Microwave assisted growth of stannous ferrite microcubes as electrodes for potentiometric nonenzymatic H2O2 sensor and supercapacitor applications

ABSTRACT

Electrochemical sensors and supercapacitors are two noteworthy applications of electrochemistry. Herein, we report the synthesis of SnFe₂O₄ microcubes and Fe₂O₃ nanorods through a facile microwave assisted technique which are employed in fabricating the electrodes for nonenzymatic hydrogen peroxide (H₂O₂) sensor and supercapacitor applications. SnFe₂O₄ microcubes exhibited an enhanced specific capacitance of $172Fg^{-1}$ at a scan rate of $5mVs^{-1}$ in comparison to Fe₂O₃ nanorods ($70Fg^{-1}$). Furthermore, the H₂O₂ sensing performance of the fabricated SnFe₂O₄ electrodes through chronopotentiometry studies in 0.1M PBS solution (at pH 7) with a wide linear range revealed a good sensitivity of 2.7mVµM⁻¹µg⁻¹ with a lowest detection limit of 41nM at a signal-to-noise ratio of 3. These results indicate that SnFe₂O₄ microcubes are excellent materials for the cost effective design and development of efficient supercapacitors as well as nonenzymatic sensors.

Keyword: Stannous ferrite; Microwave assisted method; Hydrogen peroxide sensor; Supercapacior; Electrochemical performance