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Abstract. In this paper we consider the heat equation with a strongly singu-
lar potential and show that it has a very weak solution. Our analysis is devoted
to general hypoelliptic operators and is developed in the setting of graded Lie
groups. The current work continues and extends the work [ARST21c], where
the classical heat equation on Rn was considered.
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1. Introduction

Baras and Goldstein [BG84a; BG84b] studied the heat equation with the sin-
gular potential in bounded and unbounded domains of Rn that initiated a series
of further works on the topic; see [ARST21c] for a more detailed exposition of
them. Later on, Goldstein and Zhang in [GZ01] studied the heat equation with
singular potentials of certain type on the Heisenberg group Hn, where the usual
Laplace operator on Rn was replaced by the sub-Laplacian on Hn.

Our consideration here is more broad not only in the sense that we allow for
the setting to be any graded Lie group and the differential operator to be any
positive Rockland operator, but we also allow for the potential to be a of any sign
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distributional function. Specifically, the following Cauchy problem is considered:{
ut(t, x) +Ru(t, x) + V (x)u(t, x) = 0 , (t, x) ∈ [0, T ]×G , T > 0 ,

u(0, x) = u0(x) , x ∈ G ,
(1.1)

where G is a graded Lie group, R is any positive Rockland operator on G, V is
a distributional function and T > 0 is any real number.

The potential V is allowed to have δ-type singularities. To conquer the problem
of multiplication of distributions [Sch54] we follow the theory of very weak solu-
tions as introduced in [GR15] where the theory initially applied on wave equations
with irregular coefficients. To give an overview of the topic of very weak solutions
we refer to the works [RT17b] and [MRT19] on the analysis of the problems with
singular, time-dependent coefficients on the Euclidean setting. The application
of the concept of the very weak solutions in the setting of a graded Lie group,
appears in [RY20; CRT21; CRT21b].

In this work we show that the notion of the very weak solution is applicable
to the Cauchy problem (1.1), and, when the classical solution exists, it converges
to very weak one. The present work can be served as an extension of its first
part [ARST21c] addressed to the heat equation in the Euclidean setting; i.e., the
consideration there expressed with the present terminology becomes G = Rd and
R = −∆ being the positive fractional Laplacian on the Euclidean space. The
novelty of this work, that extends the realisation of the problem already in the
Euclidean setting, relies on two main considerations: we allow the potential V
in (1.1) to be of any sign, and extend the functional space of V by making use
of Sobolev embedding techniques. Finally, let us draw the reader’s attention to
Remarks 4.13 and 5.5 which rectify or clarify the statements of the first consider-
ation [ARST21c] on the notion of the uniqueness of the very weak solution, and
on its recapture of the classical one, respectively.

2. Notions and terminology

Let us briefly recall some, useful for our purposes, notions in the setting of
graded groups. What follows is a shorter version of the introduction given in the
recent papers by the same authors; see [CRT21; CRT21b] for some other aspects
of this material. Interested readers can consult the detailed exposition by Folland
and Stein [Chapter 1 in [FS82]]. A more recent comprehensive approach on the
topic can be found in the work of Fischer and the second author; see [Chapter 3
in [FR16]].

2.1. Graded Lie groups. Let G be a connected simply connected Lie group. We
call G a graded Lie group if the next condition is satisfied for its Lie algebra g:

g =
∞⊕
i=1

gi ,

where all, but finitely many elements of the below vector space decomposition gi’s,
are equal to {0}. Additionally, the actions of each gi shall satisfy [gi, gj] ⊂ gi+j,
where we have set g0 := g.
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Graded Lie groups are homogeneous and their natural relevant structure is the
so-called “canonical” dilations which appears also, due to the diffeomorphism of
the two, as the structure of the corresponding Lie algebra g. If ν1, · · · , νn are the
weights of the dilations, i.e., the powers appearing in the automorphism, denoted
by Dr, r > 0, that is expressed as

Dr(x) = rx = (rν1x1, · · · , rνnxn) , x ∈ G , (2.1)

then the homogeneous dimension Q of the group is computed via the expression

Q := TrA = ν1 + · · ·+ νn .

We invite the reader to refer to the examples of the Heisenberg group [Chapter 6
in [FR16]] and of the Engel and Cartan groups [Cha21] as the most well-studied
cases of homogeneous groups.

2.2. Representations and Rockland operators. We denote by π the representa-
tion of the group G on a separable Hilbert space Hπ, and keep the same no-
tation for the representation of its Lie algebra g. The latter may as well be
extended to the universal enveloping Lie algebra U(g), and is exactly the map-
ping π : U(g) → End(H∞

π ), where H∞
π ⊂ Hπ is the space of smooth vectors.

Elements of U(g) are precisely the left-invariant operators on G, and as such,
they can be written in a unique way as a finite sum of the form∑

α∈Nc

cαX
α , (2.2)

where we use the notation Xα := Xα1
1 · · ·Xαn

n , for some α = (α1, · · · , αn) ∈ Nn

multi-index. The element π ∈ Ĝ acts on homogeneous of order ν left-invariant
differential operator R in the following natural way:

π(R) =
∑
[α]=ν

cαπ(X)α ,

where [α] = ν1α1+· · ·+νnαn stands for the homogeneous length of the multi-index
α, and we have used the notation

π(X)α = π(Xα) = π(Xα1
1 · · ·Xαn

n ),

where Xj is of homogeneous of degree νj arising from the dilation weights in (2.1).
Important operators that are elements of U(g) are the so-called Rockland operators
on G as first appeared in [Roc78]. The most trivial example of a Rockland
operator is the so-called sub-Laplacian on a stratified group, which is exactly the
sum of squares of vector fields that generate the first stratum of the Lie algebra
g. In the trivial case G = Rd the latter boils down to the Laplace differential
operator. In their general consideration, Rockland operators are left-invariant
differential operators on G that are densely defined on D(G) ⊂ L2(G), that are
homogeneous of some positive degree and satisfy the so-called Rockland condition;
that is when the operator π(R) is injective on the space of smooth vectors H∞

π ⊂
Hπ on which π(R) is densely defined. We mention that for the groups that we
consider here we have Hπ = L2(Rm) and H∞

π = S(Rm), for some m ∈ N; see
[Corollary 4.1.2 in [CG90]]. For a detailed discussion on the Rockland operator,
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and in particular for alternative characterisations of the Rockland condition, one
can consult [Bea77; HN79]. By the spectral theorem for unbounded self-adjoint
operators, both R and π(R) have a spectral decomposition associated with the
spectral measures of them; see e.g. Theorem VIII.6 in [RS85]. The spectral
properties of the operator π(R) were examined in [TR97]. In [HJL85] the authors

proved that the spectrum of the operator π(R), for π ∈ Ĝ\{1}, is purely discrete
and positive. This in turn allows for an infinite matrix representation of the
following form:

π(R) =


π2
1 0 · · · · · ·
0 π2

2 0 · · ·
... 0

. . .
...

...
. . .

 . (2.3)

Particularly, the spectrum of these operators in the setting of the Heisenberg and
Engel group, has been studied using the representations of Taylor [Tay84] and
of Dixmier [p. 333 [Dix57]], respectively, are investigated in e.g. [Chapter 6 in
[FR16]] and [CDR18].

2.3. Group Fourier transform. For f ∈ L1(G) and for π ∈ Ĝ the group Fourier
transform of f at π is defined by

FGf(π) ≡ f̂(π) ≡ π(f) :=

∫
G
f(x)π(x)∗ dx ,

where we integrate against the binvariant Haar measure on G. This produces a
linear endomorphism on Hπ. Thanks to e.g. Kirillov’s orbit method (e.g. [CG90;

Kir04]) one can explicitly construct the Plancherel measure µ on the dual Ĝ.
This brings the Fourier inversion formula at our disposal, and additionally allows
for the extension of the Euclidean Plancherel formula to the setting of graded Lie
groups; i.e., we have the isometry:∫

G
|f(x)|2 dx =

∫
Ĝ
∥π(f)∥2HS dµ(π) , (2.4)

since the operator π(f) is Hilbert-Schmidt; that is we have

∥π(f)∥2HS := Tr(π(f)π(f)∗) <∞ .

It makes sense to define the group Fourier transform FG(Rf)(π), and the func-
tional calculus allows for the identity FG(Rf)(π) = π(R)π(f). The last ex-
pression and the representation in (2.3) allow for a matrix representation of the

operator FG(Rf)(π) of the form {π2
kf̂(π)k,l}k,l∈N that shall be useful for our pur-

poses.

2.4. Sobolev spaces and embedding results. The (homogeneous)R-Sobolev spaces
in the setting of a graded Lie groups are defined by the second author and Fis-
cher in [FR17]: for a fixed positive homogeneous Rockland operator R of some
homogeneous degree ν, and for s > 0, p > 1, they are defined as the completion
of S(G) ∩Dom(R s

ν ) for the norm

∥f∥L̇p
s(G) := ∥R

s
ν
p f∥Lp(G) , f ∈ S(G) ∩Dom(R

s
ν
p ) ,
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where Rp is the maximal restriction of R to Lp(G).1 Sobolev embeddings read
as follows: for 1 < q̃0 < q0 <∞ and for a, b ∈ R satisfying the condition

b− a = Q

(
1

q̃0
− 1

q0

)
,

we have the continuous inclusions L̇q̃0
b (G) ⊂ L̇q0

a (G). The latter means that that,

if f ∈ L̇q̃0
b (G), then, there exists a constant C = C(q̃0, q0, a, b) > 0 independent

of f such that
∥f∥L̇q0

a (G) ≤ C∥f∥
L̇
q̃0
b (G)

. (2.5)

In the sequel we will make use of the following notation:

Notation 2.1. • When we write a ≲ b, we mean that there exists some con-
stant c > 0 (independent of any involved parameter) such that a ≤ cb;

• if α = (α1, · · · , αn) ∈ Nn is some multi-index, then we denote by

|α| =
n∑

i=1

αi ,

the length of it;
• for s > 0 and for suitable f ∈ S ′

(G), we have introduced the following
norm

∥f∥Hs(G) := ∥f∥L̇2
s(G) + ∥f∥L2(G) ; (2.6)

• when regularisation of functions/distributions on G are considered, they
must be regarded as arising via convolution with Friedrichs-mollifiers; that
is, ψ is a Friedrichs-mollifier, if it is a compactly supported smooth func-
tion with

∫
G ψ dx = 1. Then the regularising net is defined as

ψϵ(x) = ω(ϵ)−Qψ(Dω(ϵ)−1(x)) , ϵ ∈ (0, 1] , (2.7)

where ω(ϵ) is a positive function converging to zero as ϵ→ 0 and Q stands
for the homogeneous dimension of G.

3. Estimates for the classical solution

The results of the current section, and the forthcoming ones, fall into two
categories; those where the potential V as appears in (1.1) is assumed to be non-
negative, and those where the potential can be of any sign. In the latter case, the
potential V can only belong to the space L∞(G), while in the positive case it can

also belong to the space L
2Q
ν (G) ∩ L 2Q

ν (G), provided that the condition Q > ν is
satisfied.

Proposition 3.1 (Classical solution, case I: V ≥ 0). Let V ∈ L∞(G), where
V ≥ 0, and suppose that u0 ∈ H

ν
2 (G). Then, there exists a unique solution u ∈

C1([0, T ];L2(G)) ∩ C([0, T ];H
ν
2 (G)) to the Cauchy problem (1.1), that satisfies

the estimate
∥u(t, ·)∥

H
ν
2 (G)

≲ (1 + ∥V ∥L∞(G))∥u0∥H ν
2 (G)

, (3.1)

uniformly in t ∈ [0, T ].

1When p = 2, we will write R2 = R for the self-adjoint extension of R on L2(G).
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Proof. Multiplying the equation (1.1) by ut and integrating over G, we get

ℜ(⟨ut(t, ·), ut(t, ·)⟩L2(G) + ⟨Ru(t, ·), ut(t, ·)⟩L2(G) + ⟨V (·)u(t, ·), ut(t, ·)⟩L2(G)) = 0 ,

for all t ∈ [0, T ], where ℜ stands for the real part of the above quantity. The
above equation can be rewritten as

∥ut(t, ·)∥2L2(G) +
1

2
∂t

[
∥
√
Ru(t, ·)∥2L2(G) + ∥

√
V (·)u(t, ·)∥2L2(G)

]
= 0 .

We define the energy as

E(t) := ∥
√
Ru(t, ·)∥2L2(G) + ∥

√
V (·)u(t, ·)∥2L2(G) ,

which variation in time satisfies ∂tE(t) ≤ 0, and consequently

E(t) ≤ E(0) , for all t ∈ [0, T ] . (3.2)

Straightforward computations give

∥
√
V u0∥2L2(G) ≤ ∥V ∥L∞(G)∥u0∥2L2(G) ,

so that equation (3.2) can be rephrased as the uniform in time t ∈ [0, T ] estimates

∥
√
V u(t, ·)∥2L2(G) ≲ ∥

√
Ru0∥2L2(G) + ∥V ∥L∞∥u0∥2L2(G) , (3.3)

and

∥
√
Ru(t, ·)∥2L2(G) ≲ ∥

√
Ru0∥2L2(G) + ∥V ∥L∞∥u0∥2L2(G) . (3.4)

Recalling the definition of the sum of norms Hs(G) in (2.6) we can estimate (3.3)
and (3.4) further by

∥
√
V u(t, ·)∥L2(G) ≲

(
1 + ∥V ∥

1
2

L∞(G)

)
∥u0∥H ν

2 (G)
, (3.5)

and

∥
√
Ru(t, ·)∥L2(G) ≲

(
1 + ∥V ∥

1
2

L∞(G)

)
∥u0∥H ν

2 (G)
, (3.6)

respectively.
To proceed we need to deal with the term ∥u(t, ·)∥L2(G); let us rephrase the

problem (1.1) as follows:{
∂tu(t, x) +Ru(t, x) = f(t, x) , (t, x) ∈ [0, T ]×G,
u(0, x) = u0(x),

(3.7)

where we have set as a source term f(t, x) := −V (x)u(t, x). Applying Duhamel’s
principle (see, e.g. [Ev98]), we deduce that the solution to (3.7) is given by

u(t, x) = (ht ∗ u0)(x) +
∫ t

0

ht−s ∗ fs(x) ds , (3.8)

where fs(·) = f(s, ·), and ht(·) = h(t, ·) with h being the fundamental solution,
or the heat kernel, associated to the Rockland operator R. We recall (see, e.g.
Theorem 4.2.7 [FR16]) the following upper bound for the heat kernel norm

∥ht∥L1(G) ≤ 1 .
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We take the L2(G)-norm of the expression on (3.8). Young’s inequality implies
for the convolution there

∥u(t, ·)∥L2(G) ≤ ∥ht∥L1(G)∥u0∥L2(G) +

∫ T

0

∥ht−s∥L1(G)∥fs∥L2(G) ds

≤ ∥u0∥L2(G) +

∫ T

0

∥fs∥L2(G) ds

≤ ∥u0∥L2(G) +

∫ T

0

∥V (·)u(s, ·)∥L2(G) ds . (3.9)

Straightforward computations then give

∥u(t, ·)∥L2(G) ≲ ∥u0∥H ν
2 (G)

+
(
1 + ∥V ∥L∞(G)

)
∥u0∥H ν

2 (G)
. (3.10)

Putting together (3.6) and (3.10) we obtain

∥u(t, ·)∥2L2 + ∥
√
Ru(t, ·)∥2L2 ≲ (1 + ∥V ∥L∞)∥u0∥H ν

2
,

as required, and the proof of Proposition 3.1 is complete. □

Proposition 3.2 (Classical solution, case II: V ≥ 0). Assume that Q > ν, and let

V ∈ L
2Q
ν (G) ∩ LQ

ν (G), V ≥ 0. If we suppose that u0 ∈ H
ν
2 (G), then there exists

a unique solution u ∈ C1([0, T ];L2(G))∩C([0, T ];H ν
2 (G)) to the Cauchy problem

(1.1) satisfying the estimate

∥u(t, ·)∥
H

ν
2 (G)

≲ ∥u0∥H ν
2 (G)

{(
1 + ∥V ∥

L
2Q
ν (G)

)(
1 + ∥V ∥

L
Q
ν (G)

) 1
2

}
, (3.11)

uniformly in t ∈ [0, T ].

Proof. We apply Hölder’s inequality to the norm ∥
√
V u0∥2L2(G) for 1 < q, q

′
<∞,

so that

∥
√
V u0∥2L2(G) ≤ ∥V ∥

Lq
′
(G)

∥u0∥2L2q(G) , (3.12)

where (q, q
′
) are conjugate exponents. We use the embeddings (2.5) for u0 ∈

H
ν
2 (G), b = ν

2
, a = 0, and q0 =

2Q
Q−ν

. This leads to the estimate

∥u0∥Lq0 (G) ≲ ∥
√
Ru0∥L2(G) <∞ . (3.13)

Putting together (3.12) for q = q0
2
, so that q′ = Q

ν
, and (3.13) we obtain

∥
√
V u0∥2L2(G) ≲ ∥V ∥

L
Q
ν (G)

∥
√
Ru0∥2L2(G)

≤ ∥V ∥
L

Q
ν (G)

∥u0∥2H ν
2 (G)

. (3.14)

Using the energy bounds (3.2) from Proposition 3.1, we have

∥
√
Ru(t, ·)∥2L2(G) + ∥

√
V u(t, ·)∥2L2(G) ≤

(
1 + ∥V ∥

L
Q
ν (G)

)
∥u0∥2H ν

2 (G)
,

and the latter, if rephrased, leads to the estimate

∥u(t, ·)∥L̇2
ν
2
(G) ≤

(
1 + ∥V ∥

L
Q
ν (G)

) 1
2 ∥u0∥H ν

2 (G)
. (3.15)
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The estimate (3.9) for the L2-norm of u(t, ·) combined with the estimate (3.14)

with V and u(t, ·) in place of
√
V and u0, respectively, and inequality (3.15) gives

∥u(t, ·)∥L2(G) ≲ ∥u0∥L2(G) + ∥V 2∥
1
2

L
Q
ν (G)

∥u(t, ·)∥2
H

ν
2 (G)

≤ ∥u0∥H ν
2 (G)

+ ∥V ∥
L

2Q
ν (G)

(
1 + ∥V ∥

L
Q
ν (G)

) 1
2 ∥u0∥H ν

2 (G)
.(3.16)

Putting together the estimate (3.16) with the one in (3.15) we get the requested
estimate for the H

ν
2 -norm of u(t, ·). The proof of Proposition 3.2 is complete. □

The following result applies to the case where the potential V is of any sign.
In this general case, we can ease the assumption on the initial data u0, and, as
a result, we control only the L2-norm of the classical solution. In particular, we
have:

Proposition 3.3 (Classical solution, case V ∈ R). Let u0 ∈ L2(G) and suppose that
V ∈ L∞(G) is a real function/distribution. Then, there exists a unique solution
u ∈ C([0, T ];L2(G)) to the Cauchy problem (1.1) that satisfies the estimate

∥u(t, ·)∥L2(G) ≲ exp(t∥V ∥L∞(G))∥u0∥L2(G) , (3.17)

for all t ∈ [0, T ].

Proof. We multiply the heat equation (1.1) by u and integrating on the group G
and obtain the equality:

ℜ(⟨ut(t, ·), u(t, ·)⟩L2(G) + ⟨Ru(t, ·), u(t, ·)⟩L2(G) + ⟨V (·)u(t, ·), u(t, ·)⟩L2(G)) = 0 ,

for all t ∈ [0, T ]. The last equality can be rewritten as

1

2
∂t∥u(t, ·)∥2L2(G) + ∥

√
Ru(t, ·)∥2L2(G) + ∥

√
V +u(t, ·)∥2L2(G) = ∥

√
V −u(t, ·)∥2L2(G)

(3.18)
for all t ∈ [0, T ], where V +, V − are the positive and negative parts of V , respec-
tively. Straightforward computations yield

∥
√
V −u(t, ·)∥L2(G) ≤ ∥

√
V −∥L∞(G)∥u(t, ·)∥L2(G) ≤ ∥

√
|V |∥L∞(G)∥u(t, ·)∥L2(G) .

Thus, equation (3.18) implies for the time-derivative of ∥u(t, ·)∥L2(G):

1

2
∂t∥u(t, ·)∥2L2(G) ≤ ∥

√
|V |∥2L∞(G)∥u(t, ·)∥2L2(G) , (3.19)

for all t ∈ [0, T ]. Hence we can apply Grönwall’s inequality to (3.19), so that

∥u(t, ·)∥L2(G) ≤ ∥u0∥L2(G) exp

(∫ t

0

∥V ∥L∞(G) ds

)
,

and we obtain the desired estimate (3.17). This completes the proof of Proposition
3.3. □
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Remark 3.4. Let us point out that, under the assumptions of Proposition 3.3,
the solution u ∈ L2(G) to the Cauchy problem (1.1), belongs also to the Sobolev
space of order ν

2
: Indeed, by (3.18) we get

∥u(t, ·)∥L̇2
ν
2
(G) = ∥

√
Ru(t, ·)∥L2 ≤ ∥

√
V −∥2L∞∥u∥2L2 ,

with the right-hand side of the last inequality being, by the assumptions of Propo-
sition 3.3, finite.

4. Very weak well-posedeness

In what follows we shall show that the notion of the very weak solution as
introduced in [GR14] is applicable to the heat equation (1.1) we consider here.
Once the existence of the very weak solution is proven, we then investigate how
the latter depends on the ω(ϵ)-scale or the approximation of the associated, to
the initial data u0 and to the coefficient V , nets. In other words, we analyse the
stability, or formally the uniqueness, of the very weak solution under the aforesaid
modifications.

Let us recall the definitions of moderateness for a net of functions/distributions
in space (and in time) as in [CTR21] and [CTR21b].

Definition 4.1 (Moderateness). LetX be a normed space of functions/distributions
and let ω(ϵ) be as in (2.7).

(1) A net of functions/distributions (fϵ)ϵ ∈ X is said to be X-moderate if
there exists N ∈ N such that

∥fϵ∥X ≲ ω(ϵ)−N ,

for all ϵ ∈ (0, 1].
(2) A net of functions/distribitions (uϵ)ϵ = (uϵ(t, ·))ϵ in C([0, T ];X) is said to

be C([0, T ];X)-moderate if there exists N ∈ N such that

sup
t∈[0,T ]

∥uϵ(t, ·)∥X ≲ ω(ϵ)−N ,

for all ϵ ∈ (0, 1].

Remark 4.2. Trivially, for nets that arise as regularisations of a distributional
function in some normed space X via a mollifier the X-moderate assumption is
satisfied. More generally, see Proposition 4.3 below, the global structure of com-
paclty supported distributions E ′(G) on the group, gives rise to Lp(G)-moderate
regularised such nets. We note that following the arguments developed in the
proof of Proposition 4.3 we can show that the regularised net (vϵ)ϵ is L̇

2
s(G), and

so also Hs(G)-moderate for every s > 0.

Let us recall the following result as in [CTR21; CTR21b]:

Proposition 4.3. Let v ∈ E ′
(G), and let vϵ = v ∗ψϵ be obtained as the convolution

of v with a mollifier ψϵ as in (2.7). Then the regularising net (vϵ)ϵ is Lp(G)-
moderate for any p ∈ [1,∞].
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Describing the uniqueness of the very weak solutions amounts to “measuring”
the changes on involved associated nets: negligibility conditions for nets of func-
tions/distributions read as follows:

Definition 4.4 (Negligibility). Let Y be a normed space of functions on G. Let

(fϵ)ϵ, (f̃ϵ)ϵ be two nets. Then, the net (fϵ − f̃ϵ)ϵ is called Y -negligible, if the
following condition is satisfied

∥fϵ − f̃ϵ∥Y ≲ ω(ϵ)k , (4.1)

for all k ∈ N, ϵ ∈ (0, 1]. In the case where fϵ = fϵ(t, x) is a net depending also on
t ∈ [0, T ], then the negligibility condition (4.1) can be regarded as

∥fϵ(t, ·)− f̃ϵ(t, ·)∥Y ≲ ω(ϵ)k , ∀k ∈ N ,
uniformly in t ∈ [0, T ]. The constant in the inequality (4.1) can depend on k but
not on ω.

Definition 4.5 and Definition 4.6 below introduce the notion of the very weak
solution to the Cauchy problem (1.1). The two definitions differ depending on
the sign of the potential V and shall be used accordingly. However, in principle,
one could simply suggest using only Definition 4.6 where V ∈ R, but in the case
of a non-negative V as in Definition 4.5 the moderateness assumptions are more
relaxed.

Let us clarify that in both definitions the approximating net u0,ϵ shall be re-
garded as the regularisation of u0 via convolution with a Fredrichs-mollifier ψ as
in (2.7). Regarding the potential V , the approximating net Vϵ is an expansion
of such idea, that encloses the cases where V is singular. In that manner it is
possible to consider V = δ or V = δ2. In the latter case we realise V as an
approximating family or in the Colombeau sense, and define Vϵ as Vϵ := ψ2

ϵ . We
refer to Remark 4.13 for a complementary discussion.

Before stating the below definitions let us formulate the Cauchy problem (1.1)
in its “ϵ-parametrised” version:{

∂tuϵ(t, x) +Ruϵ(t, x) + Vϵ(x)uϵ(t, x) = 0 , (t, x) ∈ [0, T ]×G ,

uϵ(0, x) = u0,ϵ(x), x ∈ G ,
(4.2)

Definition 4.5 (Very weak solution, case V ≥ 0). Let V in (1.1) be non-negative.
If there exists

• a L∞-moderate, or (provided that Q > ν) a L
Q
ν (G) ∩ L

2Q
ν (G)-moderate

approximation of V ;
• a H

ν
2 (G)-moderate approximation of u0;

• and the solution to the Cauchy problem (4.2) (uϵ)ϵ is C([0, T ];H
ν
2 (G))-

moderate,

then, (uϵ)ϵ is said to be a very weak solution to the Cauchy problem (1.1) in the
case of a non-negative potential V .

Definition 4.6 (Very weak solution, case V ∈ R). Let V be any real function. If
there exists
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• a L∞-moderate approximation of V ;
• a H

ν
2 (G)-moderate approximation of u0;

• and the solution to the Cauchy problem (4.2) (uϵ)ϵ is C([0, T ];L2(G))-
moderate,

then, (uϵ)ϵ is said to be a very weak solution to the Cauchy problem (1.1) in the
case of a real potential V .

As mentioned earlier in Remark 4.2, proving the existence of a very weak
solution means proving that there exist suitable approximations of the initial
data u0 and of the coefficient V such that the approximated problem (4.2) has
a suitable moderate solution. In the next two theorems, we prove such existence
under suitable assumptions depending on the sign of V .

Theorem 4.7 (Existence of the very weak solution, case V ≥ 0). Let V be non-
negative. Let also u0 ∈ H

ν
2 (G) ∪ E ′(G) and V ∈ L∞(G) ∪ E ′(G), or (provided

that Q > ν), V ∈ L
Q
ν (G) ∩ L 2Q

ν (G). Then, the very weak solution to the Cauchy
problem (1.1) exists.

Proof. Let u0 ∈ H
ν
2 (G)∩E ′(G). We first treat the case where V ∈ L∞(G)∪E ′(G).

If Vϵ, uo,ϵ are regularised (via convolution with a Friedrichs’ mollifier) nets, then
they satisfy the moderateness assumptions of Definition 4.5; i.e., we have

∥Vϵ∥L∞(G), ∥u0,ϵ∥H ν
2 (G)

≲ ϵ−n0 ,

where we have chosen ω(ϵ) = ϵ, for some n0 ∈ N. Therefore, using the estimate
(3.1) we have

∥uϵ(t, ·)∥H ν
2 (G)

≲ (1 + ∥Vϵ∥L∞(G))∥u0,ϵ∥H ν
2 (G)

≲ ϵ−n0 × ϵ−n0

= ϵ−2n0 ,

uniformly in t, and this shows that the net u0,ϵ is C([0, T ];H
ν
2 (G))-moderate, as

required. Next we treat the case where V ∈ L
Q
ν (G) ∩ L Q

2ν (G). Consequently, for

the net Vϵ as before, the L
Q
ν (G)∩L Q

2ν (G)-moderateness assumptions for ω(ϵ) = ϵ
and for some n1 ∈ N are guaranteed. Thus, using the estimate (3.11), we can
write

∥u(t, ·)∥
H

ν
2 (G)

≲ ∥u0,ϵ∥H ν
2 (G)

{(
1 + ∥Vϵ∥

L
2Q
ν (G)

)(
1 + ∥Vϵ∥

L
Q
ν (G)

) 1
2

}
≲ ϵ−n0 × ϵ−n1 × ϵ−

n1
2

= ϵ−n ,

for some n, and the proof of Theorem 4.7 is complete. □

Theorem 4.8 (Existence of the very weak solution, case V ∈ R). Let V be a real
function. Let also u0 ∈ L2(G) ∪ E ′(G) and V ∈ L∞(G) ∪ E ′(G). Then, the very
weak solution to the Cauchy problem (1.1) exists.
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Proof. By the assumptions of the theorem, the L∞(G)-moderateness assumptions
of the net Vϵ are satisfied; i.e., for some n0 ∈ N we have

∥Vϵ∥L∞(G) ≲ ω(ϵ)−n0 .

Taking ω as ω(ϵ) := (log ϵ−n0)
− 1

n0 , where n0 ∈ N is such that the moderateness
assumptions can be expressed in the form

∥Vϵ∥L∞(G) ≲ ω(ϵ)−n0 = log(ϵ−n0) .

For the net u0,ϵ the L
2-moderateness can be simply regarded as

∥u0,ϵ∥L2(G) ≲ ϵ−n1 , n1 ∈ N .
Using the estimate (3.17) for the solution to (1.1) in the case of a real potential
we deduce that

∥uϵ(t, ·)∥L2(G) ≲ exp(t∥Vϵ∥L∞(G))∥u0,ϵ∥L2(G)

≲ ϵ−tn0 × ϵ−n1

≤ ϵ−Tn0−n1

= ϵ−n ,

for some n ∈ N, and this completes the proof of Theorem 4.8. □

Corollary 4.9. Under the assumptions of Theorem 4.8 the very weak solution u
to the Cauchy problem (1.1) is also H

ν
2 (G)-moderate.

Proof. The proof is an immediate consequence of Theorem 4.8 and takes into
account Remark 3.4. □

Remark 4.10. It is evident that, in the case where V ≥ 0 and Vϵ is a L∞(G)-
moderate net, one can ease the assumptions on the moderateness of u0,ϵ as in
Definition 4.6 where V ∈ R provided the function ω(ϵ) as in the moderateness of
Vϵ is sharp enough; i.e., we require

ω(ϵ)−n1 ≤ log ϵ−n0 ,

for some n0, n1 ∈ N. In this case the C([0, T ];L2(G))-moderateness of uϵ shall be
proved using the estimate (3.17) that applies to the case of a real potential V .

As mentioned in the beginning of this section, proving the well-posedness to
the Cauchy problem (1.1) in the very weak sense, amounts to proving that a very
weak solution exists and it is unique modulo negligible nets. Here negligibility
has to be understood under appropriate choices of norms.

Before giving the formal definition of the uniqueness of the very weak solution
in our setting, see Definiton 4.11, case V ≥ 0, and Definition 4.12, case V ∈ R,
below, let us state the “ϵ-paremetrised problems to be considered:{

∂tuϵ(t, x) +Ruϵ(t, x) + Vϵ(x)uϵ(t, x) = 0 , (t, x) ∈ [0, T ]×G,
uϵ(0, x) = u0,ϵ(x), x ∈ G ,

(4.3)

and {
∂tũϵ(t, x) +Rũϵ(t, x) + Ṽϵ(x)ũϵ(t, x) = 0 , (t, x) ∈ [0, T ]×G,
ũϵ(0, x) = ũ0,ϵ(x), x ∈ G .

(4.4)
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Definition 4.11 (Uniqueness of the very weak solution, case V ≥ 0). Let V be
non-negative. Let also X and Y be normed spaces of functions/distributions
on G. We say that the Cauchy problem (1.1) has an (X, Y )-unique very weak
solution, if

• for all X-moderate nets Vϵ, Ṽϵ, such that (Vϵ − Ṽϵ)ϵ is Y -negligible; and
• for all H

ν
2 (G)-moderate regularisations u0,ϵ, ũ0,ϵ such that (u0,ϵ − ũ0,ϵ)ϵ is

L2(G)-negligible,

the net (uϵ− ũϵ) is L2(G)-negligible, where (uϵ)ϵ and (ũϵ)ϵ are the families of solu-
tions corresponding to the ϵ-parametrised problems (4.3) and (4.4), respectively.

Definition 4.12. [Uniqueness of the very weak solution, case V ∈ R] In the case of
a real potential V the definition is similar to Definition 4.11 but the moderateness
assumption regarding the nets uo,ϵ, ũ0,ϵ can be relaxed to being L2(G)-moderate.

Remark 4.13. In the work [ARST21c], Definitions 4,5 and 8 on the uniqueness of
the very weak solution to the heat equation in the Euclidean setting considered
there, are a less meticulous version of Definitions 4.11 and 4.12 that we give
here. In particular, the previous and the current definitions differ with respect
to the assumptions on the asymptotic behaviour of the nets Vϵ and Ṽϵ: here
we enlarge the requirement that the aforementioned nets approximate V as we
simply assume that the difference of nets Vϵ− Ṽϵ is L∞-negligible. In this manner
the initial idea to define uniqueness in terms of the stability of the very weak
solution under negligible changes on the coefficient V remains, but we drop the
previous requirement for the nets Vϵ and Ṽϵ to be regularisations of V .

Let us highlight Remark 4.13 by the next example where we provide cases of
nets Vϵ and Ṽϵ that fall into the assumptions of the definitions of the uniqueness
here, and are not covered but those in [ARST21c]:

Example 4.14. • Let V be any function/distribution and the nets Vϵ and Ṽϵ
to be defined as:{

Vϵ := V ∗ ψϵ ,whereψϵ := ω(ϵ)−Qψ ◦Dω(ϵ)−1 ,

Ṽϵ = Vϵ + e−1/ϵ .

• For V = δ2 and nets Vϵ and Ṽϵ to be given by:{
Vϵ = ψ2

ϵ

Ṽϵ = Vϵ + e−1/ϵ .

The above considerations give rise to nets Vϵ − Ṽϵ that are L
∞-negligible, and

therefore, satisfy the assumptions described in our definitions of uniqueness of
the very weak solution to the Cauchy problem (1.1).

In the remaining section we show the well-posedeness to the Cauchy problem
(1.1) in any feasible (X, Y )-very weak sense.

The following technical lemma is useful for our purposes in the case of a non-
negative V .
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Lemma 4.15. Let V be non-negative. Assume also that u0 ∈ L2(G) and V ∈
L∞(G), or V ∈ L

Q
ν (G) ∩ L

2Q
ν (G), provided that Q > ν. Then, for the unique

solution u to the Cauchy problem (1.1) we have the energy estimate

∥u(t, ·)∥L2(G) ≤ ∥u0∥L2(G) , (4.5)

for all t ∈ [0, T ].

Proof. If we multiply equation (1.1) by u, and integrate over G we derive

ℜ(⟨ut(t, ·), u(t, ·)⟩L2(G) + ⟨Ru(t, ·), u(t, ·)⟩L2(G) + ⟨V (·)u(t, ·), u(t, ·)⟩L2(G)) = 0 ,

where the last inequality can be rewritten as

1

2
∂t∥u(t, ·)∥2L2(G) = −∥

√
Ru(t, ·)∥2L2(G) − ∥

√
V (·)u(t, ·)∥2L2(G) ≤ 0 ,

and the claim (4.5) follows. □

Theorem 4.16 (Uniqueness of the very weak solution, case I: V ≥ 0). Let V be
non-negative. Let also u0 ∈ H

ν
2 (G) ∪ E ′(G). The following statements hold true:

• If V ∈ L∞(G)∪E ′(G), then the very weak solution to the Cauchy problem
(1.1) is (L∞(G), L∞(G))-unique;

• if Q > ν and V ∈ L∞(G) ∪ E ′(G), then the very weak solution to the

Cauchy problem (1.1) is (L
Q
ν (G) ∩ L 2Q

ν (G), L∞(G))-unique.

Proof. We denote by uϵ and ũϵ the families of solutions to the Cauchy problems
(4.4) and (4.3), respectively. Setting Uϵ to be the difference of these nets Uϵ :=
uϵ(t, ·)− ũϵ(t, ·), then Uϵ solves{

∂tUϵ(t, x) +RUϵ(t, x) + Vϵ(x)Uϵ(t, x) = fϵ(t, x) , (t, x) ∈ [0, T ]×G ,

Uϵ(0, x) = (u0,ϵ − ũ0,ϵ)(x) , x ∈ G ,
(4.6)

where we set fϵ(t, x) := (Ṽϵ(x)− Vϵ(x))ũϵ(t, x) for the mass term to the inhomo-
geneous Cauchy problem (4.6).

We aim to express the solution to (4.6) in terms of the solutions to the corre-
sponding homogeneous problems: fix σ ∈ [0, T ], and let Wϵ(t, x) and Ũϵ(t, x;σ)
being the solutions to following the Cauchy problems{

∂tWϵ(t, x) +RWϵ(t, x) + V (x)ϵ(x)Wϵ(t, x) = 0 , in [0, T ]×G,
Wϵ(t, x) = (u0,ϵ − ũ0,ϵ)(x) on {t = 0} ×G ,

and {
∂tŨϵ(t, x;σ) +RŨϵ(t, x;σ) + Vϵ(x)Ũϵ(t, x;σ) = 0 , in (σ, T ]×G,

Ũϵ(t, x;σ) = fϵ(σ, x) on {t = σ} ×G .

Thus, with the above considerations, we can write as an application of Duhamel’s
principle:

Uϵ(t, x) = Wϵ(t, x) +

∫ t

0

Ũϵ(t− σ, x;σ) dσ .
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Passing to the L2-norm of the latter expression we get

∥Uϵ(t, ·)∥L2(G) ≤ ∥Wϵ(t, ·)∥L2(G) +

∥∥∥∥∫ t

0

Ũϵ(t− σ, ·;σ) dσ
∥∥∥∥
L2(G)

.

An application of Minkowski’s integral inequality, combined with the energy up-
per bound (4.5) for both solutions Wϵ and Ũϵ to the Cauchy problems as above,
allow to estimate ∥Uϵ(t, ·)∥L2 further as given below:

∥Uϵ(t, ·)∥L2(G) ≤ ∥Wϵ(t, ·)∥L2(G) +

∫ T

0

∥Ũϵ(t− σ, ·;σ)∥L2(G) dσ

≤ ∥u0,ϵ − ũ0,ϵ∥L2(G) +

∫ T

0

∥fϵ(σ, ·)∥L2(G) dσ . (4.7)

Since
∥fϵ(σ, ·)∥L2(G) ≤ ∥Ṽϵ − Vϵ∥L∞(G)∥ũϵ(σ, ·)∥L2(G) ,

using (4.7) we obtain

∥ũϵ(σ, ·)∥L2(G) ≤ ∥u0,ϵ − ũ0,ϵ∥L2(G)

∫ T

0

∥ũϵ(σ, ·)∥L2(G) dσ .

Finally, taking into account the negligibility of the nets u0,ϵ − ũ0,ϵ and Ṽϵ − Vϵ we
get

∥Uϵ(t, ·)∥L2(G) ≲ ω1(ϵ)
N + ω2(ϵ)

Ñ

∫ T

0

ω3(ϵ)
−N1 dσ ,

for some N1 ∈ N, and for all N, Ñ ∈ N, since ũϵ is H
ν
2 (G)-moderate, and so also

L2(G)-moderate. The last estimate holds true uniformly in t, and this completes
the proof of Theorem 4.16. □

Still in the case where V ≥ 0, alternative to Theorem 4.16 conditions on the
negligibility of the net Vϵ − Ṽϵ that guarantee the very weak well-posedness of
(1.1) are given in the next theorem.

Theorem 4.17. Let V be non-negative. Let also u0 ∈ H
ν
2 (G) ∪ E ′(G). The fol-

lowing statements hold true:

• If V ∈ L∞(G)∪E ′(G), then the very weak solution to the Cauchy problem

(1.1) is (L∞(G), L
2Q
ν (G))-unique;

• if Q > ν and V ∈ L
Q
ν (G) ∩ L

Q
2ν (G), then the very weak solution to the

Cauchy problem (1.1) is (L
Q
ν (G) ∩ L 2Q

ν (G), L
2Q
ν (G))-unique.

Proof. We keep the notation used in the proof of Theorem 4.16 and adapt the
reasoning there if necessary. Observe that the next inequality follows by Hölder’s
inequality combined with the Sobolev embeddings (2.5):

∥(Ṽϵ − Vϵ)(·)ũϵ(t, ·)∥L2(G) ≤ ∥Ṽϵ − Vϵ∥
L

2Q
ν (G)

∥
√
Rũϵ(t, ·)∥L2(G) ,

uniformly in t ∈ [0, T ]. Now, if in (4.7) we plug in the formula for fϵ(σ, ·) and the
last estimate, then we get

∥Uϵ(t, ·)∥L2(G) ≲ ∥u0,ϵ − ũ0,ϵ∥L2(G) + ∥Ṽϵ − Vϵ∥
L

2Q
ν (G)

∥ũϵ(t, ·)∥H ν
2 (G)
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Taking into account the negligiblity and moderateness assumptions we deduce
that

∥Uϵ(t, ·)∥L2(G) ≲ ω(ϵ)N , for allN ∈ N ,
uniformly in t ∈ [0, T ], and for some suitable ω(ϵ) and this finishes the proof of
Theorem 4.17. □

In the next theorem we prove the uniqueness of the very weak solutions to (1.1)
in the general case of a real coefficient V .

Theorem 4.18. Let V ∈ R. Let also u0 ∈ L2(G)∪E ′(G) and V ∈ L∞(G)∪E ′(G).
Then, the very weak solution to the Cauchy problem (1.1) is (L∞(G), L∞(G))-

unique or (L∞(G), L
2Q
ν (G))-unique, where in the second case we assume that

2Q ≥ ν.

Proof. The arguments developed here follow the same line as in Theorems 4.16
and 4.17. The notation used there is adopted here as well. First we recall the
estimate for the solution Uϵ yo the Cauhcy problem (4.6):

∥Uϵ(t, ·)∥L2(G) ≤ ∥Wϵ(t, ·)∥L2(G) +

∫ T

0

∥Ũϵ(t− σ, ·;σ)∥L2(G) dσ .

Now, the L2-norms appearing on the right-hand side of the above inequality shall
be estimated after applying twice the inequality (3.17) for the classical solution
to (1.1) in the case of a real potential. In particular we obtain

∥Uϵ(t, ·)∥L2(G) ≲ ∥u0,ϵ−ũ0,ϵ∥L2(G) exp
(
t∥Vϵ∥L∞(G)

)
+∥fϵ(σ, ·)∥L2(G) exp

(
t∥Vϵ∥L∞(G)

)
.

(4.8)
It is necessary for our purposes to consider the L∞-moderateness of the net Vϵ

under the choice of the function ω to be given by ω(ϵ) :=
(
log ϵ−N0

)− 1
N0 , where

N0 ∈ N is such that the moderateness assumption can be expressed as:

∥Vϵ∥L∞ ≲ ω(ϵ)−N0 = log(ϵ−N0) ,

uniformly in ϵ ∈ (0, 1]. Let us plug into the estimate (4.8) the moderateness
assumption as above and get

∥Uϵ(t, ·)∥L2(G) ≲ e−TN0
[
∥u0,ϵ − ũ0,ϵ∥L2(G) + ∥fϵ(σ, ·)∥L2(G)

]
, (4.9)

uniformly in ϵ ∈ (0, 1]. We next need to consider the negligibility of nets involved
into (4.9). First consider the case where the net Ṽϵ − Vϵ is L

∞-negligible. Then,
using the estimate

∥fϵ(σ, ·)∥L2 ≤ ∥Ṽϵ − Vϵ∥L∞∥ũϵ∥L2 ,

and the L2-moderateness of ũϵ as being the very weak solution to (1.1) we get

∥fϵ(σ, ·)∥L2 ≤ ω(ϵ)−N ,

for any N ∈ N. The latter combined with the L2-negligibility assumption of
the net u0,ϵ − ũ0,ϵ under the estimate (4.9) implies the L2-negligiblity of the net
uϵ − ũϵ and we have shown that the very weak solution to the Cauchy problem
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(1.1) is (L∞(G), L∞(G))-unique. Now, for the case where the net Ṽϵ − Vϵ is L
2Q
ν -

negligible, applying Hölder’s inequality and using the Sobolev embedding (2.5)
we get

∥fϵ(σ, ·)∥L2 ≤ ∥(Ṽϵ − Vϵ)(·)ũϵ(t, ·)∥L2(G) ≤ ∥Ṽϵ − Vϵ∥
L

2Q
ν (G)

∥
√
Rũϵ(t, ·)∥L2(G) .

Now, since by Corollary 4.9 the very weak solution ũϵ is H
ν
2 -moderate, by the

last estimate we deduce that the net fϵ is L2-negligible, and consequently also
the difference of nets u0,ϵ− ũ0,ϵ. The last observations implies that the very weak

solution to the problem (1.1) is (L∞, L
2Q
ν )-unique, and the proof of Theorem 4.18

complete. □

To summarize in the general case V ∈ R, the very weak solution to the Cauchy

problem (1.1) can be (X, Y )-unique with X = L∞ and Y = L∞ ∪ L 2Q
ν , while in

the case V ≥ 0 we allow X = L∞ ∪ {LQ
ν ∩ L 2Q

ν }.

5. Consistency result

We conclude this paper by proving the consistency result with the classical case.
This means to show that when the Cauchy problem (1.1) is well-posed, then the
very weak solution can be recaptured by the classical one in the L2-sense. To
see this we need to assume that the approximating, to V , nets, as described in
Definitions 4.5 and 4.6 above on the existence of the very weak solution, are
regularisations of V via a Friedrichs mollifier. As in the previous sections, the
cases of a non-negative and of a real potential will be treated separately.

Before we engage with the proof of our claim, we recall the following space of
functions:

Definition 5.1 (Space C0(G)). We denote by C0(G) the space of continuous func-
tions that vanish at infinity; i.e., we write f ∈ C0(G), if for every δ > 0 there
exists a compact set Kδ such that

|f | < δ on G \Kδ .

We note that the space (C0(G), ∥ · ∥L∞) is a Banach space. The following
observation is essential for our purposes:

Remark 5.2. For a function f ∈ C0(G), we know that for the corresponding
regularised net fϵ we have:

∥fϵ∥L∞(G) ≤ C <∞ ,

uniformly in ϵ ∈ (0, 1].

Theorem 5.3 (Consistency with the classical solution, case V ≥ 0). Let V be
a non-negative potential, and let Vϵ be its regularisation. Assume also that u0 ∈
H

ν
2 (G). If one of the two following conditions is satisfied, then the regularised net

uϵ converges, as ϵ→ 0, in L2(G), to the classical solution u given by Proposition
3.2:

(1) We have Q > ν, and V ∈ L
2Q
ν (G) ∩ LQ

ν (G);
(2) V ∈ C0(G).
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Proof. For u and for uϵ as in the hypothesis, we introduce the auxiliary notation
Wϵ(t, x) := u(t, x)−uϵ(t, x). Then, the netWϵ is a solution to the Cauchy problem{

∂tWϵ(t, x) +RWϵ(t, x) + Vϵ(x)Wϵ(t, x) = fϵ(t, x),

Wϵ(0, x) = (u0 − u0,ϵ)(x) ,
(5.1)

where we denote fϵ(t, x) := (Vϵ(x)− V (x))u(t, x). Analogously to Theorem 4.16,
an application of Duhamel’s principle gives:

∥Wϵ(t, ·)∥L2(G) ≲ ∥u0 − u0,ϵ∥L2(G) +

∫ T

0

∥fϵ(σ, ·)∥L2(G) dσ

= ∥u0 − u0,ϵ∥L2(G) +

∫ T

0

∥(Vϵ − V )(·)u(t, ·)∥ dσ , (5.2)

where we have applied Minkowski’s integral inequality.
Let us first consider the case (1): standard arguments from functional analysis

imply that the below Lp-norms converge to 0 as ϵ→ 0:

∥u0 − u0,ϵ∥L2(G) , ∥Vϵ − V ∥
L

2Q
ν (G)

.

The integrated quantity on the right-hand side of (5.2) is finite since

∥(Vϵ − V )(·)u(t, ·)∥ ≲ ∥Vϵ − V ∥
L

2Q
ν (G)

∥
√
Ru(σ, ·)∥L2(G) ,

as follows by the Sobolev embeddings (3.14), and consequently, since u ∈ H
ν
2 (G),

we also have the convergence

∥(Vϵ − V )(·)u(σ, ·)∥L2(G) ≲ ∥Vϵ − V ∥
L

2Q
ν (G)

∥
√
Ru(σ, ·)∥L2(G) → 0 .

Combining (5.2) with the below observations and using Lebesgue’s dominated
convergence theorem we get

∥Wϵ(t, ·)∥L2(G) → 0 , (5.3)

uniformly in t ∈ [σ, T ], where σ is taken to be fixed. The last conludes the proof
of the theorem for the case (1).

To deal with the case (2), inequality on the right-hand side of (5.2) shall now
be estimated as:

∥(Vϵ − V )(·)u(σ, ·)∥L2(G) ≤ ∥Vϵ − V ∥L∞∥u(σ, ·)∥L2 .

Using Lemmas 3.1.58, 3.1.59 in [FR16] for V ∈ C0(G) we have the convergence:
∥Vϵ − V ∥L∞ → 0, as ϵ→ 0, and the last implies in turn that convergence in (5.3)
is satisfied under the alternative assumptions (2). Summarising the above, we
have shown that the very weak solution converges to the classical one in L2 in
both cases (1) and (2), and the proof of Theorem 5.3 is complete. □

Theorem 5.4. Let V be a real coefficient, and let u0 ∈ L2(G). Assume also that
V ∈ C0(G), and also that Vϵ is a regularisation of V . Then, the regularised
net (uϵ)ϵ converges, as ϵ → 0, in L2(G), to the classical solution u given by
Proposition 3.3.
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Proof of Theorem 5.4. We keep the same notation as in Theorem 5.3. Using the
estimate (3.17) and arguments similar to those developed in Theorem 5.3 we
obtain

∥Wϵ(t, ·)∥L2(G) ≲ exp(t∥Vϵ∥L∞)∥u0 − u0,ϵ∥L2(G)

+ ∥Vϵ − V ∥L∞

∫ T

0

exp(σ∥Vϵ∥L∞)∥u(σ, ·)∥L2(G) dσ ,

uniformly in t ∈ [0, T ]. Now, by Remark 5.2 and since the convergence in L2-
norm and in L∞-norm of the differences of nets u0−u0,ϵ and Vϵ−V , respectively,
is as we showed in Theorem 5.3, we see that uϵ → u in the L2-sense, and the
proof of Theorem 5.4 is complete. □

Remark 5.5. To be consistent with the previous work [ARST21c] on the heat
equation on the real case, let us point out that the assumption on the functional
space L∞(G) of the coefficient V (denoted by q there) as appears in the consis-
tency results (see Theorems 2.8 and 3.5 in [ARST21c]) should be restricted to its
subspace C0(G). Indeed, under such assumptions, the necessary L∞-convergence
of the net Vϵ−V is granted, and Theorems 2.8 and 3.5 in [ARST21c] would then
follow as a spacial case of Theorem 5.3 and 5.4, respectively, in the particular
case where the group G is the trivial one and the Rockland operator is the usual
Laplace operator; in symbols, when G = Rd and R = −∆.

References

[ARST21c] A. Altybay, M. Ruzhansky, M. E. Sebih, N. Tokmagambetov. The heat equation
with strongly singular potentials. Appl. Math. Comput., 399 (2021), 126006.

[BG84a] P. Baras, J. A. Goldstein. Remark on the inverse square potential in quantum
mechanics. North-Holland Mathematics Studies, Volume 92 (1984), 31-–35.

[BG84b] P. Baras, J. A. Goldstein. The heat equation with a singular potential. Trans.
Amer. Math. Soc., 284 (1984), 121–139.
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