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Abstract
Punctuated Equilibrium Theory posits that policy-making is generally characterized by long periods of

stability that are interrupted by short periods of fundamental policy change. The literature converged on the

measure of kurtosis and L-kurtosis to assess these change patterns. In this letter, we critically discuss these

measures and propose the Gini coefficient as a (1) comparable, but (2) more intuitive, and (3) more precise

measure of “punctuated” change patterns.
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1 Introduction
Punctuated Equilibrium Theory (PET) is one of the most influential theories when it comes to

explaining the dynamics of policy change. It theorizes that policy-making is generally character-

ized by long periods of stability, with only incremental departures from the status quo. These

long periods of stasis are occasionally interrupted by short periods of fundamental policy change

(Baumgartner and Jones 1993). To investigate these theoretical propositions, which in the follow-

ing will be referred to as “punctuation,” the literature has o�en relied on assessing change values

in different steps of the policy-making cycle, ranging from elections to parliamentary hearings,

and, most prominently, state budgets (Baumgartner et al. 2009). Following the expectations of

PET, these change values should form distributions with high peaks around 0 that represent the

long periods of incrementalism and fat tails representing the periods of rapid change. Although

there have been efforts to investigate punctuations with different approaches (e.g., Breunig and

Jones 2011; Flink 2017; Fatke 2020), the literature still heavily focuses on the measures of kurtosis

and L-kurtosis.1 In this letter, we critically discuss these different measures and propose the Gini

coefficient as a (1) comparable but (2) more intuitive, and (3) more precise measure of punctua-

tions. The Gini coefficient is widely usedwhen studying inequality since it captures the dispersion

of a frequency distribution. Applied to PET research it can tell us how concentrated policy change

events are in relation to the months, years, or parliamentary terms in the observation period. Put

simply, it indicates howmanyof the respective timeunits “get” howmuch change. This alignswith

the theoretical assumptions of punctuations where wewould expect few observations to account

for the majority of changes taking place.

2 What Exactly is Measured?
The kurtosis (k) is defined as the fourth moment of a distribution. Contrary to the first three

moments (mean, variance, and skewness), the interpretation of k is the object of debate. It is o�en

1 A comprehensive literature review expanding on Kuhlmann and van der Heijden (2018) of the measurements used in PET
literature can be found in the Supplementary Material.
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wrongly interpreted as the peakedness of a distribution. This interpretation has been common

in political science and among statisticians, even though research pointed out for a long time

that the kurtosis of a given distribution and its peakedness do not necessarily align with each

other (Kaplansky 1945). If anything, k can be seen as ameasure for the tailedness of a distribution

(Westfall 2014). This becomes clear when looking at the standardized measure of k for a random

variable X which is defined as:

k = E (Z 4), (1)

Z =
X −E (X ).

σX

(2)

This definition allows for an intuitive interpretation ofwhy k only concerns the tails. Z is defined as

the difference between the observed value X and its expected value E (X ) divided by the standard

deviation σX . Therefore, the Z-score indicates the number of standard deviations separating a

value from its expected value. Therefore, outliers with high Z-scores, heavily influence the value

of k while values around 0 have nearly no influence. To somewhat alleviate this problem, the

literaturemoved forwardusingmoments that are basedon L-statistics (Hosking 1990). L-moments

build on the linear combination of order statistics, whereXk :r is is the kth smallest observation in

a sample of the size r. The L-kurtosis ( τ4) is defined as the ratio of the fourth ( λ4) and the second

L-moment ( λ2):

τ4 =
λ4

λ2
(3)

λ2 represents ameasure of scale and is defined as the expected difference of two randomly drawn

values (X) from a given distribution:

λ2 =
1

2
E (X2:2−X1:2). (4)

The definition of λ4 is more complicated. It is defined as the “central third difference of the

expected order statistic of a sample of the size 4” (Hosking 1990, 109):

λ4 =
1

4
E (X4:4−3X3:4+3X2:4−X1:4). (5)

As Hosking (1990, p.111) states, τ4 is “equally difficult to interpret uniquely” as k but should be

interpreted similar to it, although with less sensitivity to observations in the tails. Thus, while τ4
might be less sensitive to outliers compared to k it is equally as difficult to interpret what exactly

is measured with it.

Instead of relying on measures that might be overly sensitive to outliers, are hard to inter-

pret, and, consequently, difficult to align with the foundations of PET, we propose to use the

Gini coefficient (G) that commonly has been used to assess income disparity as a better-suited

alternative. As stated before, the pattern of PETmanifests itself throughmany observations close

to 0 and a few observations with high change values. Therefore, punctuation could be measured

by assessing the dispersion or inequality between the change values; G does exactly that. It can

be formalized in several, mathematical identical ways. The most intuitive way is through the

Lorenz-curve (L(X )). L(X ) depicts the relative cumulative distribution of a variable X against the

cumulative frequencydistributionof theproportionof individuals in thepopulation (Lorenz 1905).

Under perfect equality the values should alignwith each other; 10%of the population should have
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10% of its income, 20% should have 20% of the income, and so on. This would form a straight line

with a 45 ◦ angle sometimes called the line of perfect equality. When L(X ) is concave on the other

hand, for example,when the last 10%of a population have 60%of its income, it signals an unequal

distribution.Gmeasures the ratio of the areabetweenL(X ) and the line of perfect equality divided

by the total area under the perfect distribution line (Gini 1912). Since the total area equates to 0.5

this can be formalized as:

G = 1−2

∫ 1

0

L(X )dX . (6)

In the caseof PET,L(X )woulddepict the cumulativepercentageof absolute change values against

the relative cumulative proportion of time units. Thus, we would measure how concentrated the

absolute change values are in relation to the time units in the observation period. High values ofG

would indicate a policy-making pattern that is in line with the expectations of PET since policy

change is concentrated within a few time units. G is bound between 0 (perfect equality) and 1

(absolute inequality).

3 Sensitivity and Precision of (L-)Kurtosis and Gini Coefficient
How the different measures compare can be shown through simulations.2 First off, we investigate

their sensitivity to outliers. Figure 1 shows the density distribution of a random sample with n =

10,000 drawn from a t-distributionwith 4 degrees of freedom ( df ). We use the t-distribution since

it allows us to simulate a punctuated distribution by controlling df (Fernández-i-Marín et al. 2019).

The dashed lines mark the 0.005 and the 0.995 quantiles, therefore, 1% of the values lie outside

of the range encompassed by them.

The resulting distribution has a high peak with few values deviating strongly from 0. To

investigate the effect of outliers on the measures, we removed the 100 largest outliers in a step-

wise procedure starting with the largest absolute value and re-estimated the three measures for

each outlier removed. Figure 1 shows the resulting measures on the y-axes and the number of

outliers removed on the x-axes. The measures were normalized between 0 and 1 to allow for a

better comparison. Looking at Figure 1 clearly shows that k is heavily influenced by outliers, with

the first three values removedhavingan immense impact on themeasurement. By contrast,τ4 and

Gare farmore stable,withGbeing slightly less sensitive. Thus, k is not suited toassesspunctuation

reliably and we will only concentrate on G and τ4 in the following.

To compare the measures, we assess if G and τ4 capture the same concept, as well as their

precision. We simulated 10,000 sample distributions with n = 250 drawn from a t-distributions

with df = 4 and estimated G and τ4 for each sample distribution. Again we use a t-distribution to

simulate a punctuated distribution. We choose n = 250 as a representation of the typical sample
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Figure 1. Le�: Density distribution of a random sample n = 10,000 drawn from a t-distribution with df = 4.
Right: Normalized measurements of L-kurtosis( τ4), kurtosis (k), and Gini coeefficient (G) for step-wise
exclusion of outliers.

2 The replication material is available at Harvard Dataverse (Kaplaner and Steinebach 2021)
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Figure 2. Density distributions of Gini coefficient (G) and L-kurtois ( τ4) based on 10,000 sample distribution
with n = 250 drawn from t-distribution with df = 4.

size used in the study of PET.3 Since all sample distributionswere drawn from the sameunderlying

distribution, variation between them is caused by pure chance. The resulting measures of G and

τ4 are correlated with p = 0.9. Therefore, it can be assumed that both measurements capture the

same underlying patterns in the data. Yet, G outperforms τ4 when it comes to precision.

Figure 2 shows the density distributions for the resulting measures of G and τ4 with their

approximated95%confidence intervals. ThedensitydistributionofG showsahigherpeakand less

variation than the density distribution ofτ4. The resulting standard deviations are SDG = 0.02 and

SDτ4 = 0.03, respectively.Whendividedby themeanweget coefficients of variation ofCVG = 0.05

and CVτ4 = 0.15. While the difference seems small at first, to reach a similar standard deviation

with τ4 one would have to double the sample size the values are calculated from. For a similar

CV it would have to be seven times as large. This finding is not unique to simulated data. We find

a similar pattern when applying the two measures to a distribution of U.S. budget outlays. The

results are shown in the Supplementary Material.

4 Implications for Type I Errors
The lack of precision has direct implications for the creation of Type I errors, especially for

researchers that are interested if change distributions are punctuated or are interested in the

comparison between different change distributions (e.g., in the case of varying institutional

friction4). We show this through simulation for the first case and give an empirical example for

the second one in the Supplementary Material.

Jones and Baumgartner (2005) assess punctuation as the deviation of the change pattern

from the shape of a normal distribution. This is justified by the assumption that “incremental

decision making updated by proportional responses to incoming signals will [ultimately] result

in a normal distribution of policy changes” (p. 132). Therefore, the common H0 in PET research

is that the change distributions resemble a normal distribution. While G allows us to so�en this

assumption, since it has an interpretationwithout referencing the normal distribution, it is helpful

to take this baseline to show the proneness for Type I errors of the twomeasures. In PET research,

the hypothesis is o�en not tested in the classical sense, instead, the literature mostly relies on

assessing if τ4 deviates from the true value of τ4 for a normal distribution. How this can lead to

Type 1 errors can be illustrated through simulation.

First, we calculate an approximation for the true values of G and τ4 for a standard normal

distribution. For this, we simulate 10,000 draws of the size n = 1,000 from a standard normal

distribution and calculate the measures for each draw. Assuming that the true values converge

to the sample mean we obtainG = 0.414 and τ4 = 0.123 as the approximately true values. In the

literature measures of τ4 are o�en taken at face value ignoring their potential imprecision. We

create a scenario where a researcher would reject H0 if the obtained value is 0.05 higher than the

3 For a discussion of sample sizes used in PET research see the Supplementary Material.
4 In PET theory, the degree of punctuation is expected to be more pronounced when decision-making is associated with
higher institutional friction, that is higher institutional coordination and consensus requirements.
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Figure 3.Rejection rate ofH0 forG andτ4 out of 1,000 tries in percent dependent on sample size ranging from
50 to 500. Rejection criterion: Simulated value above 0.05 of true value. Line: LOESS with 95% confidence
intervals.

true value, therefore, 0.173 for τ4 and 0.464 for G. We then simulate 1,000 draws from a standard

normal distribution. For each draw, we calculate the value of G and the value of τ4 and check if it

falls outside the defined rejection criterion. The sample sizes of the drawings are varied from 50

to 500 in one-step increments to account for the fact, that the precisionmight beworse in smaller

samples. Thus, we simulate 1,000 draws of the sample size 50, 1,000 draws of the sample size 51,

and so on. Figure 3 shows in percent how o�en the researcher would wrongly reject H0 for each

sample size based on the 1,000 draws and therefore, how o�en a Type I error is created.

The rejection rate of τ4 is significantly higher than the rejection rate of G reaching nearly

15% for small sample sizes around 50. Therefore, using G instead of τ4 could reduce the Type I

error rate especially in research scenarios with smaller sample sizes due to its higher precision.

One has to keep in mind that the presented scenario still is the most favorable for τ4. In cases

where researchers are interested in comparing different empirical change distributions, the lack

of precision of τ4 might be even more detrimental. As we show in the Supplementary Material

we observe lower precision in empirical distributions that are more punctuated. Therefore, when

trying to compare two punctuated distributions the error rate could be much higher.

5 Why Should We Care?
In this letter,wehavecompareddifferentmeasures toassessPET.Moreprecisely,wecompared the

kurtosis and the L-kurtosiswith theGini coefficient andpromoted the latter as a better alternative.

But why should we care? Why should political research opt for a “new” measure of punctuations

a�ermore than two decades (successfully) using the (L-)kurtosis?Most importantly, we argue that

it is of great advantage to have a measure that the reader knows and more or less intuitively

understands. Most readers have come across the Gini coefficient in the context of income inequal-

ity. Moreover, we deem the Lorenz curve to be an intuitive and powerful tool to illustrate the

“inequality” of policy change events across time. Knowing that 90% of the changes occurred in

only 10% of the time is an easily and uniquely interpretable information. The information that the

L-kurtosis is 0.8 does not tell usmuchwithout further insights. Yet, it is not only the interpretability

that makes the Gini coefficient a superior measure of punctuations. When it comes to assessing

change events, political scientists strongly depend on the accuracy of the information provided

by experts, research assistants, or computers. These inputs are prone to all kinds of systematic

and unsystematic measurement errors. Facing these challenges, we must rely on measures that

are least affected by outliers, are the “best possible” estimate of the true value, and are the most

precise measure, especially when dealing with rather small sample sizes. The Gini coefficient

outperforms the (L-)kurtosis in all these aspects. This gives researchers interested in assessingPET

an additional tool to use that can easily be combinedwith other approaches such as log-log plots,

and quantile regression.
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