ

u2vθ
> 0.

Hence, the result follows.
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(ii) In view of Theorem 5.2.5 in (Nelsen, 2006, p-192), the necessary and

sufficient condition for LTI(X | Y ) is that, C(u,v)
v is nondecreasing in v, for

any u in I.

For 0 < v ≤ θ
1+θ , and 1− (1+θ)v

θ < u < 1, we have

∂

∂v

[
C(u, v)

v

]
=

(u− 1)
[

θθ

(1+θ)θ
(1− u)θ − vθ

]
vθ+2

≥ 0,

since (u− 1) < 0 and
[

θθ

(1+θ)θ
(1− u)θ − vθ

]
< 0.

Similarly, for 0 < u < 1, and θ
1+θ < v < 1, we have

∂

∂v

[
C(u, v)

v

]
=

(u− 1)[(1− u)θ − 1]

v2
≥ 0.

Hence, the result follows.

(iii) To establish RTD(Y | X), it is sufficient to show that v−C(u,v)
(1−u) is

a nondecreasing function in u for any v ∈ I (Nelsen, 2006, Theorem 5.2.5,
p-192).

For 0 < v ≤ θ
1+θ and 1− (1+θ)v

θ < u < 1, we have

∂

∂u

[
v − C(u, v)

(1− u)

]
=

(
θ

1 + θ

)1+θ

(1− u)θ−1v−θ > 0.

Similarly, for 0 < u < 1, and
θ

1 + θ
< v < 1, we have

∂

∂u

[
v − C(u, v)

(1− u)

]
= (1− v)(1− u)θ−1 > 0.

Hence, the conclusion follows.

(iv) By Theorem 5.2.5 in (Nelsen, 2006, p-192), RTD(Y | X) holds, if
u−C(u,v)

(1−v) is a nondecreasing function in v for any u ∈ I.

For 0 < v ≤ θ
1+θ and 1− (1+θ)v

θ < u < 1, we have

∂

∂v

[
u− C(u, v)

(1− v)

]
=

θθ

(1+θ)(1+θ) (1− u)1+θv−(1+θ)[θ(1− v)− v]

(1− v)2
,
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which is non-negative, since v < θ
1+θ .

Similarly, for any fixed u ∈ I, and θ
1+θ < v < 1, u−C(u,v)

(1−v) = 1− (1− u)1+θ

is a constant function in v. Hence the results follows.

B2. Proof of Theorem 7.
To establish SD(Y | X) property of the proposed copula Cθ, we utilise

the geometric interpretation of the stochastic monotonicity given in Corollary
5.2.11 of (Nelsen, 2006, p-197). Therefore, it is sufficient to show that Cθ(u, v)
is a convex function of u. Similarly, SD(X | Y ) can be established by showing
Cθ(u, v) is a convex function of v.

(i) For 0 < v ≤ θ
1+θ , and 1− (1+θ)v

θ < u < 1, we have

∂2

∂u2
Cθ(u, v) =

θ(1+θ)

(1 + θ)θ
(1− u)θ−1v−θ > 0.

For 0 < u < 1, and θ
1+θ < v < 1, we have

∂2

∂u2
Cθ(u, v) = θ(1 + θ)(1− v)(1− u)(θ−1) > 0.

Hence Cθ(u, v) is a convex function of u.

(ii) For 0 < v ≤ θ
1+θ , and 1− (1+θ)v

θ < u < 1, we have

∂2

∂v2
Cθ(u, v) =

θ(1+θ)

(1 + θ)θ
(1− u)1+θv−(2+θ) > 0.

Note that, for any fixed u ∈ I, and θ
1+θ < v < 1, ∂

∂vCθ(u, v) is a constant
function of v. Hence, the result follows.

B3. Proof of Theorem 8.
To established the NLR between X and Y with copula Cθ, we need to show

cθ(u1, v1)cθ(u2, v2) ≤ cθ(u1, v2)cθ(u2, v1) holds for all u1 ≤ u2, and v1 ≤ v2,
where cθ(u, v) is the copula density given in (4). Note that for the proposed
copula Cθ, the aforementioned condition holds with equality for all u1 ≤ u2

and v1 ≤ v2 in I.

Appendix C

C1. Proof of Theorem 9.
The results directly follow from Proposition 1.

C2. Proof of Theorem 10.
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Let θ1 ≤ θ2. The conditional copula of V given U = u is given by

Cθ1(v | u) =


1− θθ11

(1 + θ1)θ1
(1− u)θ1v−θ1 ,

(1− u)θ1
(1 + θ1)

< v <
θ1

1 + θ1

1− (1 + θ1)(1− v)(1− u)θ1 ,
θ1

1 + θ1
< v < 1.

Then C−1
θ2

(Cθ1(v | u) | u) is given by

C−1
θ2

(Cθ1(v | u) | u) =


θ2(1 + θ1)

(θ1/θ2)

(1 + θ2)θ
(θ1/θ2)
1

(1− u)1−(θ1/θ2)v(θ1/θ2), 0 < v ≤ 1− (1− u)θ2

1− 1 + θ1
1 + θ2

(1− v)(1− u)(θ1−θ2), 1− (1− u)θ2 < v < 1.

Note that C−1
θ2

(Cθ1(v | u) | u) is a decreasing function in u as θ1 ≤ θ2. Now,
using Definition 5, the result follows.

C3. Proof of Theorem 11.
Let θ1 ≤ θ2. Now, it is easy to verify that the condition provided in

Definition 6 holds for any choice of u1, u2, v1, v2, where u1 ≤ u2, v1 ≤ v2.
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