
 
 

Deciphering the spatiotemporal dynamics of  
intestinal aging in vertebrates using the  

African turquoise killifish  
 
 
 

Inaugural-Dissertation 
 

zur  
 

Erlangung des Doktorgrades 
der Mathematisch-Naturwissenschaftlichen Fakultät 

der Universität zu Köln 
 
 

 
 

vorgelegt von 
Miriam Lea Popkes  

Aus Wiesbaden 
 
 

Köln, Mai 2021 
 
 



 
Gutachter:   Dr. Dario R. Valenzano  
 
 
    Prof. Dr. Jan Riemer 
 
 
 
 
 
Tag der letzten mündlichen Prüfung:  03.08.2021 
 
  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Life has no limitations, except the ones you make. 
Les Brown   

 
  



Abstract 
 
Aging is the major risk factor for many top-killing diseases and represents a problem 

for both the individual and the society. How the aging process is influenced and 

causally connected to microbiota is an emerging research area, with far-reaching 

findings obtained within the past few years. However, major underlying connections 

still remain elusive, in part hindered by a lack of suitable experimental model systems. 

The turquoise killifish is an ideal model to fill this gap and study microbiota in the 

context of aging, as it uniquely combines a very short lifespan with vertebrate features, 

such as a complex gut microbiota. However, knowledge about the killifish intestinal 

characteristics and gut microbiota is largely absent. Important key aspects I address 

include a detailed definition of aging dynamics, a characterization of gut 

compartmentalization and sex-specific intestinal traits, as well as the question whether 

non-invasive stool samples could be experimentally utilized for assessment of gut 

microbiota features.  

 

I thus set out to characterize killifish spatiotemporal aging dynamics and sex-specific 

intestinal microbial and molecular patterns by performing multi-omics analyses on 

intestinal sections of young and old, male and female killifish. I found strong evidence 

for a compartmentalization of the killifish intestine on a molecular and morphological 

level, with specific functions that can also be found in the mammalian intestine. 

Surprisingly, I did not observe section-specific microbial communities in contrast to 

findings from other animals including fish. I detected compelling evidence for 

extracellular matrix restructuring in the aged killifish intestine, with an accumulation of 

collagen and an increase in muscle thickness, possibly impeding the intestinal function 

in old fish. For the first time, I showed that the killifish intestine exhibits sex-specific 

molecular traits, especially concerning the coagulation process.  

 

Moreover, I asked whether non-invasive stool samples can be used as a proxy for gut 

microbiota by collecting microbiota samples of stool, intestinal and food samples. In 

addition, I set out to explore whether stool samples can be utilized to build models 

predicting fish age or remaining life by conducting a longitudinal collection of individual 



stool samples along killifish life. Excitingly, I discovered shared microbial features 

between stool and gut microbiota and showed for the first time that a series of stool 

microbial samples in combination with a machine learning approach allows prediction 

of both age and lifespan. My studies not only set the ground for future research on 

killifish gut microbiota, but provide novel promising results highlighting the importance 

of gut microbiota research in the context of aging.  
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1.1 Aging 

 

“Education is the best provision for old age”. Aristotle 

 

The desire to live forever has been deeply rooted in us since centuries. However, 

aging affects all of us – at least us humans – and nearly all living organisms on this 

planet. Biological aging is defined as the age-dependent decline of key homeostatic 

processes of the host, acting on several levels of complexity. Besides some manifest 

morphological aging-related changes, such as loss of hair pigmentation and increased 

spinal curvature, aging is the outcome of several processes that occur at the molecular 

level.  

 

 

Figure 1: Sex-specific cumulative survival and death rates. Cumulative survival (A+B) and 
death rates (C+D) in males and females. Colors indicate the different years of data collection: 
1850 (red), 1900 (blue) and 1950 (green). Based on life tables from the Netherlands. Figure 
taken from Partridge et al., 2018.  
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Functional aging is not only a problem of a single individual, but rather affects the 

whole population. Life-expectancy has been rising steadily in the past decades  

(Fig. 1), with an approximate rate of 3 months per year, resulting in a nearly doubled 

life-expectancy since 1840 (Oeppen & Vaupel, 2002). This increase in the average life 

expectancy is mainly driven by a reduction in infant/juvenile mortality (Wilmoth, 2000), 

and moreover owed to enhanced hygiene concepts, better quality of food and water 

plus an improvement and advances in medical care and therapies (Partridge et al., 

2018). Although it is still debated whether human lifespan has a natural limit, future 

lifespan expectancy is projected to increase in the coming years (Kontis et al., 2017). 

However, while human lifespan has increased over the years, the years spent in good 

health condition (= healthspan) have not increased with the same pace (Crimmins, 

2015).  
 

Age is the main risk factor for the development of various diseases that increase the 

risk of individual mortality, including cancer, neurodegenerative diseases and 

cardiovascular diseases (Melzer et al., 2020; Niccoli & Partridge, 2012). Hence, 

extended lifespan may result in longer periods of frailty and a higher rate of age-related 

diseases. This is not only a burden for the suffering elderly patients, but also a major 

burden to society and health care systems – including a rapid increase for 

hospitalization costs (Alemayehu & Warner, 2004). Studying aging as the underlying 

contributor to the top mortality-causing diseases could be key for finding novel 

therapies and for a longer life in a healthy state.  

 

The aging process has long been assumed as a random and general process and 

thus as inevitable. However, recent discoveries impressively show that aging is a 

complex and multi-factorial but fine-tuned molecular process, and that mutations in 

single genes allow to greatly extend lifespan in model organisms (Kenyon et al., 1993; 

Vijg & Campisi, 2008), and also lead to premature aging diseases (Ashapkin et al., 

2019). Interestingly, how we age also seems to be evolutionarily conserved – the 

major known aging-associated pathways are conserved from yeast to worms and fruit 

flies, rodents and humans (Barbieri et al., 2003). 
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While aging research is still a very young field of investigation, discoveries over the 

past years have resulted in a number of characterized cellular and molecular hallmarks 

of aging (López-Otín et al., 2013). The nine identified hallmarks include: genomic 

instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated 

nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion 

and altered intracellular communication. The hallmarks of aging are interconnected, 

can co-occur in the aging process and are based on alterations in specific molecular 

pathways.  
 

The first major breakthrough in the field was the discovery of a loss-of-function 

mutation in the daf-2 gene, which leads to exceptional long lifespan in C. elegans 

(Kenyon et al., 1993). The daf-2 gene encodes for an insulin-like growth factor receptor 

and is evolutionary conserved up to humans. Over the years, many other components 

of the insulin signaling pathway have been associated with longevity. Importantly, 

several studies have shown that the insulin/IGF-1-like signaling pathway plays an 

intricate role in aging also for other animals, including flies and rodents (Holzenberger 

et al., 2003; Tatar et al., 2001). Moreover, sequence analysis of the IGF1/IGF1-

receptor genes in female centenarians revealed an overrepresentation of partial loss-

of-function mutations, indicating that IGF-signaling probably also has an influence for 

human lifespan (Suh et al., 2008).  

 

Besides the insulin signaling pathway, other metabolic pathways are importantly 

involved in the aging process, most notably the mTOR pathway. mTOR is an enzyme 

with essential roles in the regulation of cell metabolism and acts as a nutrient, energy 

and oxygen level sensor (Tokunaga et al., 2004). Several studies have shown that 

decreased mTOR activity leads to lifespan extension in yeast, worms, flies and mice 

(Harrison et al., 2009; Kaeberlein et al., 2005; Kapahi et al., 2004; Vellai et al., 2003). 

Interestingly, mTOR pathway inhibitors are currently tested in medical trials in the 

context of aging (NCT number = NCT04488601). 

 

One important aspect of aging on the physiological level is the overall decline in 

immune system function, leading to diminished immune responses to infections or 
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vaccines (Sambhara & McElhaney, 2009; Segre & Segre, 1977), impaired functionality 

of the adaptive immune system (Frasca & Blomberg, 2009; Nikolich-Žugich, 2018) and 

a chronic activation of the innate immune system. The latter is resulting in chronic low-

grade inflammation, called inflammaging, another typical characteristic of aging 

(Franceschi et al., 2018).  

Over the last years, the interest in microbiota studies has grown considerably. It was 

discovered that the intestinal microbiota plays an important role in integrating 

environmental stimulation and host metabolism. An emerging interest in the aging field 

is thus the connection between gut microbial communities and aging, as exciting 

findings propose a possible causal connection during the aging process (1.2.4).  

 

To study aging and age-associated diseases, adequate model organisms for aging 

are essential, as controlled studies in humans are challenging and time-consuming 

due to human lifespan. There are several aging model organisms, each with specific 

advantages that make them ideal to study certain aspects of the aging process – and 

new model systems continue to be established, more or less suited to different 

experimental needs (Brunet, 2020). Invertebrates like Drosophila melanogaster and 

C. elegans were among the first aging model systems and enabled many of the first 

discoveries in the field of molecular biology of aging (Guarente & Kenyon, 2000; Piper 

& Partridge, 2018). Invertebrates have a very short lifespan, making them ideally 

suited for lifespan screening assays and are very low cost in maintenance. On the 

other hand, vertebrate model systems like mice and rats share a lot of key features 

with humans, for example a complex immune system and shared aging phenotypes, 

and provide a large number of disease-relevant models (Brunet, 2020). However, 

comparably long lifespan and maintenance costs impede high throughput experiments 

and lifespan assays. One promising model system to close the gap between short-

lived invertebrates and long-lived vertebrates is the turquoise killifish (Nothobranchius 

furzeri), which combines a very short lifespan with key aspects of aging phenotypes 

and vertebrate features (more in 1.3).  

 

 

 



 6 

1.2 The intestine and gut microbiota in health & aging 

 

1.2.1 The role of microbiota in host physiology 
Microbiota play a key role in nature, and we are only beginning to understand and 

appreciate the impact of the microbiota surrounding and populating us on our human 

bodies. Microorganisms reside on our planet since more than 3 billion years 

(Baumgartner et al., 2019; Popkes & Valenzano, 2020) and can be found ubiquitously 

in nature. Eukaryotes, including vertebrates, mammals and humans, have thus 

evolved in the context of a rich and diverse microbial surrounding - leading to co-

evolution of host and their associated microbial communities resulting in strong 

connections and symbiotic relationships (Popkes & Valenzano, 2020).  

 

 
Figure 2: Mutualistic relationships between microbiota and their host. Clockwise, from 
top right: Rhizobia fix nitrogen in legumes roots to molecular forms accessible to the plants. 
Commensal bacteria in the hydra modulate spontaneous body contractions and prevent the 
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host from lethal fungal infections. Buchnera provide essential amino acids to sap-feeding 
aphids. Protists and flagellates ferment lignocellulose from wood in termite food digestion. 
Aliivibrio fischeri bioluminesce the light organ of bobtail squids. Commensal bacteria ferment 
cellulose to SCFA in ruminants, and complex carbohydrates to SCFA in humans. Figure taken 
from Popkes & Valenzano, 2020.  

 

Specialized host-microbiota interactions are ubiquitous, providing mutual advantages 

(Fig. 2, Popkes & Valenzano, 2020). Microbiota in the hydra for example protect the 

animal from lethal fungal infections (Fraune et al., 2015). Microbial communities are 

also invaluable for nutrition in several animals – they ensure amino-acid supply in sap-

feeding ants (Rouhbakhsh et al., 1996), ferment indigestible lignocellulose in termites 

(Benemann, 1973) and ferment fiber-rich cellulose in specialized fermentation 

chambers of ruminants (Nocek & Russell, 1988).  

 

Microbial communities can be found in various host body sites – humans are for 

example inhabited by distinct communities on the skin (Grice et al., 2009), the mouth 

(Nasidze et al., 2009) and the vagina (Ravel et al., 2011). Especially the intestinal 

microbiota is of great interest, as the intestinal tract is the biggest reservoir of 

microbiota in the human body (Dieterich et al., 2018). The human intestine is 

dominated by Bacteroidetes, Firmicutes, Actinobacteria and Proteobacteria (The 

Human Microbiome Project Consortium, 2012). Gut microbes in the densely populated 

colon are roughly of equal number to all human cells (Sender et al., 2016), and the 

number of microbial genes outnumbers the human genome by roughly two order of 

magnitude (Tierney et al., 2019). Recent advances in microbiota research are 

constantly revealing the great importance of gut microbiota for human physiology. 

 

Microbial colonization of the gastrointestinal tract likely starts with birth (de Goffau et 

al., 2019; Lauder et al., 2016) - even if some studies report microbiota existence 

beforehand (Aagaard et al., 2014; Collado et al., 2016), birth is definitely the major 

encounter of microbiota in human life. The infant microbial gut communities then 

develop over the first years of life, with an increase in diversity and a shift in 

composition, until an adult-like stage is reached at around 2-3 years (Bäckhed et al., 

2015; Yatsunenko et al., 2012). Importantly, several studies have suggested that 

proper gut microbiota establishment in infants is a crucial process, with impairments 



 8 

in the process leading to negative health consequences later in life (Dogra et al., 2015; 

Korpela & de Vos, 2016). In adulthood, microbial communities are relatively stable and 

resilient, and rapidly return to the initial composition after disturbances (Caporaso et 

al., 2011; Faith et al., 2013; Palleja et al., 2018). Important factors influencing microbial 

communities include mainly environmental parameters, such as antibiotic usage, diet 

and exercise, but also genetic parameters (Petriz et al., 2014; Rothschild et al., 2018; 

Willing et al., 2011; G. D. Wu et al., 2011).  

 

 
Figure 3: Host-microbiota interactions in homeostasis. The host establishes an intestinal 
barrier, including a thin layer of epithelial cells, a mucus layer consisting of mucins produced 
from goblet cells, antimicrobial peptides (AMPs) produced by Paneth cells and secreted 
immunoglobulins A (IgA) from the germinal center. Commensal microbes are involved in 
nutrient production, fermenting non-digestible complex carbohydrates to short-chain fatty 
acids (SCFA), and ensure colonization resistance by fighting pathogens directly and indirectly 
by stimulating immune system responses. This figure was generated with BioRender.  

 

The intestinal microbiota plays a major role in physiology, not only for mammals but 

also for other vertebrate and even invertebrate species such as fish and flies (Butt & 

Volkoff, 2019; Ludington & Ja, 2020). In humans, gut microbiota is responsible for 

several main physiological processes (Fig. 3) (Clemente et al., 2012). Gut microbial 

communities are involved in metabolic functions and nutrient provision, as they 

ferment carbohydrates which are undigestible for the human host enzymes, 
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metabolize primary bile salts and produce essential vitamins (Gill et al., 2006a; Hill, 

1997; Wahlström et al., 2016). The gut microbial communities moreover provide 

crucial signals for the development and function of the immune system, thanks to 

microbial surface antigens and produced metabolites (Bouskra et al., 2008; Chow et 

al., 2010; Lathrop et al., 2011; Rooks & Garrett, 2016). Gut microbiota are also 

communicating to the nervous system via the gut-brain axis and play an important role 

in neurodevelopment, host behavior such as stress, anxiety and social activity, and 

neuropsychiatric diseases (Chu et al., 2019; Sherwin et al., 2019; Vuong et al., 2017).  

 

Bacterial metabolism generates several metabolites that have crucial functions for 

hosts, such as short-chain fatty acids (SCFA), secondary bile acids or tryptophane 

metabolites. The SCFAs acetate, propionate and butyrate have been in particular 

focus in the research community – since their action has been linked with roles in 

immune homeostasis and in the microbiota-brain-axis. SCFAs are a valuable energy 

source for the intestinal epithelial cells, enhance the intestinal barrier function and 

stimulate mucus production by goblet cell (Peng et al., 2009; Roediger, 1982). 

Moreover, SCFAs are importantly involved in intestinal immune homeostasis, 

establishing a tolerogenic response and boosting immune responses (Bachem et al., 

2019; Kim et al., 2016; Smith et al., 2013), as well as in the gut-brain axis (De Vadder 

et al., 2014). SCFA levels have also been correlated with a growing list of diseases, 

including diabetes, obesity and atherosclerosis (Kasahara et al., 2018; Mariño et al., 

2017; Ridaura et al., 2013). 

 

Another important metabolite class are secondary bile acids. Primary bile salts are 

cholesterol-based compounds produced in the liver and stored in the gallbladder. Bile  

acids are secreted into the small intestine, where they are critically involved in the 

digestion of fatty acids (Hofmann, 1963). More than 95% of primary bile acids are 

reabsorbed in the ileum and circulate back to the liver (Krautkramer et al., 2021). The 

remaining primary bile acids are converted to secondary bile acids through microbiota 

via dehydroxylation or deconjugation (Wahlström et al., 2016). The implication of 

secondary bile acids in host physiology is still under investigation and probably 

depends on the specific bile acid molecule – studies showed important roles involving 
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the immune system (Tregs pools, Song et al., 2020), but also an implication in 

colorectal cancer and hepatic carcinomas (Jia et al., 2018; Yoshimoto et al., 2013).  

 

The intestinal tract is not only home to commensal microbiota, but is a place of 

continuous contact with ingested microbes, including pathogenic bacteria. 

Interestingly, the commensal microbiota helps the host to protect the body against 

pathogen infection – a process called colonization resistance (Buffie & Pamer, 2013). 

Several mechanisms contribute to colonization resistance, including direct inhibition 

of pathogenic bacteria by intestinal commensals through antimicrobial substances 

(Ducluzeau et al., 1976; Honda et al., 2011). In addition, commensal microbiota can 

indirectly support and modulate pathogen defense by enhancing the intestinal immune 

system (Kobayashi et al., 2005; Zheng et al., 2008). One of the major roles of the 

intestinal immune system is to ensure a proper balance between a tolerogenic 

response against the commensal, useful microbes, while still ensuring an efficient and 

strong defense against pathogens.  

 

The intestinal microbiota clearly is of utmost importance for host physiology. 

Accordingly, disturbance of the microbial communities (called “dysbiosis”) has been 

linked to several diseases, including obesity and severe cases of Clostridioides difficile 

infections. Dysbiotic microbial communities have been shown to directly contribute to 

disease course – for example, transfer of microbiota from obese individuals to germ-

free mice led to weight gain (Turnbaugh et al., 2006). Vice versa, transplanting gut 

microbial communities from healthy donors to the dysbiotic intestine of patients 

severely infected with Clostridioides difficile led to significant improvements (Khoruts 

et al., 2010).  

 

 

1.2.2 Spatial organization of the intestine  
The digestive system plays a key role in organismal health – although hidden in our 

bowel, the gastrointestinal tract is along with our skin the largest area of environmental 

contact and essential for nutrient uptake and thus survival of the host. Over time, 

gastrointestinal tracts have evolved into a complex system with specialized subregions 
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– for example, the mouth, esophagus, stomach, small and large intestine in humans 

(Hartenstein & Martinez, 2019; Mowat & Agace, 2014). The compartmentalization of 

the intestine is key for a successful digestion and maximizes nutrient availability – 

compartments allow the controlled, highly coordinated sequence of successive 

digestive steps. The subregions are defined by distinct morphological and molecular 

features, equipped for highly specialized functions (Buchon et al., 2013; Gebert et al., 

2020).  

 

Compartmentalization of intestines is a conserved feature across both vertebrates and 

invertebrates, such as Drosophila melanogaster. The Drosophila intestine is 

structured into a food-storing foregut, a midgut characterized by digestion and 

absorption, and a hindgut (Buchon et al., 2013; Guo et al., 2016). The intestinal tracts 

of fish are very diverse in structure and shape, and around 20% of fish are even 

agastric, lacking a true stomach (Fig. 4) (Wilson & Castro, 2010). Fish intestines differ 

strongly in terms of length, also depending on the food-source, with herbivore fish 

possessing longer intestines, probably due to more epithelial surface needed for 

sufficient uptake of nutrients (German & Horn, 2006).  

 

 

Figure 4: Overview of fish intestinal tracts. Representation of different types of intestinal 
tracts in different fish. Some fish are agastric, lacking a real stomach. Figure taken from 
Egerton et al., 2018.  
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The fish gut is normally classified into four sections – the head gut comprising mouth 

and pharynx, the foregut entailing esophagus and stomach, the midgut and a hindgut 

including the rectum (Egerton et al., 2018). Agastric fish may show an enlarged region 

in the anterior intestinal tract, also called intestinal bulb, for food storage (Kapoor et 

al., 1976). The midgut is characterized by digestive processes in carbohydrate and 

lipid metabolism, while water retention is one of the processes found particular in the 

hindgut (Z. Wang et al., 2010).  

 

 

Figure 5: Overview of the human intestinal tract. Structure of the human intestinal tract 
indicating the microbial load, the enriched bacteria and distribution of some major bacterial 
metabolites in the different gut compartments. Figure taken from Mowat & Agace, 2014b.  

 

Mammals, including humans, show an even finer distribution of specialized subregions 

with specific morphological and molecular signatures and functions (Fig. 5, Mowat & 
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Agace, 2014; Sheth et al., 2019). The small intestine is highly specialized for digestive 

processes, with a maximized surface area thanks to unique anatomical structures, 

such as villi and microvilli. It is further defined into the duodenum, the ileum and the 

jejunum. The duodenum is the place of chemical digestion, due to a high abundance 

of digestive enzymes – carbohydrates and proteins are broken down, fats are 

emulsified by bile components. The majority of nutrient absorption occurs in the 

adjacent jejunum, the longest intestinal segment with the largest surface area. The 

ileum is specialized in bile salt and vitamin B12 reabsorption. The large intestine is 

structured into the caecum with the appendix, the colon and the rectum. The surface 

area of the large intestine is a lot smaller due to villi being absent, reflecting that the 

key function is not nutrient absorption. The colon is in contrast home to the largest 

number of microbes in the body, important for key physiological processes, including 

the production of essential nutrients (1.2.1). In addition, the colon is specialized in 

water absorption and thus important for solidifying the fecal matter (Moran & Jackson, 

1992).  
 

Although the fine structure and morphology differs between fish and mammals, the 

molecular functions associated with the regions seem to overlap on a global level. For 

example, the posterior intestine of zebrafish is characterized by high expression levels 

of aquaporins indicating active water retention processes, similar to the colon of 

mammals (Lickwar et al., 2017). In addition, genes involved in lipid metabolism are 

enriched in the anterior intestinal sections of zebrafish, mirroring the characteristics of 

mammalian small intestines (Lickwar et al., 2017). Fish also have specialized epithelial 

cell types important in mammalian intestines, including mucus-producing goblet cells 

and enteroendocrine cells (Brugman, 2016), and proliferating intestinal stem cells 

(Rombout et al., 1984; Wallace et al., 2005).  

 

As the intestinal tract is an important contact region to the environment, many foreign 

particles, microbes and antigens arrive in the intestine every day. Given the large area 

of possible pathogen entry points into the body, the immune system therefore plays a 

key role in the intestine – and indeed, around 80% of the immune cells reside in the 

gut-associated lymphatic tissue (Vighi et al., 2008). The main role of the intestinal 



 14 

immune system is to keep the intricate balance between pathogen defense and the 

tolerance for commensal, important microbes. One important aspect in this regard is 

the intestinal barrier function, keeping the microbes at a safe distance and localized to 

the lumen (Turner, 2009). Several components contribute to the intestinal barrier, 

including a tight layer of intestinal epithelial cells, a protective mucus layer produced 

by goblet cells, and chemical defense molecules produced by immune cells, such as 

antimicrobial peptides (AMPs), defensins and secretory Immunoglobulins A (IgAs) 

(Fig. 3) (Johansson & Hansson, 2016; Muniz et al., 2012).  

 

The specialized subregions provide highly specialized niches for microbes - intestinal 

tracts thus often show a spatial organization of microbial communities. Even in the 

invertebrate wood-feeding beetle Odontotaenius disjunctus, microbial communities 

differ in composition along the different gut compartments (Ceja-Navarro et al., 2014). 

Spatial organization of microbiota is also found in several fish species, including cod, 

seabass and salmon (Gajardo et al., 2016; Kokou et al., 2019; Ringø et al., 2016a). In 

mammals, bacterial communities differ largely between the small and the large 

intestine, both in terms of composition and bacterial load (Fig. 5). In addition to a 

bacterial gradient along the longitudinal intestinal axis, bacterial communities differ a 

lot along the lateral axis – with most bacteria residing in the lumen and some mucus-

metabolizing bacteria closer to the mucosal surface. The small intestine microbiota is 

of lower complexity compared to the large intestine, and is enriched in microbes 

metabolizing various carbohydrates such as Lactobacillus and Streptococcus 

(Zoetendal et al., 2012). The large intestine shows a high microbial diversity and is 

home to complex carbohydrate-fermenting bacteria, which produce essential 

metabolites such as SCFAs (Cummings & Macfarlane, 1991).  

 

 

1.2.3 The effect of sex on intestinal physiology and microbiota 

composition 
Sexual dimorphism, the difference in characteristics between sex, is a very prevalent 

phenomenon in nature – including the very prominent coloration differences in several 

animals (Bell & Zamudio, 2012; Zi et al., 2003). Gastrointestinal tracts also show 
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sexually dimorphic features. In humans, the absorption rate of specific nutrients is sex-

specific (Johnson et al., 1992). Women have a longer intestine (Saunders et al., 1996) 

and exhibit higher prevalence of certain intestine-specific diseases like inflammatory 

bowel diseases (Lovell & Ford, 2012). Sex is also a major influencing factor in terms 

of diseases and aging – several immune system features show sexual dimorphism 

(McCombe & Greer, 2013), the life expectancy of women exceeds that of men and the 

occurrence of age-related diseases also shows a sex-specific pattern (Austad & 

Fischer, 2016).  
 

As sex hormones have a strong connection to microbiota, with mutual influences and 

reactions, sex-specific differences in intestinal microbiota composition also appear 

reasonable (Org et al., 2016; Sinha et al., 2019). However, up to now only very few 

studies have specifically investigated the effect of sex differences with regards to 

microbiota. Nevertheless, sexual dimorphic microbiota compositions were reported for 

some animals, such as mice (Org et al., 2016; Yurkovetskiy et al., 2013). Interestingly, 

a great part of the reported sex differences in microbiota composition are likely related 

to sex hormone levels, as castration of males or blockage of androgen receptors both 

prevent the reported sex-specific phenotypes (Markle et al., 2013; Org et al., 2016).  

For fish, studies showed inconsistent results regarding sexual dimorphic microbiota 

patterns, depending on the investigated species. Most reports for zebrafish indicate 

no difference in microbiota composition or diversity (Liu et al., 2016; Stephens et al., 

2016). In contrast, Wang et al. found sex differences in the intestinal flora of swamp 

eels, both in diversity and differentially abundant species (X. Wang et al., 2020). 

Studies investigating human sex differences in microbiota composition have shown 

contradicting outcomes. In general, an overall trend for differences in microbiota 

composition and higher diversity levels for females seems likely. Several papers 

indicate differential abundance in specific bacterial species, including Lactobacillales, 

Bateroides and Prevotella (Borgo et al., 2018; Ding & Schloss, 2014). In addition, a 

study on two large cohorts identified sex as a significant effector of microbiota 

composition, with the 10th largest effect of 69 significant effect factors (Falony et al., 

2016). In contrast, some studies did not find significant sex-differences for global 
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microbiota composition or diversity levels (Haro et al., 2016; Takagi et al., 2019) - 

although often slight differences in specific bacterial species were reported.  

Taken together, sex differences in mammalian microbiota composition were reported 

in several studies and sex dimorphism is most probably also relevant for human 

microbiota composition – however, further research is necessary to support this 

hypothesis. As sex-specific differences in gut microbiota could affect major 

physiological processes, investigating sexual dimorphic microbiota and molecular 

expression patterns in the intestine remains a critical part of future studies.  

 

 

1.2.4 Gut microbiota and aging 
Although aging research is still a young field of investigation, important findings 

already shed light on key molecular and cellular processes underlying aging (1.1). 

However, aging research has so far mostly concentrated on the host side of age-

related changes – but as shown in 1.2.1, microbiota and especially the intestinal 

microbial communities play an essential and intricate role in host physiology (Bana & 

Cabreiro, 2019). Aging is thus most probably influenced by the complex interactions 

between the host and its associated microbiota. 

 

Indeed, several studies have reported not only age-related changes in microbiota 

composition and diversity, but moreover showed that disturbing the balance of 

microbial communities (a process known as “dysbiosis”) is strongly linked to aging, 

and might even be causally related to the aging process (Li et al., 2016; Smith, 

Willemsen, Popkes et al., 2017). During the aging process, profound alterations 

cannot only be found on the host side, but also involve the microbial communities, in 

particular the intestinal microbiota. Research in flies showed a marked alteration of 

gut microbiota composition upon aging, with an increased bacterial load and an 

expansion of Gammaproteobacteria (Clark et al., 2015; Ren et al., 2007). This 

dysbiosis precedes an intestinal barrier dysfunction, which results in loss of 

commensal control, a rapid health decline and presents a strong marker for death 

(Clark et al., 2015; Rera et al., 2012). Similarly in mice, aging is correlated with 

microbiota composition and results in significant community changes, with an increase 
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of the Bacteriodaceae family in old age and a decrease of Prevotellaceae, 

Rikenellaceaea and Lachnospiraceae families (Langille et al., 2013).  

Studies on the aging gut microbiota in humans show varying results, but seem to be 

congruent on several aspects. Old age is accompanied with a loss of individual 

microbial diversity in the intestine (Biagi et al., 2010; Claesson, Jeffery, Conde, Power, 

O’Connor, et al., 2012), while a greater variability between individuals is observed 

(Claesson et al., 2011). Aging is clearly characterized with a shift in microbiota 

composition – an altered Bacteroidetes to Firmicutes ratio has been reported in 

several studies (Fransen et al., 2017; Mariat et al., 2009), and there are distinct 

changes to specific bacterial subgroups. This includes a decrease of “core” microbial 

communities such as Lachnospiraeceae, Ruminococcaceae, Bacteroidaceae (Biagi 

et al., 2016) and changes in Clostridium (Claesson et al., 2011). Functionally, gut 

microbial communities of aged humans are characterized by reduced SCFA-

producing capacity and an increase in pro-inflammatory opportunistic pathogens 

(Rampelli et al., 2013). In contrast, microbial communities of especially long-lived 

individuals are characterized by an enrichment in health-associated bacteria (Biagi et 

al., 2016). It is important to note that microbiota composition correlates with health 

status and especially the frailty index instead of correlating with chronological age 

(Jackson et al., 2016).  

 

Notably, gut microbiota changes do not just occur passively during the aging process 

– in fact, several studies suggest that microbiota-dependent mechanisms potentially 

also regulate aging processes (Bana & Cabreiro, 2019). Germ-free flies show an 

increased lifespan, and bacterial load is a strong influencing factor for lifespan (Lee et 

al., 2019). Moreover, germ-free mice do not show an age-related increase in pro-

inflammatory cytokines like their counterparts raised under normal conditions. 

Interestingly, transfer of gut microbiota from old but not young animals to germ-free 

mice lead to an increase in pro-inflammatory markers and weakened the intestinal 

barrier function (Thevaranjan et al., 2017). In line with this, fecal microbiota transfer of 

old mice into germ-free mice contributed to systemic inflammaging (Fransen et al., 

2017). Interestingly, Stebegg et al. showed in 2019 that transfer of young microbiota 

to aged mice rescues the age-related defective germinal center reaction. These 
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studies clearly indicate a strong interconnection between gut microbiota and the host 

immune system during the aging process.  

Moreover, overall lifespan is directly affected by the gut microbiota. It was shown that 

metformin treatment, a well-known lifespan extending procedure in worms, relies on 

altering microbial folate and methionine metabolism (Cabreiro et al., 2013). Also in 

flies, modulation of gut microbiota has an effect on lifespan (Obata et al., 2018; 

Westfall et al., 2018). Ultimately, our group provided the first evidence that the gut 

microbiota changes upon aging causally connect to the aging process, by showing 

that transfer of young gut microbiota prolonged lifespan of middle-aged fish for more 

than 30% (Smith, Willemsen, Popkes et al., 2017). Supporting evidence from 

progeroid mice has later been published, where microbiota transfer of young mice 

resulted in extension of both lifespan and healthspan (Bárcena et al., 2019).  

 

Interestingly, some gut microbiota aging aspects are sex- and region-specific. 

Steegenga et al. found in 2012 that aging-induced DNA hypomethylation was 

observed in the colon and distal small intestine, however not in the anterior section of 

the small intestine. Proteomic analysis of intestinal crypts from different intestinal 

regions further resulted in region-specific alterations in cell composition and 

metabolism upon aging (Gebert et al., 2020). Although only few studies investigated 

sex-specific aging phenotypes, one particularly interesting study found that the age-

specific decline in intestinal stem cell barrier function is female-specific, and dietary 

restriction reduces the age-related gut pathologies in female flies more than in male 

flies (Regan et al., 2016). 

 

Taken together, the intestinal microbiota is subject to profound changes upon aging, 

both influenced by host aging mechanisms but also affecting the host aging processes. 

Microbiota dysbiosis was thus proposed to be an additional hallmark and biomarker 

for aging (Bana & Cabreiro, 2019).  
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1.3 The African turquoise killifish as a model organism for 

microbiota research in the context of aging 

 

The African turquoise killifish (Nothobranchius furzeri) is an annual teleost fish that 

belongs to the cyprinodont clade (Cellerino et al., 2016). It is adapted to live in extreme 

environmental conditions in the south-east of Africa, where it lives in ephemeral fresh-

water ponds that only carry water for 4-6 months per year during the wet season 

(Blažek et al., 2013). Living under such harsh conditions led to evolving a very unique 

life cycle, including a special embryonic diapause state to survive the long dry season 

(Hu et al., 2020; Wourms, 1972). Once the ephemeral ponds are filled with water, 

killifish hatch and rapidly grow to sexual maturation, followed by rapid aging (Vrtílek et 

al., 2018). Turquoise killifish, especially the widely used, highly inbred laboratory GRZ 

strain, therefore show the shortest lifespan recorded for vertebrates kept in captivity, 

with a maximum lifespan of just 4-6 months (Fig. 6) (Reichwald et al., 2015).  

 

 
Figure 6: Maximum lifespan across experimental aging model systems. Figure was 
generated with BioRender.  

 

Despite its short lifespan, the turquoise killifish shows a wide range of aging 

phenotypes comparable to those observed in other vertebrates, including humans. 
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Those age-related phenotypes comprise morphological, cellular and molecular 

changes. Old turquoise killifish show decreased fecundity (Blažek et al., 2013) and 

increased spinal curvature (Cellerino et al., 2016), and male turquoise killifish lose 

pigmentation during aging (Geyfman & Andersen, 2010). Aging in the turquoise killifish 

is moreover characterized by increased neurodegeneration and a decline in cognitive 

and behavioral capacity (Genade et al., 2005; Dario R. Valenzano et al., 2006). This 

decline is accompanied by an increase of histological aging biomarkers such as 

lipofuscin and senescence-associated b-galactosidase. Old turquoise killifish show an 

increased risk for the development of cancer (Di Cicco et al., 2011) and an 

accumulation of a-synuclein in the brain (Matsui et al., 2019).  

 

Next to the well-established aging phenotypes, prominent anti-aging interventions 

such as resveratrol treatment or dietary restriction have been shown to extend lifespan 

in the turquoise killifish (Terzibasi et al., 2009; Dario R. Valenzano et al., 2006). 

Moreover, several state-of-the-art molecular tools, such as the establishment of 

CRISPR-Cas9 techniques (Harel et al., 2016), and a completely sequenced and 

assembled genome (Reichwald et al., 2015; Dario Riccardo Valenzano et al., 2015), 

have facilitated research in this model.  

 

With regard to conducting aging research, the research community has so far mainly 

worked with short-lived invertebrate model systems or long-lived vertebrates. 

Classically used invertebrate aging models include C. elegans and Drosophila 

melanogaster, which are genetically tractable and display short lifespans. However, 

invertebrates cannot recapitulate important key aspects of human aging, including 

stem cell dynamics, cancer processes as well as an adaptive immune system 

(Poeschla & Valenzano, 2020). Common vertebrate model systems such as mice and 

rats however have comparably long lifespans of more than three years, posing hurdles 

for lifespan experiments. The turquoise killifish combines a very short lifespan with key 

vertebrate features and is thus an optimal model organism for aging research, closing 

the gap between the available short-lived invertebrates and long-lived vertebrate 

model systems (Fig. 6).  
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Figure 7: Killifish intestinal characteristics. (A) Alpha diversity levels of young (6 weeks) 
and old (16 weeks) killifish intestines. (B) Survival analysis of the young-microbiota transfer 
experiment. Different colors mark the experimental groups: Wildtype control (black), Fish 
receiving young gut microbiota (green), control fish receiving only antibiotic treatment (blue), 
control fish receiving old gut microbiota (red). (C) Beta diversity PCoA on intestinal samples 
from young (green) and old fish (red), including tank water controls (blue). Figures adapted 
from Smith, Willemsen, Popkes et al., 2017.  

 

Next to the established aging phenotypes, our lab has recently characterized and 

established the turquoise killifish as a suitable model system for intestinal microbiota 

research. Turquoise killifish have a complex gut microbiota, comparable in diversity 

with those of other vertebrate model systems (Smith, Willemsen, Popkes et al., 2017). 

Moreover, killifish show common gut-related aging phenotypes, such as decline in 

alpha diversity (Fig. 7A) and an increased variability between individuals in old age, 

as previously reported for other animals (1.2.4). Our lab furthermore found that specific 

bacterial taxa can be associated with young and old killifish, with a shift towards more 

pathogenic bacterial taxa in old age. Next to characterizing the killifish aging gut 

microbiota features, we discovered that exposing middle-aged fish with microbial 

communities from young donor fish led to a lifespan extension of more than 30%  

(Fig. 7B), indicating that gut microbiota is causally involved in the killifish aging proves.  

 

Although we identified important gut microbial changes upon aging, several aspects 

still remain unclear. In the PCoA of intestinal samples from young and old fish, clear 

clustering of the two groups was visible – however, some samples from young fish 

clustered preferentially with the old group (Fig. 7C). This could imply that those young 

fish, displaying “old-like” microbiota, could be naturally shorter-lived fish. However, we 

so far concentrated on whole intestinal samples, which requires sacrificing the fish. 

We thus did not have any chance of correlating microbiota composition with the 
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lifespan of individual fish, which might enable us in the future to predict host health or 

future lifespan. In addition, as we only characterized gut microbiota from young, 

middle-aged and old fish until now, it still remains elusive at what exact time point the 

particular age-related remodeling occurs.  
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1.4 Aims of this thesis 

 

Aging is a major restructuring process in the body, negatively impacting both the aged 

individual and the society as a whole. While several age-related molecular and cellular 

pathways have been uncovered in the past years, reflecting the host side, recent 

findings revealed several connections between intestinal microbiota and aging, 

including age-related diseases. Interestingly, the intestine and its associated 

microbiota is highly specialized into compartments and moreover shows several sex-

specific phenotypes - with some aspects also influencing the aging process.  

While research on the aging intestine so far concentrated on global intestinal aging 

using single-omics approaches, combining several omics approaches including the 

host and microbial side could deepen the understanding of intestinal aging.  

 

The turquoise killifish is a promising model to study gut microbiota in the context of 

aging, combining essential vertebrate features like a complex microbiota with a very 

short lifespan. Our previous work (Smith, Willemsen, Popkes et al., 2017) has already 

characterized the killifish aging microbiota to some extent and found first hints on a 

causal connection between gut microbiota and lifespan. However, a detailed 

understanding of the spatiotemporal aging dynamics of the killifish intestine and its 

associated microbiota is still lacking.  

In addition, analyzing to what extent non-invasive stool samples resemble intestinal 

microbiota and their potential to serve as an intestinal proxy would enable repeated 

sampling of gut microbiota - thus allowing to answer the exciting question whether 

stool microbiota samples can be used to predict individual fish age or remaining fish 

lifespan. 

Moreover, although turquoise killifish shows sexual dimorphism (Vrtílek et al., 2018), 

the majority of the studies conducted up to date investigated phenotypes exclusively 

in male turquoise fish. Given the important intestinal sex-differences reported on 

morphological and molecular level in other animals (1.2.3), also impacting aging 

processes, it is of utmost interest to characterize potential sex-specific differences in 

the killifish intestine. 
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Therefore, the three aims of my thesis are: 

Aim 1: Analyzing the temporal dynamics of the killifish intestinal aging over lifespan 

in a longitudinal manner. I furthermore aim to elucidate whether the gut microbiota at 

a given stage is predictive for lifespan.  

Aim 2: Characterizing the microbiota features of stool and intestinal killifish samples 

in the context of aging to evaluate whether stool samples can be used as a proxy for 

intestinal samples when the experimental setup requires a non-invasive sampling 

approach.  

Aim 3: Detailed characterization of the killifish intestine on a morphological, molecular 

and microbial level. In this regard, I aim to identify potential intestinal sections, 

intestinal sex differences and to investigate the killifish intestinal aging process in a 

spatiotemporal manner.  
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Chapter 2 
 

Results 
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2.1 Longitudinal characterization of individual killifish stool samples  
 

Previous results on microbiota composition of the aging killifish intestine show 

differences in microbiota composition and diversity values between young and old 

individuals (Smith, Willemsen, Popkes et al., 2017). However, the temporal dynamics 

of age-related changes in microbiota composition are largely unknown. As time-

dependent microbial changes may causally influence killifish aging, information about 

the temporal dynamics could be very useful for understanding killifish aging on a 

broader level. An important question is whether specific changes in microbiota 

composition could be predictive of remaining life or could be used as proxies for 

imminent death, possibly helping to identify the most suitable timepoints for 

microbiota-related anti-aging interventions. 

 

To characterize individual dynamics of intestinal microbiota composition during aging 

and to build a predictive model of lifespan based on microbiota composition, I designed 

and performed a longitudinal collection of stool samples of individually housed male 

turquoise killifish throughout their adult life (Fig. 8A). After weekly collection of stool 

and food control samples, I simultaneously extracted the DNA of all samples after 

every fish died a natural death. I then established a library preparation protocol for 16S 

rRNA sequencing of the variable V4-region to obtain information about the weekly 

microbiota composition of each individual fish over its whole lifespan (Fig. 8A). To 

validate any age-related dynamics and enable the generation of predictive models, I 

sampled stool of two independent cohorts hatched two weeks apart – the first cohort 

comprising 42 male fish (= group 1), the second cohort 9 male fish (= group 2)  

(Fig. 8B).  

 

The median lifespan of the first, experimental cohort was 18.5 weeks and comparable 

to that of the female control siblings from the same hatch date (19 weeks median 

lifespan, Fig. 8C). The obtained lifespan data is in line with previously generated data 

from our fish facility. The median lifespan of the second cohort was noticeably shorter 

than expected, with a median lifespan of 11 weeks (Fig. 8D). Possible underlying 

reasons for this difference in lifespan will be discussed later.  



 27 

Figure 8: Experimental setup of the longitudinal fecal collection study. (A) Workflow of 
the longitudinal fecal collection study. Stool and food control samples were collected weekly 
from week 4 until natural fish death. DNA was isolated from the samples, followed by library 
preparation and V4 16S rRNA sequencing. (B) Overview of the hatching time points and fish 
numbers of the two cohorts included in the study. (C) Survival analysis of group 1 (blue) and 
the female siblings (pink). (D) Survival analysis of group 1 (blue) and group 2 (orange). 
Statistical significance was calculated by a Log-Rank test. 
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2.1.1 Killifish stool microbiota strongly correlates with food microbiota 
Sequencing of the samples resulted in 115 million paired-end reads, with a median of 

200.000 reads per sample after quality filtering.  

 
To investigate the similarity between all the samples of the experimental group, I first 

performed principal coordinate analysis (PCoA) on Bray-Curtis diversity levels of the 

fish stool samples. The samples did not cluster by fish ID (Fig. 9A), but by week of 

sampling – following a trajectory alongside the first principal coordinate (PC1, Fig. 9B) 

(p-value < 0.001, PERMANOVA analysis). I observed a similar temporal trajectory in 

the sequences from group 2 (Fig. 9C) (p-value < 0.001, PERMANOVA analysis), 

implying that either aging drives the microbiota changes, or a time-dependent extrinsic 

environmental factor is contributing substantially to the microbiota profile of the stool 

samples. Food is acknowledged as a major contributing factor to the gut microbiota 

composition (Claesson, Jeffery, Conde, Power, O’Connor, et al., 2012; Ringø et al., 

2016b). Hence, I analyzed the time-dependent changes in the microbiota of brine 

shrimp and bloodworm (i.e. the two constituents of killifish diet) compared to stool, via 

PCoA. The brine shrimp samples clustered more distantly from the fish samples  

(Fig. 9D), suggesting minor effects of this food type on microbiota composition. The 

bloodworm samples, in contrast, showed an overlapping trajectory with the stool 

samples, clustering together with the respective weekly fish samples (Fig. 9E). Based 

on this finding, I hypothesized that the microbiota composition of the stool samples is 

in large part dictated by the bloodworm microbiota. To test this hypothesis, I further 

dissected the microbiota composition of fish and food samples over the whole 

longitudinal experiment.  
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Figure 9: Bray-Curtis dissimilarity PCoAs. (A) PCoA of Bray-Curtis dissimilarity of the 
samples from group 1. Samples are colored by their individual fish ID. (B) PCoA of Bray-Curtis 
dissimilarity of the samples from group 1. Samples are colored by the week of collection. (C) 
PCoA of Bray-Curtis dissimilarity of the samples from group 2. Samples are colored by the 
week of collection. (D) PCoA of Bray-Curtis dissimilarity of the samples from group 1 
(transparent) and the brine shrimp food samples (non-transparent). Samples are colored by 
the week of collection. (E) PCoA of Bray-Curtis dissimilarity of the samples from group 1 
(transparent) and the bloodworm food samples (non-transparent). Samples are colored by the 
week of collection. 
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2.1.2 Taxonomic composition of stool and food samples over killifish 

lifespan 
To gain insight into the contribution of the bloodworm microbiota across the killifish 

lifespan, I analyzed the taxonomic composition of the fish and food samples.  

 

The fish samples comprised 3142 amplicon sequence variants (ASVs), with 70 ASVs 

of an abundance of >1%. On a higher taxonomic level, I identified 30 phyla, of which 

6 phyla showed an abundance of >1%. The fish stool samples were dominated by 

Proteobacteria (82.8%), with Firmicutes (9.1%) and Fusobacteria (6.1%) as the next 

most abundant phyla. At the genus level, I identified 586 genera, with only 34 genera 

of an abundance >1%. The most abundant genera were Vibrio (42.8%), Aeromonas 

(14.9%), Shewanella (11.2%), Plesiomonas (4.9%) and Cetobacterium (3.6%).  

 

The food samples comprised 1951 ASVs with 92 ASVs showing an abundance of 

>1%. I identified 28 phyla, of which 6 had an abundance of >1%. Similar to the fish 

samples, food samples also consisted of a major fraction of Proteobacteria (64.3%), 

followed by Bacteroidetes (14%), Firmicutes (8.2%), Fusobacteria (6.6%) and 

Epsilonbacteria (5.9%). The food samples contained 490 genera with 54 genera >1% 

abundance – the most enriched genera were Vibrio (24.3%), Catenococcus (9%), 

Pseudoalteromonas (8.8%), Tenacibaculum (8.6%) and Arcobacter (6%). 

 

To describe the dynamics of microbiota composition over time, I plotted the taxonomic 

composition per week as mean relative abundances of the top contributing phyla  

(Fig. 10A). At the phylum level, fish samples showed a consistent taxonomic 

composition with Proteobacteria as predominant phylum, confirming previous results 

from killifish gut microbiota (Smith, Willemsen, Popkes et al., 2017). Firmicutes 

showed a relatively stable abundance over time with a short but strong increase in 

abundance at week 28. While the taxonomic composition was highly similar in the first 

weeks of life, a shift became apparent after week 10, when Fusobacteria increased in 

relative abundance and Proteobacteria decreased their relative abundance. This 

pattern slowly reversed later in life after week 20.  
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Figure 10: Taxonomic composition analyses. Relative abundance of the most prevalent 
phyla across the longitudinal experiment for (A) group 1, (C) bloodworm and (E) brine shrimp 
food samples. The chosen colors represent the different phyla. Relative abundance of the 
most prevalent genera over the collection time for (B) group 1, (D) bloodworm and (F) brine 
shrimp food samples. The chosen colors represent the different genera, the color shades 
represent the respective phylum. 

 

To note, bloodworm samples remained largely dominated by Proteobacteria, but also 

showed significant levels of Bacteroidetes, Fusobacteria, Actinobacteria and 
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Firmicutes. Brine shrimp samples were mostly dominated by Proteobacteria and 

Bacteroidetes, with a minor contribution of Firmicutes. Contrary to the fish samples, 

the microbial composition of the food samples was fluctuating rather strongly between 

the weeks (Fig. 10A).  

 

To identify specific bacteria contributing to the shifts in composition at a deeper 

taxonomic level, I next plotted the most abundant genera over time (Fig. 10B). While 

in the fish samples some genera, including Shewanella, remained rather stable over 

time, some genera were only detected at specific timepoints. The most striking 

example was Cetobacterium, whose abundance increased drastically after week 11, 

accompanied with an increase in Proteocatella and Clostridium_sensu_stricto_1. In 

contrast, I observed an inverse pattern for the abundance of Vibrio, which showed low 

levels in the weeks of high Cetobacterium abundance.  

 

The most abundant genera present in young fish before week 12 were Vagococcus, 

Psychrobacter, Psychrilyobacter and Catenococcus, while Catenococcus showed a 

strong reappearance later in life around weeks 25-27. Plesiomonas were also more 

abundant in the first weeks, with a drop in abundance at around week 20. Such clear 

patterns were not detectable for the food samples. In line with the fluctuation of the 

different phyla, the abundance of single genera was highly variable over time.  
 

The taxonomic analysis of the sample types showed clear differences, but also some 

similarities between the fish stool and the food samples. All sample types were 

dominated by Proteobacteria, while Epsilonbacteria and Bacteroidetes were enriched 

in food samples. The fish stool samples shared particular microbiota especially with 

the bloodworm food, mainly including Firmicutes and Fusobacteria, supporting the 

hypothesis that the bloodworm food has a stronger impact on fish stool microbiota 

composition compared to the brine shrimp food. The taxonomic composition of the 

most abundant genera remained largely stable for the fish samples, whereas food 

samples were characterized by high fluctuation.  
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Another important factor of microbiota community composition are measurements of 

diversity, as high diversity levels can hint on more resilient microbial communities with 

a wide array of functional responses (Lozupone et al., 2012). Since our previous 

results showed age-related changes in diversity, I next focused on the diversity 

measures along the time course of the longitudinal experiment. 

 

 

2.1.3 Diversity measures over killifish lifespan 
Diversity measurements provide important insights into the variety and structure of 

bacterial communities. Beta diversity is calculated to assess the diversity between 

single communities – this can be either within a specific group (e.g., from individuals 

of the same age), or also between specific groups (e.g., comparing individuals from 

group A to group B).  

 

Previous work from our lab (Smith, Willemsen, Popkes et al., 2017) showed an 

increase in the intestinal beta diversity levels between week 6 (young) and week 16 

(old) of killifish age, indicating that the fish intestinal microbiota composition becomes 

more dissimilar between individual fish at older age. As assessing the microbiota 

composition of fish intestines requires invasive sampling, sampling killifish stool 

provides an experimental non-invasive method to trace killifish microbiota. Importantly, 

this straightforward method shares similarities with sampling methods used in 

humans. I thus asked whether stool microbiota displayed beta diversity changes 

compatible to those previously observed in microbiota sampling from the gut. In this 

regard, I assessed the beta diversity levels within and between different weeks from 

the experimental cohort of the longitudinal collection study.  

Contrary to our previous observations, I could not identify differences in the within-

group beta diversity levels between week 6 and week 16 (Fig. 11A). Within-group 

diversity levels were slightly higher at weeks 4 and 5, followed by lower but rather 

stable diversity levels from week 6 to week 20. Finally, diversity levels tended to 

increase for the later weeks. As only one food control sample was collected per week, 

within-group beta diversity levels could not be determined for bloodworm and brine 

shrimp controls.  
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Figure 11: Alpha and beta diversity measures. (A) Bray-Curtis dissimilarity values 
comparing samples within the same collection weeks for group 1 across the longitudinal 
experiment. (B) Bray-Curtis dissimilarity values comparing samples of the different weeks to 
the first collection week 4 across the longitudinal experiment. Group 1 is shown in black, 
bloodworm food in blue, brine shrimp food in red. (C) Bray-Curtis dissimilarity values 
comparing samples of the different weeks to the preceding week across the longitudinal 
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experiment. Group 1 is shown in black, bloodworm food in blue, brine shrimp food in red. (D) 
Alpha diversity in observed ESVs across the longitudinal experiment. Group 1 is shown in 
black, bloodworm food in blue, brine shrimp food in red. (E) Shannon index alpha diversity 
across the longitudinal experiment. Group 1 is shown in black, bloodworm food in blue, brine 
shrimp food in red. (F) Shannon index alpha diversity across the longitudinal experiment for 
group 2.  

 

I next assessed the between-group beta diversity levels. I first compared the samples 

of every week to the microbiota composition of the beginning of the longitudinal 

collection (week 4, Fig. 11B), which explores the drift in microbiota composition along 

the experiment. To uncover strong changes in microbiota compositions between 

weeks, I then also compared the samples of every week to the microbiota composition 

of the samples from the preceding week (e.g., week 6 to week 5, Fig. 11C).  

 

The Bray-Curtis dissimilarity values generally increased over the time course, 

indicating that the microbiota composition over the weeks was steadily diverging from 

the starting microbiota composition (Fig. 11B). The same trend was apparent in both 

food types. When comparing the microbiota composition of each week to the 

preceding week, the dissimilarity values were fluctuating over time, with higher 

dissimilarity values at the first 4 weeks (week 4-8), at week 12, 14, 15 and then from 

week 21 onwards (Fig. 11C). This suggests that the microbiota composition changed 

more strongly between the single weeks in those periods, while the composition was 

rather stable at weeks 9-11 and 16-20.  

 

In our previous work we observed a decrease in alpha diversity of intestinal samples 

upon aging (Smith, Willemsen, Popkes et al., 2017). To examine whether this 

phenomenon not only applies to intestinal but also to stool samples, I next assessed 

alpha diversity levels using two different approaches. The “Observed ESV” measure 

estimates the richness of the samples by counting the exact sequence variants (ESVs) 

present (i.e. the number of different species in the community), whereas Shannon 

diversity computes both richness and evenness (i.e. how evenly distributed are the 

species in the community). Both measures confirmed the previously reported 

reduction in alpha diversity between young fish (6 weeks) and old fish (16 weeks)  

(Fig. 11D+E) (p-value <0.001, Wilcox-test). However, diversity did not steadily decline, 
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but showed a strong drop from week 11 to week 12, especially for Shannon diversity. 

To further examine the potential of this age-related trend as a general aging 

phenotype, I analyzed the diversity levels also in the smaller cohort 2. Surprisingly, 

the second cohort showed a similar decrease in alpha diversity – however from week 

9 to week 10 (Fig. 11F). As the cohorts were hatched with a time difference of two 

weeks, the change in alpha diversity appeared at the same chronological timepoint 

(i.e. calendar time) for both cohorts. This indicates that the observed drop in diversity 

was not influenced by intrinsic fish aging, but possibly by external factors. Since the 

PCoA representation suggests a strong influence of food microbiota on stool 

microbiota composition, one possible explanation could be a shift in microbiota 

composition of the food samples around that chronological time.  

However, the alpha diversity of the food samples did not show comparable changes 

for either the bloodworm or brine shrimp food (blue and red lines in Fig. 11D+E). The 

observed shift in diversity in the fish samples therefore cannot be explained by any 

detectable variable present in the food at this stage. I moreover checked whether 

several fish room parameters, including water temperature, pH and conductivity, could 

have explained the compositional fluctuations observed in the fish stool microbiota. 

However, the parameter values did not show any apparent changes around the 

chronological time point where the shift in diversity was observed (data not shown). 

 

Taken together, I found that the microbiota composition of stool samples is strongly 

associated with the bloodworm food microbiota. However, some patterns such as the 

strong drop in alpha diversity after week 11 could not be directly associated with 

bloodworm 16S microbial composition. This finding begs the question of whether we 

can use the stool samples to extract information about food-independent microbiota – 

which may reflect fish-intrinsic intestinal aging patterns. I therefore took a closer look 

at the most abundant genera and searched for food-independent abundance patterns 

over time.  
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2.1.4 Identifying food-independent bacterial taxa 
To identify potential fish gut-intrinsic aging patterns, I more deeply investigated the 

abundance profiles of the most frequent genera. For most of the genera, the mean 

relative abundance in the fish stool samples (purple line) showed a similar pattern to 

the bloodworm samples (blue line) – the abundance levels in the stool samples were 

thus strongly correlated with the food microbiota levels (e.g., Proteocatella and 

Enterococcus, Fig. 12A+B).  

However, the abundance of particular genera showed divergent patterns between fish 

stool and the food control samples. Marinomonas for example strongly increased in 

the bloodworm samples between week 7-13, which was not reflected in the fish stool 

samples (Fig. 12C) – therefore marking a bloodworm-specific behavior. Several 

microbial genera also displayed stool-specific patterns with relative abundances 

higher than expected, such as Vibrio and Plesiomonas in general or Aeromonas during 

the first weeks (Fig. 12D-F). Interestingly, the mentioned genera demonstrated a 

similar pattern in the smaller cohort 2, further supporting this observation (data not 

shown). These genera are potential candidates for fish-specific bacteria, where the 

stool samples might reflect the underlying intestinal microbiota changes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 38 

Figure 12: Relative abundances of food-dependent and food-independent genera. 
Relative abundance across the longitudinal experiment of (A) Proteocatella, (B) Enterococcus, 
(C) Marinomonas, (D) Vibrio, (E) Plesiomonas and (F) Aeromonas. Samples from group 1 are 
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shown in black, the mean relative abundance is represented in purple. Food control samples 
are shown in blue (bloodworm) and red (brine shrimp).  

 

2.1.5 The overlap of food and stool microbiota over lifetime 
I next sought to analyze the food-independent genera in more detail. Particularly, the 

analysis of the ratio between food-dependent and food-independent bacteria could 

deepen our understanding of the underlying fish-intrinsic intestinal aging patterns. 

Concrete changes in food-specific bacteria might provide insights into host-controlled 

selection for specific bacteria over time. I therefore calculated the overlapping ASVs 

between young fish and the corresponding bloodworm samples (weeks 4-11) or 

between old fish and the corresponding bloodworm samples (weeks 12-29) (Fig. 13). 

The number of shared ASVs significantly increased with age (p-value 0.011, Fisher’s 

exact test), suggesting that old fish might lose the capability of selecting specific 

bacteria from the orally ingested microbiota in their intestine.  

 

 
Figure 13: Venn diagrams illustrating the overlap of group 1 fish and bloodworm food 
ASVs. (A) Shared ASVs between young fish (week 4-11) and the corresponding bloodworm 
food samples (week 4-11). (B) Shared ASVs between old fish (week 12-29) and the 
corresponding bloodworm food samples (week 12-29). The number of shared ASVs increases 
with age (p-value = 0.011, Fisher’s exact test). 

 
 

2.1.6 Remaining lifespan can be predicted based on microbiota 

composition 
The analyses of the longitudinal stool collection dataset revealed that the strong global 

changes, such as diversity and overall taxonomic composition, are mainly driven by 
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bloodworm food and by yet unknown environmental factors. While a descriptive 

approach that compares microbial communities between fish and food across time 

points did not lead to a straightforward identification of an age-specific component of 

the killifish stool microbiota, I decided to employ a machine learning strategy that takes 

into account stool-bloodworm interactions over the experimental setup. This approach, 

performed in collaboration with Sam Kean, a student in our lab, was aimed to build 

prediction models to identify microbial features associated with remaining killifish 

lifespan.  

To build the prediction models, the samples were split into a large training dataset for 

training the model, and a test dataset, which is unseen by the model and is thus used 

for validation. For the training dataset, a subset of 80% fish from group 1 was randomly 

chosen. The corresponding longitudinal microbiota composition data was used for 

training of a Random Forest (RF) regressor model to predict the fish age in weeks. 

The remaining 20% of group 1 were then used as the test dataset to validate the 

prediction model. The prediction model was highly accurate with an r-value of 0.95, a 

p-value of <0.001 and a slope of 0.9 (Fig. 14A). However, as I previously observed a 

strong association between the microbiota composition of stool and bloodworm food 

samples, we sought to examine whether the age prediction is driven by the underlying 

longitudinal bloodworm food microbiota composition. Indeed, testing the stool-trained 

model on the bloodworm food controls also revealed a very accurate prediction, with 

an r-value of 0.86, a p-value of <0.001 and a slope of 0.54 (Fig. 14B), indicating that 

a large part of the prediction power arose from the food microbiota composition of the 

given week. At the same time, the slope was lower for the bloodworm samples and 

the prediction thus less accurate compared to the group 1 samples, suggesting that a 

fraction of the prediction power also came from either intrinsic fish compositional 

changes or non-bloodworm extrinsic influences.  

 

We therefore next searched for a possibility to build a prediction model with less 

influence of the food controls. Using remaining life at a sampled timepoint (individual 

lifespan minus the days lived at collection time) instead of using weeks adds variability 

to the training dataset, as the remaining life values differ per individual at a given week. 

We thus again built the prediction models on 80% randomly chosen fish of group 1  
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Figure 14: Prediction models based on microbiota composition. Random Forest 
regressor model trained on a random 80% subset of individual fish, to predict the age in weeks 
for (A) group 1 individuals and (B) the bloodworm food samples. (C-D) Random Forest 
regressor model trained on a random 80% subset of individual fish, to predict remaining life 
for (C) group 1 individuals and (D) the bloodworm food samples. (E-F) Random Forest 
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regressor models trained on a random 80% subset of all sample datapoints, to predict 
remaining life of group 1 individuals (E) not including the individual fish ID and (F) including 
the individual fish ID.  

 

and trained a Random Forest regressor model to predict the remaining fish life in days. 

Validation of this model resulted in a prediction with an r-value of 0.69, a p-value of 

<0.001 and a slope of 0.26 (Fig. 14C). The new model retained some predictive 

accuracy, but the accuracy was considerably lower when compared to the model 

predicting week. When we tested the trained model on the bloodworm control 

samples, the prediction accuracy was still comparable to group 1 accuracy, although 

with slightly lower values (r-value of 0.63, p-value of 0.003, slope of 0.22) (Fig. 14D). 

This difference in accuracy again indicates that a part of the predictive power arose 

from the underlying bloodworm microbiota - however, also a part was explained by a 

fish-intrinsic or extrinsic non-bloodworm-related variable.  

 

To determine the proportion of predictive power explained by the fish-intrinsic 

microbiome, we trained a model with encoded host information by including the fish 

ID into the model. For this, the selection process of the training and test datasets was 

amended, as the model needed samples with each fish ID in both the training and the 

test dataset. We thus chose a random 80% of all the sample data instead of using 

80% of individual fish. Considering a random 80% subset of all samples alone, without 

adding the ID information, already improved the prediction model greatly, with an  

r-value of 0.93, a p-value of <0.001 and a slope of 0.62 (Fig. 14E). Notably though, 

additionally including the fish IDs into the prediction model increased the accuracy 

even further, and the slope increased from 0.62 to 0.71 (Fig. 14F). 

 

Taken together, the results from the prediction models suggest that we can predict 

week and remaining life based on longitudinal stool microbiota data. Although a large 

portion of the predictive power arose from the underlying bloodworm microbiota 

composition, including the individual fish IDs into the prediction model improved the 

prediction accuracy. The difference in prediction accuracy strongly suggests that host 

features also contribute to the prediction model.  
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2.2 Characterization of the microbiota profile of gut, stool and food 

samples 

 

The longitudinal collection of stool samples provided clear insights into the strong 

connection between stool microbiota composition, environmental factors and in 

particular the bloodworm food. It is therefore of great interest to study how stool and 

food microbiota correlate with one another throughout fish aging. In addition, it is of 

critical importance to analyze to what extent stool microbiota samples resemble the 

intestinal microbiota composition and whether they are a suitable proxy for intestinal 

samples. I therefore sampled stool and intestinal samples of young (8-week-old) and 

old male (20-week-old) killifish and old female (20-week-old) killifish, together with 

food control samples and performed V3/V4 16S rRNA sequencing on the extracted 

DNA (Fig. 15).  

 

Figure 15: Experimental setup for the comparative stool-gut-food microbiota study. 
Young and old male fish, and old female fish were included in the study. Food samples were 
collected on day 0, 1, 2 (young fish = 8 weeks, old fish = 20 weeks). Stool samples were 
collected on day 1, followed by collection of the intestines on day 2.  
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2.2.1 Stool, food and gut samples show clear differences in microbiota 

profiles 
The sequencing of the samples resulted in 850.000 paired-end reads, with a median 

of 23.500 reads per sample after quality filtering.  

 

To investigate the similarity between the different sample types, I conducted PCoA 

based on Bray-Curtis beta diversity levels (Fig. 16). The samples from the different 

tissues clearly clustered together, with a strong separation of the gut and the stool 

samples. The three food samples clustered together with the stool samples, 

confirming the observed strong relationship between stool and food from the 

previously described longitudinal experiment. Moreover, the clustering pattern 

suggests a higher similarity between the microbiota composition of stool and food 

samples compared to stool and intestinal samples.  

Figure 16: Bray-Curtis dissimilarity PCoA. PCoA of Bray-Curtis dissimilarity of the collected 
samples from the stool-gut-food microbiota study. Intestinal samples are marked in blue, stool 
samples are marked in purple, food samples are marked in red. Statistical significance was 
calculated by PERMANOVA analysis. 

 

I next checked the detailed microbiota composition to define which bacteria were 

enriched per sample type. Gut samples showed the highest number of ASVs  

(869 ASVs), followed by stool samples (523 ASVs) and food samples (332 ASVs). 
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However, the majority of the observed ASVs were rare in all sample types, with an 

abundance of <0.1%. This is especially interesting for the intestinal samples – despite 

overall having the highest number of ASVs, gut samples showed a lower number of 

ASVs with an abundance higher than 0.1% (81 ASVs) compared to food (97 ASVs) 

and stool samples (103 ASVs).  

Figure 17: Taxonomic composition of the tissue samples. (A) Relative abundance of the 
most prevalent phyla for food, gut and stool samples. The chosen colors represent the different 
phyla. (B) Relative abundance of the most prevalent genera for food, gut and stool samples. 
The chosen colors represent the different genera, the color shades represent the respective 
phylum. (C) Venn diagram illustrating the overlap of gut, stool and food ASVs with a minimal 
abundance of >0.1%. (D) Taxonomic assignment of the 7 ASVs shared between stool and gut 
samples.  
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With regards to the composition, I found clear patterns for each sample type  

(Fig. 17A). Gut samples were mostly driven by Proteobacteria (90.8%), followed by 

Actinobacteria (4.6%), Firmicutes (1.8%) and Planctomycetes (1.6%). Proteobacteria 

were also the most abundant phyla in food samples, although only to an extent of 66%, 

followed by Fusobacteria (22.7%), Epsilonbacteria (7.5%), Bacteroidetes (2.5%) and 

Firmicutes (1.4%). Stool samples also displayed high levels of Proteobacteria (82.6%), 

followed by Firmicutes (9%), Fusobacteria (6%) and Bacteroidetes (1%).  

 

At the genus level, gut samples showed high relative abundance of Aeromonas, Vibrio, 

Shewanella, Plesiomonas and Mycobacterium (Fig. 17B). The most abundant genera 

of the food samples were Vibrio and Psychrilyobacter, followed by Arcobacter, 

Shewanella and Salinivibrio. As expected from the PCoA, stool samples shared some 

characteristics with the food samples, for example the appearance of Psychrilyobacter 

and Fusobacterium. However, also some gut properties were present in the stool 

samples – including a higher fraction of Aeromonas. 
 

I therefore asked which particular bacteria were shared between the different sample 

types, and which were sample-type specific. For this analysis I only considered the 

most frequent taxa, using ASVs with a minimal abundance of 0.1%, and visualized the 

results in a Venn diagram (Fig. 17C). The gut samples showed the highest percentage 

of sample type-specific ASVs, with 53 of 81 ASVs only occurring in the intestinal 

samples. These ASVs mostly belonged to the genera Aeromonas, Shewanella, 

Mycobacterium, Acinetobacter and Plesiomonas. 

 

Stool and food samples had less tissue-specific ASVs, with some Vibrio, Arcobacter 

and Marimonas species only detected in food samples and other Vibrio, 

Flavobacterium, Shewanella and Psychrobacter being specific for stool samples. In 

line with the PCoA results, stool samples seemed to be more similar to food samples 

than to intestinal samples, as 38 ASVs were shared between stool and food samples 

while only seven ASVs were shared between gut and stool samples. ASVs which were 

shared between stool and food belonged to the genera Psychrilyobacter, Vibrio, 

Catenococcus and Fusobacterium, among others.  
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Of particular interest were the seven ASVs shared between the stool and gut samples, 

which were not present in the food controls (Fig. 17D). Such ASVs have a great 

potential to serve as intestinal biomarkers for studies including only stool samples. 

This would be of great importance especially for lifespan studies, where the invasive 

sampling of intestines is not an option. The seven ASVs comprised unknown species 

of Shewanella, Vibrio and Aeromonas, plus Vagococcus fluvialis and Aeromonas 

popoffii.  

 

Taken together, clear taxonomic patterns were visible per sample type. While all 

sample types were dominated by Proteobacteria, food samples were enriched for 

Fusobacteria and Epsilonbacteria. Intestinal samples in contrast showed a particular 

fraction of Actinobacteria, including the gut-specific genus Mycobacterium. The stool 

samples had a higher similarity with the food samples. However, stool samples were 

combining features of both the intestinal and the food samples - with an enrichment in 

food-related Fusobacteria but also a significant fraction of Aeromonas, comparable to 

the intestinal sample composition. In particular, seven ASVs were shared only 

between intestinal and stool samples, suggesting those as potential intestinal 

biomarkers.  

 

 

2.2.2 Diversity measures of food, gut and stool samples 
To test whether diversity differs between the sample types, I next calculated alpha 

diversity levels. Interestingly, food samples showed the highest levels of alpha 

diversity considering observed ASVs and Shannon diversity (Fig. 18A) and gut 

samples showed the lowest levels. However, when taking phylogeny into account, gut 

samples had significant higher levels of diversity (Fig. 18B). These results suggest 

that individual gut samples contain lower numbers of ASVs which are less evenly 

distributed, but that those ASVs are phylogenetically far away from each other. 
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Figure 18: Alpha and beta diversity measures of the different sample types. (A) 
Observed ESV and Shannon index alpha diversity for gut, stool and food samples. (B) 
Phylogenetic alpha diversity for gut, stool and food samples. (C) Bray-Curtis dissimilarity 
values comparing samples within the same sample type for gut, stool and food samples. (D) 
Bray-Curtis dissimilarity values comparing samples between the sample types for gut, stool 
and food. For example, Food/Gut shows the dissimilarity values between all food samples 
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compared to all gut samples. (E) Bray-Curtis dissimilarity values comparing food samples to 
gut or stool samples, for young and old male fish separately. Gut samples are marked in blue, 
stool samples are marked in purple and food samples are marked in red. Statistical 
significance was calculated by a Wilcox-test (Holm-adjusted).  

 

I then assessed beta diversity levels to gain insight into the similarity between the 

sample types. The diversity within a sample type provides insights into the 

heterogeneity of the samples, i.e. how similar the samples are to each other within a 

sample type. As expected from the taxonomic composition, the within diversity levels 

were higher for gut samples compared to stool and food samples, indicating that 

intestinal samples are particularly heterogenous in terms of microbiota composition 

(Fig. 18C). 

The “between diversity” estimates the differences between sample types. In this 

regard, the high values of the food-gut and the stool-gut comparison clearly showed 

that gut samples are distinct and different in composition compared to food and stool 

samples (Fig. 18D) (p-values < 0.001, BH-corrected, Dunn Kruskal-Wallis test). The 

difference in the dissimilarity values was lower between the gut samples and the stool 

samples compared to the gut samples and the food samples, which indicates that stool 

samples are more similar to the fish intestinal microbiota than the food. At the same 

time, food samples were still more similar to the food samples than to the gut samples 

(Fig. 18D).  

 

As the results from the longitudinal experiment suggested an increasing overlap 

between food and stool ASVs throughout aging, I next examined the beta diversity 

levels between food and either stool or gut samples, separately for both the young and 

the old fish samples. In contrast to my previous findings, beta diversity levels remained 

stable with advancing age for both stool and gut samples (Fig. 18E, p-values n.s., BH-

corrected, Dunn Kruskal-Wallis test), indicating an unchanged similarity to food 

samples with old age, possibly implying that fish may not lose the capability of 

selecting specific bacteria from the input microbiota with old age.  
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2.2.3 Differences in microbiota composition between young and old 

samples 
Previous data from our lab (Smith, Willemsen, Popkes et al., 2017) has shown that 

the microbiota composition is subject to drastic changes upon aging. Moreover, the 

results from the longitudinal experiment revealed aging-specific microbiota patterns. I 

therefore next focused on analyzing the microbiota composition in young and old male 

killifish gut and stool samples. 

 

Figure 19: Alpha and beta diversity measures for stool and gut samples during aging. 
PCoA of Bray-Curtis dissimilarity of (A) young and old gut samples and (B) young and old 
stool samples. (C) Observed ESV and Shannon index alpha diversity for young and old gut 
samples and (D) young and old stool samples. Old samples are shown in purple, young 
samples are shown in green. Statistical significance was calculated by PERMANOVA-analysis 
(PCoAs) or a Wilcox-test (Holm-adjusted). 
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I first conducted PCoA based on Bray-Curtis beta diversity to explore the similarity 

between samples from old and young fish on a global level. Neither stool samples nor 

intestinal samples showed a clear clustering (Fig. 19A+B). I then assessed alpha 

diversity levels, as we previously found that diversity in the killifish intestine decreases 

with age. However, neither the gut nor the stool samples showed a significant 

decrease in diversity levels for observed ASVs and Shannon diversity measures at 

these time points (Fig. 19C+D) (p-values n.s., Dunn Kruskal-Wallis test). In addition, 

also beta diversity levels were equal between samples from young and old fish (data 

not shown).  

 

I next checked the taxonomic composition of young and old gut and stool samples 

(Fig. 20A-D). As slight differences were visible between young and old samples, I 

conducted DESeq2 differential abundance testing to determine the significantly 

differential abundant bacteria (Fig. 20E). For the gut samples, two Shewanella and 

one Aeromonas species were enriched in the old samples, while Acinetobacter, two 

species of Rhizobiales, Caldilineacea and Gemmatacea were significantly more 

abundant in young intestinal samples. There was no significant difference in 

composition between young and old stool samples.  

 

 
 
 

 

 
 
 
 

 

 
 

 

 



 52 

Figure 20: Taxonomic composition of stool and gut samples during aging. Relative 
abundance of the most prevalent (A) phyla for young and old gut samples, (B) genera for 
young and old gut samples, (C) phyla for young and old stool samples, (D) genera for young 
and old stool samples. (E) DESeq2 differential abundance analysis for young and old gut 
samples.  
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2.2.4 Microbiota differences between male and female samples 
It is known from several other model organisms that sex has a strong influence on the 

intestinal microbiota composition, thus affecting major physiological processes, 

including host aging. However, until now it remains an open question whether the 

killifish intestine shows any sex-specific characteristics. Gaining deeper knowledge on 

sex-specific microbiota differences in killifish could help to increase our understanding 

on the physiological relevance of the microbiota in this model organism. 
Hence, to gain insight into possible sex-specific microbiota traits, I compared the stool 

and gut samples in old male and female killifish.  

Figure 21: Alpha and beta diversity measures for stool and gut samples between sex. 
PCoA of Bray-Curtis dissimilarity of (A) male and female gut samples and (B) male and female 
stool samples. (C) Observed ESV and Shannon index alpha diversity for male and female gut 
samples and (D) male and female stool samples. Male samples are shown in blue, female 
samples are shown in red. Statistical significance was calculated by PERMANOVA-analysis 
(PCoAs) or a Wilcox-test (Holm-adjusted). 
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To investigate sex-specific changes in killifish, I conducted PCoA based on Bray-

Curtis beta diversity levels. No significant clustering was visible for the intestinal or 

stool samples (Fig. 21A+B). In line with this, also alpha diversity levels were not 

different between male and female samples for both tissues (Fig. 21C+D), neither 

were beta diversity levels (data not shown).  
 

Although the samples did not show significant differences on the global level, the 

analysis of the taxonomic composition suggested specific changes in microbiota 

composition between male and female gut and stool samples (Fig. 22A-D). 

Subsequent DESeq2 differential abundance testing revealed small but significant 

differences in taxonomic composition between males and females (Fig. 22E+F). 

Female intestinal samples were enriched in a particular Chloroflexi and Shewanella 

species, while 2 Vibrio and one Aeromonas species were highly abundant in male 

intestines. With regards to the stool samples, females had higher levels of 

Chitinibacter and Psychrilyobacter, while male samples were again enriched in two 

Aeromonas species.  

 

In summary, the conducted analyses revealed that killifish stool, intestinal and food 

samples show clear sample type-specific properties. Intestinal samples showed a high 

variability between the samples and low diversity levels in terms of species richness 

and evenness - however, the ASVs present were phylogenetically far away from each 

other. In terms of microbiota composition, gut samples showed higher levels of 

Actinobacteria as well as Aeromonas and Mycobacterium. Stool samples resembled 

the food microbiota to a great extent – they shared for example Fusobacteria and 

Epsilonbacteria such as Psychrilyobacter. However, stool samples also shared 

properties with the intestinal samples, such as a large fraction of Aeromonas or also 

specific Shewanella, Aeromonas and Vibrio species. Stool samples thus have the 

potential to serve as a proxy for intestinal microbiota composition, at least to some 

extent. This information is of crucial importance for future experiments when a non-

invasive sampling of the microbiota is necessary, such as in lifespan experiments.  
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Figure 22: Taxonomic composition of stool and gut samples between sex. Relative 
abundance of the most prevalent (A) phyla for male and female gut samples, (B) genera for 
male and female gut samples, (C) phyla for male and female stool samples, (D) genera for 
male and female stool samples. (E) DESeq2 differential abundance analysis for male and 
female gut samples and (F) for male and female stool samples. 
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Although I did not observe sex- and age-differences on a global level, I was able to 

detect slight changes in microbiota composition between young and old, or male and 

female samples. It would thus be interesting to evaluate sex- or age-differences with 

an increased number of samples and to also consider aging phenotypes on the host 

side.  
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2.3 Deep multi-omics characterization of killifish intestinal sections  

 

My previous results from part 1 and 2 and previous studies from our group (Smith, 

Willemsen, Popkes et al., 2017) clearly showed that the microbiota of the killifish 

intestine is subject to strong changes upon aging. However, a deep understanding of 

the host side during aging is still lacking. Performing aging experiments on host 

intestinal tissue and intestinal microbiota could shed light on the question how the 

intestine ages on both a molecular and microbial level – and could provide first insights 

into host-microbiota interactions in intestinal killifish aging.  

 

In addition, microbiota-associated anatomical and molecular differences on host side 

are a well-known phenomenon in organisms of different sex. In line with this, I found 

slight differences in microbiota composition with regards to different killifish sex (part 

2.4). However, it remains unclear whether those sex differences can be found not only 

on microbiota level, but also on the broader host tissue level. Deepening our 

knowledge of whether and how the killifish intestinal structure and function is sex-

specific – during young and old age – provides pivotal information for designing future 

experiments and to further strengthen the killifish as an aging model system.  

 
Finally, studies on the killifish intestine so far have been limited to the whole intestine. 

However, the intestinal tract of most animals is structured into different compartments 

with unique biological functions. It is therefore of great importance to first investigate 

whether the expected compartmentalization of the killifish gut is reflected on the 

molecular and on the microbial level, and second to characterize the intestinal 

changes in a sex- and age-dependent manner on a molecular and anatomical level.  

 

To address these three open questions, I designed and performed two experiments – 

on the one hand a proteomics study to identify the killifish sections on a molecular 

level, and on the other hand a multi-omics experiment comprising proteomic analysis, 

metabolomic analysis, 16S-sequencing and histological analysis to characterize the 

age- and sex-differences of the killifish intestinal sections on a deep molecular and 

micro-anatomical level.  
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2.3.1 Proteomic analyses to identify intestinal sections in killifish  
To determine whether the killifish gut shows differences on the molecular level from 

anterior to posterior regions, I opted for an unbiased approach and sampled a young 

killifish intestine for performing proteomic analysis on ten intestinal slices (Fig. 23A). 

The cutting sites for the slices were chosen based on observable anatomical 

differences under the binocular stereoscope. The TMT-labelled proteomics analysis 

was performed by the proteomics facility of the MPI-AGE and resulted in a total 

amount of 5559 annotated proteins.  

 

I first conducted Principal Component analysis (PCA) on the proteomics data of the 

ten intestinal slices to analyze the similarity in protein expression. The PCA revealed 

a clear separation between the posterior slices 9/10 and the anterior slices 1-8  

(Fig. 23B). The anterior slices lined up in the expected order along principal 

component 2, from slice 3 to slice 8. Hierarchical clustering of the ten slices revealed 

four distinct clusters, suggesting that the killifish intestine is structured into four 

sections: Section 1 comprised intestinal slice 1 (yellow), section 2 consisted of 

intestinal slices 2, 3, 4 and 5 (red), section 3 of intestinal slices 6, 7 and 8 (green) and 

section 4 with intestinal slices 9 and 10 (brown) (Fig. 23C+D). As indicated in the 

cluster dendrogram, section 1 and 2 were most similar in their protein expression 

patterns, followed by section 3. The posterior section 4 is the most distinct section with 

regards to expressed proteins.  



 59 

Figure 23: Proteomic analysis of 10 intestinal slices. (A) Overview about the 10 killifish gut 
slices. The black lines indicate strong anatomical structural differences. (B) PCA of the 
proteomics run of the 10 gut slices. Samples are colored for the resulting sections. (C) 
Dendrogram based on similarity of protein expression patterns. The four resulting clusters are 
marked with colored circles. (D) Schematic of the killifish intestine with the resulting four 
intestinal sections (S1-S4).  

 

 

2.3.2 Setup and experimental approach of the multi-omics intestinal 

experiment 
To characterize the resulting four intestinal sections on a deeper molecular level, to 

identify sex differences in intestinal killifish aging and to furthermore identify 
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correlations between microbiota and host intestinal aging, I collected intestinal 

sections of young (8-week-old) and old (16-week-old), male and female turquoise 

killifish along with respective stool and food control samples (Fig. 24). I then extracted 

DNA, protein and both polar and non-polar metabolites of the same, individual section 

samples to generate a multi-omics dataset. Distinct subgroups of metabolites were 

measured on different columns. The pHILIC column binds hydrophilic (polar) 

metabolites, while the C18 column retains lipophilic (non-polar) metabolites. Ion 

chromatography (IC) allows for measurement of specific ions like metabolites from 

glycolysis, the TCA cycle or the pentose phosphate pathway. Derivatization of 

metabolites with benzoyl chloride (BZ) allows detection of amines, like amino acids. 

The polar metabolites were processed and run in both targeted (BZ and IC datasets) 

and untargeted mode (pHILIC, BZ and IC datasets) while the non-polar metabolites 

were run in an untargeted mode (C18 dataset). The untargeted runs were further 

analyzed in both a positive and negative mode, allowing to analyze positively and 

negatively charged metabolites separately.  

Targeted datasets include a previously defined library of labeled metabolites and thus 

allow for confident annotation of those metabolites. The untargeted metabolomics 

analysis allows for the quantification of a large number of metabolites. However, the 

major fraction of the metabolites remains unidentified. The section, food and stool DNA 

was used for V3/V4 16S rRNA amplicon sequencing to obtain information about the 

microbiota composition of the intestinal and the control samples. Due to limitations in 

the number of possibly measured samples, a subset of samples was split in two 

separately measured groups for the proteomics analysis.  

 

To evaluate possible differences on the micro-anatomical level, I moreover cut a tissue 

piece adjacent to each section and stored it in PFA for histological experiments.  
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Figure 24: Experimental setup of the multi-omics experiment. Intestinal sections were 
collected for young and old, male and female killifish. The sections were subject to a multi-
omics extraction protocol designed to analyze microbiota, protein and metabolite levels. 
Metabolite levels were assessed in a targeted and untargeted manner. A part of the intestinal 
sections was stored for histology experiments. Food and corresponding stool samples were 
collected as controls.  

 
 
2.3.3 Intestinal sections of the killifish 

2.3.3.1 Molecular characteristics 

To gain a clear picture about the molecular profiles of the different sections, I first 

simultaneously extracted proteins and metabolites from the intestinal sections and 

performed metabolomics and proteomics measurements.  

The 2 proteomic runs resulted in 4496 and 6723 annotated proteins.  

The targeted and untargeted metabolomic runs resulted in the number of metabolites 

presented in Table 1.  
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Table 1: Metabolites detected in the metabolomic analysis 

Metabolomics method Total metabolites detected Identified metabolites 

C18, positive mode 5350 metabolites 157 metabolites 

C18, negative mode 2054 metabolites 28 metabolites 

BZ 420 metabolites 44 metabolites 

IC 538 metabolites 27 metabolites 

pHILIC, positive mode 1003 metabolites - 

pHILIC, negative mode 1321 metabolites - 

 

The PCA on all the untargeted metabolomic datasets revealed a clear clustering of 

the four different sections, with a strong separation between the anterior sections 1, 2, 

3 and the posterior section 4 (Fig. 25A–E). I next investigated the subsets of 

annotated, known metabolites as this could give insight into which metabolites are 

driving the detected section-specific pattern. PCA on the annotated metabolites from 

the C18 datasets resulted in two contrasting results: While the annotated lipids from 

the positive-mode C18 dataset (Fig. 25F) showed a highly similar pattern to the 

respective untargeted C18 dataset (Fig. 25A), the negative annotated lipids (Fig. 25G) 

were not clustering in a section-specific manner. This suggests that the known 

positively charged lipids (including DAGs, TAGs, PCs, PEs and SMs) contribute 

strongly to the section differences, while the known negatively charged lipids (FFAs 

and PGs) play a minor role. 
  

On the side of the polar metabolites, PCA on the targeted BZ dataset (which includes 

mainly amino acids) showed a similar but weaker clustering pattern as the untargeted 

BZ dataset (Fig. 25H). This indicates that amino acids levels are indeed different 

between the sections; however, unknown polar metabolites play a main role in driving 

the differences between the sections.  
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Figure 25: PCA of metabolomic and proteomic datasets. PCA on the metabolomic 
datasets for (A) positive lipids, (B) negative lipids, (C) positive polar metabolites, (D) 
untargeted IC run, (E) untargeted BZ run, (F) targeted BZ run, (G) annotated positive lipids 
and (H) annotated negative lipids. (I) PCA of the proteomic dataset. Samples are colored by 
section, with section 1 marked in yellow, section 2 marked in red, section 3 marked in green 
and section 4 marked in brown. 
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In line with the previously observed section differences on proteomic level (2.3.1), the 

four sections also revealed distinct clustering profiles in the second proteomic dataset 

(Fig. 25I). A particular strong separation was observed between the anterior part 

(sections 1, 2 and 3) and the posterior part (section 4). It is important to note that only 

samples from old fish were used in this analysis due to the small size of the young fish 

intestines.  

 

After this initial clustering analysis, I sought to identify the main driver metabolites 

responsible for the separation of the different sections. To this end, I performed 

supervised methods (PLS-DA and RF classification) on all the metabolomic datasets 

(Fig. 26A+B, displaying the positive C18 data as an example) and screened the main 

metabolites contributing to the models (Top 10%). The RF classification resulted in an 

overall error rate of 0.08, (error rate for the single sections: section 1 = 0.15; section 2 

= 0.07; section 3 = 0.1; section 4 = 0.0). Such a low overall error rate implies a good 

classification of the single sections, while especially section 4 is classified correctly in 

all cases.  

The most important metabolites included mainly uncharacterized metabolites, but also 

some annotated, known metabolites. Betaine levels increased along the intestinal tract 

(Fig. 26C), whereas Glutamine levels were particularly high in the posterior section 4 

(Fig. 26D). In contrast, both primary and secondary bile acids showed a decrease in 

abundance from the anterior to the posterior intestinal sections (Fig. 26E+F).  

 



 65 

Figure 26: Section-specific metabolites. (A) PLS-DA on the positive lipids metabolomic 
dataset. (B) Error rates of the Random Forest classification on the positive lipids metabolomic 
dataset. (C) Annotated metabolites contributing to the top 10% of the section-specific 
classification models. Samples are grouped and colored by the respective section, with 
section 1 marked in yellow, section 2 marked in red, section 3 marked in green and section 4 
marked in brown. 
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I next set out to determine the proteins characterizing the anterior or posterior sections. 

For this, I grouped sections 1, 2 and 3 and had a closer look at the differentially 

expressed proteins between the anterior and posterior sections (Fig. 27A). It is again 

important to note that this proteomics dataset is based on section samples from old 

fish. Proteins with high abundance in the anterior section included PCK2 and FABP2, 

while CUBN, DPEP1 and FABP6 were present in high levels for the posterior section 

samples.  

As region-specific differential protein expression is well known in the intestines of 

many model organisms, I furthermore checked whether the significantly changing 

proteins have been reported in other animal models. To this end, I screened the 

literature and collected a list of section-specific genes from zebrafish and mouse 

intestines (Lickwar et al., 2017; Z. Wang et al., 2010). Noteworthy, several of the most 

significant changing proteins overlap with this list, indicating a conservation of 

intestinal gene expression patterns (Fig. 27B).  

 

So far, I focused on individual metabolites and proteins. To further assess which 

biological processes characterize the different sections, I performed gene ontology 

and pathway enrichment analysis of the significant proteins for the anterior and the 

posterior sections (adj. p-value <0.05). The anterior sections were characterized by 

translation-related terms as well as metabolic and catabolic processes, such as 

ribosomal subunit, peptide biosynthetic process or RNA catabolic process  

(Fig. 28A+B). In comparison, the posterior part was characterized by terms associated 

with uptake, transport and lytic processes, such as lysosomal membrane, vacuolar 

transport and vesicle-mediated transport (Fig. 28C+D).  
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Figure 27: Section-specific proteins. (A) Volcano plot showing differences on protein level 
between anterior (S1/2/3) and posterior (S4) sections. Red color indicates proteins with a BH-
adjusted p-value <0.01 (moderated t-test). (B) Heatmap of conserved section-specific 
proteins. Yellow color indicates high expression levels, purple color indicates low expression 
levels. 
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Figure 28: GO term and pathway enrichment analysis of the sections. (A) Top gene 
ontology terms (Top 30) of proteins highly expressed in the anterior sections (S1/2/3). (B) Top 
pathway enrichment terms (q-value <= 0.1) of proteins highly expressed in the anterior 
sections (S1/2/3). (C) Top gene ontology terms (Top 30) of proteins highly expressed in the 
posterior (S4) section. (D) Top pathway enrichment terms (q-value <= 0.1) of proteins highly 
expressed in the posterior (S4) section. The negative natural logarithm of the q-values is 
shown. Statistical significance was calculated by a hypergeometric test. 



 69 

2.3.3.2 Histological analyses 
I next investigated whether the clear molecular differences I detected between the 

sections also reflect on a micro-anatomical scale. For this, Quinn Quesenberry (a 

bachelor student I supervised) conducted two histological staining experiments on a 

subset of the intestinal sections – a qualitative Hematoxylin-Eosin (H&E) staining and 

a quantitative Sirius Red – Fast Green staining (SRFG).  

 

The H&E staining allowed for detailed insights into the micro-anatomy of the intestinal 

sections. As there were no apparent differences between the anterior sections 1, 2 

and 3, those sections were grouped together and the statistical analysis was 

conducted for the comparison between the anterior (S1, S2, S3 – Fig. 29A) and 

posterior (S4 – Fig. 29B) sections.  

 

We first analyzed the overall structure of the killifish intestine. Like many other teleost 

fish, the intestine of N. furzeri did not show crypt- and villi-like structures - in contrast, 

several “primary folds” were visible in all four sections (Figure 29A+B). The gut 

epithelial layer consisted of several different cell types, including enterocytes and 

goblet cells. The lamina propria separated the epithelial layer from the submucosa and 

the adjacent muscularis propria, which consisted of both circular and longitudinal 

muscle fibers. Due to the sampling procedure, the posterior sections 4 were not cut 

as a cross-section, resulting in the intestinal folds projecting to the outside. All 

parameters (except for total diameter) could still be assessed in this orientation of the 

posterior section.  
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Figure 29: Histological staining of anterior and posterior sections. (A) H&E staining of 
the anterior and (B) posterior section of the killifish intestine. Cell nuclei are stained in blue, 
other structures including the cytoplasm are stained in pink. The arrows mark goblet cells. (C) 
SRFG staining of the anterior and (D) posterior section. Collagen fibers are stained in red, 
non-collagenous proteins are stained in green. The arrows mark collagen.  (E) Quantification 
of the intestinal goblet cells. (F) Quantification of the intestinal collagen content. Samples are 
colored by sections, with light green marking the anterior sections (S1/S2/S3) and brown 
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marking the posterior section (S4). The scale bars mark 100µm. Statistical significance was 
calculated by a Wilcox-test (Holm-adjusted). 

 

The H&E staining enables to measure the thickness of the muscularis propria layer. 

No difference in muscular thickness was detectable between the anterior and posterior 

sections (data not shown). A histological staining with H&E moreover allows the 

discrimination between specific cell subtypes. Quinn analyzed the histological slides 

for the occurrence of goblet cells and infiltration of leukocytes. The mucus produced 

by goblet cells plays a key role in the function of the intestinal barrier, protecting the 

epithelial layer from microbes and digestive enzymes. Leukocyte infiltration is 

analyzed as an inflammation marker. While both the extent and the severity of 

leukocyte infiltration did not obviously differ among sections (data not shown), the 

number of goblet cells was significantly higher in the anterior sections compared to 

the posterior section (Fig. 29E) (p-value <0.001, Wilcox-test). This suggests that the 

anterior sections are in higher demand of protective mucus, possibly related to a high 

level of digestion.  

 

Fibrotic changes in the extracellular matrix are a common feature of aged tissues 

(Murtha et al., 2019). Quinn therefore used the SRFG staining to quantify the collagen 

content in the extracellular matrix (Fig. 29C+D) to investigate the matrix structure and 

potential fibrotic changes. Interestingly, the anterior sections showed a significantly 

higher amount of collagen compared to the posterior section 4 (Fig. 29F) (p-value 

<0.001, Wilcox-test), indicating a difference in tissue structure (strength & elasticity).  

 

  

2.3.3.3 Microbiota composition along the intestinal sections 

The metabolomic, proteomic and histological data clearly revealed that the four 

intestinal sections display differences at the molecular and micro-anatomical level. 

However, the killifish intestine is home to a complex gut microbiota and host-

microbiota interactions are important for various physiological processes. I therefore 

investigated whether the killifish intestine has section-specific microbial communities. 
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To assess the microbiota composition of the intestinal sections, I extracted DNA from 

the intestinal sections in a multi-omics manner, e.g., the same tissue pieces that were 

used for the metabolomics and proteomics dataset, and performed V3/V4 16S rRNA 

amplicon sequencing. In addition, DNA from stool and food samples was isolated and 

sequenced as controls. The sequencing of the samples resulted in 2.75 million  

paired-end reads, with an average of 20.000 reads per sample after quality filtering.  

 

I first focused on the microbiota profiles of the different sample types (stool, intestinal 

sections and the food samples). The distribution of the most important phyla was 

similar to the sample-type specific patterns observed in my previous results of thesis 

part 2: The sample types showed a distinct pattern with food samples enriched in 

Epsilonbacteria and Fusobacteria, while Actinobacteria were specific for intestinal 

samples (Fig. 30). The stool samples showed features of both the intestinal and the 

food samples, with an enrichment in Fusobacteria but also the presence of a major 

fraction of Firmicutes, comparable to the intestinal sample composition.  

As the major aim of the multi-omics datasets lies in the deep analysis of the killifish 

intestinal sections, I will from now on focus the microbiota analysis only on the 

intestinal sections.  

Figure 30: Taxonomic composition of different sample types. Relative abundance of the 
most prevalent phyla for food, section and stool samples. 
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I identified 26 phyla in the intestinal sections, of which 13 had an abundance of >0.1%.  

The 5 most abundant phyla were Proteobacteria, Firmicutes, Actinobacteria, 

Planctomycetes and Chloroflexi. I identified 466 genera, with 79 genera showing an 

abundance of >0.1%. The 5 most abundant genera were Aeromonas, Vibrio, 

Catenococcus, Vagococcus and Pseudomonas. On the lowest taxonomic level, 2703 

ASVs were identified, with 159 ASVs of >0.1% abundance.  

 
To investigate the similarities between all the section samples, I first conducted PCoA 

based on Bray-Curtis beta diversity levels. Interestingly, the samples did not cluster 

by section (Fig. 31A). In addition, alpha and beta diversity measures showed no 

difference between the different sections (Fig. 31B and data not shown).  

 

To further explore potential microbiota differences between the sections, Sam Kean 

performed a Random Forest classification for the intestinal sections. The classification 

resulted in an overall accuracy rate of 0.375, which indicates low predictive power  

(Fig. 31C). Interestingly, the prediction accuracy was differing between the specific 

sections – while section 1 and 2 had very low classification rates (0.16 and 0), section 

3 showed better prediction rates (0.5) and section 4 was classified with high accuracy 

(0.83). This might indicate that the microbiota composition of section 4 is more section-

specific compared to the anterior sections – confirming the strong separation between 

the anterior and posterior intestine in the metabolomics and proteomics data.  

 

Although the Random Forest classification suggested section-specific microbial 

patterns for the anterior-posterior sections, I asked to which extent the individuality 

aspect plays a role for microbiota composition. To this end, I performed PERMANOVA 

analysis on the Bray-Curtis dissimilarity PCoA and found significant clustering by 

individual fish ID (p-value < 0.001, Fig. 31D). I observed a similar clustering in a 

hierarchical clustering approach (Fig. 31E).  

 

Overall, these results indicate that each fish has a unique microbial signature that 

persists across gut sections, and individuality is a stronger contributor compared to 

section-specific microbiota patterns.  
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Figure 31: Analysis of microbiota composition of intestinal sections. (A) PCoA of Bray-
Curtis dissimilarity of the samples from the intestinal sections. Samples are colored by section, 
with S1 marked in yellow, S2 marked in red, S3 marked in green and S4 marked in brown. P-
value = 0.86, PERMANOVA analysis. (B) Observed ESV and Shannon index alpha diversity 
for intestinal sections. Samples are colored by section, with S1 marked in yellow, S2 marked 
in red, S3 marked in green and S4 marked in brown. All p-values > 0.5, Wilcox-test (Holm-
adjusted). (C) Random Forest classification accuracy for intestinal sections. (D) PCoA of Bray-
Curtis dissimilarity of the samples from the intestinal sections. Samples are colored by 
individual fish ID. P-value <0.001, PERMANOVA analysis. (E) Hierarchical clustering of the 
intestinal sections based on microbiota composition. Samples are colored by individual fish 
ID. 
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In summary, the four sections of the killifish intestine displayed clear differences on 

the molecular and microanatomical level, with strongest differences between the three 

anterior sections (S1-3) and the posterior section (S4). The anterior sections were 

characterized by processes such as translation, metabolism and catabolism, while the 

posterior section was characterized by transport, uptake und lytic processes. Bile acid 

levels decreased along the intestinal tract, suggestion constant reabsorption along the 

sections. On the microanatomical level, anterior sections were characterized by an 

increased collagen content and a higher number of mucus-producing goblet cells. 

Unexpectedly, these molecular differences were not mirrored on microbiota level – 

slight changes were present between the anterior sections (S1/2/3) and the posterior 

section (S4), but the microbiota composition was mainly individual-specific, indicating 

that the individuality of each fish’s gut microbiome is the strongest factor.  
 

 

2.3.4 Intestinal age differences on multi-omics level 
My previous results showed age-specific changes in the killifish intestinal microbiota, 

including a shift in microbiota composition (Smith, Willemsen, Popkes et al., 2017; 

paragraph 2.2.3). However, understanding the intestinal age-related changes on the 

host side could provide valuable insight into host-microbiota interactions upon aging. 

I therefore next sought to analyze the killifish intestinal sections on a deeper level, 

combining molecular and micro-anatomical analyses on the fish host with an analysis 

of the microbiota composition during aging.  

 

2.3.4.1 Molecular characteristics 

After analyzing the metabolomic and proteomic datasets for section-specific 

signatures, I next grouped the samples by age and checked for molecular signatures 

between intestines from young and old individuals. 

PCA on all the untargeted metabolomics datasets revealed a clear clustering for age, 

suggesting differences between young and old age in all metabolite classes including 

polar and non-polar metabolites (Fig. 32A-E). The clustering was in most cases 

apparent on lower principal components - one exception was the untargeted IC 

dataset, where the age clustering was apparent on principal component 2. While most 
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of the metabolites were uncharacterized, the analysis of the identified metabolite 

subset could provide insights into the underlying aging processes. Interestingly, the 

annotated positive lipids clustered strongly in the PCA, comparable to the clustering 

of the whole C18 dataset in positive mode (Fig. 32F). This indicates that the known 

positive lipids (TAGs, DAGs, SMs, PCs, PEs) have a substantial influence on the age 

differences in metabolomic composition. The annotated BZ metabolites, which include 

mainly amino acids, also clustered for age in the PCA (Fig. 32G), implying that 

intestinal amino acid levels change upon aging. No comparable strong clustering for 

age was visible for the other annotated metabolomics datasets (Fig. 32H, negative 

C18 data as an example). 

  

Similar to the metabolomics data, PCA of the proteomics data clearly distinguished 

between samples according to age. It is important to note that the analyzed proteomics 

dataset only contained samples from section 2, as only this section had sufficient 

tissue material in young fish. As with the metabolomics datasets, the clustering was 

apparent on lower levels (principal component 2 and 3), indicating that age has an 

important but less strong effect than section identity (Fig. 32I).  
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Figure 32: PCA of metabolomic and proteomic datasets for age differences. PCA on the 
metabolomic datasets for (A) positive lipids, (B) negative lipids, (C) positive polar metabolites, 
(D) untargeted IC run, (E) untargeted BZ run, (F) annotated positive lipids, (G) targeted BZ 
run and (H) annotated negative lipids. (I) PCA of the proteomic dataset. Samples are colored 
by age, with old samples colored in purple and young samples colored in green.  
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To identify metabolites that mainly drive the differences detected between age groups, 

I performed PLS-DA and a RF classification on all the metabolomics datasets  

(Fig. 33A+B, untargeted BZ as an example) and checked the main metabolites 

contributing to the models (Top 10%). The RF classification resulted in an overall error 

rate of 0.06 (error rate old = 0.05; young = 0.07). Such a low error rate implies a very 

good classification of young and old samples.  

 

Again, only a minor number of key metabolites were annotated, especially in the BZ 

and the IC dataset. Annotated metabolites which were significantly enriched in young 

samples include Pyruvic acid, Histidine and Putrescine. The most significant known 

metabolites with a high abundance in the old samples included 4-Hydroxyproline, 

Dimethylglycine, Seduheptulose-7-Phosphate, Pantothenic acid and Fructose-6-

Phosphate (Fig. 33C). The PCA result of the annotated positive lipid suggested that 

known positive lipids were key contributors for the age changes. I was therefore 

particularly interested in the PLS-DA and RF results from this dataset. Indeed, several 

sphingomyelins were among the top metabolites, and the overall levels of 

sphingomyelins were higher in old samples (Fig. 33C).  
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Figure 33: Age-specific metabolites. (A) PLS-DA on the untargeted BZ metabolomic 
dataset. (B) Error rates of the Random Forest classification on the untargeted BZ metabolomic 
dataset. (C) Annotated metabolites contributing to the top 10% of the section-specific 
classification models. Samples are colored by age, with old samples colored in purple and 
young samples colored in green. All p-values < 0.001, Wilcox-test (Holm-adjusted). 

 

Next to analyzing the global age-changes with the methods mentioned above, I asked 

which of the detected aging patterns are shared between sexes and which are sex-

specific. While most metabolites (including all the metabolites mentioned above) 
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showed similar age-specific trends for male and female fish, I made a striking 

observation in the lipid datasets. The lipid metabolites changing between young and 

old samples (Fig. 34A+B, marked in orange) were significantly enriched for male fish 

compared to female fish (p-value <0.001, Fisher’s exact test). This held true for both 

the negative and the positive lipid metabolites. It thus appears that both negative and 

positive lipid levels change more drastically during age in male fish intestines, 

indicating a sex-specific aging pattern.  

 
Figure 34: Sex-specific age differences. Volcano plots showing differences on metabolite 
level between young and old samples in females or in males, for (A) the negative lipid 
metabolomic dataset and (B) the positive lipid metabolomic dataset. Red color indicates 
metabolites with a BH-adjusted p-value <0.01 (Students t-test). 

A 

B 
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To gain insight into the protein expression patterns characterizing intestines from 

young and old individuals, I visualized the differentially expressed proteins in a 

Volcano plot (Fig. 35). Again, only samples from section 2 were included in the 

analysis due to size limitations. Proteins with high abundance in old samples included 

CLU, C4A4, HSPB1 and COL6A3, while IGF2BP3, GB-BETA4 and GATM were 

present in high levels in the young samples.  

 

Figure 35: Age-specific proteins. (A) Volcano plot showing differences on protein level 
between young and old sections. Red color indicates proteins with a BH-adjusted p-value 
<0.01 (moderated t-test).  

 

To assess which biological processes characterize the aging intestine, I performed 

gene ontology (GO) and pathway enrichment analysis of the significant proteins 

between young and old samples (adj. p-value <0.05). The young intestines were 

characterized by translation terms, for example translation initiation and ribosome  

(Fig. 36A+B), indicating high metabolic activity. In contrast, old intestines were 

characterized by terms such as collagen-containing ECM, and several transport and 

muscle-related terms including sarcolemma and chemotaxis (Fig. 36C+D). 
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Figure 36: GO term and pathway enrichment analysis of young and old samples. (A) 
Top gene ontology terms (q-value <= 0.03) of proteins highly expressed in sections of young 
fish. (B) Top pathway enrichment terms (q-value <= 0.1) of proteins highly expressed in 
sections of young fish. (C) Top gene ontology terms (Top 30) of proteins highly expressed in 
sections of old fish. (D) Top pathway enrichment terms (q-value <= 0.1) of proteins highly 
expressed in sections of old fish. The negative natural logarithm of the q-values is shown. 
Statistical significance was calculated by a hypergeometric test. 
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2.3.4.2 Histological analyses  
To test whether the intestinal age-differences I detected on the molecular level were 

also reflected on micro-anatomical level, Quinn Quesenberry analyzed the H&E and 

SRFG-stained section slices of young and old sections (Fig. 37A-D).  

Figure 37: Histological staining of the young and old intestinal samples. (A) H&E staining 
of the intestine from young and (B) old killifish. Cell nuclei are stained in blue, other structures 
including the cytoplasm are stained in pink. The arrows mark the muscular layer. (C) SRFG 
staining of the intestine from young and (D) old killifish. Collagen fibers are stained in red, non-
collagenous proteins are stained in green. The arrows mark collagen. (E) Quantification of the 
muscular thickness. (F) Quantification of the total intestinal diameter. (G) Quantification of the 
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intestinal collagen content. Samples are colored by age, with old samples colored in purple 
and young samples colored in green. The scale bars mark 100µm. Statistical significance was 
calculated by a Wilcox-test (Holm-adjusted). 

 

We first analyzed the H&E-stained intestinal samples to identify changes in the overall 

structure and the cell type composition of the aging killifish intestine. No difference in 

global structures was visible – the goblet cell levels or the infiltration of leukocytes did 

not change between young and old samples (data not shown).  

However, the thickness of the muscular layer increased with age (Fig. 37E, p-value 

<0.001, Wilcox-test) – as well as the total diameter (of the anterior sections, as 

diameter could only be measured for these samples) (Fig. 37F, p-value <0.001, Wilcox 

test). Moreover, quantification of the collagen content revealed that the collagen levels 

are significantly higher in old fish intestines (Fig. 37G, p-value <0.001, Wilcox-test).   

 

 

2.3.4.3 Microbiota composition of young and old intestines 

I have shown in this and previous work (Smith, Willemsen, Popkes et al., 2017) that 

the intestinal microbiota of the killifish underlies compositional age-related changes. 

However, all previous analyses were based on data obtained from whole intestinal 

samples. To characterize the intestinal microbiota on a more detailed level, I assessed 

whether also the intestinal sections show age-specific microbial profiles based on the 

16S rRNA amplicon sequencing results. 

 

I first performed PCoA based on Bray-Curtis dissimilarity to visualize a potential 

separation by age. Although the grouping was not strikingly obvious using the first two 

principal coordinates (cumulatively explaining 18.3% of the whole variance) (Fig. 38A), 

young and old samples still clustered significantly (p-value = 0.003, PERMANOVA 

analysis). As a second line of evidence, Sam Kean performed a RF classification for 

age, which resulted in an overall prediction accuracy of 0.82 (Fig. 38B).  
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Figure 38: Analysis of microbiota composition of young and old samples. (A) PCoA of 
Bray-Curtis dissimilarity of samples from young and old fish. Samples are colored by age, with 
old samples colored in purple and young samples colored in green. P-value = 0.003, 
PERMANOVA-analysis. (B) Random Forest classification accuracy for young and old killifish 
intestinal samples. (C) DESeq2 differential abundance analysis for young and old intestinal 
sections. (D) Observed ESV and Shannon index alpha diversity for young and old killifish 
sections. Statistical significance was calculated by a Wilcox-test (Holm-adjusted). Samples 
are colored by age, with old samples colored in purple and young samples colored in green. 

 

To further identify the age-specific bacteria, I performed DESeq2 differential 

abundance testing. ASVs enriched in young fish belonged to the genera Fodinicola 

and Hyphomicrobiom, while old fish were enriched for Corynebacterium, 

Clostridisalibacter, Streptococcus and Vibrio (Fig. 38C). 

 

Previous data from our lab showed lower alpha diversity levels for old intestines 

(Smith, Willemsen, Popkes et al., 2017). In contrast to our expectations, alpha diversity 

levels remained unchanged between section samples from young (8 weeks) and old 
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(16 weeks) fish in this dataset (Fig. 38D). The same was true for beta diversity levels 

(data not shown).  

 

Taken together, the killifish intestinal sections showed clear age differences on 

molecular and microanatomical level, as well as small but significant changes with 

regards to microbiota composition. Based on gene ontology enrichment analysis, 

young intestines seemed to have a higher protein biogenesis and metabolism rate, 

while old intestines showed an enrichment in muscle-related terms and in particular 

collagen, which goes in line with the increase in collagen on histological level. 

Interestingly, male intestines showed a significantly higher number of lipid metabolites 

changing upon aging, compared to female intestines. This indicates that an age-

related change in lipid composition and abundance might be a sex-specific aging 

pattern in the killifish intestine. 

 

 

2.3.5 Intestinal sex differences on multi-omics level 
Several animal models show sex-specific structures and functional differences in the 

intestine, both in young and old age. My comparative approach considering intestinal, 

food and stool samples already revealed first evidence for sex differences in the 

killifish intestines with regard to microbiota composition (2.2.4). Moreover, my 

untargeted metabolomics data suggested that intestinal aging is, at least to some 

extent, sex-specific. However, a detailed characterization of sex-specific differences 

on metabolic, protein and microbial level is still absent. I therefore investigated the 

potential differences between male and female intestines based on my multi-omics 

dataset on a deeper level.  

 

 

2.3.5.1 Molecular characteristics 

I first focused on the metabolomic and proteomic datasets by grouping the samples 

by sex to examine potential sex-specific molecular signatures.  
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PCA of the untargeted metabolomic datasets demonstrated a clear clustering of male 

and female samples (Fig. 39A-E), indicating distinct molecular patterns for fish of 

different sex. The clustering was apparent on lower levels, mostly on principal 

component 3. To draw first functional conclusions, I next focused on the annotated 

subsets of the metabolomics datasets. The degree of clustering differs in a subset-

dependent manner, suggesting particular metabolite groups as main drivers. For 

instance, the annotated metabolites from the BZ dataset, mainly including amino 

acids, showed a comparable clustering to the untargeted BZ dataset, indicating the 

importance of those amino acids regarding sex-specificity (Fig. 39F). I observed a 

similar trend for the annotated positive lipids (TAGs, DAGs, SMs, PCs, PEs) compared 

to the respective untargeted dataset (Fig. 39G). In contrast, a clear clustering was 

absent in case of the annotated negative lipids (PGs and FFAs) (Fig. 39H), supporting 

the notion that annotated positive, but not negative lipids explain large parts of the 

sex-specific variation in PCA.  

 

To test whether this sex-specific separation is also reflected on protein levels, I next 

performed PCA on the proteomic dataset. The analysis was based on data from 

section 2 of young and old, male and female killifish. Remarkably, the samples showed 

a very strong clustering already on principal component 2 (Fig. 39I), suggesting that 

intestinal protein expression is highly sex-specific. A second proteomic analysis 

considering data from all sections, taken from old male and female fish, confirmed 

those findings (data not shown).  
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Figure 39: PCA of metabolomic and proteomic datasets for sex differences. PCA on the 
metabolomic datasets for (A) positive lipids, (B) negative lipids, (C) positive polar metabolites, 
(D) untargeted IC run, (E) untargeted BZ run, (F) annotated positive lipids, (G) targeted BZ 
run and (H) annotated negative lipids. (I) PCA of the proteomic dataset. Samples are colored 
by sex, with female samples colored in red and male samples colored in blue. 
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To identify characteristic metabolites for female and male intestines, I performed PLS-

DA and RF classification on all the metabolomics datasets (Fig. 40A+B, untargeted 

BZ as an example) and checked the main metabolites based on contribution to the 

models (Top 10%). The RF classification resulted in an overall error rate of 0.009 (error 

rate old = 0; young = 0.018). Such a low error rate implies an extremely good 

classification of male and female samples. Again, only a minor fraction of the key 

metabolites was annotated.  

I was especially interested in the levels of annotated positive lipids and amino acids 

given the strong clustering pattern in the PCA. Indeed, Taurine and 7-alpha-27-

dihydroxycholesterol were among the annotated metabolites enriched in male 

intestines. In addition, I found higher overall levels of sphingomyelins in male 

compared to female fish. The most significant metabolites with a high abundance in 

female fish included Cystathionine and Proline, as well as higher levels of overall 

DAGs, lysoPCs and FFAs (Fig. 40C).  
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Figure 40: Sex-specific metabolites. (A) PLS-DA on the untargeted BZ metabolite dataset. 
(B) Error rates of the Random Forest classification on the untargeted BZ metabolite dataset. 
(C) Annotated metabolites contributing to the top 10% of the section-specific classification 
models. Samples are colored by sex, with female samples (F) colored in red and male samples 
(M) colored in blue. All p-values < 0.001, Wilcox-test (Holm-adjusted). 
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To gain insight into the proteins characterizing male and female intestines, I visualized 

the differentially expressed proteins in a Volcano plot (Fig. 41). It is important to note 

that the analyzed proteomics dataset only contained samples from section 2. Proteins 

with high abundance in male intestines included HPX, APOH, SCGN and APOB, while 

OL-VIT1, COX20 and ECM1 were presented in high levels in female samples. A 

second proteomic analysis considering data from all sections, taken from old male and 

female fish, confirmed those findings (data not shown).  

Figure 41: Sex-specific proteins. (A) Volcano plot showing differences on protein level 
between female and male sections. Red color indicates proteins with a BH-adjusted p-value 
<0.01 (moderated t-test).  

 

To draw functional conclusions from the proteomic analysis comparing male and 

female intestines, I performed gene ontology and pathway enrichment analysis of the 

significantly different proteins (adj. p-value <0.05). While the female intestines did not 

show a strong enrichment in terms other than peptidase activity and secretory granule 

lumen (Fig. 42A), male intestines were characterized by terms related to blood clotting 

(e.g. fibrinogen, coagulation, platelets), to lipids (e.g. lipid transport, lipoprotein 
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particle) and to the immune system (e.g. regulation of TLR, regulation of defense 

response) (Fig. 42B+C).  
 

Figure 42: GO term and pathway enrichment analysis of female and male samples. (A) 
Top gene ontology terms (q-value <= 0.03) of proteins highly expressed in sections of female 
fish. (B) Top gene ontology terms (Top 30) of proteins highly expressed in sections of male 
fish. (C) Top pathway enrichment terms (Top 30) of proteins highly expressed in sections of 
male fish. The negative natural logarithm of the q-values is shown. Statistical significance was 
calculated by a hypergeometric test. 

 

 

The metabolomic and proteomic data clearly support the notion of strong sex-

differences. Next, I asked whether age contributes to sex differences. To this end, I 

subset the metabolomic data into young and old samples and assessed the 
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significantly changing metabolites between males and females (Fig. 43). Remarkably, 

all datasets except for the untargeted BZ dataset showed significantly more sex-

specific metabolites in old age (p-values <0.001, Fisher’s exact test). Notably, this 

trend was also confirmed in the proteomic dataset – the number of differently 

expressed proteins between males and females was significantly higher in the subset 

of old fish (p-value <0.001, Fisher’s exact test). This suggests that sex differences 

increase with age on a molecular level.  

 

2.3.5.2 Histological analysis 

After this detailed analysis on molecular level, I asked whether the sex-related 

changes I detected on metabolomic and proteomic levels were reflected on micro-

anatomical level. However, we did not find any statistical differences in the quantitative 

and qualitative histological analysis (data not shown).  
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Figure 43: Age-specific sex differences. Volcano plots showing differences on metabolite 
level between male and female samples in young or old age, for (A) the negative lipid 
metabolomic dataset, (B) the positive lipid metabolomic dataset, (C) the positive pHILIC 
metabolomic dataset. Red color indicates metabolites with a BH-adjusted p-value <0.01 
(Student’s t-test). 
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2.3.5.3 Microbiota composition of male and female intestines 
I demonstrated that the killifish intestine shows strong sex-differences on a molecular 

level. Furthermore, it is well known for other animal models that also microbiota 

composition shows sex-specific attributes, at least to some extent (Org et al., 2016). 

As the previous results of my thesis pointed towards small sex differences in whole 

killifish intestines on microbiota level (2.4), I sought to confirm these findings on the 

sections data. I therefore analyzed the sex-specific microbiota profiles based on the 

16S rRNA amplicon sequencing results.  

Figure 44: Analysis of microbiota composition of female and male samples. (A) PCoA 
of Bray-Curtis dissimilarity of samples from female and male fish. Samples are colored by sex, 
with female samples colored in red and male samples colored in blue. P-value = 0.011, 
PERMANOVA-analysis. (B) Random Forest classification accuracy for female and male 
killifish intestinal samples. (C) DESeq2 differential abundance analysis for female and male 
intestinal sections. (D) Observed ESV and Shannon index alpha diversity for female and male 
killifish sections. Statistical significance was calculated by a Wilcox-test (Holm-adjusted). 
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Samples are colored by sex, with female samples colored in red and male samples colored in 
blue.  

 

I first performed PCoA based on Bray-Curtis dissimilarity to see whether the samples 

were separated by sex. Although the grouping was not strikingly obvious using the first 

two principal coordinates (Fig. 44A), male and female samples still clustered 

significantly (p-value = 0.011). As a second line of evidence, RF classification resulted 

in an overall prediction accuracy for age of 0.68 (Fig. 44B), indicating that slight 

changes in microbiota composition must be present between male and female 

samples. I thus performed DESeq2 differential abundance testing to identify the 

enriched sex-specific bacteria. ASVs enriched in female fish belonged to the genera 

Arcobacter, Brevibacterium and Staphylococcus, while male fish were enriched for 

Jeotgalicoccus (Fig. 44C). 

With regards to diversity however, no significant differences in either alpha diversity 

(Fig. 44D) or beta diversity levels could be detected (data not shown).  

 

Taken together, the killifish intestinal sections show clear sex differences on the 

molecular and microanatomical levels, as well as small but significant changes with 

regards to microbiota composition. Female intestines were characterized by higher 

levels of positive lipids, including DAGs, FFAs and lysoPCs. Male intestinal sections 

showed an enrichment in muscle-related terms and collagen, as well as high levels of 

sphingomyelins and Taurine. Remarkably, overall sex differences seemed to increase 

with aging.  

 

 

2.3.6 Correlation between metabolites and microbiota composition 
The multi-omics approach resulted in a multi-level dataset for the same sections, 

including information about the molecular patterns on metabolomic and proteomic 

level, information about the microanatomical structures as well as information about 

the microbiota composition. This special dataset provided the unique opportunity to 

draw correlations between the different subsets, allowing to gain first insights into the 

connection between the killifish host side and the residing intestinal microbiota.  
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To identify correlations between single bacteria and host metabolites, I performed a 

linear regression analysis on the relative abundance levels of the most prevalent and 

widespread genera and all the annotated metabolites.  

 

The correlation analyses resulted in 28 significant correlations between single genera 

and single metabolites (adj. p-value <0.1). Among the strongest correlations was the 

negative correlation between Hyphomicrobium and 4-Hydroxyproline (Fig. 45A), and 

the positive correlations between an unknown genus from the Rhizobiaceae family 

and two bile acids, namely Taurocholic acid (Fig. 45B) and 7-Oxotaurodeoxycholic 

acid.  

Figure 45: Correlation analysis between ASVs and metabolites. (A) Linear regression 
model between Hyphomicrobiom and 4-Hydroxyproline. (B) Linear regression model between 
Rhizobiaceae and 7-Oxotaurodeoxycholic acid.  
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Chapter 3  

 

Discussion 
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Research on the aging gut microbiota has sparked strong interest in recent years, with 

exciting findings pointing to a causal connection between gut microbes and the aging 

process. To study gut microbiota in the context of aging, we need to know about 

spatiotemporal dynamics of the aging intestine and its associated microbial 

communities, as research has found gut section-specific microbial communities, which 

play integral roles in host physiology and thus could essentially affect the aging 

process (Bana & Cabreiro, 2019; Rooks & Garrett, 2016; Smith, Willemsen, Popkes 

et al., 2017). Moreover, it is important to study intestinal host–microbiota interactions 

especially with regards to sex differences, as several studies have shown sex-specific 

patterns in intestinal morphology and microbiota composition, influencing major host 

processes such as nutrient absorption and even playing a role in susceptibility to 

diseases and aging (Markle et al., 2013; Regan et al., 2016).  

 

The killifish is an intriguing model system to study microbial dynamics and intestinal 

features during aging, as it uniquely combines vertebrate properties such as a complex 

gut microbiota with an extremely short lifespan for aging studies. While we previously 

profiled killifish intestinal age-related changes, the question of intestinal sections, 

temporal aging dynamics and sex-specific intestinal aspects still remains elusive.  

 

I thus set out to characterize killifish spatiotemporal aging dynamics and sex-specific 

intestinal morphological, microbial and molecular patterns by performing multi-omics 

analyses on intestinal sections of young and old, male and female killifish. I 

furthermore asked whether non-invasive stool samples can serve as a proxy for gut 

microbiota by microbiota analysis of stool, intestinal and food samples. Last, I set out 

to explore whether it is possible to build models predicting fish age or remaining life 

based on stool microbiota composition, by conducting a longitudinal collection of 

individual killifish stool samples across the whole life. 

 

Notably, I observed a clear compartmentalization of the killifish intestine on a 

morphological and molecular level, partially reflecting the mammalian intestine on a 

functional level. In contrast to findings from other animals, including fish, I did not find 

strong microbiota patterns specific for the distinct sections. Moreover, analysis of aged 
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fish revealed strong evidence for a restructuring of the intestinal extracellular matrix, 

including collagen accumulation and muscle thickening, potentially adversely affecting 

the intestinal function in old age. For the first time, I demonstrate clear sex-specific 

molecular features involving differences in the coagulation process. In addition, I found 

first evidence that the killifish intestinal molecular differences increase between sex 

upon aging. Excitingly, I discovered shared microbial features between stool and gut 

microbiota and could, for the first time, combine data of a longitudinal collection of 

stool samples with individual killifish lifespan to build prediction models for not only 

age, but also remaining life.  

 

My results set the important foundation for future killifish research focusing on gut 

microbiota in the context of aging. Beyond this, I provide novel insights into sex- and 

age-specific pathways – and show promising results which lay the ground for 

predicting remaining life based on stool microbiota samples.  

 

 

3.1 The intestinal microbiota composition in the killifish  

 

The earth is home to a myriad of microorganisms, predicted to be as many as 1 trillion 

microbial species (Locey & Lennon, 2016). Microbes are extremely diverse in genetic 

constitution resulting in an enormous amount of specialized functional potential, suited 

to fit into completely different environmental niches (Fahimipour & Gross, 2019). The 

microbiota present in different environments, animals, individuals or even different 

tissues and body sites within an individual is thus varying substantially (The Human 

Microbiome Project Consortium, 2012).  

 

In line with the strong niche-specific microbiota communities for different environments 

and tissues, I found that the microbiota composition of stool, intestinal and food 

samples are very different between the sample types (Fig. 17A+B). While 

Proteobacteria are the dominating phylum in all sample types, similar to what has been 

reported for other aquatic animals (Sullam et al., 2012) and what we also previously 
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found for the killifish intestine (Smith, Willemsen, Popkes et al., 2017), differences 

between the sample types become apparent in other phyla and genera. Intestinal 

samples were for example enriched for Actinobacteria and Aeromonas, while food and 

stool samples showed a major fraction of Fusobacteria and 

Epsilonbacteria/Psychrilyobacter. Aquatic Actinobacteria are a very rich source of 

bioactive compounds and secondary metabolites (Jami et al., 2015; Manivasagan et 

al., 2013) and probably play an important role in the nutrient production of the killifish 

intestine. The genus Aeromonas contains several known pathogens, both for humans 

and for fish (Janda & Abbott, 2010; Parker & Shaw, 2011), however also one species 

(Aeromonas media) has been reported to function as a potential probiotic in fish 

(Lategan & Gibson, 2003). As the 16S sequencing approach does not allow 

discrimination to the species or strain level, it is not possible to assess whether the 

large fraction of intestine-specific Aeromonas is an opportunistic pathogen or rather a 

beneficial killifish commensal. Fusobacteria are commonly found in fish microbiota, 

especially in carnivores, and interestingly have been reported to be enriched in 

bloodworm-fed juvenile sturgeons (Q. Hao et al., 2021). Fusobacteria might be 

involved in with fatty acid metabolism in fish (Mekuchi et al., 2018), but clear evidence 

for functional importance is still missing. 

 

In addition to the sample-type specific microbiota composition, I found interesting 

differences in diversity comparing the intestinal, stool and food samples. Intestinal 

samples, analyzed together, showed the highest number of reported ASVs, but the 

lowest number of ASVs with an abundance of >0.1%, pointing to a large fraction of 

rare ASVs present in the killifish intestine. Interestingly, intestinal samples showed the 

lowest values for diversity measures accounting for richness and evenness when 

samples were analyzed individually (Fig. 18A). This is congruent with the observed 

beta diversity: Intestinal samples had the highest rate of within beta diversity  

(Fig. 18C), thus the variation and differences in microbiota composition are very high 

between individual fish intestines. Notably, while food and stool samples showed 

higher values for diversity measures accounting for richness and evenness, intestinal 

samples had a higher phylogenetic diversity (Fig. 18B). Intestinal samples are thus 

dominated by a few highly abundant ASVs and show a lot of additional, rare ASVs 
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with a very low abundance, resulting in low richness and evenness measures. The 

high beta diversity levels moreover could suggest that the intestine builds individual-

specific niches and selects particular, individual-specific bacteria which can also be 

phylogenetically diverse. 

 

In general, the global sample-type specific observations, such as diversity measures 

or overall phyla composition, were congruent between all my datasets generated in 

this thesis – supporting the reproducibility and importance of my findings. Some 

specific observations, such as the detailed microbiota composition, were however 

specific for individual datasets. As environmental factors can largely impact the 

intestinal microbiota (Rothschild et al., 2018), differences between the datasets might 

be explained by different collection timepoints and associated environmental changes 

in the fish facility. 

 

While sampling microbiota from intestines is usually an invasive procedure, sampling 

stool is a non-invasive procedure, and is therefore frequently adopted to gain 

information about the intestinal microbiota. However, stool reflects only parts of the 

intestinal microbiota (Momozawa et al., 2011), mostly the colon microbiota (Gierse et 

al., 2020). It has been shown that while most intestinal taxa could be identified in feces, 

the microbial community structure between intestine and feces is not equivalent (Yan 

et al., 2019).  

In addition, it is known that the intestinal microbiota composition is influenced by 

various factors, of which diet plays a key role (David et al., 2014; De Filippo et al., 

2010; G. D. Wu et al., 2011). Dietary components also have a major impact on 

intestinal microbiota features in aquatic animals (Hartviksen et al., 2014; Mansfield et 

al., 2010; Ringo & Olsen, 1999). 

In line with this, I discovered that killifish stool samples share a lot of microbial 

properties with the food samples and are highly similar to the killifish bloodworm food 

in terms of composition and diversity. However, stool samples also shared some ASVs 

with the intestinal samples which were not present in the food samples, including 

bacteria from the genera Aeromonas and Vagococcus (Fig. 17C). Similar to 

Aeromonas, the Vagococcus genus includes potential fish pathogens (Vagococcus 
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salmoninarum, Schmidtke & Carson, 1994). Nevertheless, Vagococcus fluvialis has 

also been studied as a potential fish probiotic (Sorroza et al., 2012). The species 

assigned for one of the seven shared ASVs was indeed Vagococcus fluvialis, pointing 

to a potential fish commensal shared between stool and gut. However, due to the 

detection limit of the 16S sequencing, I could not reliably assess whether the microbes 

classified as Aeromonas and Vagococcus have a pathogenic or commensal role in 

the killifish intestine.  

 

Where do microbes emerge from that are present in the gut and stool, but not in the 

food? One possibility is that stool- and gut-specific bacteria were either present in 

earlier food samples and the intestine specifically selected for those microbes, or they 

were present in the killifish environment such as the tank water. Another possibility is 

that those bacteria were vertically transmitted by the parents, although studies for 

several fish indicate that horizontal bacterial transfer is the dominant factor for 

transmission (Llewellyn et al., 2014; Stephens et al., 2016).  

 

The conducted analysis of shared stool-gut microbiota takes into account the 

occurrence of specific bacterial strains, but not their relative abundance. Therefore, a 

better resolution could be achieved by implementing advanced statistical models, such 

as modified available batch effect normalization methods, to infer intestinal-specific 

information from the detected stool microbiota composition. With this, the model would 

not only focus on single genera known to be intestine-specific, but on the microbiota 

composition and its structure as a whole.  

 
Several studies have presented sexual dimorphic patterns for the intestinal 

morphology and also the associated microbial community. Sex-specific differences in 

microbiota composition or diversity have been reported for various animals (Markle et 

al., 2013; Org et al., 2016; Yurkovetskiy et al., 2013). For humans, few studies have 

evaluated gut microbiota sex differences with contradicting outcomes (Ding & Schloss, 

2014; Haro et al., 2016; Sinha et al., 2019), leaving human sex-specific microbiota 

patterns an interesting topic for deeper investigation.  
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I found no global differences for sex in terms of microbiota composition or diversity 

measures. At the same time, I was able to identify specific ASVs enriched in male and 

female samples, both for intestinal and stool samples. Interestingly, also some human 

studies suggest that microbial sex-differences are rather found in specific bacteria, but 

less often on global measures such as diversity or overall composition (Haro et al., 

2016; Takagi et al., 2019). My studies suggest an enrichment in Aeromonas and Vibrio 

in male fish, and Shewanella in female fish. While the former two genera are known 

to include many fish pathogens, Shewanella species are often investigated as 

potential fish probiotics (García de La Banda et al., 2010; Sáenz de Rodrigáñez et al., 

2009). However, the potential sex-specific bacteria I identified are not overlapping in 

both generated datasets and therefore need further investigation in additional studies.  

There might not be any global differences in microbiota composition between sex, or 

the lack of sex-specific differences in microbiota might be rooted in different sampling 

timepoints, again associated with environmental changes in the fish facility. Another 

reason could be the limited detection depth of the applied 16S sequencing method. 

 

Taken together, the intestinal microbiome of male and female fish largely overlaps 

except for some specific bacterial strains. However, which strains are of particular 

importance need to be examined in additional studies. 
 

 

3.2 The intestinal microbiota during killifish aging 
 

Intestinal microbial communities undergo extensive changes during aging, both for 

model systems and also for humans, including a shift in composition and a decrease 

in alpha diversity (Biagi et al., 2016; Claesson, Jeffery, Conde, Power, O’connor, et 

al., 2012; Langille et al., 2013). In my work, I assessed the aging gut microbiota of the 

killifish from several angles – I profiled the temporal dynamics of stool microbiota, 

investigated the gut microbiota profiles from young and old male intestines and 

furthermore the intestinal sections of young and old, male and female killifish.  
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3.2.1 Stability aspects of killifish stool microbiota composition  
The longitudinal collection of stool samples revealed that the microbiota composition 

of killifish stool remains largely stable over time, in contrast to the control food 

samples, indicating that the food samples are more prone to environmental changes 

(Fig. 10). One possible reason for the variability of the food samples might include 

changing influences in the production process. This is most probably the case for the 

bloodworm food, as it is delivered by an external vendor - brine shrimp are produced 

inhouse and are therefore raised under very controlled conditions, although also here 

quality differences have been noted in the past. Another explanation could be that both 

the bloodworm food and the brine shrimp are still at very juvenile stages when being 

fed to the fish. It is well known for humans that the microbiota communities are 

fluctuating widely in the first developmental stages (Rodríguez et al., 2015), and 

juvenile zebrafish gut microbiota are more similar to the surrounding microbiota 

compared to adult zebrafish (Stephens et al., 2016). The large fluctuations between 

consecutive weeks could be explained by juvenile bloodworm and brine shrimp being 

less capable of selecting specific surrounding microbes, and therefore more directly 

mirroring environmental changes.  

 

The high variability of the food microbiota could potentially pose difficulties for fish gut 

microbiota experiments, as stable environmental conditions may not be guaranteed 

and food has a strong influence on the fish microbiome. While controlled conditions 

have their clear benefits in separating causal factors contributing to killifish gut 

microbiota, our specific setup provides an opportunity, as it reflects the actual real-life 

situation much better, both of non-laboratory wild animals and also humans, which do 

not adhere to strict diets but have highly changing and varying food input.  

 

Despite the overall stability of the microbiota composition, some genera showed a shift 

in abundance in the killifish stool samples over time – this was especially seen for 

Fusobacteria, foremost Cetobacterium, which increased in abundance after week 11. 

This bloom of Cetobacterium coincided with the timepoint of a strong decrease in 

alpha diversity levels from week 11 to week 12 (Fig. 11E). Notably, this was the case 

for both fish cohorts at the same chronological timepoint, indicating that an external 
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factor and not intrinsic aging contributed to the diversity drop. Surprisingly, the drop in 

diversity was not reflected in the food control samples, although I detected a very 

strong influence of bloodworm microbiota on the killifish stool samples. The time-

dependent shift in diversity might therefore be dependent on an unknown 

environmental factor other than the fish food, including the water microbiota. Another 

possibility is that other microbes than bacteria such as fungi or viruses, not detected 

by the chosen 16S amplicon sequencing approach, were emerging in the food 

samples – which in turn then could have influenced the stool microbiota composition. 

Cetobacterium is a known fish commensal which has been found in several marine 

and freshwater species (Egerton et al., 2018; Ramírez et al., 2018). It likely plays a 

role in Vitamin B12 production in fish (H. Sugita et al., 1991) and Cetobacterium 

abundance was shown to correlate with a shift in fish diet (Y. T. Hao et al., 2017). The 

selective bloom of Cetobacterium may have been caused due to low levels of Vitamin 

B12 in the fish food, resulting in fish specifically selecting for a Vitamin B12-producing 

bacterial species.  

With regards to the longitudinal stool collection study, it is important to note that the 

lifespan of the second cohort was considerably shorter than expected and observed 

in the first cohort (Fig. 8D). One possible reason could be that the observed drop in 

alpha diversity and subsequent shift in composition happened during a critical 

timeframe in fish life, resulting in several animals not surviving a sudden environmental 

change. On the other hand, the second cohort only comprised nine individuals and the 

lifespan data should not be overinterpreted.  

 

 

3.2.2 Diversity measures remain constant across killifish lifespan 
With regards to microbial diversity, I indeed observed lower alpha diversity levels for 

stool samples from 16-week-old fish compared to 6-week-old fish (Fig. 11D+E), 

comparable to the observations from our previously published data (Smith, Willemsen, 

Popkes et al., 2017). However, as the drop in diversity was observed across all 

samples between week 11 and week 12, comparing data before and after the diversity 

shift needs to be seen with caution. In addition, I did not observe lower alpha diversity 

levels in the other datasets I generated, neither in the stool samples nor in the whole 
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intestines or intestinal sections. The higher beta diversity levels we reported in 2017, 

which indicated higher inter-individual variability upon age, were not reflected in my 

new data. In contrast to our previous findings, I thus did not find any changed diversity 

measures between young and old intestinal or stool samples, at least not for the 

investigated timepoints and circumstances. Possible reasons for the incongruence 

might include environmental shifts influencing the microbiota composition, including 

the water and the food sources. In addition, the investigated timepoints for young and 

old fish samples do not entirely overlap between the published dataset from 2017 – 

the published data took 6-week-old and 16-week-old fish into consideration, while my 

intestinal datasets comprise fish of 8 weeks, 16 weeks or 20 weeks. It might be that 

there is a strong difference between 6-week-old and 8-week-old fish and thus no 

strong decrease in diversity to older fish is visible. Such a differences could not be 

observed in my longitudinal stool collection data – however as previously discussed, 

stool samples are not directly comparable to intestinal samples. Last, the underlying 

lifespans of the cohorts could have been different between the dataset from 2017 and 

my recent datasets, leading to potential differences in the aging process affecting 

microbiota composition. In support of this, I observed a trend for decreased alpha 

diversity levels in the dataset comparing young and old male whole intestines, where 

I analyzed 8-week-old and 20-week-old fish (Fig. 19C). As sampling intestines is an 

invasive procedure, statements about the underlying cohort lifespans are however not 

possible.  

 

 

3.2.3 Specific bacterial taxa are enriched in young and old intestines 
Although I did not detect differences in alpha or beta diversity in stool and gut samples 

between young and old fish, young and old samples clustered separately in the 

intestinal section dataset, indicating age-specific patterns in microbiota composition. 

In addition, a subsequent Random Forest classification resulted in an age prediction 

with an overall accuracy of 0.82. In line with this, DESeq2 differential abundance 

testing revealed several genera enriched in intestinal samples of young and old fish. 

Young intestines showed high levels of Acinetobacter, Bradyrhizobium and 

Hyphomicrobium, while old intestines were enriched for Vibrio, Shewanella, 
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Aeromonas and Streptococcus. As discussed before, the genera Aeromonas, Vibrio 

and Streptococcus contain potential pathogenic species, possibly indicating that 

killifish intestinal aging is accompanied with a shift in microbial composition towards 

more pathogenic species. The genus Shewanella in contrast comprises potential fish 

probiotic strains, however the exact strains could not be determined with the chosen 

16S amplicon sequencing method thus not allowing final statements. Young-

associated Bradyrhizobium are widespread in the environment and possess the ability 

to fix nitrogen and aromatic compounds (VanInsberghe et al., 2015). They are often 

found associated with fish (Khurana et al., 2020) and have been positively correlated 

with carbon metabolism in fish adipose tissue (Dvergedal et al., 2020).  

Hyphomicrobium are one-carbon compound utilizer with the ability to oxidize iron 

(Martineau et al., 2015). Residing in soils and water sources, they have also been 

frequently found associated with fish – in the filter microbiota, aquarium water, foregut 

or skin microbiota of aquarium-reared fish (McDonald et al., 2012; Mudarris & Austin, 

1988; Haruo Sugita et al., 2005). This might hint that Hyphomicrobium in the killifish 

derives from the circulating tank water system.  

Acinetobacter are also frequently found in fish intestines (Banerjee & Ray, 2017) – the 

genus comprises several opportunistic pathogens, however one study also found a 

potential probiotic strain that helped against a known fish pathogen (Bunnoy et al., 

2019). Again, 16S sequencing does not provide the necessary resolution to determine 

the exact strain in the killifish intestine.  

 

Taken together, the longitudinal stool collection study revealed that stool microbiota 

composition is fairly stable over time, with some timepoints of expansion of specific 

taxa. In terms of microbiota diversity, no differences could be detected between young 

and old killifish stool or gut microbiota, in contrast to our previous findings. 

Nevertheless, I found an enrichment in specific bacterial taxa in young and old age in 

killifish intestines. As the chosen 16S sequencing method has limited resolution, a final 

interpretation of the potential function of the young- and old-associated genera in the 

killifish intestine remains however unknown. One possibility to address this question 

would be conducting shotgun metagenomics on the samples, as this would allow both 
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to determine the species and also would provide insight into the function potential of 

the enriched bacteria.  

 
 
 

3.3 Prediction of remaining life based on microbiota composition  
 
The longitudinal collection of stool samples provides not only the possibility to track 

individual dynamics in microbiota composition over life, but moreover to build 

predictive models for both age and remaining life. That was only possible because 

stool sampling is a non-invasive procedure and thus the actual lifespan of each 

individual fish could be assessed. Indeed, a recent study has shown that application 

of neural networks on the microbiota composition of human stool samples can be used 

to predict host age. Based on the data the authors were able to construct a human 

microbiome clock with a mean absolute error of 5.91 years (Galkin et al., 2020).  

 

In our hands, the Random Forest regressor model could predict fish age, e.g. the 

collection week of the individual sample (r-value = 0.95, p-value < 0.001, slope = 0.9). 

However, testing the model on the bloodworm control samples revealed that most 

predictive power resulted from the underlying bloodworm microbial composition – 

meaning that age prediction was mainly reflecting the bloodworm food. However, not 

all predictive power could be explained by bloodworm controls, indicating a key role of 

either intrinsic fish compositional changes or non-bloodworm extrinsic influences in 

the prediction models. In the future, we will thus correct for the bloodworm component 

changes in microbiota composition and will explore the predictability from bloodworm- 

independent microbial features (work in progress).  

 

Besides fish age, we decided to investigate prediction of remaining life. We thus built 

a Random Forest regressor model to predict remaining life based on the longitudinal 

microbiota data. The predictive power for remaining life was weaker, but still present 

(r-value = 0.69, p-value < 0.001, slope = 0.26).  

Interestingly, we found that although the majority of predictive power again was driven 

by bloodworm food, some predictive power probably originated from different intrinsic 
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or extrinsic factors. To assess whether the non-bloodworm-originating predictive 

power stemmed from fish-intrinsic factors, we added individual fish IDs into the model. 

Notably, including individual fish IDs improved the predictive model, indicating that 

indeed fish-intrinsic microbial features played a role in the quality of the prediction 

models. Future work is needed to answer the question whether individual trajectories 

contribute more to predicting remaining life than global microbiome trajectories. The 

greater the individuality factor, the harder it will be to build broadly applicable prediction 

models. On the other hand, it might be that building the prediction models on several 

instead of single timepoints is a solution to address the individuality problem – possibly 

not the microbiota composition at a certain time per se is predictive for lifespan, but 

rather the variability over time or specific patterns of individuality. In the future, we will 

thus extend our models to incorporate several collection dates into training of the 

model.  

 

I showed that the data from my longitudinal collection of stool samples can be used to 

build prediction models of remaining fish life. At the same time some challenges still 

need to be addressed. First of all, most of the predictive power still arose from the 

underlying bloodworm microbiota composition, leaving the predictive models to not 

reveal fish-specific, but mainly food-related patterns.  

 

One possibility to approach this problem would be to include only microbial features 

that do not appear in food samples – this however leaves only a handful of microbes, 

too little for training of prediction models. Implementing advanced statistical models 

such as machine learning to infer intestinal-specific information from the stool 

microbiota composition, perhaps trained on the gut-stool-food sample types dataset, 

could be a future way to take into account the relative distribution of bacterial strains.  

Another option would be to repeat the longitudinal stool collection with a different 

feeding protocol, using autoclaved food pellets instead of live fish food with intrinsic 

microbial communities (Žák et al., 2020). This method would reduce the environmental 

microbiota factors and thus probably yield in stool samples more closely mirroring fish 

gut microbiota features and not food microbiota. Studies in this direction are ongoing 

in the lab.  
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An additional important fact to consider is the retrodictive nature of the built models for 

remaining life - even if several samples are collected in a longitudinal manner, the 

lifespan remains unknown until the individual fish dies. The goal of a transferable 

lifespan prediction model though would of course be to reliably forecast remaining life 

while the individuals are still alive. With respect to applicability and transferability, 

retrodiction and the food-dependency of the data are important factors that need to be 

addressed in the future. 
 
So far, we focused on using microbiota composition as the determining variables to 

build our predictive models. However, also including diversity measures or individual 

variability over time could be interesting microbiota-related aspects to train the 

models, as diversity measures and variability are frequently reported to change upon 

aging (Claesson et al., 2011; Claesson et al., 2012). 
 
 
 

3.4 Compartmentalization of the killifish intestine 
 
The digestive tract plays a key role for organismal health, ensuring nutrient supply and 

being involved in immune system homeostasis (Chow et al., 2010; Clemente et al., 

2012; Gill et al., 2006b). The intestinal tracts of most animals show clear 

compartmentalization into subregions with unique biological functions, optimizing the 

digestive process (Karasov et al., 2011; Mowat & Agace, 2014).  

As expected from the literature, I found that also the killifish intestine is structured into 

compartments with different morphological and molecular features. The strongest 

differences were detected between the anterior sections (S1, S2, S3) and the posterior 

section (S4), which is in line with the macro-anatomical differences.  

As mentioned before, 20% of fish species do not possess a real stomach and are thus 

agastric (Wilson & Castro, 2010), including zebrafish (Z. Wang et al., 2010). Until now, 

there is no clear evidence to which of those groups the turquoise killifish can be 

assigned. Based on my section dataset, I was therefore wondering whether I could 

find stomach-specific expression patterns for different sections. Unfortunately, I could 

not make a final statement based on my findings, as no stomach-specific proteins such 
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as pepsin-like proteins, gastrin or H+-ATPases were annotated in the proteomics 

datasets. One possibility to address this still open question would be to measure the 

pH of the killifish intestinal sections in vivo, as gastric proton pumps ensure a low pH. 

This could however be experimentally challenging given the small size of the killifish 

intestine. Another possibility would include immunostainings on transverse sections of 

the killifish gut, targeting stomach-specific proteins such as gastrins, or the generation 

of transgenic killifish reporter lines.  
  

Considering the global section differences, the functional analysis on molecular level 

showed an enrichment for metabolic processes and suggested a higher protein 

biosynthesis in the anterior killifish sections. The high metabolic activity might indicate 

that several digestive processes take place, which is in line with previous studies 

showing that the majority of digestion occurs in the anterior intestine in stomachless 

fish (Le et al., 2019). Proteins enriched in the killifish anterior sections include FABP1 

and FABP2, both key proteins involved in the lipid digestion and absorption process. 

This would be congruent with the lipid metabolism of the mammalian intestine, where 

lipids are reabsorbed mainly in the small intestine (Ko et al., 2020). I further found an 

enrichment of goblet cells in the anterior sections on histological level, indicating 

elevated mucus production. Mucin-producing goblet cells play a key role in intestinal 

barrier function including the protection of the epithelial intestinal layer from digestive 

enzymes (Birchenough et al., 2015), supporting the hypothesis that the majority of 

digestive processes occur in the anterior killifish intestine. It is important to note 

however that mammals show an inverse pattern in mucus density with a thicker mucus 

layer in the colon tissue, serving as a protection layer for the high-density microbiota.  

 

The posterior section in contrast was characterized by transport processes, including 

vesicular transport and lysosomal activity. This is in line with previous studies 

hypothesizing that specialized, lysosome-enriched vacuolated enterocytes (LREs) 

can aid in protein uptake and enhance protein digestion, which is often impaired in 

stomachless fish due to low protease activity (Rombout et al., 1985). Interestingly, one 

of the key components for the endocytotic machinery essential for LRE-function is 

Cubilin (CUBN), a protein that is highly enriched for the posterior section in my 
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proteomics data. The posterior killifish intestine could thus be an important region 

specialized in protein uptake.  

Other proteins with increased expression in the posterior killifish section include 

FABP6 and ENPEP, proteins enriched in the midgut of zebrafish or the distal small 

intestine in mice (Lickwar et al., 2017). I moreover found LAMP1 to be significantly 

enriched in the posterior killifish section - LAMP-genes, in particular LAMP2, have 

been associated with mammalian colon tissue and the zebrafish hindgut (Lickwar et 

al., 2017). Other specialized functions of the mammalian colon or the zebrafish hindgut 

include water retention, shown by a high expression of aquaporins. However, no 

aquaporins were annotated in the proteomics datasets – it was thus not possible to 

check the spatial expression patterns of potential water retention molecules. A 

different analysis approach, also considering proteins that were not measured in all 

samples, could shed light on the question whether these proteins are expressed only 

in the posterior killifish intestine. 

 
Taken together, I found that the killifish intestine shows clear compartmentalization on 

the molecular level. The detected protein signature of the killifish posterior section 

interestingly combined features of both the mammalian distal small intestine and 

colon, while the anterior killifish sections showed a clear small intestine-like signature. 

The killifish intestine thus shares important elements with mammals, implying that the 

killifish is a well-suited model for intestinal research, at least to some extent.  

 

The different intestinal compartments provide highly specialized niches for microbes, 

resulting in spatial organization of microbial communities for several animals including 

humans (Sheth et al., 2019; Zoetendal et al., 2012). In contrast to observations in other 

fish (Gajardo et al., 2016; Kokou et al., 2019), I did not find strong differences in 

microbiota composition along the killifish intestinal tract (Fig. 31A). One possible 

explanation is that the killifish intestine is very short compared to the fish where 

microbiota differences have been reported, hence microbiota can quickly move 

between the different killifish intestinal sections. Another explanation could be that the 

resolution level of the chosen 16S sequencing approach is not high enough – shotgun 
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metagenomics could here be a better approach, enabling the detection of bacterial 

species and strains and moreover also other microorganisms such as viruses.  

 

I lastly found that both primary and secondary bile acid levels decreased along the 

intestinal tract. This could suggest a constant uptake of bile acids along the intestinal 

tract, in contrast to mammals where the majority of bile salt reabsorption occurs in the 

distal small intestine (De Aguiar Vallim et al., 2013), or just be a result of diffusion 

processes as bile is secreted to the gut lumen in the anterior part of the intestine. 

Based on measurements of bile acid uptake in a killifish species, Honkanen & Patton 

already hypothesized in 1987 that passive reabsorption of bile salts along the whole 

intestinal tract is the main factor of bile salt resorption in fish. Moreover, similar levels 

of primary and secondary bile acids also imply that bacterial conversion from primary 

to secondary bile salts take place everywhere in the killifish intestine and is not 

“overrepresented” in specific regions, like in the mammalian colon (Ridlon et al., 2006). 

This is further supported by the fact that I did not find any global difference in 

microbiota composition in the four sections.  

 

 

3.5 The killifish intestine during age and sex 
 

I already discussed the age- and sex-specific patterns with regards to microbiota 

composition. However, several studies reported strong differences with regards to sex 

and age effects on the host side (Austad & Fischer, 2016; López-Otín et al., 2013; 

Regan et al., 2016). 

 

3.5.1 The killifish intestine shows age-specific morphological and 

molecular features 
In line with previously reported age differences, I found several striking phenotypes 

with regards to killifish intestinal aging, both on a morphological and a molecular level. 

Interestingly, IGF2BP3 was highly abundant in the intestinal samples from young fish. 

IGF2BP3 binds to the insulin-like growth factor and is implicated in several functions 
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within cellular metabolism, such as cell migration, proliferation and differentiation (Bell 

& Zamudio, 2012). IGF2BP3 levels were also shown to decline during zebrafish aging 

(Arslan-Ergul & Adams, 2014). Another protein enriched in the young fish samples 

was glycine amidinotransferase (GATM), an enzyme producing the direct precursor of 

creatine. Creatine has important roles in muscle energy metabolism, and several 

studies have reported decreased levels of muscle creatine in aged individuals 

(McCully et al., 1991; S. A. Smith et al., 1998). Interestingly, several studies suggest 

that creatine-supplementation in aged individuals may ameliorate common age-

related features such as decreased muscle strength and lower fatigue resistance 

(Rawson et al., 1999; Stout et al., 2007). Both the enrichment of IGF2BP3 and GATM 

indicate active cell metabolism in the young killifish intestine. In line with this, I found 

pyruvic acid as a key intermediate metabolite from metabolic pathways being enriched 

in young samples – and GO-term enrichment analysis resulted in several terms related 

to active cell processes, including translation and metabolism terms. 

 

Proteins enriched in old fish intestines included Clusterin (CLU), a protein potentially 

involved in apoptosis. Interestingly, clusterin has been reported as a senescence 

biomarker (Gonos et al., 1998) and is involved in many age-related pathologies such 

as neurodegenerative diseases and cancer (Foster et al., 2019; Koltai, 2014). The 

elevated CLU levels in the old gut sections thus might indicate increased senescence 

in the old killifish intestine. Moreover, the metabolomic analysis revealed elevated 

levels of sphingomyelins upon killifish aging. Sphingomyelins belong to the class of 

sphingolipids, which are complex lipids ensuring cell membrane fluidity and which are 

involved in cell signaling processes (MacEyka & Spiegel, 2014). Notably, 

accumulation of sphingomyelins in later life has also been shown in C. elegans (Gao 

et al., 2017) and human plasma and serum metabolomics (Jové et al., 2017; Mielke 

et al., 2015; Yu et al., 2012). Other studies in humans did not report a difference in 

sphingomyelin levels upon aging (Kawanishi et al., 2018) and observed an increased 

risk for diabetes and neurological diseases for low sphingomyelin levels (Gonzalez‐

Covarrubias et al., 2013; Han et al., 2011). Increased incorporation of sphingomyelins 

into cell membranes upon aging might also indicate changed sphingomyelin 

metabolism as an adaptation to oxidative stress (Clement et al., 2009; Yu et al., 2012).  
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In addition, I observed elevated levels of 4-Hydroxyproline in intestinal samples of old 

fish. 4-Hydroxyproline is a major component of collagen and is responsible for the 

stability of the collagen fibers. An increased level of 4-Hydroxyproline upon aging could 

indicate either a higher collagen abundance in old intestinal tissue, or a change in 

collagen substructure with an increased proportion of proline hydroxylation. 

Remarkably, quantification of the SRFG histological staining revealed an increase in 

extracellular matrix collagen levels for all the intestinal sections upon old age, 

confirming the hypothesis that the intestinal extracellular matrix is restructured during 

the aging process. In addition, enrichment analysis of the proteins differentially 

expressed in old intestines resulted in the term collagen-containing ECM.  

 

With regards to structural changes in the aging intestine, I moreover found an increase 

in muscle thickness in samples from old fish. Several studies reported an increase in 

cell wall thickening upon aging in the vascular system (Lacolley et al., 2018) or in 

diseases (X. Wang et al., 2020; Zwingenberger et al., 2010). It has moreover been 

shown that the signaling and contractibility of intestinal smooth muscles is impaired in 

aging (Saffrey, 2014).  

  

It is important to note that also the intestinal diameter increased with age – which 

makes sense, as the killifish continues to grow along its life. One might speculate that 

the increase in muscle thickness is thus a direct, passive consequence of the increase 

in intestinal diameter. However, correlation analysis between muscle thickness and 

total section diameter did not show a significant correlation (Pearson correlation,  

r = 0.264, p-value = 0.138), indicating that other factors play a role in the increased 

muscular layer thickness in old age. Based on the results, it is not possible to make a 

final conclusion about the extent of passive, age-related intestinal growth on muscular 

thickness – to address this question, one would have to investigate young and old fish 

with a size-matched intestine. Notably however, the GO-term and pathway enrichment 

analyses resulted in terms associated with muscular function and metabolism. 

Together with the increase in extracellular matrix collagen upon aging, I hypothesize 

that the increase in muscle thickness contributes to a higher stiffness of the aging 

killifish intestine, impeding normal intestinal functions.  
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Taken together, I found evidence that the killifish intestine shows classical aging 

phenotypes such as increased senescence and higher sphingomyelin levels – and 

moreover restructuring of the extracellular matrix upon aging, especially concerning 

increased collagen levels in old age, potentially impeding the normal intestinal 

function. 

 

 

3.5.2 The killifish intestine shows sex-specific molecular patterns 
Next to biological age, sex is a major influencing factor for host physiology - and 

interestingly, several studies have shown sex-specific aging phenotypes (Austad & 

Fischer, 2016; Regan et al., 2016). Structural sex differences in the human 

gastrointestinal tract include the intestinal length (Saunders et al., 1996), prevalence 

of gut-associated diseases (Lovell & Ford, 2012) and also the absorption of specific 

nutrients (Johnson et al., 1992). In line with this, my results show clear differences 

between male and female intestinal samples on a molecular level. 

 

The female intestinal samples were highly enriched for Vitellogenin 1 (OL-VIT1), which 

is an egg-yolk protein precursor only produced by female individuals and can therefore 

serve as a proof of concept. Other proteins with high abundance levels in female fish 

intestines include Nfu_g_1_011468 and ECM1. Nfu_g_1_011468 is predicted to be a 

lipocalin-like protein. Lipocalin proteins have various functions, including an important 

role in innate immunity, tumorigenesis and iron homeostasis (Lu et al., 2019). 

Interestingly, Lipocalin-2 was shown to act in a highly sex-specific manner (Chella 

Krishnan et al., 2019). It moreover has been connected with adipocytes and obesity – 

one study showed that Lipocalin-2 has an anti-inflammatory effect on adipocytes 

resulting in browning of the fat tissue, and thus proposed Lipocalin-2 as a potential 

anti-obesogenic molecule (Meyers et al., 2020). The high levels of Lipocalin-like 

proteins in female intestines might be linked to the increased levels of lipids observed 

in the metabolomics datasets - compared to males, female intestines showed a higher 

abundance of FFAs, lysoPCs and DAGs. Gender differences in lipid metabolism are 

indeed well-known (Baars et al., 2018; Mittendorfer, 2005).  
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ECM1 is an extracellular matrix protein which is involved in several important 

physiological processes, including macrophage polarization, cancer biology and bone 

formation (Deckers et al., 2001; Zhang et al., 2020). It also interacts with several 

structural proteins, influencing skin homeostasis. Interestingly, high levels of ECM1 

have been found to prevent fibrogenesis in liver tissue (Fan et al., 2019).  

 

This is in line with the findings for the intestinal sections of male fish, where the GO-

term and pathway enrichment analyses resulted in several fibrinogen- and 

coagulation-related terms. In addition, male intestines show high levels of Hemopexin 

(HPX). HPX is a glycoprotein with a very high binding affinity to heme, and thus 

functions as a heme scavenger and protects against oxidative stress and heme toxicity 

(Takagi et al., 2012; Tolosano & Altruda, 2002). As excessive heme in the blood 

contributes to coagulation (Sparkenbaugh et al., 2015), the high HPX levels in male 

intestines might be an approach to limit male-specific increased coagulation. In total, 

the data suggests that the fibrinogen-coagulation-cascade shows sex-specific 

patterns in the killifish intestine. 

 

Among the proteins with the highest enrichment in males are two apolipoproteins, 

apolipoprotein B (APOB) and apolipoprotein H (APOH). Apolipoproteins bind lipids 

and form lipoproteins to transport lipids in the vascular system and other body fluids 

(Von Zychlinski et al., 2014). APOB is a primary constituent of chylomicrons and LDL-

particles and has been correlated with an increased risk for vascular diseases such 

as atherosclerosis (Sniderman et al., 2010). Although named to be an apolipoprotein, 

APOH in contrast is not a major component of lipoproteins but involved in the 

agglutination of platelets, where it has anti-coagulation effects (Nimpf et al., 1987) – 

again supporting the hypothesis of sex-specific coagulation phenotypes. The high 

levels of APOH in male intestines could therefore also act as a compensatory 

mechanism to the high fibrinogen levels in the male intestines. In line with the male-

specific upregulation of apolipoproteins, GO-term and pathway enrichment analyses 

resulted in several lipoprotein and lipid-related terms enriched in male intestines. 

Another interesting connection to lipoproteins are the high male-specific Taurine levels 

I found in the metabolomic datasets. Taurine is an amino sulfonic acid which is 
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distributed widely among different tissues. It is important for bile acid metabolism, as 

it is conjugated to bile acids in the liver to form bile salts (Russell, 2003). Taurine 

moreover plays an essential role in cardiovascular function, the muscular system and 

has an antioxidant function (Jong et al., 2012; Warskulat et al., 2004; Xu et al., 2008). 

Interestingly, Taurine has also been reported to decrease secretion of APOB-100 

(Yanagita et al., 2008) – the high Taurine levels might therefore be another 

compensatory mechanism for the high APOB levels observed in the male intestines.  

 
I moreover found increased levels of secretagogin (SCGN) and 27-

Dihydroxycholesterol in the male samples. SCGN is a protein highly expressed in the 

brain, pancreas and the gastrointestinal tract. It is involved in exocytotic processes 

and has been connected to secretion of several hormones in different tissues (Qin et 

al., 2020). The high levels of SCGN in killifish male intestines might thus be related to 

sex hormone levels. 27-Dihydroxycholesterol is a cholesterol oxidation product with 

pro-inflammatory properties. It is reported to be involved in gastrointestinal and 

neurodegenerative diseases, as well as in cancer biology (Willinger, 2019). One 

intriguing study found that 27-Dihydroxycholesterol induced gut microbiota 

perturbations, which negatively impacted SCFA levels and promoted inflammation and 

intestinal barrier failure (Y. Wang et al., 2020). Male intestines could therefore show 

more inflammation or a weaker gut barrier – indeed, GO-term and pathway enrichment 

indicated immunological alterations in the male killifish intestine.  
 

One last interesting aspect are the increased sex differences I observed upon aging, 

both on metabolite as well as protein level (Fig. 43). This might appear counterintuitive, 

as aging in humans is associated with a loss of sex hormones (Horstman et al., 2012)  

and thus converging of male and female molecular signatures could be assumed. In 

contrast, studies in flies suggest a female-specific aging phenotype (Regan et al., 

2016) and also intestine-related diseases show sex-specific prevalence (Lovell & 

Ford, 2012), indicating that intestinal aging might have sex-specific patterns. However, 

there are no convincing studies specifically addressing molecular sex differences with 

age and thus a final conclusion is still pending.  
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Taken together, my data suggest that the fibrinogen-coagulation-cascade and 

lipid/lipoprotein metabolism show sex-specific patterns in the killifish intestine – and 

that the molecular differences in sex increase upon aging.  

 

 

3.6 Correlations between metabolites and microbiota 
 

The multi-omics datasets I generated are based on the same individual samples, 

including information about the morphological and molecular host side as well as on 

the microbial side, opening the unique opportunity to draw correlations between single 

features of the datasets. As a starting point, I focused on using linear regression 

analysis between the annotated metabolites and the most prevalent genera, which 

enabled me to find several strong correlations.  

 

Of particular interest was the negative correlation between 4-Hydroxyproline and 

Hyphomicrobium, implying that high levels of 4-Hydroxyproline correlate with low 

levels of Hyphomicrobium. As discussed before, 4-Hydroxyproline is a major 

component of collagen structures, and I found strong evidence for a changed collagen 

metabolism upon killifish intestinal aging. Notably, this goes in line with the DESeq2 

differential abundance testing, which resulted in Hyphomicrobium as a young-

associated genus. As discussed earlier, Hyphomicrobium are one-compound carbon 

utilizer with the ability to oxidize iron (Martineau et al., 2015). A connection between 

Hyphomicrobium and collagen metabolism has so far not been reported - 

Hyphomicrobium could be an interesting candidate for further studies related to 

investigating changed collagen metabolism upon aging.  

 

In addition, I found a positive correlation between an unknown genus from the 

Rhizobiaceae family and two bile acids, the primary acid Taurocholic acid and the 

secondary bile acid 7-oxo-Taurodeoxycholic. The data thus indicated that the 

unknown genus might be involved in bile acid metabolism processes. Members of the 

Rhizobiaceae family are particularly known for their association with plants, where 
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they can promote plant growth but also act as plant pathogens (Poole et al., 2018), 

and have been found several times in fish intestines (Sullam et al., 2012; Wei et al., 

2018). Interestingly, a zebrafish study investigating a gluten-rich, plant-based diet 

found increased levels of Rhizobiacea, among others, and a functional enrichment in 

bile acid metabolism (Koo et al., 2017). However, a convincing direct connection 

between bile acid metabolism and Rhizobiacea has so far not been reported to my 

knowledge.  

 

Future work will be needed to expand the preliminary correlation analyses to the other 

multi-omics datasets, including proteomics data and also the non-annotated 

metabolites. As one important aspect we will improve the statistical approach by 

implementing Bayesian statistics, allowing us to better test hypotheses generated from 

the multi-omics dataset.  

Lastly, vast parts of the generated metabolomic data consists of non-identified 

metabolites. As an encompassing manual annotation of all metabolites is a big effort, 

we might use correlation analyses to limit the metabolites to a manageable number.  

Annotation of more metabolites would open the possibility to integrate metabolites and 

proteins in metabolic networks, to gain even more functional insight into the data and 

potentially detect novel aging- or sex-related pathways.  
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3.7 Future perspectives 
 

While I have uncovered exciting molecular and morphological changes and profiled 

the spatiotemporal dynamics in the killifish intestine, further work is needed to confirm 

my findings and further improve the understanding of spatiotemporal changes in the 

killifish intestines.  

 

The longitudinal stool collection provided first insights into the microbiota dynamics of 

individual fish over life and excitingly enabled building first prediction models for 

remaining fish lifespan. The analysis was impacted by the fact that bloodworm-derived 

food microbiota had a great contribution on fish stool microbial composition. Ongoing 

work in our lab is thus focused on repeating the longitudinal stool collection on fish 

raised with sterile food pellets, to possibly obtain stool microbiota profiles reflecting 

more the killifish intestinal microbiota. Such a dataset would not only allow to again 

profile the age-related intestinal microbiota changes without the interfering food 

microbiota, but moreover help with building the prediction models for age and 

remaining life. Once the new prediction models are set up, the models need to be 

tested on additional cohorts to validate the applicability of our findings. In the long 

term, the prediction models could result in bacterial biomarkers for aging. Bacterial 

candidates identified should also be extracted from the killifish gut, cultivated and then 

tested as potential lifespan-extending factors by providing them to the killifish at 

different life stages.  

Importantly, we aim to take our findings to a higher level by also assessing longitudinal 

microbiota changes in mammals such as mice to build prediction models for age and 

remaining life. In the long term, we hope to find functional patterns that can deepen 

our understanding of the link between intestinal microbiota and human aging.  

 

In this thesis, I further set out to explore whether stool samples reflect intestinal 

microbial features and thus can be used as a non-invasive proxy for gut microbiota. 

While I found shared features of stool and gut with regards to microbiota composition, 

it will be interesting to investigate not only the presence/absence of microbial species 

but expanding the analysis taking into consideration relative abundances. Including 
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relative abundances might result in a more detailed picture of shared microbial 

features, and moreover could improve the outcome of analyses which aim to identify 

gut-related features from stool samples.  

In addition, applying shotgun metagenomics on stool and gut samples would allow a 

finer resolution with the determination of bacterial species and strains, and moreover 

would provide insight into the functional capacities of microbes shared between stool 

and intestinal samples. It would moreover be interesting to use shotgun metagenomics 

to challenge my finding of section-unspecific microbial communities along the killifish 

intestinal tract. Perhaps this could lead to detecting section-specific differences on 

species level and could moreover reveal changed functional capacities of possibly 

existing microbial niches. First insights into the functional profiles of the intestinal 

section microbiota and thus their interaction with the host environment could already 

be revealed by applying metaproteomic analysis on the already generated proteomic 

dataset by using the imetalab platform (Liao et al., 2018). 

Utilizing shotgun metagenomics in the future holds another exciting advantage – as 

the whole genetic material is analyzed and no prior amplification of a specific bacterial 

gene is performed, shotgun metagenomics provides a unique picture of the 

interconnected microbial communities, including not only information about bacteria 

but also about fungi, viruses and protists. 

 

In my thesis, I last focused on profiling age- and sex-specific aspects of the killifish 

intestine on a detailed level, with a particular focus on the host side. I found evidence 

on both molecular and morphological level for an age-associated accumulation of 

collagen in the intestine. To determine whether this collagen increase is associated 

with fibrotic phenotypes, we have to perform additional experiments. While mechanical 

testing of stiffness has been established for mammals (Stewart et al., 2018), this might 

be challenging in killifish due to the small intestine size. We will therefore check 

intestinal inflammation markers with qPCR, as fibrosis usually results from 

inflammation processes (Wynn, 2008). If we are able to confirm the intestinal age-

related fibrosis, it will be interesting to explore whether we can find a way to eliminate 

or ameliorate with fibrotic aging phenotype, and whether lower intestinal fibrosis would 

extend killifish lifespan. Possibilities would include the use of anti-fibrotic drugs, for 
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example targeting TGF-b (Györfi et al., 2018), or genetic manipulation of key fibrosis-

related pathways, as recently shown to be effective in lung fibrosis in mice (Rehan et 

al., 2021).  

 

The multi-omics dataset already revealed potential age-related pathways in the 

intestine. Future analyses including the additional annotation of metabolites will most 

likely uncover even more intestinal processes linked to aging. To gain mechanistic 

insights and set the foundation for potential anti-aging and lifespan extending 

treatments, we would like to directly target those pathways by supplementation of 

specific compounds or genetic interventions targeting key components of identified 

pathways. Ultimately, we hope to extend our findings to mammals by extending our 

results to mice or even humans.  
 
 
 
 
  



 125 

 
 
 
 
 

Chapter 4  
 

Methods 
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4.1 Killifish husbandry and sample-preparation 
 

4.1.1 Killifish husbandry and lifespan assessment  
Turquoise killifish were individually housed from week 4 post-hatching in 2.8 L tanks. 

The tanks were connected to a water recirculation system with a light:dark cycle of 

12h:12h. The water temperature was kept at 28◦C. Fish were fed with bloodworm 

larvae and brine shrimp nauplii twice a day during the week, and once a day during 

the weekend. Feeding took place at the same time every day. For lifespan 

assessment, the fish tanks were checked daily for dead fish. Dead fish were stored in 

95% ethanol. Lifespan analysis was carried out using the survival and survminer 

packages in R (Alboukadel Kassambara et al., 2020; Therneau, 2020).  

 

 

4.1.2 Intestinal tissue extraction 
Fish were sacrificed with 1.5 g/L Tricaine solution, the intestine was extracted and cut, 

shortly washed in 1x PBS-solution and then snap-frozen in liquid nitrogen. Young fish 

intestinal samples were taken at 8 weeks, old fish samples were taken at 16 or 20 

weeks.  

 

 

4.1.3 Collection of stool and food samples 
For collection of stool samples, recently fed fish were shortly “washed” in autoclaved 

tank water and then transferred into single 0.8 L tanks containing 0.5 L autoclaved 

tank water. Stool was collected every hour and frozen in RNAlater (Thermo Fisher) at 

−80◦C. After 6 h, the fish were transferred back to the main system. For collection of 

food samples, brine shrimp and bloodworm were either sampled in separate tubes or 

mixed together in one tube (according to the feeding routine at the given timepoint) 

and stored in RNAlater at −80◦C. 
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4.2 Molecular methods 
 

4.2.1 Simultaneous extraction of metabolites, proteins and DNA 
To simultaneously extract DNA, protein and metabolites of intestinal fish sections, I 

adapted a protocol from Valledor et al. (2014). The frozen samples were pulverized 

by bead-beating with two steel beads for 1 min at 30 Hz. 800 µl extraction buffer 

(Methanol:Chloroform:H2O in a ratio of 2.5:1:0.5, including standards: AA-mix (25 µL, 

MSK-A2-1.2, Eurisotop), 18:1-d7 LysoPC, 15:0-18:1-d7-PC, 15:0-18:1-d7-15:0 TG  

(3 µL each, SigmaAldrich)) was added and samples were vortexed shortly, followed 

by an incubation at 4°C and centrifugation at 800 rpm for 45 minutes. Afterwards, the 

beads were removed with a magnet and the appropriate volume for protein extraction 

was taken off into a new tube. Both tubes were then centrifuged for 1 h at 20.000 x g 

at 4°C. The supernatants were transferred and into a new tube, the pellets were dried 

in a SpeedVac for 20 mins and then stored at -80°C. 600 µl from the combined 

supernatant was pipetted into a new tube and 300 µl of each, H2O and Chloroform, 

was added. The samples were shaken for 15 mins at 4°C, then centrifuged for 15 mins 

at 10.000 x g at 4°C. Next, the aqueous upper phase was carefully transferred into a 

new tube, the interphase generously discarded and the lower lipid phase was pipetted 

into a fresh tube. The aqueous phase was dried in a SpeedVac for 3h and both phases 

were stored at -20°C.  

 

 

4.2.2 DNA isolation after multi-omics extraction 
To isolate DNA from the pellet after metabolite extraction, 0.1 g of 0.1 mm 

zirconia/silica beads (Carl Roth) and 300 µl of DNA extraction buffer (80 mM EDTA, 

200 mM Tris (pH 8.0) and 0.1M NaCl in PBS) were added to the pellets. The samples 

were lysed for 2 x 3 min at 30 Hz in a TissueLyser (Qiagen) and then centrifuged at 

8.000 x g for 5 minutes at 15°C. 78 µl of the supernatant was transferred into PCR 

tubes containing 2 µl of RNAse A (Qiagen), the rest of the supernatant was stored at 

-20°C. The PCR-tube was shortly vortexed and incubated for 30 mins at 55°C. 

Afterwards, 10 µl Proteinase K (Thermo Fischer) and 10 µl 20% SDS were added, the 
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samples again shortly vortexed and then incubated for 1 h at 56°C. Next, 40 µl of C2 

solution (Qiagen) were added to the samples and the samples were shortly mixed and 

incubated for 5 min at 4°C. 100 µl of supernatant was then transferred to a new PCR 

tube containing 35 µl of C3 (Qiagen) solution. Again, the samples were shortly mixed 

and incubated for 5 min at 4°C. 100 µl of the supernatant was transferred to a new 

PCR tube containing 100 µl pre-warmed SeraMag beads, with short mixing. The 

samples were incubated for 10 min at RT and then put on a magnet. After 5 min, the 

beads were drawn to the magnet and the supernatant was discarded. The beads were 

washed 2x with 150 µl of fresh 80% Ethanol and then air-dried for 5-10 min. The dried 

bead pellet was finally resuspended in 20 µl of nuclease free water.  

 

 

4.2.3 DNA isolation from fresh stool, intestinal and food samples 
To isolate DNA from fresh tissue samples, the protocol from 4.2.2 was followed except 

that 15-20 1.4 mm steel beads (Carl Roth) were added next to the zirconia/silica 

beads. Elution volumes also differed, with 17 µl (stool samples), 20 µl (food samples) 

and 30 µl (intestinal samples).  

 

4.2.4 Library preparation for 16S-sequencing  

Isolated DNA was used in a two-step PCR designed to target either the variable V3/V4 

region of the 16S rRNA (intestinal, stool and food samples of result part 2 and 3) or to 

target the variable V4 region (intestinal and food samples of result part 1). In the first 

PCR, the primers consisted of V3/V4 or V4 gene-specific sequences plus Illumina 

overhang adaptor sequences to amplify the 16S V3V4 or V4 gene region. In the 

second PCR, individual barcodes and Illumina sequencing adapters were attached to 

the amplicons. PCR reactions were run in triplicate reactions to reduce PCR bias. All 

PCR reactions were prepared with KAPA HiFi Hotstart ReadyMix according to Table 

2 and Table 5.  
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The first PCR reaction was carried out as stated in the Table 3 below, with 30/26 cycles 

of denaturation, annealing and elongation (30 cycles for intestinal samples, 26 cycles 

for food and stool samples). The used DNA input was varying between sample type, 

with 1 ng for stool samples, 5 ng for food samples and 30 ng for intestinal samples. 

Triplicate reactions were pooled and cleaned using a bead-based approach as 

described before. The second PCR reaction was carried out with the same cycling 

conditions as stated above, but annealing cycles were reduced from 30/26 cycles to 8 

cycles (Table 6). The PCR products of the second step PCR were cleaned as before 

and ran on a 2% agarose gel to confirm specific products. Cleaned DNA was 

quantified with the Qubit 2.0 fluorometer (Thermo Fisher, DNA HS assay kit) and 

pooled in equimolar ratios. The quality of the libraries was assessed via TapeStation 

analysis (Agilent, D1000 tape). 

Table 2: PCR reaction composition for 16S rRNA library preparation - Step 1 

Reagent Volume (µl) Final concentration 

KAPA HiFi Hotstart ReadyMix 12.5 1x 

Template DNA 1-10.5  

Primer fw + rv (Table 4) 2 5 µM 

ddH2O up to 25  
 

 
Table 3: PCR program for 16S rRNA library preparation - Step 1 

Temperature [°C] Time [min:sec] Action Cycle number 

98 3:00 Denaturation 1 

98 0:30 Denaturation  

26/30 61 0:30 Annealing 

72 0:30 Elongation 

72 5:00 Final elongation 1 
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Table 4: Primers used for 16S rRNA library preparation – Step 1 

Primer  Primer sequence 5’ to 3’ 

V3V4_341_fw ACACTCTTTCCCTACACGACGCTCTTCCGATCTCCTACGGGNGGCWGCAG 

V3V4_805_rv GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGACTACHVGGGTATCTAATCC 

V4_515_fw ACACTCTTTCCCTACACGACGCTCTTCCGATCTGTGYCAGCMGCCGCGGTAA 

V4_806_rv GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGACTACNVGGGTWTCTAAT 

 
 

Table 5: PCR reaction composition for 16S rRNA library preparation - Step 2 

Reagent Volume (µl) Stock concentration 

KAPA HiFi Hotstart ReadyMix 12.5 2x 

PCR 1 elution 7.5  

Primer fw +rv (Supplementary 

Table 1) 

5 2 µM  

 

Table 6: PCR program for 16S rRNA library preparation - Step 2 

Temperature [°C] Time [min:sec] Action Cycle number 

98 3:00 Denaturation 1 

98 0:30 Denaturation  

8 61 0:30 Annealing 

72 0:30 Elongation 

72 5:00 Final elongation 1 
 

 

2.2.5 Illumina sequencing 

The combined libraries were sequenced on the Illumina HiSeq platform with 2 x 250bp 

paired-end reads (part 1) or on the Illumina MiSeq platform with 2 x 300bp paired-end 

reads (part 2 and 3). Sequencing was conducted by Admera Health, LLC.  
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4.2.6 Protein extraction and peptide preparation for proteomics 
Proteins from frozen pellets were extracted with a guanidine chloride protocol. 20 µl 

of lysis buffer (6M Guanidinium chloride, 2.5 mM Tris(2-carboxyethyl)phosphin, 10 mM 

chloroacetamide, 100 mM Tris-HCl) was added to the pellet, depending on the pellet 

size. The samples were heated for 10 min at 95°C and then lysated with a Bioruptor 

for 10 cycles of 30 s sonication and 30 s break on high performance. The samples 

were then centrifuged at 20.000 x g for 20 minutes. The supernatant was transferred 

into a new tube and the protein concentration was measured via Nanodrop.  

 

To prepare peptides, 300 µg of protein per sample was digested with 1:200 Trypsin 

(w/w) at 37°C overnight. The digest was then acidified with formic acid (FA) to a final 

concentration of 1% to stop tryptic digest. The samples were then centrifuged at 

20.000 x g for 10 minutes to pellet any remaining debris.  

 

The peptides were then cleaned with a StageTip protocol (C18-SD tips), including a 

series of wetting, equilibrating, washing and eluting steps. The C18-SD tips were first 

washed with 200 µl methanol by centrifugation for 1 minute, followed by a wash with 

200 µl 40% acetonitrile (ACN)/0.1% FA by centrifugation for 1 minute. The tips were 

then equilibrated with 200 µl 0.1% FA by centrifuging for 1 minute. The digests were 

then loaded onto the tips and centrifuged for 2 minutes to ensure proper loading. The 

tips were washed twice with 200 µl 0.1% FA, followed by elution of the peptides with 

100 µl 40% ACN/0.1% FA by centrifuging for 4 minutes at 1500 x g. The eluates were 

dried in a Speed-Vac at 45°C for 45 minutes, then resuspended in 0.1% FA and 

quantified with NanoDrop.  

 

 

4.2.7 Proteomics 
Proteomics was conducted by the MPI Proteomics core facility: 

 

Four micro grams of the eluted peptides were dried and reconstituted in 9 µL of 0.1 M 

TEAB. Labeling with Tandem Mass Tags (TMTpro™ 16plex, Thermo Fisher Scientific) 

was carried out according to manufacturer’s instruction with the following changes: 0.5 
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mg of TMTpro™ 16plex reagent was re-suspended with 33 µL of anhydrous ACN. 

Seven micro liters of TMT reagent in ACN were added to 9 µL of peptide resuspended 

in 0.1 M TEAB. The final ACN concentration was 43.75% and the ratio of peptides to 

TMT reagent was 1:20. After 60 min of incubation, the reaction was quenched with 2 

µL of 5% hydroxylamine. Labelled peptides were pooled, dried, re-suspended in 200 

µL of 0.1% formic acid (FA), split into two equal parts, and desalted using home-made 

STAGE tips (Rappsilber et al., 2003).  

One of the two parts was fractionated on a 1 mm x 150 mm ACQUITY column, packed 

with 130 Å, 1.7 µm C18 particles (Waters cat. no SKU: 186006935), using an Ultimate 

3000 UHPLC (Thermo Fisher Scientific). Peptides were separated using a 96 min 

segmented gradient from 1% to 50% buffer B for 85 min and from 50% to 95% buffer 

B for 11 min, at a flow of 30 µL/min with a; buffer A was 5% ACN, 10 mM ammonium 

bicarbonate (ABC), buffer B was 80% ACN, 10 mM ABC. Fractions were collected 

every three minutes, and fractions were pooled in two passes (1 + 17, 2 + 18 … etc.) 

and dried in a vacuum centrifuge (Eppendorf). Dried fractions were re-suspended in 

0.1% formic acid (FA) and separated on a 50 cm, 75 µm Acclaim PepMap column 

(Product No. 164942 Thermo Fisher Scientific) using an EASY-nLC1200 (Thermo 

Fisher Scientific). The analytical column was operated at 50°C. The separation was 

performed using a using a 90 min linear gradient from 6% to 31% buffer; buffer A was 

0.1% FA, buffer B was 0.1% FA, 80% ACN. Eluting peptides were analyzed on am 

Orbitrap Lumos Tribrid mass spectrometer (Thermo Fisher Scientific) equipped with a 

FAIMS device (Thermo Fisher Scientific). The FAIMS device was operated at two 

compensation voltages: -50V and -70V. Mass spectrometric data were acquired in a 

data-dependent manner with a top speed method. For MS1, the mass range was set 

to 350−1500m/z and resolution to 60K. Maximum injection time was 50 ms and the 

AGC target to 4e5. Peptides were fragmented using collision-induced dissociation; 

collision energy was to 35%. Peptide fragment MS2 spectra were acquired in the ion 

trap with a maximum injection time of 50 ms and “Turbo” scan rate, using an AGC 

target of 1e4. The ten most abundant peaks were subjected to Synchronous Precursor 

Selection and fragmented using higher-energy collisional dissociation; collusion 

energy was set to 65%. The resulting MS3 spectra were acquired in the Orbitrap at a 

resolution of 50K. 
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4.2.8 Metabolite preparation and metabolomics  
Metabolomics was conducted by the MPI Metabolomics core facility: 

 

BZ dataset: 

The LC-HRMS analysis of amine-containing compounds was performed using an 

adopted benzoylchlorid-based derivatisation method (Wong et al., 2016). 

In brief: The polar fraction of the metabolite extract was re-suspended in 150 µL of LC-

MS-grade water (Optima-Grade, Thermo Fisher Scientific). 30 µL of the cleared 

supernatant were mixed in a critical clean autosampler vial equipped with a 200 µL 

glass insert (Chromatography Accessories Trott, Germany). The extract was mixed 

with 15 µl of 100 mM sodium carbonate (Sigma) followed by the addition of 15 µl 2% 

[v/v] benzoylchloride (Sigma) in acetonitrile (Optima-Grade, Thermo Fisher Scientific). 

Samples were vortexed and kept at 20°C until analysis.  

For the analysis, 1 µl of the derivatized sample was injected onto a 100 x 2.1 mm HSS 

T3 UPLC column (Waters). The flow rate was set to 400 µl/min using a buffer system 

consisted of buffer A (10 mM ammonium formate (Sigma), 0.15% formic acid (Sigma) 

in Milli-Q water (Millipore)) and buffer B (acetonitrile, Optima-grade, Fisher-Scientific). 

The column temperature was set to 40°C, while the LC gradient was: 0% B at 0 - 

4.1min; 0-15% B 4.1 – 4.5 min; 15-17% B 4.5-11 min; 17-55% B 11 – 11.5 min, 55-

70% B 11.5 - 13 min; 70-100% B 13 - 14 min; 100% B 14 -14.1 min; 100-0% B 14.1-

19 min; 0% B. The mass spectrometer was operating in positive ionization mode 

recording the mass range m/z 100-1000. The heated ESI source settings of the mass 

spectrometer were: Spray voltage 3.5 kV, capillary temperature 300°C, sheath gas 

flow 60 AU and aux gas flow 20 AU at a temperature of 340°C. The S-lens was set to 

a value of 60 AU. 

Untargeted and semi-targeted data analysis for these samples was performed using 

the opensource software ElMaven (Agrawal et al., 2019), while targeted Peak 

annotation was performed using the TraceFinder software (Version 4.1, Thermo 

Fisher Scientific). The identity of each compound annotated by TraceFinder was 

validated by authentic reference compounds. Peak areas of [M + nBz + H]+ ions were 
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extracted using a mass accuracy (<5 ppm) and a retention time tolerance of <0.05 

min.  

 

IC dataset: 

Extracted metabolites were re-suspended in 150 µl of Optima UPLC/MS grade water 

(Thermo Fisher Scientific), of which 50 µl were transferred to polypropylene 

autosampler vials (Chromatography Accessories Trott, Germany) before analysis.  

The samples were analysed using a Dionex ionchromatography system (Integrion, 

Thermo Fisher Scientific) as described previously (Schwaiger et al., 2017). In brief,  

5 µL of polar metabolite extract were injected in push partial mode using an overfill 

factor of 1, onto a Dionex IonPac AS11-HC column (2 mm × 250 mm, 4 μm particle 

size, Thermo Fisher Scientific) equipped with a Dionex IonPac AG11-HC guard 

column (2 mm × 50 mm, 4 μm, Thermo Fisher Scientific). The column temperature 

was held at 30°C, while the auto sampler was set to 6°C. A potassium hydroxide 

gradient was generated using a potassium hydroxide cartridge (Eluent Generator, 

Thermo Scientific), which was supplied with deionized water. The metabolite 

separation was carried at a flow rate of 380 µL/min, applying the following gradient 

conditions: 0-3 min, 10 mM KOH; 3-12 min, 10−50 mM KOH; 12-19 min, 50-100 mM 

KOH, 19-21 min, 100 mM KOH, 21-22 min, 100-10 mM KOH. The column was re-

equilibrated at 10 mM for 8 min.  

For the analysis of metabolic pool sizes the eluting compounds were detected in 

negative ion mode using full scan measurements in the mass range m/z 50 – 750 on 

a Q-Exactive HF high resolution MS (Thermo Fisher Scientific). The heated 

electrospray ionization (ESI) source settings of the mass spectrometer were: Spray 

voltage 3.2 kV, capillary temperature was set to 300°C, sheath gas flow 60 AU and 

aux gas flow 20 AU at a temperature of 300°C. The S-lens was set to a value of 60.  

The untargeted and semi-targeted LC-MS data analysis was performed using the 

mzMine 2 opensource software (Du et al., 2020), while targeted Peak annotation was 

performed using the TraceFinder software (Version 4.1, Thermo Fisher Scientific). The 

identity of each compound was validated by authentic reference compounds. 

For data analysis the area of the deprotonated [M-H+]- monoisotopic [M0] mass peak 

of each compound was extracted and integrated using a mass accuracy <5 ppm and 
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a retention time (RT) tolerance of <0.05 min as compared to the independently 

measured reference compounds.  

 
C18 dataset: 

The dried lipid samples were re-suspended in 250 µL of UPLC-grade acetonitrile: 

isopropanol (70:30 [v:v]) mixture, followed by vortexing and 10 min incubation on a 

thermomixer at 10°C. Following 5 min centrifugation at 10.000 x g, the cleared 

supernatant was transferred to 2 ml glass vials with 200 µl glass inserts 

(Chromatography Zubehör Trott, Germany), which were placed in an Acquity iClass 

UPLC (Waters) sample manager at 6°C. The UPLC was connected to a Tribrid 

Orbitrap HRMS, equipped with a heated ESI (HESI) source (ID-X, Thermo Fischer 

Scientific).  

Of each lipid sample 2 µl were injected onto a 100 x 2.1 mm BEH C8 UPLC column, 

packed with 1.7 µm particles (Waters). The flow rate of the UPLC was set to 400 µl/min 

and the buffer system consisted of buffer A (10 mM ammonium acetate, 0.1% acetic 

acid in UPLC-grade water) and buffer B (10 mM ammonium acetate, 0.1% acetic acid 

in UPLC-grade acetonitrile/isopropanol 7:3 [v/v]). The UPLC gradient was as follows: 

0-1 min 45% A, 1-4 min 45-25% A, 4-12 min 25-11% A, 12-15 min 11-1% A, 15-18 

min 1% A, 18-18.1 min 1-45% A and 18.1-22 min re-equilibrating at 45% A. This leads 

to a total runtime of 22 min per sample.  

The ID-X mass spectrometer was operating either for the first injection in positive 

ionization mode or for the second injection in negative ionization mode. In both cases, 

the analyzed mass range was between m/z 150-1500. The resolution was set to 

120.000, leading to approximately 4 scans per second. The RF lens was set to 60%, 

while the AGC target was set to 500% (~2E6 ions). The maximal ion time was set to 

100 ms and the HESI source was operating with a spray voltage of 3.5 kV in positive 

ionization mode, while 3.2 kV were applied in negative ionization mode. The capillary 

temperature was 250°C, the sheath gas flow 60 arbitrary units (AU), the auxiliary gas 

flow 20 AU and the sweep gas flow was set to 2 AU at 350°C. All samples were 

analyzed in a randomized run-order and the untargeted data analysis was performed 

using QI for metabolomics (Version 2.3 Nonlinea Dynamics) according to the vendors 

manual. 
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Targeted data analysis was performed using the quan module of the TraceFinder 4.1 

software (Thermo Fischer Scientific) in combination with a sample-specific in-house 

generated compound database.  

 

pHILIC dataset: 

Untargeted metabolic analysis was performed using a ZIC-pHILIC 2.1 × 150 mm (5-

μm particle size column (Merck) coupled to a Q-Exactive HF mass spectrometer 

(Thermo Fisher Scientific), as described previously (Birsoy et al., 2015). In brief: 

Samples were re-suspended in 150 µL of ice-cold water, of which 25 µL were mixed 

with 75 µL of UPLC/MS Optima Grade (Fisher scientific) acetonitrile. 2.5 µL were 

injected onto the pHILIC column, using an Acquity iClass Ultra Performance Liquid 

Chromatography (UPLC) system. The metabolites were separated using Buffer A, 

which consisted of 20 mM ammonium carbonate, 0.1% ammonium hydroxide and 

buffer B that consisted of UPLC/MS Optima Grade (Fisher scientific) acetonitrile. The 

chromatographic gradient was operated at a flow rate of 0.150 ul/min as follows: 0–20 

min.: linear gradient from 80% to 20% B; 20–20.5 min.: linear gradient from 20% to 

80% B; 20.5–28 min.: hold at 80% B. The Q-Exactive HF mass spectrometer was 

operated in full-scan mode, polarity-switching mode. The spray voltage was set to 3.2 

kV, the heated capillary and the HESI probe was held at 320°C. The sheath gas flow 

was set to 60 arbitrary units, the auxiliary gas flow was set to 20 units, and the sweep 

gas flow was set to 1 unit. The MS data acquisition was performed using a m/z range 

60–900, with the resolution set to 70.000. The Acquired Gain Control (AGC) was set 

to a target value of 10E6, with a maximum injection time fixed at to 80 msec. The 

untargeted analysis of metabolites from the positive ionization, as well as the negative 

ionization mode was performed using the opensource software ElMaven. The targeted 

metabolite analysis was performed using the quan module of the TraceFinder software 

(Version 4.1, Thermo Fisher Scientific) by matching the measured spectra against a 

library of authentic reference standards.  
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4.2.9 Histology 
Histology experiments were performed by Quinn Quesenberry. 

 

Samples stored in PFA were transferred to micromesh embedding cassettes and 

drop-fixed in a solution of 10% neutral buffered formalin for 4 hours. After the fixation 

period, the tissues were infiltrated with liquid paraffin wax using the Thermo scientific 

Excelsior AS Tissue Processor. After tissue infiltration, the processed samples were 

embedded with paraffin. Cooled paraffin blocks were then cut into 5 µM sections using 

a microbiome and transferred onto glass slides. Slides were incubated overnight at 

37°C and then stored at room temperature until further staining protocols. 

 

For the H&E staining, the slides were first deparaffinized and rehydrated. The staining 

was conducted using the Scientific Gemini Automated Slide Stainer. The slides were 

stained in 300 ml of Mayer’s Hematoxylin solution for 10 minutes at 30ºC and then 

rinsed under running tap water for 15 minutes, followed by a 2-minute counterstain in 

Eosin-Y Solution. The slides were transferred to a final graded ethanol dehydration 

series. Afterwards, slides were transferred into two xylene wash baths for 5 minutes 

each. Lastly, slides were removed from the xylene and excess xylene was allowed to 

air dry from the slide. The slides were then positioned flat and 1-3 drops of Cytoseal 

XYL were placed carefully onto the slide. The slides were promptly covered with 

coverslips and left overnight in the fume hood to cure. 

 

For the SRFG staining, the slides were first deparaffinized and rehydrated. The 

staining was conducted using the Scientific Gemini Automated Slide Stainer. Firstly, 

the samples were stained in Weigert’s Iron Hematoxylin for 5 minutes and then dipped 

in running tap water 3 times. The samples were then differentiated in a 1% HCl-Alcohol 

(70% ethanol) solution for 5 seconds and subsequently dipped in running tap water 

three times. The samples were then stained in 0.1% Direct Red 80 and 0.1% Fast 

Green FCF in 1.3% saturated aqueous picric acid in H2O for one hour. Following the 

staining step, the slides were then dipped into a 0.5% acetic acid in H2O wash 5 times 

and shaken dry. The slides were then dehydrated in two separate isopropanol baths 

for 2 minutes each. Finally, the slides were transferred into two xylene wash baths, 
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each for 5 minutes. Slides were removed from the xylene bath and excess xylene was 

allowed to air dry from the slide before 1-3 drops of Cytoseal XYL were placed carefully 

onto the slide. The slides were directly covered with coverslips and left overnight in 

the fume hood to cure.  

 

All the samples were imaged on the Leica Biosystems SCN400 Brightfield Slide 

Scanner with a 20x objective. The images were viewed and quantitatively analyzed 

with QuPath (Bankhead et al., 2017). 4 samples representative of each experimental 

group (male/female, young/old) were selected for the analysis, yielding 16 animals in 

total. To prevent any scoring bias, every image was assigned a random identification 

number to blind the sample type during analysis. 

 

For analysis of the H&E data, each sample was comparatively scored according to the 

following three criteria: 

1. Epithelial Characteristics: Each image was overlayed with an adjusted grid with 

window-size 250 µm2. The positive goblet cells within a given window were 

manually counted, tracked, and recorded. 4 windows in total were counted per 

section and the average was evaluated in the analysis.  

2. Microanatomy: The thickness of the muscularis propria layer of each section 

was measured at four distinct locations and the average was evaluated in the 

analysis.  

3. Inflammatory Markers: The extent and severity of leukocyte infiltration was 

scored based on an adapted intestinal scoring model outlined by Erben et al., 

2014. To assess the severity of leukocyte infiltration, the percentage of 

leukocyte infiltration in a given window was estimated and assigned one of the 

following four grades:  

• Minimal: <10% = 1 

• Mild: 10-25% = 2 

• Moderate: 26-50% = 3 

• Severe: >51% = 4 
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 Similarly, the extent of infiltration was scored by focal leukocyte localization and 

 assigned one of the following four grades:  

• Mucosal localization only = 1 

• Mucosal and submucosal localization = 2 

• Mucosal, submucosal and transmural localization = 3 
  

 The infiltration extent and severity were recorded for 4 windows per 

 tissue section (the same windows which were used for counting of goblet cells) 

 and the average was evaluated in the analysis. 

 

Sirius Red Fast Green stained slides were viewed with QuPath (Bankhead et al., 

2017). For consistent evaluation of both data sets, the same 16 samples as in the H&E 

analysis were evaluated. Again, every image was assigned a random identification 

number to blind the sample type during analysis. The whole tissue slice for every 

section (n=50) for each sample animal (n=16) was analyzed and evaluated in QuPath 

(Bankhead et al., 2017). Quantitative estimation of total collagen fibers in proportion 

to all other non-collagen proteins was performed according to previously defined 

protocols (Ippolito et al., 2015). The positive areas of the sample (red-stained collagen 

fibers) were expressed as a percentage of the total tissue area. To establish the 

appropriate stain vectors for each channel and effectively train the pixel classifier for 

the stain, a single channel deconvolution was performed. Here, the stain vector optical 

density (OD) for each single channel was created by defining a small, rectangular 

region of interest (ROI) that best represented the positive vector and assigning this 

ROI as the OD for the stain channel. This process was repeated for the negative 

channel. The pixel classifier was subsequently trained for the specific stain conditions 

for positive/negative pixel identification. The vector deconvolution was repeated for 

each sample to allow for appropriate identification. However, to ensure a fair 

comparison between the samples, down-sample factor (4.0), Gaussian sigma (2 µm), 

as well as positive (0.3 OD units) and negative (0.1 OD units) threshold values were 

kept consistent throughout the analysis. For whole sample pixel classification, an 

entire ROI was drawn around the sample perimeter and luminal obtrusions were 

excluded. Following pixel classification, percent positive pixel (PPP) as a function of 
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total pixel detection was recorded for each sample. Complete data was expressed as 

PPP, analogous to positive collagen fibers per total sample area. 

 

Pearson correlation analyses were conducted with the scipy package from Python 

(Virtanen et al., 2020).  

 

4.3 Computational analyses  
 
RStudio version 1.2.5033 was used for most of the computational analysis, with R 

version 3.6.3. Parts of the microbiota analyses were conducted with Qiime2 (version 

2018.11, Bolyen et al., 2019). Metaboanalyst 5.0 (Xia et al., 2009) was used for PLS-

DA and RF analysis for the metabolite datasets, Microbiomeanalyst (Dhariwal et al., 

2017) was used for the hierarchical clustering of the microbiota samples.  

 

4.3.1 Microbiota community analysis 
The fastq files of the sequencing facility were demultiplexed with idemp (Wu, 2020). 

Barcodes and adapters were trimmed with a custom script written by Dr. Rongfeng 

Cui. Further filtering, trimming and sample inference to amplicon sequence variants 

(ASVs) were conducted with the dada2 package in R (Callahan et al., 2016). 

Taxonomy assignment was also conducted with dada2, using the RDP classifier (Q. 

Wang et al., 2007) and the SILVA 16S database, version 132 (Quast et al., 2013).  

Further analyses were conducted using the phyloseq package in R (McMurdie & 

Holmes, 2013). Samples with less than 1000 sequences were filtered out. Relative 

abundance was calculated on individual ASV level or on merged samples for genus 

or phylum level.  

For diversity analyses, samples were rarefied to a depth of 40000 sequences (samples 

sequenced with 2 x 250 bp paired-end HiSeq) or 4000 sequences per sample 

(samples sequenced with 2 x 300 bp paired-end MiSeq). Alpha and beta diversity 

levels were assessed using the phyloseq and the vegan R package (Oksanen et al., 
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2020). Hierarchical clustering and dendrogram analysis based on Bray-Curtis 

dissimilarity values was performed with Microbiomeanalyst (Dhariwal et al., 2017) 

using the Ward algorithm and Bray-Curtis dissimilarity as distance measure. 

Significant changes in relative abundance were calculated using DESeq2 package in 

R (Love et al., 2014), after filtering the ASVs for a minimal occurrence in 30% of the 

samples. Venn diagrams were built with the VennDiagram R package (Chen & 

Boutros, 2011).  

 

4.3.2 Metabolomics analysis 
Raw spectrum assignment was conducted at the Metabolomics core facility as 

described above. The metabolite values were first normalized to the internal standards 

which was added to the extraction buffer. Afterwards, metabolites were filtered for an 

occurrence in 88% of the samples and the 40% metabolites with the lowest variability 

were excluded as proposed in Hackstadt & Hess, 2009. Metabolites were then 

normalized based on their total ion count, followed by logarithmic transformation and 

pareto transformation. One sample was excluded in the C18 dataset in negative mode 

due to the strongly deviating internal standard. Principal component analysis was 

conducted using the stats R package (R Core Team, 2020). Differential metabolite 

levels were assessed using a t-test, followed by BH-multiple comparison correction 

(stats package). Venn diagrams were constructed using the Venn.Diagram R 

package. PLS-DA and RF-analysis was conducted with MetaboAnalyst 5.0.  

 

4.3.3 Proteomic analysis 
 
Parts performed by the proteomics core facility: 

Raw data were analyzed using ProteomeDiscoverer version 2.4 (Thermo Fisher 

Scientific). Peptide fragmentation spectra were searched against Uniprot’s canonical 

sequences for Nothobranchius furzeri, downloaded in September 2019. Methionine 

oxidation was set as variable modifications, cysteine carbamidomethylation and 

TMTPro as static modification. The digestion parameters were set to “Trypsin (Full)”. 
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Protein identification was performed at a peptide spectrum matches and protein strict 

false discovery rate of 0.01. Reported quantification was based on intensity. The value 

for “Co-isolation Threshold”, “Average Reporter S/N Threshold”, and “SPS Mass 

Matches [%] Threshold” was set to 0. The isotope purity correction factors, provided 

by the manufacturer, were included in the analysis. Data wrangling and exploratory 

data analysis were performed using the tidyverse package (Wickham et al., 2019) in 

R (R Core Team, 2020). Differential expression analysis was performed using limma 

(Ritchie et al., 2015). 

 

Parts performed by me: 

Heatmaps were generated with the heatmaps2 function from the gplots package 

(Warnes et al., 2020). GO term and pathway enrichment analysis was conducted with 

ConsensusPathDB (Kamburov et al., 2009). Only GO terms and pathways with more 

than two genes were considered. Depending on the dataset, the cut-off significance 

values were chosen at a minimum q-value of <0.1 or <0.03, and a maximum of the top 

30 significant terms were shown.  

 

4.3.4 Random Forest analyses 
 

Parts performed by Sam Kean: 

Section Age/Sex Classification 

To preprocess the data, the ASV table was collapsed by genus level and ASVs with 

zero values in >=90% of samples were removed. The data was then split into a training 

group (~80%) and a testing group (~20%) by random selection of Sample IDs, so that 

all IDs contained in the test group were not in the train group, and vice versa. Scikit-

learn’s MinMax scaler (Pedregosa et al., 2011) was fit to the training group, and used 

to transform both the training group and test group. The data was then converted to 

BIOM format for use with QIIME 2. 
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Classification analyses were performed with QIIME 2 (version 2019.7) (Bolyen et al., 

2019) and the training data was used as input for the classify-samples pipeline 

(parameters: estimator=RandomForestClassifier, n-estimator=250, random-

state=123). The testing data was used as input for the predict-classification function 

and plotted with the confusion-matrix function. 

 
Longitudinal Prediction 
To preprocess the data, the ASV table was collapsed by genus level and ASVs with 

zero values in >=90% of samples were removed. The data was then split into a training 

group (~80%) and a testing group (~20%) by random selection of Sample IDs, so that 

all IDs contained in the test group were not in the train group, and vice versa. Scikit-

learn’s MinMax scaler (Pedregosa et al., 2011) was fit to the training group, and used 

to transform both the training group and test group. The data was then converted to 

BIOM format for use with QIIME 2. 

 

For the predictions with sample IDs included, scikit-learn’s OneHotEncoder function 

(Pedregosa et al., 2011) was used to encode sample IDs into binary columns, prior to 

the splitting into testing and training groups. The ASV table was split into a training 

group (80%) and a test group (20%), absolutely, with no selection of sample IDs, i.e. 

a mix of all sample IDs in each group. 

 

Classification analyses were performed with QIIME 2 (version 2019.7) and the training 

data was used as input for the regress-samples pipeline (parameters: estimator = 

RandomForestClassifier, n-estimators = 100, random-state = 123). The testing data 

was used as input for the predict-regression function and plotted with the scatterplot 

function.  

 

For the predictions of remaining life from food, food data were given a remaining life 

equal to (final week minus current week) - e.g., food data from week 6 would have a 

‘remaining life’ of 27 (33 (the final week measured) - 6 = 27). 
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Parts performed by me: 

MetaboAnalyst 5.0 was used for Random Forest classifications of metabolite samples 

with following parameters: number of trees = 500, number of predictors = 7, 

randomness = on.  

 

4.3.5 Correlation analysis 
For the correlation analysis, the ASV tables were first merged on genus level. Only 

genera with a minimum count of 50 and appearance in 3 samples were taken into 

consideration. The count data of both the genus tables and the metabolite tables was 

log-transformed. Each genus was correlated with each metabolite using the lm 

function of the stats R package. Correlations with a minimum r-value of 0.45 and a 

BH-adjusted p-value of <0.1 were taken into consideration.  
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Supplementary Material 

 
Supplementary table 1: Primers used for 16S rRNA library preparation – Step 2 

Primer name Primer Sequence 5’ to 3’ 

P1_PCR_i5_D501_TATAG
CCT 

AATGATACGGCGACCACCGAGATCTACACtatagcctACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_D502_ATAGA
GGC 

AATGATACGGCGACCACCGAGATCTACACatagaggcACACTCTTTCCCTACACGACGCT
CTTCCGATCT 

P1_PCR_i5_D503_CCTAT
CCT 

AATGATACGGCGACCACCGAGATCTACACcctatcctACACTCTTTCCCTACACGACGCTCT
TCCGATCT 

P1_PCR_i5_D504_GGCTC
TGA 

AATGATACGGCGACCACCGAGATCTACACggctctgaACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_D505_AGGCG
AAG 

AATGATACGGCGACCACCGAGATCTACACaggcgaagACACTCTTTCCCTACACGACGCT
CTTCCGATCT 

P1_PCR_i5_D506_TAATCT
TA 

AATGATACGGCGACCACCGAGATCTACACtaatcttaACACTCTTTCCCTACACGACGCTCT
TCCGATCT 

P1_PCR_i5_D507_CAGGA
CGT 

AATGATACGGCGACCACCGAGATCTACACcaggacgtACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_D508_GTACT
GAC 

AATGATACGGCGACCACCGAGATCTACACgtactgacACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_D509_TTCGG
ATG 

AATGATACGGCGACCACCGAGATCTACACttcggatgACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_D510_ACTCAT
AA 

AATGATACGGCGACCACCGAGATCTACACactcataaACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_D511_GCGCC
TCT 

AATGATACGGCGACCACCGAGATCTACACgcgcctctACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_D512_CGCGG
CTA 

AATGATACGGCGACCACCGAGATCTACACcgcggctaACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_D513_TTATTC
GT 

AATGATACGGCGACCACCGAGATCTACACttattcgtACACTCTTTCCCTACACGACGCTCT
TCCGATCT 

P1_PCR_i5_D514_CCTAC
GAA 

AATGATACGGCGACCACCGAGATCTACACcctacgaaACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_D515_AGCAG
ATC 

AATGATACGGCGACCACCGAGATCTACACagcagatcACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_D516_GCGGA
GCG 

AATGATACGGCGACCACCGAGATCTACACgcggagcgACACTCTTTCCCTACACGACGCT
CTTCCGATCT 

P1_PCR_i5_D517_TACTTA
CT 

AATGATACGGCGACCACCGAGATCTACACtacttactACACTCTTTCCCTACACGACGCTCT
TCCGATCT 

P1_PCR_i5_D518_AGGAA
GTC 

AATGATACGGCGACCACCGAGATCTACACaggaagtcACACTCTTTCCCTACACGACGCT
CTTCCGATCT 

P1_PCR_i5_D519_GGCGA
CGG 

AATGATACGGCGACCACCGAGATCTACACggcgacggACACTCTTTCCCTACACGACGCT
CTTCCGATCT 

P1_PCR_i5_D520_CCTCG
GAC 

AATGATACGGCGACCACCGAGATCTACACcctcggacACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A001_GTCTTA
GG 

AATGATACGGCGACCACCGAGATCTACACgtcttaggACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A002_ACTGAT
CG 

AATGATACGGCGACCACCGAGATCTACACactgatcgACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A003_TAGCT
GCA 

AATGATACGGCGACCACCGAGATCTACACtagctgcaACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A004_GACGT
CGA 

AATGATACGGCGACCACCGAGATCTACACgacgtcgaACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A005_GACTG
CAT 

AATGATACGGCGACCACCGAGATCTACACgactgcatACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A006_AACCA
GTC 

AATGATACGGCGACCACCGAGATCTACACaaccagtcACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A007_CCATT
GAG 

AATGATACGGCGACCACCGAGATCTACACccattgagACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A008_GATCT
CCA 

AATGATACGGCGACCACCGAGATCTACACgatctccaACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A009_TCCCAT
AG 

AATGATACGGCGACCACCGAGATCTACACtcccatagACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A010_TCGTC
AGT 

AATGATACGGCGACCACCGAGATCTACACtcgtcagtACACTCTTTCCCTACACGACGCTC
TTCCGATCT 
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P1_PCR_i5_A011_ATGTG
GAC 

AATGATACGGCGACCACCGAGATCTACACatgtggacACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A012_ATGAC
GAG 

AATGATACGGCGACCACCGAGATCTACACatgacgagACACTCTTTCCCTACACGACGCT
CTTCCGATCT 

P1_PCR_i5_A013_TTCATC
GC 

AATGATACGGCGACCACCGAGATCTACACttcatcgcACACTCTTTCCCTACACGACGCTCT
TCCGATCT 

P1_PCR_i5_A014_GGAGA
CAT 

AATGATACGGCGACCACCGAGATCTACACggagacatACACTCTTTCCCTACACGACGCT
CTTCCGATCT 

P1_PCR_i5_A015_AAAGC
CTG 

AATGATACGGCGACCACCGAGATCTACACaaagcctgACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A016_ACGAT
AGC 

AATGATACGGCGACCACCGAGATCTACACacgatagcACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A017_GTAAC
AGC 

AATGATACGGCGACCACCGAGATCTACACgtaacagcACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A018_TGTGTA
CG 

AATGATACGGCGACCACCGAGATCTACACtgtgtacgACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A019_TAGTCA
CG 

AATGATACGGCGACCACCGAGATCTACACtagtcacgACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A020_GCTAG
CTT 

AATGATACGGCGACCACCGAGATCTACACgctagcttACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A021_GATCC
CAT 

AATGATACGGCGACCACCGAGATCTACACgatcccatACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A022_TGGAT
GCT 

AATGATACGGCGACCACCGAGATCTACACtggatgctACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A023_CGGAT
TAG 

AATGATACGGCGACCACCGAGATCTACACcggattagACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A024_GGTTT
CAC 

AATGATACGGCGACCACCGAGATCTACACggtttcacACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A025_TATCG
CAC 

AATGATACGGCGACCACCGAGATCTACACtatcgcacACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A026_ACTCC
GTA 

AATGATACGGCGACCACCGAGATCTACACactccgtaACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A027_GCACT
GAA 

AATGATACGGCGACCACCGAGATCTACACgcactgaaACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A028_GTGCA
CTT 

AATGATACGGCGACCACCGAGATCTACACgtgcacttACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A029_GTCTG
GAA 

AATGATACGGCGACCACCGAGATCTACACgtctggaaACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A030_AGCCT
TAC 

AATGATACGGCGACCACCGAGATCTACACagccttacACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A031_AGTTCA
GG 

AATGATACGGCGACCACCGAGATCTACACagttcaggACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A032_GCATAT
CC 

AATGATACGGCGACCACCGAGATCTACACgcatatccACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A033_CTACA
GTG 

AATGATACGGCGACCACCGAGATCTACACctacagtgACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A034_ATCAG
GTC 

AATGATACGGCGACCACCGAGATCTACACatcaggtcACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A035_CGACT
TTC 

AATGATACGGCGACCACCGAGATCTACACcgactttcACACTCTTTCCCTACACGACGCTCT
TCCGATCT 

P1_PCR_i5_A036_AAGCG
TTG 

AATGATACGGCGACCACCGAGATCTACACaagcgttgACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A037_TTGAC
CGT 

AATGATACGGCGACCACCGAGATCTACACttgaccgtACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A038_AATTCG
CG 

AATGATACGGCGACCACCGAGATCTACACaattcgcgACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A039_GATGA
ACC 

AATGATACGGCGACCACCGAGATCTACACgatgaaccACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A040_GACCG
TTT 

AATGATACGGCGACCACCGAGATCTACACgaccgtttACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A041_CTAGT
GAC 

AATGATACGGCGACCACCGAGATCTACACctagtgacACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A042_CGGGA
TAT 

AATGATACGGCGACCACCGAGATCTACACcgggatatACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A043_GATGC
GAA 

AATGATACGGCGACCACCGAGATCTACACgatgcgaaACACTCTTTCCCTACACGACGCT
CTTCCGATCT 

P1_PCR_i5_A044_GATAA
CGC 

AATGATACGGCGACCACCGAGATCTACACgataacgcACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A045_ACTTTC
GG 

AATGATACGGCGACCACCGAGATCTACACactttcggACACTCTTTCCCTACACGACGCTC
TTCCGATCT 
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P1_PCR_i5_A046_GCTCG
TAA 

AATGATACGGCGACCACCGAGATCTACACgctcgtaaACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A047_ATTCCC
GA 

AATGATACGGCGACCACCGAGATCTACACattcccgaACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A048_ACATC
GTG 

AATGATACGGCGACCACCGAGATCTACACacatcgtgACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A049_AAAGG
TCG 

AATGATACGGCGACCACCGAGATCTACACaaaggtcgACACTCTTTCCCTACACGACGCT
CTTCCGATCT 

P1_PCR_i5_A050_CCCTA
GAA 

AATGATACGGCGACCACCGAGATCTACACccctagaaACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A051_TGCCG
ATA 

AATGATACGGCGACCACCGAGATCTACACtgccgataACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A052_AGGTG
CTA 

AATGATACGGCGACCACCGAGATCTACACaggtgctaACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A053_AGTGA
GTC 

AATGATACGGCGACCACCGAGATCTACACagtgagtcACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A054_ACGCC
ATT 

AATGATACGGCGACCACCGAGATCTACACacgccattACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A055_ACTGG
GAA 

AATGATACGGCGACCACCGAGATCTACACactgggaaACACTCTTTCCCTACACGACGCT
CTTCCGATCT 

P1_PCR_i5_A056_AGACG
TGA 

AATGATACGGCGACCACCGAGATCTACACagacgtgaACACTCTTTCCCTACACGACGCT
CTTCCGATCT 

P1_PCR_i5_A057_AACCA
CGT 

AATGATACGGCGACCACCGAGATCTACACaaccacgtACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A058_AACTCT
GG 

AATGATACGGCGACCACCGAGATCTACACaactctggACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A059_GGGAC
TTA 

AATGATACGGCGACCACCGAGATCTACACgggacttaACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A060_GTCGA
GTA 

AATGATACGGCGACCACCGAGATCTACACgtcgagtaACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A061_GCTGT
AGT 

AATGATACGGCGACCACCGAGATCTACACgctgtagtACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A062_ACCTT
GAC 

AATGATACGGCGACCACCGAGATCTACACaccttgacACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A063_TGTAC
CTC 

AATGATACGGCGACCACCGAGATCTACACtgtacctcACACTCTTTCCCTACACGACGCTCT
TCCGATCT 

P1_PCR_i5_A064_TCCGA
ATG 

AATGATACGGCGACCACCGAGATCTACACtccgaatgACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A065_CTGCTT
GA 

AATGATACGGCGACCACCGAGATCTACACctgcttgaACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A066_GGATT
CCA 

AATGATACGGCGACCACCGAGATCTACACggattccaACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A067_TGATTC
GC 

AATGATACGGCGACCACCGAGATCTACACtgattcgcACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A068_TGTAA
GCC 

AATGATACGGCGACCACCGAGATCTACACtgtaagccACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A069_TTCGC
AAC 

AATGATACGGCGACCACCGAGATCTACACttcgcaacACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A070_TGAGA
AGC 

AATGATACGGCGACCACCGAGATCTACACtgagaagcACACTCTTTCCCTACACGACGCT
CTTCCGATCT 

P1_PCR_i5_A071_GCCAT
TAC 

AATGATACGGCGACCACCGAGATCTACACgccattacACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A072_TTGGC
TAG 

AATGATACGGCGACCACCGAGATCTACACttggctagACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A073_CAAAG
GCT 

AATGATACGGCGACCACCGAGATCTACACcaaaggctACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A074_ACTGC
CAT 

AATGATACGGCGACCACCGAGATCTACACactgccatACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A075_ATATCG
GC 

AATGATACGGCGACCACCGAGATCTACACatatcggcACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

P1_PCR_i5_A076_AACGTT
GC 

AATGATACGGCGACCACCGAGATCTACACaacgttgcACACTCTTTCCCTACACGACGCTC 
TTCCGATCT 

P2_PCR_i7_N701_TAAGG
CGA 

CAAGCAGAAGACGGCATACGAGATtcgccttaGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_N702_CGTAC
TAG 

CAAGCAGAAGACGGCATACGAGATctagtacgGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_N703_AGGCA
GAA 

CAAGCAGAAGACGGCATACGAGATttctgcctGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_N704_TCCTG
AGC 

CAAGCAGAAGACGGCATACGAGATgctcaggaGTGACTGGAGTTCAGACGTGTGC 
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P2_PCR_i7_N705_GGACT
CCT 

CAAGCAGAAGACGGCATACGAGATaggagtccGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_N706_TAGGC
ATG 

CAAGCAGAAGACGGCATACGAGATcatgcctaGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_N707_CTCTCT
AC 

CAAGCAGAAGACGGCATACGAGATgtagagagGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_N710_CGAGG
CTG 

CAAGCAGAAGACGGCATACGAGATcagcctcgGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_N711_AAGAG
GCA 

CAAGCAGAAGACGGCATACGAGATtgcctcttGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_N712_GTAGA
GGA 

CAAGCAGAAGACGGCATACGAGATtcctctacGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_N714_GCTCA
TGA 

CAAGCAGAAGACGGCATACGAGATtcatgagcGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_N715_ATCTCA
GG 

CAAGCAGAAGACGGCATACGAGATcctgagatGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_N716_ACTCG
CTA 

CAAGCAGAAGACGGCATACGAGATtagcgagtGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_N718_GGAGC
TAC 

CAAGCAGAAGACGGCATACGAGATgtagctccGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_N719_GCGTA
GTA 

CAAGCAGAAGACGGCATACGAGATtactacgcGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_N720_CGGAG
CCT 

CAAGCAGAAGACGGCATACGAGATaggctccgGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_N721_TACGC
TGC 

CAAGCAGAAGACGGCATACGAGATgcagcgtaGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_N722_ATGCG
CAG 

CAAGCAGAAGACGGCATACGAGATctgcgcatGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_N723_TAGCG
CTC 

CAAGCAGAAGACGGCATACGAGATgagcgctaGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_N724_ACTGA
GCG 

CAAGCAGAAGACGGCATACGAGATcgctcagtGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_N726_CCTAA
GAC 

CAAGCAGAAGACGGCATACGAGATgtcttaggGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_N727_CGATC
AGT 

CAAGCAGAAGACGGCATACGAGATactgatcgGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_N728_TGCAG
CTA 

CAAGCAGAAGACGGCATACGAGATtagctgcaGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_N729_TCGAC
GTC 

CAAGCAGAAGACGGCATACGAGATgacgtcgaGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B001_ATGCA
GTC 

CAAGCAGAAGACGGCATACGAGATgactgcatGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B002_GACTG
GTT 

CAAGCAGAAGACGGCATACGAGATaaccagtcGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B003_CTCAAT
GG 

CAAGCAGAAGACGGCATACGAGATccattgagGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B004_TGGAG
ATC 

CAAGCAGAAGACGGCATACGAGATgatctccaGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B005_CTATG
GGA 

CAAGCAGAAGACGGCATACGAGATtcccatagGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B006_ACTGA
CGA 

CAAGCAGAAGACGGCATACGAGATtcgtcagtGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B007_GTCCA
CAT 

CAAGCAGAAGACGGCATACGAGATatgtggacGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B008_CTCGT
CAT 

CAAGCAGAAGACGGCATACGAGATatgacgagGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B009_GCGAT
GAA 

CAAGCAGAAGACGGCATACGAGATttcatcgcGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B010_ATGTCT
CC 

CAAGCAGAAGACGGCATACGAGATggagacatGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B011_CAGGC
TTT 

CAAGCAGAAGACGGCATACGAGATaaagcctgGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B012_GCTAT
CGT 

CAAGCAGAAGACGGCATACGAGATacgatagcGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B013_GCTGT
TAC 

CAAGCAGAAGACGGCATACGAGATgtaacagcGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B014_CGTAC
ACA 

CAAGCAGAAGACGGCATACGAGATtgtgtacgGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B015_CGTGA
CTA 

CAAGCAGAAGACGGCATACGAGATtagtcacgGTGACTGGAGTTCAGACGTGTGC 
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P2_PCR_i7_B016_AAGCT
AGC 

CAAGCAGAAGACGGCATACGAGATgctagcttGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B017_ATGGG
ATC 

CAAGCAGAAGACGGCATACGAGATgatcccatGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B018_AGCAT
CCA 

CAAGCAGAAGACGGCATACGAGATtggatgctGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B019_CTAATC
CG 

CAAGCAGAAGACGGCATACGAGATcggattagGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B020_GTGAA
ACC 

CAAGCAGAAGACGGCATACGAGATggtttcacGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B021_GTGCG
ATA 

CAAGCAGAAGACGGCATACGAGATtatcgcacGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B022_TACGG
AGT 

CAAGCAGAAGACGGCATACGAGATactccgtaGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B023_TTCAGT
GC 

CAAGCAGAAGACGGCATACGAGATgcactgaaGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B024_AAGTG
CAC 

CAAGCAGAAGACGGCATACGAGATgtgcacttGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B025_TTCCA
GAC 

CAAGCAGAAGACGGCATACGAGATgtctggaaGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B026_GTAAG
GCT 

CAAGCAGAAGACGGCATACGAGATagccttacGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B027_CCTGA
ACT 

CAAGCAGAAGACGGCATACGAGATagttcaggGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B028_GGATA
TGC 

CAAGCAGAAGACGGCATACGAGATgcatatccGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B029_CACTG
TAG 

CAAGCAGAAGACGGCATACGAGATctacagtgGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B030_GACCT
GAT 

CAAGCAGAAGACGGCATACGAGATatcaggtcGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B031_GAAAG
TCG 

CAAGCAGAAGACGGCATACGAGATcgactttcGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B032_CAACG
CTT 

CAAGCAGAAGACGGCATACGAGATaagcgttgGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B033_ACGGT
CAA 

CAAGCAGAAGACGGCATACGAGATttgaccgtGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B034_CGCGA
ATT 

CAAGCAGAAGACGGCATACGAGATaattcgcgGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B035_GGTTC
ATC 

CAAGCAGAAGACGGCATACGAGATgatgaaccGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B036_AAACG
GTC 

CAAGCAGAAGACGGCATACGAGATgaccgtttGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B037_GTCAC
TAG 

CAAGCAGAAGACGGCATACGAGATctagtgacGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B038_ATATCC
CG 

CAAGCAGAAGACGGCATACGAGATcgggatatGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B039_TTCGC
ATC 

CAAGCAGAAGACGGCATACGAGATgatgcgaaGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B040_GCGTT
ATC 

CAAGCAGAAGACGGCATACGAGATgataacgcGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B041_CCGAA
AGT 

CAAGCAGAAGACGGCATACGAGATactttcggGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B042_TTACGA
GC 

CAAGCAGAAGACGGCATACGAGATgctcgtaaGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B043_TCGGG
AAT 

CAAGCAGAAGACGGCATACGAGATattcccgaGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B044_CACGA
TGT 

CAAGCAGAAGACGGCATACGAGATacatcgtgGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B045_CGACC
TTT 

CAAGCAGAAGACGGCATACGAGATaaaggtcgGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B046_TTCTAG
GG 

CAAGCAGAAGACGGCATACGAGATccctagaaGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B047_TATCG
GCA 

CAAGCAGAAGACGGCATACGAGATtgccgataGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B048_TAGCA
CCT 

CAAGCAGAAGACGGCATACGAGATaggtgctaGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B049_GACTC
ACT 

CAAGCAGAAGACGGCATACGAGATagtgagtcGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B050_AATGG
CGT 

CAAGCAGAAGACGGCATACGAGATacgccattGTGACTGGAGTTCAGACGTGTGC 
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P2_PCR_i7_B051_TTCCCA
GT 

CAAGCAGAAGACGGCATACGAGATactgggaaGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B052_TCACG
TCT 

CAAGCAGAAGACGGCATACGAGATagacgtgaGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B053_ACGTG
GTT 

CAAGCAGAAGACGGCATACGAGATaaccacgtGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B054_CCAGA
GTT 

CAAGCAGAAGACGGCATACGAGATaactctggGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B055_TAAGTC
CC 

CAAGCAGAAGACGGCATACGAGATgggacttaGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B056_TACTC
GAC 

CAAGCAGAAGACGGCATACGAGATgtcgagtaGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B057_ACTACA
GC 

CAAGCAGAAGACGGCATACGAGATgctgtagtGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B058_GTCAA
GGT 

CAAGCAGAAGACGGCATACGAGATaccttgacGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B059_GAGGT
ACA 

CAAGCAGAAGACGGCATACGAGATtgtacctcGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B060_CATTC
GGA 

CAAGCAGAAGACGGCATACGAGATtccgaatgGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B061_TCAAG
CAG 

CAAGCAGAAGACGGCATACGAGATctgcttgaGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B062_TGGAA
TCC 

CAAGCAGAAGACGGCATACGAGATggattccaGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B063_GCGAA
TCA 

CAAGCAGAAGACGGCATACGAGATtgattcgcGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B064_GGCTT
ACA 

CAAGCAGAAGACGGCATACGAGATtgtaagccGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B065_GTTGC
GAA 

CAAGCAGAAGACGGCATACGAGATttcgcaacGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B066_GCTTCT
CA 

CAAGCAGAAGACGGCATACGAGATtgagaagcGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B067_GTAAT
GGC 

CAAGCAGAAGACGGCATACGAGATgccattacGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B068_CTAGC
CAA 

CAAGCAGAAGACGGCATACGAGATttggctagGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B069_AGCCT
TTG 

CAAGCAGAAGACGGCATACGAGATcaaaggctGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B070_ATGGC
AGT 

CAAGCAGAAGACGGCATACGAGATactgccatGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B071_GCCGA
TAT 

CAAGCAGAAGACGGCATACGAGATatatcggcGTGACTGGAGTTCAGACGTGTGC 

P2_PCR_i7_B072_GCAAC
GTT 

CAAGCAGAAGACGGCATACGAGATaacgttgcGTGACTGGAGTTCAGACGTGTGC 
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Erklärung 

 
Hiermit versichere ich an Eides statt, dass ich die vorliegende Dissertation 
selbststan̈dig und ohne die Benutzung anderer als der angegebenen Hilfsmittel und 
Literatur angefertigt habe. Alle Stellen, die wor̈tlich oder sinngemaß̈ aus 
verof̈fentlichten und nicht verof̈fentlichten Werken dem Wortlaut oder dem Sinn nach 
entnommen wurden, sind als solche kenntlich gemacht. Ich versichere an Eides statt, 
dass diese Dissertation noch keiner anderen Fakultaẗ oder Universitaẗ zur Pruf̈ung 
vorgelegen hat; dass sie - abgesehen von unten angegebenen Teilpublikationen und 
eingebundenen Artikeln und Manuskripten - noch nicht verof̈fentlicht worden ist sowie, 
dass ich eine Verof̈fentlichung der Dissertation vor Abschluss der Promotion nicht 
ohne Genehmigung des Promotionsausschusses vornehmen werde. Die 
Bestimmungen dieser Ordnung sind mir bekannt. Darub̈er hinaus erklar̈e ich hiermit, 
dass ich die Ordnung zur Sicherung guter wissenschaftlicher Praxis und zum Umgang 
mit wissenschaftlichem Fehlverhalten der Universitaẗ zu Kol̈n gelesen und sie bei der 
Durchfuḧrung der Dissertation zugrundeliegenden Arbeiten und der schriftlich 
verfassten Dissertation beachtet habe und verpflichte mich hiermit, die dort genannten 
Vorgaben bei allen wissenschaftlichen Taẗigkeiten zu beachten und umzusetzen. Ich 
versichere, dass die eingereichte elektronische Fassung der eingereichten 
Druckfassung vollstan̈dig entspricht. 
 
Die von mir vorgelegte Dissertation ist von Dr. Dario R. Valenzano betreut worden. 
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