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Abstract
Governments around the world continue to act to contain and mitigate the spread 
of COVID-19. The rapidly evolving situation compels officials and executives to 
continuously adapt policies and social distancing measures depending on the cur-
rent state of the spread of the disease. In this context, it is crucial for policymakers 
to have a firm grasp on what the current state of the pandemic is, and to envision 
how the number of infections is going to evolve over the next days. However, as in 
many other situations involving compulsory registration of sensitive data, cases are 
reported with delay to a central register, with this delay deferring an up-to-date view 
of the state of things. We provide a stable tool for monitoring current infection levels 
as well as predicting infection numbers in the immediate future at the regional level. 
We accomplish this through nowcasting of cases that have not yet been reported 
as well as through predictions of future infections. We apply our model to Ger-
man data, for which our focus lies in predicting and explain infectious behavior by 
district.

Keywords Nowcasting · Forecasting · COVID-19 · Generalized regression models · 
Delayed reporting · Disease mapping

1 Introduction

The infectious disease known as COVID-19 hit the planet in tsunami-like fashion. 
The first cases were identified in December 2019 in the city of Wuhan, China, and 
by March 2020 infections had already spread over the entire world. Nearly all of 
the affected countries progressively implemented measures to slow down the spread 
of the virus, ranging from recommended social distancing to almost complete 
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lockdowns of social and economic activity. These measures eventually proved to be 
effective, as the number of infections could be slowed down (see e.g., Flaxman et al. 
2020 and Roux et al. 2020). This allowed numerous states to relax restrictions, in 
an attempt to gradually return to normality. At the same time, with the threat posed 
by the virus still looming, decision makers are forced to strike a balance between 
epidemiological risk and allowance of socioeconomic activity. In this context, sur-
veillance of the number of new infections became increasingly important, and par-
ticularly so on a regional level. Given the local nature of the phenomenon (see e.g., 
Gatto et  al. 2020 and Li et  al. 2020), such regional view appears to be of crucial 
importance. One of the difficulties lies in the fact that exact numbers of infections 
detected on a particular day are only available with a reporting delay of, in some 
cases, several days, which occurs along the reporting line from local health authori-
ties to the central registers. The following paper provides a stable tool for monitor-
ing current infection levels, correcting for incompleteness of the data due to report-
ing delays. This approach is also extended toward predicting new infections for the 
immediate future at the regional level.

More specifically, the scope of our model is threefold: Firstly, we aim to under-
stand the current epidemiological situation as well as to comprehend the association 
between detected infections, demographic characteristics and geographical location. 
Secondly, our goal is to nowcast infections that have already been observed but have 
not yet been included in the official numbers. New infections are detected through 
tests and registered by the local health authorities, which in turn will report the num-
bers to national authorities with an inevitable delay. Since we observe reports of 
infections for each day, we are able to model this delay, which indeed allows to now-
cast infection numbers correcting for infections which have not yet been reported. 
Note that we are not modeling the incubation period (Qin et al. 2020; McAloon et al. 
2020), nor the time passing from the onset of symptoms to detection and registration 
by the local health authority (Lima et al. 2020), as those are beyond the scope of this 
paper. We instead focus solely on the delay which occurs along the reporting chain 
from local to national authorities. Lastly, our aim is also to forecast the epidemio-
logical situation for the immediate future. We here want to stress that our model is 
not aiming to exactly predict future infection numbers, as that would not be realistic. 
The goal is rather to give a general idea of what is going to happen in the next days 
in the different districts, and, perhaps most importantly, help in identifying which 
districts are going to be the most problematic. This could also help policymakers in 
making decisions regarding the implementation of safety measures at the regional 
level. We apply our modeling approach to explain and predict numbers of registered 
COVID-19 infections for Germany by district, age group and gender. While the 
regional component is of evident and paramount importance, the age group and gen-
der distinctions are also very relevant, given the powerful interaction of demography 
and current age-specific mortality for COVID-19 (Dowd et al. 2020).

Our nowcasting approach can also be used to obtain up-to-date measures of the 
7-days incidence, both at the local as well as at the national level. This quantity is 
often used by authorities to assess how hard a specific area is currently hit by the 
pandemic, and sometimes, as is the case for Germany, it is also employed as a cri-
terion to decide which containment measures are appropriate (Bundesministerium 
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der Justiz 2021). It is especially important to have up-to-date infection numbers 
when computing such a measure, as it is inherently evolving on a daily basis. At 
the time of writing, the index is calculated by German officials with reference to the 
date of report of each infection by the local health authorities. Given that, as already 
stated, there are significant delays in the reporting of cases from local authorities to 
national ones, the resulting figures are consistently underestimating the actual inci-
dence, with the error being potentially quite large and problematic. Our nowcasts 
offer a simple and stable solution to this issue, providing infection numbers that are 
already corrected for expected delays.

The statistical modeling of infectious diseases is a well developed scientific field. 
We refer to Held et al. (2017) for a general overview of the different models. Mod-
eling and forecasting COVID-19 infections has been tackled by numerous research 
groups using different models. Panovska-Griffiths (2020) discusses whether one or 
multiple models may be useful for COVID-19 data analytics. Stübinger and Schnei-
der (2020) make use of time warping to forecast COVID-19 infections for different 
countries (see also Cintra et al. 2020), while Dehesh et al. (2020) utilize ARIMA 
time series models. Ray et al. (2020) combine forecasts from several different mod-
els to obtain robust short-term forecasts for deaths related to COVID-19. Fritz et al. 
(2021) present a multimodal learning approach combining statistical regression and 
machine learning models for predicting COVID-19 cases in Germany at the local 
level. Early references dating back to the first stages of the pandemic are Anastasso-
poulou et al. (2020) and Petropoulos and Makridakis (2020). In this paper we make 
use of negative binomial regression models implemented in the mgcv package in 
R (Wood 2017). This allows us to decompose the spatial component in depth, and 
obtain district-level nowcasts and forecasts for Germany. Our results confirm the 
dynamic and highly local nature of outbreaks, highlighting the need for continuous 
regional surveillance on a small area level.

The rest of the paper is structured as follows: Sect. 2 describes the data, while 
Sect. 3 frames the problem, presents our model and compares the performance of 
different model specifications over time, motivating our modeling choices. Section 4 
exemplifies surveillance and describes how predictions are performed in practice, 
showing the results for exemplary dates. Finally, Sect. 5 concludes the paper, high-
lighting the limitations of this study and adding some concluding remarks.

2  Data

As previously anticipated, we focus our analyses on German data. To do so, we 
make use of the COVID-19 dataset published by the Robert-Koch-Institute (RKI) on 
a daily basis. The RKI is a German federal government agency and scientific insti-
tute responsible for health reporting and for disease control and prevention. It main-
tains the national register for COVID-19, where all identified cases of the disease 
are reported from the local health authorities to the RKI. In our analysis we make 
use of daily downloads of the data, which we have at our disposal starting from 
April 12, 2020 until December 29, 2020.
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Table 1 shows an exert of the data we are confronted with. Every morning, the 
database containing all registered COVID-19 infections is updated and released to 
the public, downloadable from the Robert-Koch-Institute’s repository1. The dataset 
contains, for each of the 412 districts, the cumulated number of confirmed cases of 
COVID-19 infections stratified by age group (00-04, 05-14, 15-34, 35-59, 60-79 or 
80+) and gender, updated to that day. The dataset is also stratified by the date of 
registration of each case by the local public health authorities (Gesundheitsämter). 
Through the merging of daily downloads of this RKI report, we can construct the 
full dataset as sketched in Table 1, where the release date is defined in the column 
“Reporting Date”. This full data format is necessary to trace the reporting delay for 
each observation. It can sometimes indeed take several days for the data to get from 
the local health authorities to the nation-wide central one, and we thus define the 
reporting delay as the number of days between registration date and reporting date. 
In Fig.  1 we show the empirical cumulative distribution function of the reporting 
delay observed during the three weeks prior to two exemplary dates close to the 
extremes of our examined time period. From the plot we can appreciate how the 
delays were slightly lower in December than in May, possibly due to improvements 
along the reporting chain. Nonetheless, the delay remains significant across all of 
our sample. Note that since the RKI reports data every morning, all reported cases 
will have a delay of at least one day. The delay is especially high during weekends, 
a fact for which we account in our model. Due to the delayed nature of reporting, 
the number of registered COVID-19 cases which refer to a specific registration date 
might change with the reporting date, as exemplified in Table 1. On September 25, 
2020, the RKI has reported three registered infections of females in the age group 
from 60-79 living in the city of Munich, which were registered on September 22, 
2020. Due to delayed reporting, this number increased to six in the report of Sep-
tember 26, 2020. The three newly reported cases have therefore been reported with a 
delay of four days. Note once again that the RKI dataset available for download only 
contains the information up to the current date, thus making daily downloads of the 
datasets necessary to determine reporting delay.

For the sake of brevity, we here do not provide general descriptive statistics of the 
data, since these numbers can be easily obtained from many other sources. Among 
others, we refer to the RKI webpage2, which also includes a dashboard to visualize 
the data (see also CoronaMaps3).

3  Surveillance model

3.1  Framing

We start motivating the model by first reformulating the data structure in a way that 
is suitable for the analysis. Let Nt,d denote the newly registered infections at day t 

1 https:// www. arcgis. com/ home/ item. html? id= f1077 4f1c6 3e401 68479 a1feb 6c7ca 74
2 https:// www. rki. de/ covid- 19- en
3 https:// corona. stat. uni- muenc hen. de/ maps

https://www.arcgis.com/home/item.html?id=f10774f1c63e40168479a1feb6c7ca74
https://www.rki.de/covid-19-en
https://corona.stat.uni-muenchen.de/maps


1 3

Regional now‑ and forecasting for data reported with delay:…

which are reported with delay d and hence included in the database from day t + d . 
The minimum possible delay is one day, and we assume the maximum delay to be 
equal to dmax days. In our analysis we set dmax = 7 , which corresponds to a week. In 
other words, we assume delayed reporting to happen within a week. If we define T 
as the time point of the analysis, the data available at that moment will take the form 
shown in Table 2.

The bottom right triangle of the data is missing, so that the structure of the 
available data is akin to that of a guillotine blade. This comparison can be help-
ful to understand prediction of future values, since predicting by reporting date 
corresponds to making the blade fall down by one or more days. In other words, 
one of our goals will be to predict the diagonal edge of the blade, which corre-
sponds to the prediction for cases to be reported on day T + 1 . To better explain 
our prediction strategy, we give a sketch of this idea in Fig. 2. In the sketch, the 
green dots represent data that are already observed at time T (the day of analysis), 
while the crosses represent entries that are not yet observed and that we aim to 
predict with our model. This is done in three steps, which are described below. 
To be specific, we pursue nowcasting, forecasting and the combination of both, 

Table 1  Illustration of the raw data structure, showing downloads of the data from September 25 and 
September 26, 2020 as an example. To facilitate reproducibility, the original column names used in the 
RKI datasets are given in brackets below our English notation
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0 1 2 3 4 5 6 7
Delay

F t
(d

)

Date of analysis
2020−05−15
2020−12−15

Fig. 1  Empirical cumulative distribution function Ft(d) of reporting delays observed during the three 
weeks preceding May 15 and December 15, 2020
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which we name forenowcasting. Note that forecasting and forenowcasting can be 
defined, in short, respectively, as "forecasting of reported cases" and "forecasting 
of registered cases".

Table 2  Reformulated data 
structure for a single district, 
age group and gender, explicitly 
including delay. Available data 
are akin to a guillotine blade

t d

1 2 ⋯ d
max

1 N1,1 N1,2
⋯ N1,d

max

2 N2,1 N2,2
⋯ N2,d

max

⋮ ⋮ ⋮ ⋮ ⋮

T − d
max

N
T−d

max
,1 N

T−d
max

,2
⋯ N

T−d
max

,d
max

T − d
max

+ 1 N
T−d

max
+1,1 N

T−d
max

+1,2
⋯ NA

⋮ ⋮ ⋮ ⋮ ⋮

T − 1 N
T−1,1 NA NA NA

T NA NA NA NA

Fig. 2  Sketch of the reformulated data structure showing how nowcasting, forecasting and forenowcast-
ing are performed
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Nowcasting: Each row of the matrix contains cases registered on a single date 
and reported with different delays. To obtain the amount of cases registered on that 
day regardless of the delay with which they were reported we therefore need to take 
the row sum. If the goal is to obtain predictions by registration date for several days, 
we then just sum the cases over the corresponding rows. In Fig. 2 we highlight this 
type of prediction with a green square, which represents a weekly nowcast, that is 
the number of cases with registration dates over the past week. This comprises num-
bers that have already been observed as well as the predictions for cases from past 
days that have not yet been reported.

Forecasting If we shift the focus from predicting by registration date to report-
ing date, that is, if the aim is to predict reported numbers regardless of when the 
reported infections were actually first discovered, we cannot sum the entries of the 
matrix row-wise, but we need to do so diagonally. This is because the reported num-
ber on day T is comprised of the sum of cases registered on day T − 1 reported with 
delay 1, cases registered on day T − 2 reported with delay 2, and so on and so forth, 
up until cases registered on day T − dmax reported with delay dmax . The red parallelo-
gram in Fig. 2 thus represents the cumulated weekly forecast, that is, the predicted 
number of infections to be reported over the next seven days. Here all entries are 
unobserved and will need to be predicted through our model, which will be uncov-
ered in the following section.

Forenowcasting We can also combine the two aspects and predict the number of 
infections that will be registered in the next week, regardless of their reporting date. 
We call this process “forenowcasting”. While the previously described forecasting 
(i.e., predicting by reporting date) is useful to get a picture of the numbers that will 
be reported each day, what really gives a picture of the ongoing situation are infec-
tion numbers based on registration date. This weekly prediction corresponds to the 
blue square in Fig. 2 and in fact is a combination of forecasting and nowcasting. We 
will demonstrate that the three types of predictions can be carried out with a single 
model.

3.2  Statistical model

As already stated in Sect. 2, the cumulative numbers of registered COVID-19 infec-
tions are, other than by registration date, also stratified by district, age group and 
gender. To accommodate  for this additional information, we extend the notation 
from above and define with Nt,d,r,g the number of newly registered infections on day 
t in region/district r and gender and age group g, reported by the RKI on day t + d 
(thus with delay d). Row-wise cumulated numbers are defined through

which represents the group- and district-specific cumulated number of cases with 
registration date t and delay up to d. We define with zr the geo-coordinates of dis-
trict/region r and generally denote covariates with x , where varying subscripts 

(1)Ct,d,r,g =

d∑

j=1

Nt,j,r,g
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indicate dependence on either gender- and age group g, region r, time point t or 
delay d.

We assume the counts Nt,d,r,g to follow a negative binomial distribution with 
mean �t,d,r,g and variance �t,d,r,g + ��2

t,d,r,g
 , where 𝜃 > 0 and the limit � → 0 leads 

to a Poisson distribution. More specifically, we set

Here s1(t) is a global smooth time trend, and s2(zr) is a smooth spatial effect over 
the districts of Germany. The parameters �d = (�1,… , �dmax ) capture the delay effect 
for each delay d, while the parameters contained in � capture effects related to time 
and delay, which in our case will be weekday effects. Gender and age effects are 
included in � , and ur are unstructured regional effects which will be subsequently 
specified in more detail. Coefficient � captures the time-related autoregressive (AR) 
component of the process, indicating the effect of cases from the same district and 
gender- and age group which were registered on the previous day. Coefficient � 
expresses the effect of infections registered on the same day which were reported 
with delay up to d − 1 , or in other words a delay-related autoregressive component. 
Finally, the offset is set to the logarithm of the regional population size in the differ-
ent gender and age groups, enabling us to model the infection rate. Using a popula-
tion offset is quite standard in disease mapping and in count time series analyses of 
rare infectious diseases (see e.g., Bauer and Wakefield 2018). The offset defined this 
way also allows to incorporate the size of the susceptible population in each region, 
showing that this type of modeling is practicable at different stages of the pandemic. 
In this case, the population size would need to be replaced by the number of sus-
ceptible in region r, incorporating the SIR (susceptible-infected-removed) model or 
other similar ones (see e.g., Allen 1994). This is not particularly relevant at the time 
point chosen for the analysis, as the number of susceptible corresponds more or less 
to the population size due to the small (and unknown) size of the immune popula-
tions in each district (note that vaccines were not yet available during the analyzed 
time period).

The previously mentioned spatial effect is comprised of two components: An 
overall smooth effect s2(zr) mirroring the fact that different parts of Germany are 
differently affected, and a region-specific component accounting for infection rates 
that are particularly high or low in single districts with respect to the neighbouring 
situation. To be more specific, s2(⋅) is a smooth spatial function of the geo-coordi-
nates zr for region r, while the ur are unstructured region-specific effects, interacting 
with the time dependent covariates xt . We put a normal prior on ur , i.e., we model 
ur = (ur0, ur1)

⊤ as random effects, where ur0 is a general random intercept captur-
ing the long-term level (from t = 1,… , T  ) of the epidemiological situation in the 
different districts, while ur1 is a second random intercept estimated exclusively over 
the last k days, expressing the short-term dynamics (within k days prior to t = T  ) of 
infections. In our analysis we set k = 7 . For ur we assume the structure

(2)
�t,d,r,g = exp{s1(t) + s2(zr) + �d + xt,d� + xg� + xtur

+ � log(1 + Ct−1,d,r,g) + � log(1 + Ct,d−1,r,g) + offsetr,g}.
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for r = 1,… , 412 , with the posterior variance matrix �u being estimated from the 
data. The predicted values ûr (i.e., the posterior mode) measure how much and in 
which direction the infection rate of each district deviates from the global spatial 
structure, controlling for covariates and age- and gender-specific population sizes.

3.3  Model selection and performance

Model (3.2) includes several components. In this section we aim at assessing 
whether the inclusion of some of those components is beneficial in terms of pre-
dictive performance, and to generally evaluate the overall performance of the final 
model. Note that we fit the model including only infections with registration dates 
within 21 days of the day of analysis in the training set. This is because, while on 
the one hand we would like to use as much data as possible for the fitting, the data-
generating process (i.e the spread of the disease) is subject to exogenous changes 
over time. In other words, we must strike a balance between having a large enough 
training set and keeping the model as loyal to the current data-generating process as 
possible. We therefore fit our model using data from a rolling window of 21 days. 
This choice is motivated more precisely in the supplementary material, where plots 
comparing the predictive accuracy of the model using different fitting windows are 
included. The choice of a shorter fitting window also allows to keep other com-
ponents of the model, such as the smooth spatial effect, constant over time: Such 
effects are not, in general, time constant, and if we used the whole dataset for the 
model, we would need to have them interact with the temporal dimension. The roll-
ing window thus also enables the use of a simpler model.

In this section, we are specifically interested in seeing how the unstructured 
random effects xtur and the autoregressive components � log(1 + Ct−1,d,r,g) and 
� log(1 + Ct,d−1,r,g) impact predictive accuracy. To do so, we consider the real-
ized absolute prediction error with regards to nowcasts, forecasts and forenow-
casts, cumulated for each district over a period of seven days using different model 
specifications, to compare performance over time through a weekly rolling window 
approach. The specifics of how predictions are performed will be described in detail 
in Sect. 4.

Starting with nowcasting, let therefore Y (n)

T ,r
 denote the cumulated number of reg-

istered infections in district r over k = 7 days prior to the day of analysis at time T, 
that is

This corresponds to the sum of all numbers in the green square in Fig. 2. Accord-
ingly, we define with Ŷ (n)

T ,r
 the corresponding prediction based on the fitted model as 

described above. For forecasting, we modify the definition and look at the cumu-
lated number of cases

(3)ur

iid
∼ N(0,�u)

Y
(n)

T ,r
=

k∑

t=1

∑

g

CT−t,dmax ,r,g.
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which corresponds to the red parallelogram in Fig. 2. Again, the corresponding pre-
dicted value is notated as Ŷ (f )

T ,r
 . Finally, for forenowcasting we concentrate on the 

cumulated numbers in the blue square, and set

with matching prediction Ŷ (fn)

T ,t
 based on the fitted model. With the notation just 

given, we can define the relative district-specific prediction error (standardized per 
100,000 inhabitants) simply as

where popr is the population size in district r, and the dot refers to nowcasting, fore-
casting or forenowcasting, respectively. It should be clear that, setting k = dmax = 7 , 
the numbers defined above are only observable on day T + 7 for nowcasting and 
forecasting, and on day T + 14 for forenowcasting.

To obtain a measure of the overall predictive performance of the model for a cer-
tain fitting date T, we take the mean of RPE(⋅)

T ,r
 in absolute value over all districts, 

which we call Mean Absolute Relative Prediction Error (MARPE):

To get a sense of the average bias of predictions over time, we also plot the Mean 
Relative Prediction Error (MRPE), which takes the mean of relative errors without 
considering them in absolute value:

This last measure will be positive if the model tends to underpredict on average over 
the districts, and negative otherwise.

To evaluate the predictive accuracy of different model specifications, we compute 
MARPE

(⋅)

T
 and MRPE

(⋅)

T
 over time by fitting the model weekly for each of the con-

sidered specifications, in a rolling window approach. In particular, we consider te 
following model variations:

• Full model as in (3.2);
• Model without the time-related autoregressive component, Ct−1,d,r,g.
• Model without the delay-related autoregressive component, Ct,d−1,r,g;

Y
(f )

T ,r
=

k∑

t=1

dmax∑

d=1

∑

g

NT+t−d,d,r,g

Y
(fn)

T ,t
=

k∑

t=1

∑

g

CT+t−1,dmax ,r,g

RPE
(⋅)

T ,r
= 100 000

Y
(⋅)

T ,r
− Ŷ

(⋅)

T ,r

popr

MARPE
(⋅)

T
=

1

412

412∑

r=1

|RPE(⋅)

T ,r
|

MRPE
(⋅)

T
=

1

412

412∑

r=1

RPE
(⋅)

T ,r
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• Model without the autoregressive components, Ct−1,d,r,g and Ct,d−1,r,g;
• Model without the short-term district-specific random intercept, ur1;
• Model without the unstructured district-specific random effects ur;
• Model without the short-term district-specific random intercept, ur1 and the 

autoregressive components, Ct−1,d,r,g and Ct,d−1,r,g;
• Model without the unstructured district-specific random effects ur and the autore-

gressive components, Ct−1,d,r,g and Ct,d−1,r,g;

Figure  3 plots the MARPE and the MRPE by model fitting date for nowcasts, 
forecasts and forenowcasts, respectively. The plots already reveal several aspects of 
the goodness of fit of our model. Looking at the MARPE (top panel), it immediately 
stands out how the errors for nowcasts are, as expected, much smaller than for fore-
casts and forenowcasts. Secondly, we can see how prediction errors are remarkably 
small for the first five months of model fitting. Those months coincide with the late 
spring and summer months, during which infection numbers were relatively under 
control in Germany. Our model was thus able to capture most of the variability in 
the process, resulting in precise predictions not only for nowcasts, but also for fore-
casts and forenowcasts. Finally, we notice how there is a large increase in MARPE 
for all fitted models starting from October, which coincides with the beginning of 
the second wave of COVID-19 in Germany. This is due to the fact that in that period 
the infection dynamics changed and the numbers got much larger, thus also leading 
to an increase in prediction errors. The model variant that performed the best during 
this later period is the full model with the exclusion of the time-related autoregres-
sive component Ct−1,d,r,g , highlighted with a thicker line. The plots for the MRPE 
(bottom panel) confirm this fact and help explaining the reasons behind it. For both 

Fig. 3  Mean absolute relative prediction error ( MARPE
(⋅)

T ,r
 , top panel) and Mean Relative Prediction 

Error ( MRPE
(⋅)

T ,r
 , bottom panel) for all districts in Germany, calculated over time for different model 

specifications, respectively, for nowcasts (green), forecasts (red) and forenowcasts (blue). Different color 
shadings refer to model alternatives. The thicker line indicates the selected model, which corresponds to 
the full model with the exclusion of the time-related AR component, Ct−1,d,r,g
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forecasts and forenowcasts, it is apparent how at the beginning of the second wave 
all models tend to underpredict, while they overpredict from November onward. The 
chosen model without the AR component is actually the one which tends to under-
predict the most (even though it is not performing worse than the others in terms of 
MARPE), while it then becomes by far the least overpredicting one in later months. 
This is beacuse infection numbers grew very fast in October, and models includ-
ing the autoregressive component were better able to capture the quick increase. In 
contrast though, after new infections somewhat stabilized, the models including the 
autoregressive component were still projecting the increase of past months on new 
ones, causing large overestimation. The chosen model is instead more conservative 
in its predictions, resulting in better overall predictive performance.

4  Applied surveillance

Given that what we propose is a monitoring tool, the results change over time. 
We here give an exemplary snapshot of the estimates and how predictions can be 
obtained using Tuesday, September 15, 2020, as date of the analysis. This date was 
chosen as it lies just before the beginning of second wave of COVID-19 infections in 
Germany. As an additional remark, note that our analysis is completely reproducible 
for different dates as well, with code and data openly available and downloadable 
from our GitHub repository4.

Fig. 4  Estimated smooth effects s1(t) and s2(zr) , respectively the fitted smooth effect of time and the fit-
ted smooth spatial effect for the prevalence of COVID-19 infections in Germany (measured on the log 
scale). Both effects are estimated over the 21 days prior to September 15, 2020

4 https:// github. com/ gdeni cola/ Now- and- Forec asting- COVID- 19- Infec tions

https://github.com/gdenicola/Now-and-Forecasting-COVID-19-Infections
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4.1  Model‑based monitoring

In addition to giving proper predictions (nowcasts, forecasts and forenowcasts), 
which will be shown in the next section, our model also estimates linear coeffi-
cients, which are given in table form in the supplementary material, and fits smooth 
components over time and space, which are visualized in Fig. 4. The left hand side 
shows the estimated infection rate over time for the three weeks prior to the day of 
analysis. We notice how the rate of registered infections has been dropping until the 
end of August, while in the following weeks numbers started rising again, leading to 
a reversal and a steady increase in the smooth spline. The map on the right hand side 
depicts the smooth spatial effect estimated as a function of longitude and latitude, 
on the log scale. From the plot we can see how the regions of Bavaria and Baden-
Württemberg in the south of Germany were generally the most affected during the 
observed period. We also observe that the west was also, on average, more affected 
than the east.

The two maps in Fig. 5 show further spatial components of the model, namely 
the district-specific random intercepts. Those reflect the situation in single districts 
controlling for the previously shown smooth spatial effect, that is, in comparison 
to the average of the neighboring areas. More specifically, the map on the left dis-
plays the overall district-specific long-term random intercept, depicting the relative 
infection situation in the 21 days prior to the day of analysis, while the map on the 
right hand side shows the additional short-term random intercept which enters the 
linear predictor only over the last 7 days, giving an idea of the more recent infection 
dynamics. We can thus see that, for example, the district of Weimarer Land in the 
region of Thuringia has had the most rapidly evolving number of cases in the 7 days 

Fig. 5  Region specific level (left) and dynamics (right) of COVID-19 infections, controlling for the 
smooth spatial effect on the right hand side of Fig. 4
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prior to the day of analysis controlling for the situation in its surroundings, reflecting 
the outbreak that happened in the region during the analyzed period. This second 
map can already be regarded as a first way of monitoring infection dynamics at a 
local level, even before looking at the predicted numbers: If a district has a very high 
short term random effect, it probably means that the affected area deserves further 
consideration. 

4.2  Predictions

As previously explained, our model can be used to directly nowcast (correct reports 
from previous days for delay), forecast (predict the number of cases reported in the 
next days) and forenowcast (predict the number of infections that will be registered 
for the next days). The obtained predictions can be used to get a picture of how the 
pandemic is going to unfold in the short term. In the following, we explain how we 
obtain those predictions from our model.

Nowcasting In our case, nowcasting is equivalent to filling all NA (missing) 
entries of the matrix in Table 2, turning the trapezoid shape of the data into a full 
rectangle. This is also equivalent to completing the green square in Fig. 2. Given 
that we model delay d as a stand-alone variable in our generalized additive model, 
we are able to simply predict the missing cells directly by setting the delay d to the 
necessary value in the data vector used for predictions alongside all other covari-
ates. We can thus nowcast infections for each delay, day, district, gender and age 
group. If the autoregressive terms Ct−1,d,r,g and Ct,d−1,r,g are included in the model, 
the predictions are dependent on them. Those terms are in general not yet known at 
the day of analysis (except when predicting the first diagonal of the red parallelo-
gram in Fig. 2). We therefore perform the prediction of the black crosses in Fig. 2 
iteratively, by utilizing the predictions of the previous diagonal as the autoregres-
sive components. Based on the model, we can also take uncertainty into account by 
simulating data from a negative binomial distribution with the corresponding mean 
and variance structure. More precisely, we apply the same strategy as above, but 
instead of using the mean value we now plug counts simulated from the model into 
the autoregressive components, and repeat this procedure n = 1000 times. This para-
metric bootstrap approach easily allows us to compute lower and upper bounds of 
the prediction intervals.

Forecasting The model also allows to directly predict cases for future dates. With 
T denoting the time point of data analysis, we can obtain predictions for the num-
ber of reported cases on days T , T + 1,…T + k − 1 . Let us start with the predic-
tions for cases with reporting date T. Referring once again to the guillotine blade 
structure in Table 2, we proceed as follows: For d = 1 , i.e., at the leftmost point of 
the blade, we take the fitted mean values as prediction, while keeping the smooth 
function of time constant, that is, setting s(t + 1) ≡ s(t) for the sake of stability. For 
the remaining dmax − 1 elements of the blade edge we take the mean value by set-
ting d = d + 1 . To get predictions for the numbers of infections reported on days 
T + 1,…T + k − 1 we can then proceed in an analogous way, using the values just 
predicted to update the autoregressive components ( Ct−1,d,r,g and Ct,d−1,r,g ). Figure 2 
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visualizes the strategy, with cumulated predictions for the number of cases reported 
on days T , T + 1,…T + 6 being represented by the red parallelogram. Similarly as 
we did for the nowcasting, we can take uncertainty into account through simula-
tions, sampling from a negative-binomial model with the estimated group-specific 
mean and variance structure.

Forenowcasting Predicting by registration date, i.e., forenowcasting, is equivalent 
to filling the blue square on the bottom of Fig. 2. This is done by computing fore-
casts as described in the previous subsection, and then performing nowcasting on 
the forecasted numbers. We also obtain uncertainty estimates in an analogous way 
as for forecasts and nowcasts.

4.3  Retrospective surveillance

It is also possible to utilize the proposed model as a surveillance tool retrospectively. 
After a certain period of time has passed from the day of analysis, we are able to 
compare predictions with infections observed in the corresponding time span. If the 
predictions are aggregated on a weekly basis and we keep the maximum delay set 
as dmax = 7 , the waiting time to observe realized infection numbers will be equal to 
seven days for nowcasts and forecasts and fourteen days for forenowcasts. Figure 6 
shows predictions of all three kinds and corresponding infections observed a poste-
riori for two exemplary days of analysis, namely September 15 (left hand panel) and 
November 11, 2020 (right hand panel).

From the plots we can observe how nowcasts tend to be, in general, quite precise, 
as already seen from Fig. 3. We can also immediately notice how performance is 
very different for the two dates, especially for forecasts and forenowcasts: We see 
that the predictions for September 15 are relatively precise and unbiased, while for 
November 11 we observe quite a strong tendency toward overprediction.

Focusing first on the forecast and forenowcasts from September (during a “sta-
ble” phase of the pandemic), we see that the biggest prediction errors appear for the 
districts of Kaufbeuren, Bavaria (overprediction) and Cloppenburg, Lower Saxony 
(underprediction). In the first case, there was an outbreak in a nursing home in the 
week preceding the forecasted one. This outbreak initially leads to an increase in the 
infection numbers, but was subsequently contained very quickly, therefore leading 
the model to overpredict. The underprediction in Cloppenburg, in contrast, was the 
product of a sudden increase in cases during the forecasted week. More specifically, 
the higher numbers resulted from cases in schools and the contagion of an almost 
complete football team in the small city of Löningen. All in all, we can see that in 
general the prediction errors are not massive, and in line with what we would expect 
simply due to the inherent randomness of the process.

The situation is different when looking at the predictions for November 11. This 
is because, while the September date belongs to a period in which the pandemic was 
relatively stable in Germany, the second one lies at the heart of the second wave. 
Moreover, the latter date was immediately successive to the sudden increase in new 
infections in October and to the consequent implementation of social distancing 
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Fig. 6  Nowcasts (top), forecasts (middle) and forenowcasts (bottom) of cumulated infections over a 
week, cumulated by district, plotted against values observed a posteriori. The model is fitted with data 
available on the dates September 15, 2020 (left) and November 11, 2020 (right). Vertical lines represent 
prediction intervals computed at the 90% level
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measures (the so-called “lockdown light”) from the beginning of November. How-
ever, our model does not include anything regarding exogenous governmental inter-
ventions and general changes in population behavior. This means that the predictions 
are to be interpreted assuming that everything else stays the same as in the three 
weeks used to fit the model, leading to overprediction for areas in which measures 
are indeed imposed, and possibly underpredictions after those measures are softened 
or lifted. As a result, forecasted numbers for November 11 suffer from severe over-
prediction in many districts. The most extreme example is the district of Erzgebirg-
skreis, Saxony, which saw a rapid increase in cases between the end of October and 
the beginning of November, which lead to the district being the one with the highest 
incidence in the whole country for a short period of time. The infection numbers 
then stabilized in the following week, leading the model to overpredict. As a side 
remark, note that the prediction errors for both dates are not majorly spatially cor-
related. This is in line with our expectations, as both a smooth spatial effect as well 
as two district specific random effects are included in the model. Maps of the pre-
diction errors by district for both dates analyzed are included in the supplementary 
material.

While the inability to capture governmental intervention and sudden changes in 
the population behavior is certainly a limitation of our approach, it can on the other 
hand also be seen as a feature of the model, which in a sense provides potential 
future "counterfactual" scenarios in which no action was taken by decision mak-
ers. This can thus be used to try to quantify the effect of social distancing policies 
and interventions, in specific districts as well as at a broader level. This also applies 
in the case of sudden outbreaks: If a rapid spike in cases in a specific district is 
observed, and that outbreak was not yet known to health authorities at the time of 
the analysis, the model will naturally underpredict infection numbers in that dis-
trict. Severe underpredictions observed a posteriori can also be used as an indicator 
for “true” outbreaks, revealing if they were explainable by past data or not. This 
“counterfactual” use of our model can thus be seen as an additional feature, which 
becomes available in retrospect, to measure the effect of NPIs (Non-Pharmaceutical 
Interventions) and to assess the nature of outbreaks.

5  Discussion

We proposed a modeling tool to nowcast and forecast COVID-19 cases reported 
with delay. This allows to perform surveillance by gender and age group at the 
regional level, providing an up-to-date and detailed picture of the pandemic, as well 
as giving insight into the dynamics of the near future. Our model can be used for 
computing inherently dynamic index measures, such as the 7-days incidence, both at 
the regional and national level, and it can also aid governments in the implementa-
tion of more targeted area- and population-specific containment strategies. However, 
as previously mentioned, this approach does not come without limitations, which we 
also want to address.

The number of detected cases greatly depends on local testing strategies and 
capacities. This implies that comparisons between different states or regions are not 
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straightforward. As our model makes use of reported infections, direct comparisons 
between outputs should be limited to areas for which it is reasonable to assume that 
testing has been carried out in a similar manner.

Another important thing to note is that our model only addresses the delay in 
reporting from local to national health authorities, and not the time that occurs 
between each test and its (positive) result. This would be useful for our application 
as it would give an even more up-to date picture of the current situation, but it is not 
pursued due to a lack of data.

An eminent limitation of our approach is the inability to capture new outbreaks 
related to specific phenomena that are not yet known to the health authorities. An 
example of this would be the outbreaks in slaughterhouses which happened during 
the summer of 2020 in Coesfeld and Gütersloh, North-Rhine-Westphalia. On the 
other hand, as previously discussed, severe underpredictions observed a posteriori 
can also be used in retrospect as an indicator for outbreaks that are localized and not 
explainable by past data, while overpredictions can signal and quantify the effective-
ness of social distancing measures.

Taking into account the previously mentioned limitations, the model is able to 
capture a good chunk of the variability that is present. The methodology that we 
employed is quite general, and, if suitable data are available, can easily be adapted 
to other countries as well. Moreover, we only employed standard tools for software 
implementation, and this makes adapting and enriching the model, e.g., with more 
covariates, relatively straightforward. Our analysis focuses more on now- and fore-
casting rather than on increasing our understanding of the spread of the disease, and 
in this context the random effects enable us to capture unobserved heterogeneity 
fairly well, so the addition of more (time-constant) covariates is not paramount to 
our goals. Nonetheless it could be fruitful to include more covariates available for 
specific cases in the model. For the analyzed case of Germany we pursue this in the 
supplementary material, by adding to the model the German Indexes of Multiple 
Deprivation, which measure material and social differences at the regional level in 
Germany (Maier 2017). The results do not differ greatly from what was obtained 
without this inclusion.

We complete our discussion by emphasizing that the proposed methodology 
is flexible and applicable to any data constellation in which reporting delay plays 
a role. In other words, one can easily adopt the proposed model to any guillotine 
blade-like data structures, i.e., data where ti denotes the time point of an event and 
di the delay with which the event is reported. Moreover, our approach can not only 
be applied to correct for the delay between registration of an event and its reporting, 
but also, for example, to bridge the delay between disease onset and registration of 
its positive test result. Data in guillotine blade-like form also occur in areas beyond 
epidemiology, e.g., when cases of unemployment are reported from regional offices 
to a central state register. The generality of the data structure supports the proposed 
modeling approach, where corrections for the missing data structure are directly 
incorporated in the model. In particular, however, the modeling exercise exhibits 
promising performance for COVID-19 infections, and may therefore be incorpo-
rated into a general surveillance tool to assist health authorities and policymakers in 
their efforts to contain the spread.
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