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Background: Classic motion abnormalities in Parkinson’s disease (PD), such as tremor,

bradykinesia, or rigidity, are well-covered by standard clinical assessments such as

the Unified Parkinson’s Disease Rating Scale (UPDRS). However, PD includes motor

abnormalities beyond the symptoms and signs as measured by UPDRS, such as the

lack of anticipatory adjustments or compromised movement smoothness, which are

difficult to assess clinically. Moreover, PD may entail motor abnormalities not yet known.

All these abnormalities are quantifiable via motion capture and may serve as biomarkers

to diagnose and monitor PD.

Objective: In this pilot study, we attempted to identify motion features revealing

maximum contrast between healthy subjects and PD patients with deep brain stimulation

(DBS) of the nucleus subthalamicus (STN) switched off and on as the first step to develop

biomarkers for detecting and monitoring PD patients’ motor symptoms.

Methods: We performed 3D gait analysis in 7 out of 26 PD patients with DBS switched

off and on, and in 25 healthy control subjects. We computed feature values for each

stride, related to 22 body segments, four time derivatives, left–right mean vs. difference,

and mean vs. variance across stride time. We then ranked the feature values according

to their distinguishing power between PD patients and healthy subjects.

Results: The foot and lower leg segments proved better in classifying motor

anomalies than any other segment. Higher degrees of time derivatives were superior

to lower degrees (jerk > acceleration > velocity > displacement). The averaged

movements across left and right demonstrated greater distinguishing power than

left–right asymmetries. The variability of motion was superior to motion’s absolute values.
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Conclusions: This small pilot study identified the variability of a smoothness measure,

i.e., jerk of the foot, as the optimal signal to separate healthy subjects’ from PD patients’

gait. This biomarker is invisible to clinicians’ naked eye and is therefore not included

in current motor assessments such as the UPDRS. We therefore recommend that

more extensive investigations be conducted to identify the most powerful biomarkers to

characterize motor abnormalities in PD. Future studies may challenge the composition

of traditional assessments such as the UPDRS.

Keywords: Parkinson’s disease, machine learning, motion, algorithm, accelerometry

INTRODUCTION

Technology-based assessments of Parkinson’s disease (PD)
symptoms can provide valid and accurate parameters of the
disease’s clinically relevant features (Maetzler et al., 2016).
Moreover, they may deliver an additional benefit by detecting,
quantifying, and ranking signs and symptoms that have not been
considered, or of which we have been unaware before. Motion
capture techniques as a typical example for technology-based
assessments have already been tested in PD (e.g., Lorincz and
Welsh, 2005). One reason for PD being a pioneering disease
for motion capture is that PD presents rather clear-cut, familiar
motor deficits (Braak et al., 1996; Fahn, 2003; Bloem et al.,
2004; Vaugoyeau and Azulay, 2010). They include the classical
symptoms such as bradykinesia, rigidity and tremor, freezing,
and falling (Bloem et al., 2004; Lewis and Barker, 2009). In
addition, PD patients have difficulty in initiating movements and
maintaining fluid sequential or repetitive movements. All these
motor abnormalities converge to abnormal movement patterns,
e.g., during gait. Specifically, PD patients’ gait abnormalities
consist of decreased gait velocity with shuffling, dragging steps,
short step lengths, forward-stooped posture, decreased arm
swing, and a wide step variability (Hausdorff et al., 1998; Dietz
et al., 2001; Gutnik et al., 2005). Motor deficits usually appear
one-sided and remain dominant on one side throughout disease
progression (Lewek et al., 2010; Roggendorf et al., 2012; Boonstra
et al., 2014, 2016; Plate et al., 2015).

Motion capture techniques were applied in the past to
reproduce clinical findings by using either single sensors
(accelerometers, inertial sensors, or gyroscopes), e.g., placed
on the lower back (Hubble et al., 2015; Bernad-Elazari et al.,
2016) or multiple sensors like the Xsens MVN suit used in the
present study.

Despite the abundance of available motion data in PD
patients, motion capture techniques have not been regularly used
in hospitals thus far. One reason for this may be the “big data”
problem. Motion data from the Xsens MVN suit used here
delivers data on 22 segments, in 6 dimensions (3 rotations, 3
translations), with a frame rate of 120Hz, so 5min recording time
leads to about 5 million data points. To characterize PD patients’
motor abnormalities meaningfully, the amount of data must be
considerably reduced, e.g., via feature extraction (Hester et al.,
2006; Patel et al., 2009).

Resulting motion features may include parameters such as
mean displacements, velocities, and accelerations, or smoothness,

represented by jerk (third time derivative of displacement).
There is already evidence that jerk is abnormal in PD (Teulings
et al., 1997; Hogan and Sternad, 2009). Other methods of
data reduction by feature extraction involve signal processing
methods, e.g., wavelet analysis (Joshi et al., 2017), stochastic
models, like the Hidden Markov Model (Joshi et al., 2017), or
machine-learning algorithms (Wouda et al., 2016), i.e., using
Random Forests (Wahid et al., 2015; Kuhner et al., 2016, 2017).

Simple machine-learning algorithms like Random Forests
may be able to deliver a classification strategy and successfully
separate healthy subjects from patients. However, the process by
which machine-learning algorithms favor certain features over
others is not necessarily instructive. For example, features not
applied for a given classification task may either correlate very
closely with features already in use (and that were therefore
disregarded) or, on the contrary, on features that do not facilitate
the classification task at all. As a consequence, machine-learning
algorithms are usually unsuitable to advance the understanding
of a certain abnormality.

When experimenting with machine-learning algorithms for
feature extraction in PD subjects (Kuhner et al., 2016, 2017),
we came up with a very simple question that machine-learning
classification methods alone cannot answer, namely, which
signals or features best describe the difference between healthy
subjects on the one hand and PD patients on the other hand.

For this study, we collected gait data of patients with deep
brain stimulation (DBS) electrodes in place, switched on or off.
For the sake of simplicity, we report here the maximum contrast
between healthy subjects, and PD patients with DBS switched
on or off. We attempted to optimize a computational model
based on a minimally reduced number of ideally one optimal
body segment, one single optimal time derivative (displacement,
velocity, acceleration, or jerk), and one optimal signal entity
(single channels vs. left–right difference) as either absolute
values or their variability. In addition, we used AdaBoost to
determine the most valuable feature combination to characterize
PD patients’ state.

MATERIALS AND METHODS

Subjects
This study involved 26 PD patients and 25 healthy control
subjects. PD patients stayed in the Department of Neurology and
Neurophysiology of the University Hospital Freiburg for their
first post-implantation parameter setting of DBS. Among the
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recorded 26 patients, 7 patients [3 female, 4 male; mean age 58±
14.5 years (± SD), age range 40–74 years] with rather long disease
duration (see Table 1) were able to complete the 10m walk test
with DBS both in the ON and OFF condition. The remaining 19
patients could not walk 10m in the OFF condition due to severe
postural instability and gait disturbance, and were thus excluded
from data analysis.

Mean Unified Parkinson’s Disease Rating Scale (UPDRS) in
the DBS OFF condition was 44 [±11.7 (±SD)], and in the
ON condition, 24 [±6.5 (±SD)]. Disease duration ranged from
8 to 14 years [mean 10.5 years ± 1.9 (±SD), Table 1]. The
PD patients were measured twice (in the DBS ON and OFF
condition) in order to balance on and off DBS conditions.
Healthy control subjects [13 female, 12 male; mean age 52 ±
6.8 years (±SD), age range 37–63 years] were recruited from
relatives and department staff. All patients and subjects gave their
written informed consent in accordance with the Declaration
of Helsinki. The study protocol was approved by the Ethics
Committee of the University of Freiburg. All the included data
were anonymized.

Experimental Setup
The Xsens MVN suit is a human motion capture system
(see Figure 1) consisting of 17 MEMS (microelectro-mechanical
systems) which merge the signals of 3D inertial measurement
units (IMUs), i.e., linear accelerometers, 3D magnetometers, and
3D rate gyroscopes. Each MEMS was attached to a specific
body region, i.e., the head, upper or lower arms, spine or upper
or lower legs, etc. The sensors were positioned next to bigger
joints (e.g., knee, wrist, shoulder). Data were sampled at 120Hz
and sent to two wireless receivers. Both receivers delivered the
data to a portable computer. Custom-made software employed
the data from the sensor trajectories to extrapolate segment
size, segment movements, and orientations, as well as joint
positions. That data were then used to reconstruct 3D segmental
movements and joint angles. Furthermore, the program provided
velocity and acceleration for each segment/joint, as well as
the orientation. Figure 1 shows a subject’s reconstructed avatar
as a visualization of the segment and joint positions at
a given moment.

Data Analysis
For data analysis, we applied the absolute values of position,
velocity, acceleration, and jerk vectors of segments and joints.
The reconstructed skeleton (see right panel in Figure 1) consisted
of 22 segments, including 3D positions and orientations in space,
which were represented in quaternions. The data sets covering
gait were split into individual steps and strides (j ∈ S). We
first identified the exact moment when the swinging leg passes
the standing leg. Starting from that point in time, we went both
forwards and backwards in time until we identified the moments
where the foot segment’s absolute velocity dropped below 5% of
its maximum velocity, which then identified the start and end
of a given step. Each stride served as an individual data set for
further processing.

Data Preprocessing

We denoted with p
(t)
i the position of segment i at time step t. A

Gaussian filter with several time dependent positions was used to
filter sensor-related noise to compute a smoothed position trace

p(t)
i

=

(

∑τ
n = −τ

1√
2·π ·σ2

·e−
1
2 ·

n2

σ2 ·p(t+n)
i

)

(

∑τ
n = −τ

1√
2·π ·σ2

·e−
1
2 ·

n2

σ2

) , where the index i denotes

the segment ID. In the next step, we transformed position traces

into the local frame of the hip, namely p̂
(t)
i = p(t)

i
−p(t)

0
, where p(t)

0
is the smoothed position of the hip frame. This transformation
allowed us to evaluate data such as the arm swing in relation
to the lower trunk to guarantee independence from the main
movement direction.

Features
The 22 segments consisted of 6 midline segments (trunk) and
8 segments with left and right specificity in each case, e.g.,
left and right hand, thus 16 segments with left and right
specificity in total. We can reformulate the segment positions as
{

p̂
(t)
1 , . . . , p̂

(t)
6 , p̂

(t)
7,l
, p̂

(t)
7,r , . . . , p̂

(t)
14,l

, p̂
(t)
14,r

}

.

The first group of features includes the means between the left
and right side of the segments with left and right specificity, i.e.,

f
(t)
i,m = 1

2
·
(

p̂
(t)
i,l

+ p̂
(t)
i,r

)

for i ∈ {7, . . . , 14 } .

TABLE 1 | Summary of clinical data: Parkinson’s disease (PD) patients are shown with type [one patient tremor dominant (TD), six patients akinetic-rigid with dominant

postural instability and gait disturbance over tremor (PIGD)], age, disease duration, Unified Parkinson’s Disease Rating Scale (UPDRS), with modified subscore III when

nucleus subthalamicus (STN) simulation was switched on and off, levodopa equivalent daily dosage (LEDD), most affected side, and of freezing of gait (FOG).

Patient PD type Age (years) Disease dur. (years) UPDRS deep brain stimulation (DBS) On UPDRS DBS Off LEDD Affected side FOG

P002 TD 74 9 15 20 300 Left –

P013 PIGD 69 8 29 38 400 Left –

P017 PIGD 74 12 22 43 320 Right +
P018 PIGD 49 9 32 51 250 Left +
P020 PIGD 57 14 15 47 200 Right and left –

P021 PIGD 40 10 16 61 350 Right +
P022 PIGD 43 10 28 45 450 Right –

Mean 58 10,5 24 44 324

SD 14.5 2.0 6.5 12 79
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FIGURE 1 | Experimental setup. (A) Subject wearing the Xsens sensor suit, consisting of 17 MEMS (microelectro-mechanical systems) which merge the signals of 3D

inertial measurement units (IMUs), i.e., linear accelerometers, 3D magnetometers, and 3D rate gyroscopes. Data were sampled at 120Hz and used to reconstruct 3D

segmental movements and joint angles. (B) Reconstructed avatar of the subject as a visualization of the segment and joint positions at a given moment.

The second group of features covers the left/right differences, i.e.,

f
(t)
i,d

=
(

p̂
(t)
i,l

− p̂
(t)
i,r

)

for i ∈ {7, . . . , 14} . Using the second feature,

we evaluated differences between the more and less affected side.
Furthermore, we computed the first and second moment

of each feature for each body segment i over the whole
trajectory, yielding each feature’s mean and variance. The mean
is computed by

µi = 1
T ·

∑T
t = 1 d

(t)
i for i ∈ {1, . . . , 22} and the variance with

σ 2
i = 1

T−1 ·
∑T

t = 1

(

µi − d
(t)
i

)2
for i ∈ {1, . . . , 22} where d is

either p, fi or fm.
Thus, the total number of features is the product of the

absolute mean and variance (2) of a single stride, times
body segments (22), times displacement and three orders of
time derivative of displacement (4), times left–right mean and

left–right difference (2) of 8 out of 22 segments, resulting in
264 features. One subject’s data set consisted of values for all
264 features for each stride. Since we evaluated about 30 strides
for each subject, the total amount of data points of one subject
amounted to a value of about 30× 264= 7,920.

Weak Classifiers
A weak classifier (CW) relates to a separating algorithm which
splits a certain feature of the data into two categories with an
accuracy of at least 50% (e.g., a specific segment’s slow vs. fast
velocity). Parameters {−1, 1} are chosen as class labels. Weak
classifiers were used to detect a specific threshold that delivered
the best separation results between PD patients and healthy
control subjects. We calculated the highest classification rate
by uniting data sets of healthy subjects and PD patients into
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one, sorting the elements according to the value of the current
separating algorithm, and taking the value ε as a threshold
between two elements in the set. The final weak classifier is
calculated byWCi (x) = 1 if x < εi and WCi (x) = −1 ifx ≥ εi.

The classifiers’ performance was quantified by a leave-one-
subject-out cross-validation, i.e., one subject was removed from
the data set, and the residual data set was used to predict
the missing data sample. This procedure was repeated for
each subject.

Meta-Classifier AdaBoost
We used AdaBoost to evaluate which types of feature
combinations ameliorated the classification results as compared
to single features. AdaBoost works as a meta-classifier and
combines multiple classifiers, i.e., features plus respective
thresholds, into one, by weighting the output of this set of weak
classifiers. In this case, the meta-classifier represents an optimal
mix of features for maximum differences between PD patients
and healthy subjects. If the result is smaller than zero, the data set
belongs to the first group (here, PD patients); otherwise it belongs
to the second group (healthy subjects). In principle, AdaBoost
repeats the following two steps: First, the algorithm identifies
a classifier Cm which contributes the most information to the
current weighted sum of chosen weak classifiers

C(m−1) =
∑m−1

k= 1 αkCk, i.e., Cm = argmin
c∈CW

∑

c(xi) 6= yi
ω

(m)
i

where ω
(1)
i : = 1,ω

(m)
i : = e−yi·C(m−1)(xi) form > 1.

Then, the sum runs over the total training set. Thereby,
{

(xi, yi)
}N

i=1
denotes the set of training data points xi and the

corresponding labels yi. The concept of this algorithm is to add
the classifier which maximizes information acquisition. In this
way, the algorithm categorizes the wrongly classified elements of
C(m−1) correctly. The second step of the AdaBoost involved the
computation of a weight for the selected classifier. Let ξ (m) =
∑N

i = 1 ω
(m)
i be the total error. Note that the optimal weight αm

for the classifier Cm is given by

αm = 1
2 · log

(

1−ǫm
ǫm

)

with ǫm =
∑

Cm(xi)6=yi
ω

(m)
i

ξ (m) . The resulting

function to classify a sample x is: C(m)(x) =
∑m

k= 1 αk · Ck (x ) .
The algorithm chooses the most accurate weak classifier as first
classifier. Each succeeding classifier is not necessarily a classifier
with high accuracy, but it does add the highest amount of
information to the existing (chosen) set. As a result, a set of weak
classifiers represents one of the best combinations for separating
the data.

Our classifier accuracy values were statistically analyzed
using the JMP R© statistic program by SAS Institute Inc., Cary,
NC, USA. We tested normal distribution and homogeneity of
variances with the Kolmogorov–Smirnov test and parametric
methods for further analyses. Due to the expected dependency
between the outcome measures within motor behavior, statistical
significance was tested by an analysis of variance (ANOVA). The
within-subjects factors were: (i) absolute values vs. variance of
absolute values, (ii) displacement vs. velocity vs. acceleration vs.
jerk-related measures, (iii) mean absolute values vs. left–right
difference, and (iv) segments (e.g., head, neck, shoulder). The

level of statistical significance was set at p = 0.05. Differences
between groups were tested using Tukey’s post-hoc test, if
multiple comparisons were considered.

RESULTS

Overall, our study yielded a total of four different time
derivatives: displacement, velocity, acceleration, and jerk
(Figure 2). Hereby, displacement relied on the position vectors
between the hip and the analyzed segment. Velocity, acceleration
and jerk were the first, second, and third derivation of that
position. Figure 2A depicts the accuracy, which we defined as
the percentage of correctly classified subjects as PD patients:
Here, nearly all features [except for the displacement of the
midline segments (trunk) and the mean between left and right
limbs] attained accuracy rates between 80 and 90%.

Figure 2B displays the results of the variance of features.
Again, features of the midline segments and the mean between
more and less affected limb performed across all time derivatives
equally with accuracy rates of 80% to 90%.

Systematic Evaluation of Feature
Characteristics
We applied accuracy values to determine the effects of different
degrees of freedom in our feature matrix, i.e.,:

• Absolute values vs. variance of absolute values (Figure 3A)
• Displacement vs. velocity vs. acceleration vs. jerk-related

measures (Figure 3B)
• Mean absolute values vs. left–right difference (Figure 3C)
• Segments (e.g., head, neck, shoulder, Figure 3D).

We found that variance of a certain feature determined
significantly higher accuracy values than the raw feature
(F = 26, p < 0.0001, Figure 3A). Jerk measures displayed
significantly higher accuracy values than acceleration, velocity,
and displacement-related measures (F = 32, p < 0.0001,
Figure 3B). Post-hoc tests showed that displacement-related
measures reveal significantly less accuracy than all other time
derivatives (p < 0.0001 between displacement, and all other time
derivatives). The limbs’ mean values demonstrated significantly
higher accuracy values than the differences between themore and
less affected limb (F = 210, p < 0.0001, Figure 3C). Finally, the
accuracy of segments varied: lower leg, foot, and toe measures
revealed the greatest accuracy, followed by trunk measures (L5,
L3, T12, T8); the upper arm, shoulders, head, hand, and forearm
were lowest (F = 2.3, p = 0.01, Figure 3D). Post-hoc tests
revealed that both the foot and lower leg showed significantly
higher accuracies than the forearm (p = 0.043 and p = 0.045,
respectively). All other pairwise comparisons between segments
did not reach a significance level below p = 0.05. These findings
were in line with the overall highest accuracy value (variance of
jerk of the mean of the left and right foot).

Meta-Classifier AdaBoost
When evaluating the performance of combinations of classifiers
using AdaBoost, we observed the following rules: The feet yielded
the highest accuracy by applying a combination of variance of
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FIGURE 2 | Accuracy. (A) Accuracy achieved to distinguish between Parkinson’s disease (PD) patients and healthy control subjects. Accuracy for trunk segments (left

section), limb segments (central section), and limb segment asymmetries (right section) using mean displacement (dotted line), velocity (dashed line), acceleration

(dashed and dotted line), and jerk (solid line). (B) Accuracy values based on variance measures. This figure is based on variance measures instead of mean values for

displacement (dotted line), velocity (dashed line), acceleration (dashed and dotted line), and jerk (solid line).

jerk, variance of acceleration, and mean of velocity. Concerning
the left–right difference, the combination of variance of jerk
and the mean of displacement displayed the highest accuracy.

The segment with the overall highest accuracy was the lower
leg using the combination of variance of acceleration, jerk, and
mean of velocity. Of the head and trunk segments, the head
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FIGURE 3 | Accuracy analyses. Accuracy as a function of absolute values vs. variance of absolute values (A), displacement vs. velocity vs. acceleration vs.

jerk-related measures (B), mean absolute values vs. left–right difference (C), and segments (D).

FIGURE 4 | Accuracy achieved using AdaBoost, based on combinations of multiple weak classifiers to create a stronger classification hypothesis. Weak classifiers

are displacement, velocity, acceleration, and jerk mean, and variance features.

yielded the highest accuracy rate based on the combination of
variance and mean of acceleration and displacement. Overall, the
head and trunk segments’ best feature combination was mean of
displacement, variance of jerk, and acceleration. As an example
of feature combinations, Figure 4 illustrates the combined
AdaBoost accuracy rates separated by segments. Note that due
to the cross-validation procedure, the overall performance of
AdaBoost is lower than the best feature of each segment.

DISCUSSION

Gait deficits are one of the major problems that determine PD
patients’ quality of life. PD patients report them as the most
debilitating disease features (Horak et al., 2005). While gait

disturbances occur in all PD subtypes, they are the leading
symptom in the postural instability and gait disturbance type

of PD, PIGD. The patient group studied here mainly presented
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akinetic types of the disease. In this paper, we analyzed gait

because it involves movements of all body segments. Other
motion tasks, e.g., getting up from a chair or doing accuracy
tasks with the hand, require specific instructions. In addition,
they represent a minor portion of overall motion deficits and
vary widely.

The aim of this pilot study was to compare features from
sensor suit data (segments, time derivatives, variance, left–right
difference) that enable optimal discrimination between the gait
patterns of advanced-stage PD patients with DBS electrodes in
the nucleus subthalamicus (STN) switched on or off, and healthy
subjects. Other approaches to classify PD patients’ gait employed
data from considerably different sources for different purposes.
While Khorasani and Daliri (2014) and Joshi et al. (2017)
analyzed data of force-sensitive insoles provided by Hausdorff
et al. (1998), Wahid et al. (2015) used whole body gait data
and force platform outcomes to optimize classification results.
Here, we report the maximum contrast between healthy subjects
and PD patients with DBS switched on or off. In theory, one
could calculate the contrast between many different subgroups
of this cohort. For example, another potential question is which
parameter best separates PD patients with DBS switched off from
those with DBS switched on. Such a contrast would provide
information on the treatment effect of DBS which might deliver
another favorable signal. Here, we focused on the aforementioned
contrast for simplicity’s sake.

In our approach, we calculated weak classifiers for each feature
separately in order to compare the quality of different features.
In the next step, we systematically analyzed the accuracy of
those classifiers to correctly distinguish PD patients from healthy
subjects. In general, we identified an obvious grade of classifier
accuracies: (i) variance was superior to absolute values of body
motion, (ii) jerk (third time derivative of displacement) was
superior to acceleration, velocity, and displacement, (iii) average
motion across left and right was superior to the differences,
i.e., asymmetries between left and right markers, and (iv) feet
and lower leg segments were superior to trunk, head, and hand
movements. These principles were in line with the overall highest
accuracy value (variance of jerk of the mean of the left and
right foot).

In addition, we evaluated the accuracy outcomes from
AdaBoost and the respective sets of weak classifiers to extract
the combination of features displaying maximum discriminative
power. The main purpose of this approach was to potentially
enhance the quality of discrimination by combining different
features across different segments.

Meta-classifiers like AdaBoost deliver a set of classifiers
that optimally separate the group of PD patients from
healthy subjects. We found that a combination of two to
three features is optimal. In most cases, the combination
consisted of a feature related to absolute values with a low
order of time derivative, like displacement or velocity, and
a variance-related feature of a high order of time derivative
like acceleration or jerk. This proved to be true for the trunk
and limb, as well as for the asymmetry features. Out of
all head and trunk segments, the head delivered the highest
accuracy rates.

In a previous study, we showed that machine-learning
approaches significantly correlate with known clinical measures
such as the UPDRS (Kuhner et al., 2017).

Our selection of a small set of features instead of using the
entire body data set is specifically interesting since a full sensor
suit is obtrusive for everyday use. On the other hand, very few
sensors (e.g., at the belt, or as a collar, at the wrist, near the trunk)
to monitor motion patterns in PD patients (Horak et al., 2005)
and other diseases (Bonora et al., 2015) might neglect important
information of certain motor tasks, particularly considering the
growth in wearable technology in conjunction with modern
smartphones. Our findings may facilitate the development of
motion capture systems based on commercial-grade wearable
sensors and “smartphone apps” to observe motor features in
PD patients. In addition, data reduction is often done locally,
which means next to the sensor (IMU), before the information is
transferred to a collecting unit and further processed, due to the
usually limited rate of data transfer. Such data reduction means
the signals of interest must be pre-selected. We aimed here to
make recommendations as to where best to place sensors and
which type of signals should ideally be processed so as to exploit
the available motion data to the maximum.

Limitations
In this study, PD patients were suffering from advanced-stage
PD and were undergoing recent DBS of the STN. Most study
participants were not able to walk 10m in the OFF condition
independently, which greatly reduced our sample size and
potentially biased our data. This severely affected group was
chosen to analyze the strongest expressions of pathological
features. Early-stage PD gait deficits, PD patients without DBS,
and the variability of the defined features during medication
were not the focus of the present study. Additional investigations
should explore whether our study’s optimal-parameter findings
also apply to less severely affected PD patients and other
treatment conditions.

CONCLUSIONS

Our approach proposes a specific marker position (foot, lower
leg) and certain data processing algorithms (variance of jerk) to
optimally characterize PD patients’ motion abnormalities during
walking. Using AdaBoost, we identified sets of classifiers that
optimally separate PD from healthy subjects. For walking, a
useful combination of classifiers may refer to the head and a
foot segment. Moreover, this combination should include an
absolute value derived from a low order of time derivative and
a variance-related feature from a high order of time derivative.

In the future, we aim to evaluate the differential effect of
treatment (e.g., STNDBS) in order to characterize the optimal set
of features for monitoring intervention effects, before we extend
this approach to different motion patterns, e.g., standing up from
a chair, turning around, and interacting with the surroundings.
In future studies, our results may help to develop a low-threshold
and objective analysis tool for diagnosing and monitoring motor
abnormalities in PD. Given our latest findings, a simplified and
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small sensor attachable to the shoe may suffice to analyze PD
gait abnormalities.

More generally, this small pilot study ranked motion features
according to their distinguishing power and identified the
variability of a smoothness measure i.e., jerk of the foot as the
most favorable signal from which to separate healthy subjects’
from PD patients’ gait. This biomarker is imperceptible to
clinicians’ naked eye and, therefore, is not incorporated in
current motor assessments such as the UPDRS. Consequently,
we believe that more extensive investigations are warranted to
identify the most powerful biomarkers for characterizing motor
abnormalities in PD. Future studies may ultimately challenge
how traditional assessments such as the UPDRS are composed.
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