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Introduction 
Recent advances in the technology of high-performance virtual reality (VR) have enabled 

researchers to increase the ecological validity of stimuli presented in studies of 

counterconditioning[1], social gazing[2], equilibrium training[3], cue-exposure[4,5], and gambling 

behaviors[6,7]. The dissertation project presented here is aimed at making these technological 

advances accessible for research in the field of decision-making and cue-reactivity. Detrimental 

changes in decision-making processes form a core characteristic of a wide variety of psychiatric 

and neurological disorders. Addiction-related disorders such as substance-use-disorders 

(SUD)[8–10] or gambling disorder (GD)[11–13] form a clear example of this. Disentangling the 

cognitive processes involved in decision-making and which of these processes are impaired in 

certain psychiatric and neurological disorders is difficult, because often these processes form a 

black box even for the participants themselves. With the advance of the field of computational 

psychiatry[14] an exciting tool to dissect decision-making processes has emerged. 

Computational psychiatry employs theoretically grounded mathematical models to shed light 

on cognitive processes involved in decision-making and assesses how decision-making is 

disturbed in neurological and psychiatric disorders[15]. The main aim behind this is the 

establishment of transdiagnostic markers for these disorders[16]. This might in turn aid in the 

development of effective interventions as well as in the identification of treatment targets. 

Moreover, these markers might help to identify vulnerable individuals.  

Over the years, research investigating the role of maladaptive decision-making 

processes in psychiatric disorders has identified a range of interrelated but distinct processes. 

The first process of interest in the dissertation presented here is the discounting of reward value 

over time (temporal discounting). Studies have associated both steeper and shallower 

discounting with different psychiatric and neurological conditions[8]. Tasks that gauge the 

temporal discounting tendencies of participants usually ask participants to choose between a 

constant smaller but immediate reward and a range of larger but temporally delayed rewards[17]. 

The resulting choices as well as the response times (RT) can then be used to quantify the 

discounting tendencies via computational models. Evidence is mounting that altered temporal 

discounting might be a transdiagnostic marker for several neurological and  psychiatric 

disorders[8,16], with addictions and related disorders being a prominent example[16,18]. 

The second process that is of importance for the dissertation project presented here is 

reinforcement learning (RL)[19]. RL has produced considerable attention in a variety of fields, 

one of these being computational psychiatry. One current view is that RL is separated into two 
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systems, a habitual “model-free” system that learns stimulus-response associations, and a goal-

directed “model-based” system that adds a model of contingencies in the environment into the 

calculation of action consequences[20]. To quantify the degree to which participants employ the 

two systems in their decision-making, researchers often use the Two-Step task (TST)[21,22]. The 

TST is a two-stage decision-making task where first stage decisions probabilistically determine 

the presented second stage choice set and consequently the rewards that can be obtained. 

Reductions in the usage of “model-based” RL have been associated with a range of subclinical 

symptoms[23]. Likewise, participants suffering from GD show reduced model-based RL[24].  

Given that prominent characteristics of addiction related disorders are compulsive drug 

seeking and insensitivity to negative consequences[25], these disorders provide an exciting 

opportunity to study maladaptive decision-making processes. This is especially true for GD, 

which provides a clearer view on the underlying mechanisms, since GD is not based on 

addictive substances with direct effects on the neurobiological processes of participants. A 

theory that has been advanced to explain maladaptive decision-making in addictions is the 

Incentive-sensitization theory (IST)[26,27]. The IST postulates that neural circuits mediating the 

incentive motivation to obtain rewards become sensitized to cues predicting these rewards, 

leading to craving and drug-seeking behavior. The neural circuits thought to mediate this 

sensitization are assumed to be within the mesocorticolimbic dopamine system[27]. In line with 

this, there is evidence that exposure to addiction-related cues correlates with the modulation of 

striatal value signals in temporal discounting tasks[13] and increased striatal dopamine release 

in humans[28]. In the context of SUDs and behavioral addictions, such effects in response to 

addiction-related cues are termed cue-reactivity[29–31]. Manifestations of cue-reactivity can be 

observed on a physiological and subjective level[29,30]. Furthermore, exposure to addiction-

related cues is assumed to increase temporal discounting[13,32,33], modulate risk-taking[34] and 

impair cognitive performance[35]. 

Studies examining cue-reactivity in participants suffering from GD typically either used 

picture stimuli in a lab setting[11,13,34,36–42] or were conducted in real-life gambling facilities[32,33]. 

These two paradigms represent two extremes of the trade-off between ecological validity and 

the control of confounding variables. Studies conducted in a lab grant strong control over 

confounding variables but lack the ecological validity of field studies. Vice versa, field studies 

in real-life gambling outlets arguably have a high ecological validity but grant little control over 

confounding variables and make comprehensive physiological measurements more difficult. 

By equipping participants with head-mounted VR-glasses and a safe space to navigate 

the VR-environment freely, a strong sense of immersion and realism can be created. The main 
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idea behind this dissertation project is therefore to provide a combination of the strengths of 

both approaches by creating a VR paradigm to test subjective, physiological, and behavioral 

cue-reactivity in a lab environment. In our paradigm, participants are placed in two rich and 

navigable VR environments that either resemble a gambling-related casino environment or a 

(neutral) café environment. With the immersion taking place within a controlled lab setting we 

can easily accommodate the measurement of physiological variables like electrodermal activity 

(EDA)[43] and heart rate, as indicators of physiological cue-reactivity[29,30]. Such a paradigm 

could not only be applied in research but potentially in therapy to test reactions and learned 

cognitive strategies in a secure environment.  

As VR controllers in 3D space present a fundamentally different response mode 

compared to typically utilized keyboards, button boxes and computer screens used in standard 

lab-based behavioral testing, an additional aim of this dissertation was to assess how well 

decision-making tasks performed in VR are suited for subsequent computational modeling of 

the gathered response data. Computational modeling approaches assessing latent processes 

underlying learning and decision-making recently started to include decision RTs in addition 

to simple binary decisions. One example for this are sequential sampling models such as the 

drift diffusion model (DDM)[44]. Reasons for this are the improved stability of parameter 

estimates[45,46] as well as a more complete picture of the latent processes underlying decision-

making[47–50] that these models can provide. VR controllers present a fundamentally different 

response mode than commonly employed keyboards and screens and thus produce different RT 

patterns. We therefore decided to explore the applicability of drift diffusion modeling for 

behavioral data obtained in VR. 

Taken together, the dissertation project presented here had three major aims. First, we 

aimed to supplement earlier work on VR applied in the context of cue-reactivity in addiction[5–

7] by comprehensively modeling the choices of participants suffering from GD in decision-

making tasks performed in gambling-related and neutral VR environments. For this we used a 

temporal discounting task[17] and the TST[21]. Second, we aimed to develop a paradigm that 

combines the advantages of lab and field studies with comprehensive measurement of 

subjective, physiological, and behavioral cue-reactivity. This approach has the potential to 

advance the field of addiction research and the development of novel treatment opportunities 

for patients. The paradigm proposed here combines state-of-the-art VR with verbally reported 

craving with the measurement of EDA and heart rate, and the behavioral tasks described above. 

Finally, we aimed to assess the feasibility of applying RT-based sequential sampling models to 

data obtained with VR-compatible controllers. The dissertation at hand will first describe the 



 

 - 4 - 

background and methods in detail. Subsequently, it will present the studies conducted to 

achieve the goals described above. To draw a conclusion, it will be discussed how the obtained 

results can inform and guide further research in this area.  
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Background 
Making rational and informed decision is a core competence for functioning in complex 

and mentally taxing environments. Addictions, be they SUDs or behavioral addictions, present 

an intriguing opportunity to study decision processes that have gone awry. Key components of 

addictions are impaired control or compulsivity in behavioral engagement with the addictive 

substance or behavior, continued engagement despite negative consequences and a state of 

craving after abstinence[51]. To uncover what causes these disadvantageous decisions might on 

the one hand improve treatment and relapse prevention for patients suffering from addictions 

and on the other hand it might help psychology and neuroscience learn more about the cognitive 

processes involved in decision-making in general. Over the years, the classification of 

addictions and the resulting detrimental decisions has shifted more and more towards that of 

neurological disorders[27]. In this regard, behavioral addictions, with GD as their most 

prominent example, play a special role. Compared to SUDs there are no direct effects of 

neuroactive substances that might change the biological mechanisms on which decisions are 

formed. This project therefore focuses on patients suffering from GD. Nevertheless, this text 

will first lay the groundwork by introducing the neurobiological basis behind addictions and 

decision-making in general followed by a more specific discussion of these mechanisms in the 

light of GD.  

 

Dopamine and dopaminergic systems 
Many different neurotransmitter systems influence the dynamics of addictions. 

Noradrenaline and serotonin have been shown to influence impulse control[52,53]. Opioids are 

related to feelings of pleasure and influence important systems for motivation and learning (see 

below)[54]. However, probably the most important neurobiological basis for addictions is the 

dopaminergic mesocorticolimbic system[11,26,28,55]. To clarify what this system entails, this text 

will first focus on the neurotransmitter dopamine and its main pathways within the human brain 

and finally elaborate the proposed mechanisms by which it shapes cognitive processes involved 

in decision-making, especially in the context of addictions. 

Dopamine (DA) is a catecholaminergic compound that plays a key role in several 

cognitive processes, such as reward learning and incentive motivation[56,57]. It is synthesized 

from L-dopa within the cell body of dopamine neurons. It simultaneously acts as a precursor to 

norepinephrine and epinephrine and as a neuromodulator/neurotransmitter of its own accord[58–

60]. In its role as a neurotransmitter, dopamine acts as a signal between two neurons that are 

connected via a synapse[61]. In the common process of synaptic transmission an action potential 
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in the presynaptic dopaminergic neuron causes a chain of events that leads to the release of 

dopamine into the synaptic cleft. Within the cleft dopamine diffuses towards the post-synaptic 

neuron and acts on dopamine receptors located on the membrane. Receptors reacting to 

dopamine exist in at least five different subtypes[62–64] D1 to D5. All these receptors are G-

protein coupled receptors[60]. Thus, dopamine binding to the receptor triggers the intracellular 

part of the receptor to release a guanine nucleotide binding protein (G-protein) that in turn has 

different effects on the post-synaptic cell depending on the type of G-protein released. Based 

on the downstream effects caused by this G-protein, the five different subtypes can more 

broadly be categorized into the two categories D1-like (D1 and D5) and D2-like (D2, D3, D4). 

Differentiation between the two categories is commonly based on how the released G-protein 

modulates the activity of the enzyme adenylyl cyclase and consequently the production of the 

second messenger cyclic adenosine monophosphate (cAMP)[63–65]. D1-like receptors increase 

cAMP activity, while D2-like receptors decrease it. The result is that dopamine can have very 

different effects on the post-synaptic neuron depending on which receptor type is expressed. 

D1-like receptors are relatively more common in frontal brain regions, while D2-like receptors 

are generally more prevalent in the caudate nucleus (CN), putamen and nucleus accumbens 

(NAcc)[65,66]. Importantly however, despite their opposing effects on post-synaptic cells, D1-

like and D2-like receptors often act in synergy to enable complex cognitive functioning[67,68]. 

In addition to its described role as a neurotransmitter, dopamine can cause widespread and 

temporally prolonged effects on distant neurons, i.e., act as a neuromodulator[69]. Dopamine 

release can take place in two different forms, tonic and phasic[70–74]. The first form is tonic 

dopamine release, which is caused by the spontaneous baseline firing of DA neurons. This 

firing results in fluctuations of extracellular DA concentration in the time range of minutes. 

These tonic fluctuations are too low to directly cause a change in the rate of action potentials in 

postsynaptic cells on their own. These changes can however modulate phasic DA firing and 

thus take up an important role in signal transmission[71]. Phasic firing describes the release of 

higher concentrations of DA into the synaptic cleft, often triggered by a series of action 

potentials in the presynaptic cell[72]. These action potentials are usually in response to a stimulus 

and may cause the postsynaptic cell to fire as well. For a detailed discussion of the role of these 

forms of DA release we refer the reader to the work by Grace and colleagues[70]. 

Dopamine neurons are sparse. Only around one percent of neurons are 

dopaminergic[62,75]. These neurons are mainly localized in the mesencephalon[75]. There are, 

however, neuronal populations in the diencephalon and the olfactory bulb[61] that are 

dopaminergic. Nevertheless, most dopaminergic neurons are situated within the substantia 
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nigra pars compacta (SNc), the ventral tegmental area (VTA) and the retrorubral field 

(RRF)[62,75] lying in the ventral mesencephalon (Figure 1). From here DA acts on the 

extrapyramidal motor system (posture and control), limbic and cortical areas (cognitive 

functions) and the hypothalamus-pituitary system (hormonal regulation)[58]. There are three 

main dopaminergic pathways that need to be mentioned here. First, the nigrostriatal pathway in 

which dopaminergic neurons form axons from the SNc to the dorsal striatum (CN and 

putamen)[76–78]. These connections play a crucial role in voluntary movement and skill learning. 

Second, the mesolimbic pathway spanning from the VTA to the ventral striatum (VS), 

especially the NAcc, as well as the septum, amygdala and the hippocampus[27,57,62,75,77]. The 

mesolimbic pathway plays a key role in RL and motivational behavior[56,77,79,80]. Third, the 

mesocortical pathway running from the VTA to prefrontal target regions, the cingulate gyrus 

and the perirhinal cortex[62,81,82]. The main functions influenced by this pathway are working 

memory and behavioral flexibility[81–83]. Due to the overlap of the mesolimbic and mesocortical 

pathways they are often commonly referred to as the mesocorticolimbic system[62,83]. Given 

that most research and theories regarding decision-making and addiction identify the 

mesocorticolimbic system as one of the key systems[27,84–89] behind these processes, the next 

paragraph will focus on proposed dopamine functioning in that context. 
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Figure 1. Illustration of the three major dopaminergic pathways in the brain. The meso-cortico/mesocortical 
pathway running from the VTA to frontal target regions is displayed in blue. The nigrostriatal pathway running 
from the SNc to the dorsal striatum is displayed in red. The meso-limbic/mesolimbic pathway spanning from the 
VTA to the ventral striatum is shown in green. Figure adapted from Arias-Carrion and colleagues[62].  
 

Dopamine signaling 
Crucial for the understanding of addictive processes is the neurobiology of “natural” 

rewarding stimuli. Most insights about how rewarding stimuli are processed by the brain come 

from animal studies. Probably the most important mechanism identified by these studies is DA 

release in the VS/NAcc[56,83,84]. The first evidence that the mesocorticolimbic system might be 

crucial for reward or learning was reported by Olds & Milner in 1954[90]. In their study design, 

often termed intra-cranial self-stimulation, rodents could stimulate areas of the mesolimbic 

pathway via a button press. The result was that the rodents started to press the button frequently 

and were increasingly willing to accept aversive stimuli to be allowed to keep pressing the 

button. Back then this was interpreted as a reward or pleasure signal. Today phasic DA release 

is more accurately thought of as a reward prediction error (RPE) signal for learning instead of 

a rewarding signal per se[56,83,84]. The agent compares its expectation of a reward that is to be 

received with the reward that was actually received and the difference between the two (i.e., 

the RPE) is reflected in the DA signal.  The idea behind this dates back to classical 

conditioning[91] and has been further developed to the concept of RL[19]. It can be formalized 

mathematically as in equation 1[56], which is often referred to as temporal difference (TD) 

learning. Here the subjective value of a stimulus at time t (Vt) is calculated as the sum of the 
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value at timepoint t-1 (Vt-1) and the difference between the received reward at t and Vt-1 (i.e., 

the RPE) times a learning rate α. The learning rate governs how strong the difference between 

expected and actual reward at trial t-1 changes the expectation about the reward and therefore 

regulates how strongly past trials are included in the valuation of a stimulus (Vt). 

 

!!	=	!!"# + 	%	['! 	− 	!!"#]	(1) 

 

That dopamine release from the VTA into the NAcc resembles a RPE has been repeatedly 

shown[56,84,92–94]. In line with that, similar results have been reported using less invasive 

methods of neuroimaging in humans[95,96]. Interestingly, the timing of the phasic DA response 

shifts towards the reward predicting stimulus if the reward is expected[97]. Thus, as detailed 

above, an expected reward does not produce a DA response after reception, but a predicting 

stimulus does. This is attributed to Pavlovian learning of an association between the reward and 

the predicting stimulus[57]. This mechanism most likely plays an important role in the 

emergence and perpetuation of addictions (see below). It is important to point out here that this 

is a somewhat simplistic view of a very complex signal. Different research has pointed out that 

the phasic DA signal in the VS also varies with stimulus intensity, context and resemblance of 

other stimuli irrespective of reward[94]. In addition to that, information about the uncertainty of 

reward is also included in the ramping up of the activity towards the phasic peak[97]. 

Nevertheless, the view of phasic DA activity as a RPE signal lays important groundwork for 

current theories about addiction that will be discussed next. 

 

Addiction-related disorders 
Basically all drugs of abuse as well as naturally rewarding behaviors (i.e., food and sex) 

cause DA activity within the mesocorticolimbic system[11,88]. The DA releasing effect of 

addictive substances however is believed to be much stronger than any natural reinforcer and 

is also not abolished after being learned[98]. This in turn leads to an escalation by which drug 

cues come to dominate wanting behavior. Research with human participants revealed that 

dopamine functioning is altered in participants suffering from SUDs[28,99].  In line with that, 

early theories of how addiction manifests in the brain stated that the DA releasing effects of 

addictive substances lead to strong memory formation and neuroplasticity within the 

mesocorticolimbic system[88,99]. Over time, behavior is increasingly governed by compulsive 

and habitual patterns. This is mirrored in neural activity in response to addiction-related cues 

that gradually shifts from  mainly ventral striatal areas towards the dorsal striatum[100]. 
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Additionally, salience attribution in the orbitofrontal cortex (OFC) as well as executive 

functioning in the prefrontal cortex (PFC) and anterior cingulate cortex (ACC) are altered, 

increasing the chance of relapses[28,101]. 

A compelling account of how addictions arise precisely and how stimuli associated with 

the addictive substance become increasingly salient is proposed by the IST[27]. Reward is 

conceptualized as containing separable components of learning, incentive motivation and 

pleasure. The central pillar of this theory is that addictions become compulsive when the 

mesocorticolimbic system becomes sensitized and hyper-reactive to the incentive motivational 

value of drug-related cues and thereby generates a strong “wanting”. The concept of “wanting” 

or “incentive salience” in the context of the IST is separated from the concept of  “liking” which 

describes the actual pleasurable or hedonic impact of a consumed reward and is mediated by 

independent neuronal circuits [102,103]. Both concepts are often related in that we often “like” 

what we “want” and “want” what we “like”. However, the two can also be dissociated by 

manipulations, especially those including DA[104]. On the other hand, “wanting” is less 

associated with cognitive goals but more linked to reward cues and how these are made 

attention-grabbing and attractive[105]. This form of “wanting” is mediated by the 

mesocorticolimbic system and enables cues to trigger urges to obtain and consume the 

associated rewards. The strength of these urges depends on the associated reward as well as the 

state of the DA-related brain systems (e.g., stress, emotional excitement, appetite or 

intoxication)[57]. To distinguish “wanting” from the more ordinary sense of wanting in form of 

cognitive desires, the terms predicted utility and decision utility can be helpful[106]. Predicted 

utility is the predicted value of a future reward. Decision utility is the motivational value of that 

outcome, as revealed by choice, pursuit, or consumption. For cognitive desires, decision utility 

and predicted utility are the same and stable over time[107]. For the incentive salience or 

“wanting”, there is a situation where the decision utility is greater than the predicted utility for 

future rewards[55]. To put it differently, it is possible to “want” something that is not expected 

to be liked and is also not liked when obtained. An example would be patients suffering from 

SUDs that report a lack of enjoyment after drug use but still report craving it. The mechanism 

behind this is defined as follows. A reward (natural or addictive substance) acts as an 

unconditioned stimulus (UCS). A predicting or temporally related stimulus becomes associated 

(conditioned stimulus, CS) with the UCS via DA signaling and resulting neuroplasticity. The 

result is a strong sensitivity towards reward predicting CS in the VS. This sensitivity in turn 

triggers increased “wanting” and therefore motivation to consume the related reward. The 

obvious problems arising from an increased sensitivity towards addiction-related and therefore 
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appetitive stimuli and reduced frontal inhibition capacities for addictive behaviors and 

relapse[28,101] led to a strong research interest in the role these cues play in addictions. The 

current view on the different aspects of this ‘cue-reactivity’ process will be the focus of the 

following section.  

 

Cue-reactivity  
Resonating with the ideas from the IST, there has been a considerable amount of 

research in the field of cue-reactivity in SUDs[29] as well as behavioral addictions[30]. Cue- 

reactivity describes the phenomenon that participants suffering from addiction-related disorders 

show an increased reactivity towards addiction related stimuli. This reactivity most likely forms 

a major risk factor for relapse and other possibly problematic behaviors. Cue-reactivity may 

manifest on a subjective level by inducing craving for or “wanting” of the addictive goal[5,29,108]. 

There is also strong evidence that addiction-related cues cause behavioral changes in reward-

based decision-making of participants. This has been shown for a range of tasks, with the 

temporal discounting tasks being the most relevant here[12,13,109,110]. Additionally, it might 

manifest on a physiological level in peripheral measures such as heart rate and skin 

conductance[29]. A range of studies has shown cue-reactivity on the neural level in SUDs[111–

113]. The results indicate the PFC, ACC, striatum, insula, hippocampus, and amygdala as 

structures involved in cue-reactivity[40,114–116]. The VS/NAcc as a crucial part of the 

mesocorticolimbic system and its role in the mechanisms proposed by the ICT is of special 

interest here[55]. Since addictive substances have direct effects on the neurobiological processes 

of participants, we will now focus on gambling disorder, which provides a less perturbed view 

on the underlying mechanisms. A possible explanation for the addictive properties of gambling, 

that lacks a neuroactive agent, is that uncertainty itself increases DA signaling and is itself 

rewarding[85,97]. The perpetual uncertainty of gambling is thus seen as UCS in the IST 

mechanisms described above. This is supported by evidence showing that the reward schedule 

of commercial gambling machines resembles conditions that lead to increased DA firing during 

the anticipation of reward[117]. Cue-reactivity on the different levels mentioned above has been 

demonstrated in participants suffering from GD[13,32,36,41,42,115]. Cues that are related to gambling 

lead to an increased subjective urge to gamble[118] and cause increases in psychophysiological 

measures such as EDA and hear rate[119]. On a neurobiological level, participants suffering from 

pathological gambling show increased reactivity to gambling related cues in neuronal circuits 

associated with reward, learning, habits and executive control, similar to those shown by 

participants suffering from SUDs[30,41,42,85,115,116,120,121] (see above). Limbrick-Oldfield[42] and 
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colleagues were able to show that the subjective urge to gamble induced by gambling related 

cues was correlated to activity in the VS, lending further credence to the IST. However, it is 

important to note that the directionality of these effects is still unclear[85]. In line with the reward 

deficiency theory postulated by Volkow and colleagues[28], participants suffering from GD 

show decreased responsivity to primary reinforcers like erotic pictures and stronger reactivity 

to monetary rewards[122]. Furthermore, participants suffering from GD show stronger reactivity 

to monetary rewards in VS, VTA and ventromedial prefrontal cortex (vmPFC) during realistic 

gambling tasks[123–125] compared to healthy control participants. Behavioral cue-reactivity has 

been demonstrated by studies using decision-making tasks, such as temporal discounting[13,32]. 

Please find a detailed discussion on these results below.  

Studies probing cue-reactivity in the context of GD commonly either present visual 

stimuli on a computer screen within a standardized lab environment or in a 

scanner[11,13,34,36,38,40–42,115,123] or conduct experiments in real-life gambling facilities[32,33]. 

These options present two extremes of a trade-off between ecological validity, which is high in 

a real-life gambling facility, and the control of possibly confounding variables, which is high 

in a lab surrounding. Moreover, field studies in a real-life gambling facility make it difficult to 

measure psychophysiological or neurobiological variables. 

 

Virtual reality 
The emergence of high-performance VR technology in recent years opens an exciting 

possibility to combine the best of both worlds described before. In VR paradigms participants 

are equipped with VR headsets. The VR headset covers the whole visual field of the participant 

and presents images that are matched to the tracked motion of the participant. By doing so, VR 

creates a strong sense of immersion in a virtual environment. Modern VR headsets can update 

the presented images so fast that there is no perceptible lack between movement and image 

update. This helps to overcome early problems with VR technology, which caused vertigo and 

nausea in participants. Thus, modern VR technology enables designs that provide a high level 

of ecological validity via immersion in virtual environments, while taking place in a highly 

controllable lab setting. This combination of methodological advantages makes VR a very 

attractive tool in addiction research as well as therapeutical practice. The hope behind research 

with VR headsets is to create a paradigm that can expose patients, be it patients suffering from 

GD or any other form addiction-related disorder, to realistic cues in a safe environment and 

train them to use cognitive behavioral therapy techniques to reduce stress and craving[5]. 

Naturally, this hope can only come to fruition if research can reliably show that addiction related 
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cues can induce cue-reactivity on a level sufficient to justify the extensive effort of creating 

realistic VR designs. Studies assessing cue-reactivity in VR environments demonstrated 

increases in craving in participants suffering from GD[5,108], participants suffering from nicotine 

addiction[126] and participants suffering from alcohol addiction[4]. Furthermore, Wang and 

colleagues[1] were able show that reactivity to metamphetamine-related cues could be reduced 

by a VR counter-conditioning procedure. In a promising study by Dickinson and colleagues[7] 

on participants suffering from GD, higher levels of arousal and immersion were found during 

a gambling task in VR compared to a laptop. Taken together, these results demonstrate the great 

promise of VR. VR designs targeted at patients and participants suffering from GD so far have 

focused on one VR environment with gambling related cues and possibly a neutral starting area 

to accustom participants to VR. To date, there is no study that combines these designs with a 

systematic evaluation of cue-reactivity on all levels described above. In the dissertation project 

presented here, we propose a VR design that combines decision tasks from computational 

psychiatry, measurement of psychophysiological variables and subjective urge to gamble 

ratings. Please find a detailed description of the VR environments in the studies reported below. 

We hope that we can contribute to cue-reactivity research in addiction by overcoming 

ecological validity shortcomings of earlier lab-based studies and help to advance the use of VR 

in treatment of patients suffering from GD and addictions in general. Additionally, we hope to 

provide preliminary evidence that commonly used decision-making and RL tasks can be 

applied in VR with confidence. The next sections will present a detailed discussion of the 

different variables measured within the VR environments and which statistical methods were 

used to analyze the resulting data. 

Methods 
In the next sections this text will discuss how the different forms of cue-reactivity were 

operationalized in this dissertation project to overcome the methodological issues of ecological 

validity shown by earlier studies in cue-reactivity describe above. 

 

Subjective cue-reactivity 
The measurement of subjective cue-reactivity in VR was accomplished by asking 

participants suffering from GD to report their urge to gamble on a 10-point likert scale. The 

experimenter verbally asked the participants to verbally report their urge to gamble during five 

time points during the VR exposure. Verbal reports of craving have been used successfully in 

previous cue-reactivity research[127] and for comparable designs[108]. 
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Behavioral cue-reactivity 
Analyzing the learning and decision-making behavior of participants suffering from 

addictions is often accomplished with cognitive models developed in the field of computational 

psychiatry. Computational psychiatry employs theoretically grounded mathematical models to 

disentangle behavioral abnormalities and develop improved diagnostic criteria as well as 

treatments. The following paragraph will discuss the two behavioral tasks used in the two 

studies presented here and describe how the resulting data was analyzed using methods from 

the field of computational psychiatry[14]. 

 

Temporal discounting 

As mentioned above, temporal discounting has been widely used for cognitive 

modelling in the context of GD[12,32,109,128]. In temporal discounting tasks, participants are 

repeatedly confronted with a choice between a smaller immediate reward (SS) and larger but 

delayed rewards (LL)[17]. It is commonly accepted that the degree to which participants discount 

the value of a delayed reward can be seen as a direct measure of impulsivity[129] (Figure 2). This 

is supported by studies showing a strong association between temporal discounting measures 

and personality questionnaires assessing trait impulsivity[12,130]. Furthermore, the individual 

parameters obtained via temporal discounting measures show a strong temporal stability. 

Studies assessing the test-retest-reliability of temporal discounting measures consistently attest 

good to excellent reliability[131–133]. There is even evidence for the heritability of impulsivity 

measured with temporal discounting[134]. Generally, alterations in reward based decision-

making, such as heightened temporal discounting, are proposed to be diagnostic marker of 

addictions[18]. Participants suffering from GD haven been shown repeatedly to have an 

increased tendency to discount future rewards[17,39,128]. But the degree to which discounting of 

future rewards is related to the severity of the GD symptoms is still unclear. There are results 

that show that South Oaks Gambling Screen (SOGS) scores are related to the steepness of the 

discounting curve[110] (see below). However, other studies failed to identify a strong directional 

relationship[17,39]. Despite the unclear association between gambling severity and impulsivity, 

Miedl and colleagues[17] showed that gambling severity and the representation of values in the 

VS, OFC and midbrain dopaminergic regions were correlated. These results make sense in the 

light of addiction research discussed above and resonate well with other results that identify 

activity within a circuitry of VS, vmPFC and posterior cingulate cortex as the representation of 

SS and LL values in temporal discounting[101]. The concept of cognitive control also plays an 
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important role here as Figner and colleagues[135] showed that modulation of the dorsolateral 

prefrontal cortex (dlPFC) activity via transcranial magnetic stimulation can increase the 

tendency to discount values of future rewards. The authors concluded that foregoing a smaller 

but immediate reward necessitates more self-control than foregoing larger but delayed rewards. 

There is also evidence that participants suffering from GD show impaired cognitive control in 

a stroop task  that correlated with activity changes in the vmPFC[136]. How increased reactivity 

to gambling related cues in the VS might interact with these findings to influence temporal 

discounting has also been assessed. Miedl and colleagues[13] showed that gambling cues 

presented in the background during a temporal discounting task modulate striatal value 

representation to a degree proportional to induced subjective craving. In the mentioned study, 

activity related to modeling-based subjective value in the VS was down regulated by cues 

causing higher craving. These results are reminiscent of other studies assessing temporal 

discounting in appetitive conditioning contexts[137,138], supporting the idea of incentive 

sensitization of gambling related cues. The neurobiological observations are supported by an 

increased discounting rate in the presence of gambling related cues[13,32]. Again, this fits well 

into the addiction frameworks discussed above, as modulated value representation in key areas 

in combination with impaired frontal control of impulses are also thought to play a role in 

temporal discounting[135]. Consequently, temporal discounting tasks represent an attractive way 

to investigate behavioral effects of addiction related stimuli. Next, the precise way of how these 

tasks can be analyzed using computational psychiatry methods is discussed. 

 



 

 - 16 - 

 
Figure 2. Temporal discounting visualized with a hyperbolic discounting function. The y-axis displays the 
discounted subjective value of a monetary reward of 100$. The x-axis represents the temporal delay until the 
reward is paid out. In the hyperbolic model (Eq. 2) high values of log(k) indicate a steep curve, which is thought 
to be associated with higher impulsivity. Low values of log(k) lead to a more gradual decline of value over time 
and are thus thought to reflect less impulsive choices. The figure was adapted from MacKillop and colleagues[139]. 

 

Analysis of temporal discounting tasks 

Model agnostic analysis. A simple way to analyze the choices made during a temporal 

discounting task, that does not include complex cognitive modeling, is the area under the curve 

(AUC)[140]. To obtain AUC values a logistic function is fit to the choices for each delay.  The 

LL value at which this logistic function assigns a probability of .5 is termed the indifference 

point, because here the larger value has been delayed so much that its discounted subjective 

value is equal to the value of the SS. The resulting indifference points are then plotted against 

their corresponding delays. Finally, the area under the resulting curve is calculated and noted 

as the AUC. 

 

Hyperbolic model. Cognitive modelling approaches to the analysis of temporal 

discounting choices and/or RTs usually propose that the value decay of the delayed options 

resembles a hyperbolic function[141,142] (Figure 2). In the this dissertation we therefore chose to 

use a hyperbolic discounting model in combination with two different choices rules. The 

hyperbolic discounting model defines the subjective value of a delayed option at trial t 

(SV(LLt)) as the objective value at trial t (At) divided by a discounting term (Eq. 2).  
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SV(LLt)	= At

(1+exp(k)*Dt)
	(2)	  

 

The discounting term consists of the parameter k which governs the steepness of the discounting 

and Dt representing the associated delay at trial t. To increase the numerical stability of the 

model for values close to zero we include exp(k) in our model. This is later reversed by reporting 

log(k) in the results. By adding choice rules to the calculation of subjective values, we introduce 

decision noise and create a more plausible model of decision-making[19]. The different choice 

rules will be discussed next. 

 

Softmax choice rule. The softmax choice rule is commonly used in the context of RL, 

machine learning and decision-making[19]. For the softmax action selection, the probability of 

choosing the LL option on trial t is given by equation 3. 

 

P(LLt)	= exp(SV(LLt)*	))
exp(SV(SSt)	*	))+ exp(SV(LLt)	*	))

	(3)  

 

The stochasticity of the choices with respect to the calculated SV(LLt). is determined by the . 

-parameter. A . of zero would indicate that choices are random, whereas higher . values 

indicate a higher dependency of choices on option values. We extended this hyperbolic model 

with a softmax choice rule with shift parameters that describe the shift in the parameters . (/)) 

and k (/*) (Eq. 4 and 5) from a neutral condition to a gambling related condition.  

 

SV(LLt)	= At

(1	+	(exp(k	+	,!	*	It))	*	Dt)
(4)	  

 

P(LLt)	=
exp/SV(LLt)	*	()	+	,"	*	It)0

exp/SV(SSt)	*	()	+	,"	*	It)0+ exp/SV(LLt)	*	()	+	,"	*	It)0
	(5)  

 

I is a dummy variable identifying to which condition (neutral or gambling related) a trial 

belongs.  

 

DDM choice rule. Another possible choice rule to simulate decision processes is the 

DDM. The DDM is a cognitive model that describes simple binary choice tasks as diffusion 

processes between two boundaries[44]. In recent years interest in the DDM has skyrocketed and 

it has been applied to various forms of temporal discounting and RL tasks[47–49,133,143,144]. There 
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are two main reasons for this. First, by including the full RT distribution together with the 

choices made by the participants, the stability of parameter estimates given by the model can 

be drastically improved[45,46]. Second, by modeling the decision process in this way it is possible 

to enable the assessment of underlying latent decision processes[48,144] (see below). Therefore, 

the modelling of DDM parameters was included in all projects described here.  

Within the framework of the DDM it is assumed that decisions are formed by a noisy 

evidence accumulation process over time that approaches one of two boundaries[44] (Figure 3 

top panel). The boundaries represent the two possible choices. In the context of correct or 

incorrect decision the upper boundary represents correct and the lower boundary wrong 

decision. However, in the realm of value-based decisions the two options are simply assigned 

to the boundaries. As soon as one of the boundaries is crossed by the diffusion process the 

corresponding choice is executed. The DDM allows to disentangle the different parameters that 

describe the evidence accumulation process. By adjusting these parameters, the model fits the 

empirically obtained RT distributions to the RT distributions produced by the DDM. The four 

most important parameters are the drift-rate 2, the boundary separation %, the non-decision time 

3 and the decision bias z. 2 describes the rate of evidence accumulation. The more 

positive/negative 2 is the faster one of the two boundaries is reached (Figure 3 top panel). A 

highly positive/negative	2 indicates stronger evidence and hence an easier and faster decision. 

Faster decisions lead to a more positively skewed RT distribution and a shorter tail (Figure 3 

middle panel). Slower decisions lead to a less skewed RT distribution and a longer tail.  The 

boundary separation parameter % determines the distances between the two boundaries (Figure 

3 top panel). It can be seen as decision threshold, because the further the two boundaries are 

apart the more evidence needs to be accumulated to form a decision. Consequently, noise 

inherent in the process has less influence on the decision and decisions are executed slower. % 

is thus often described as governing the speed/accuracy trade off. The starting point parameter 

z governs at which point between the two boundaries the diffusion process starts (Figure 3 top 

panel). It can bias decisions towards a certain boundary and therefore change how responses 

are distributed across the two choice options. Finally, the non-decision time 3 picks up how 

long the sensory encoding of the evidence (u) and the execution of a response after a decision 

is made (w) take (Figure 3 bottom panel). In the models of the temporal discounting task 

presented here, we replaced the softmax function as a decision rule with the DDM to gain 

additional insights into how decisions are formed in the different contexts. 
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Figure 3. Illustration of the dynamics of modelling choices based on the DDM choice rule. Top: Illustration of 
what the different latent choice parameters describe within the DDM framework, and how they change the 
estimated RT distributions. Middle: Detailed view on how the drift rate influences the estimated RT distributions. 
Very positive/negative drift rates lead to fast decisions, which in turn lead to a more positively skewed RT 
distribution and a shorter tail. Less extreme drift rates lead to broader, less skewed estimated RT distributions. 
Bottom: Illustration of the composition of RTs within the DDM framework. The total RT in each trail is made up 
from the diffusion process (d) and the non-decision components encoding/perception of information (u) and 
response output/motor execution (w). Within the DDM the parameter ! models the non-decision components u 
and w. 
 

In the projects described here we used the Wiener first passage time to model the 

distribution of the RT on trial t (Eq. 6). 

 

RTt ~ wfpt (α, τ, z, 2)	(6) 

 

We tested and compared different extensions of the DDM to see if the standard DDM null 

model (DDM0) described above could be improved. The DDM0 does not include the value 

difference between the two options and consequently assumes the drift rate 2 is the same in 

each trial. We extended this null model with two different temporal discounting DDMs in which 

the subjective value difference between the two options was included to modulate the trial-wise 
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drift rates. First, we tested a linear linking function[50] (DDML).  The drift-rate 2 in trial t 

depends linearly on the scaled value difference between the LL option and the SS option in the 

temporal discounting task (Eq. 7)[48]. The additional parameter 2coeff maps the value differences 

onto 2 and scales them accordingly. 

 

2t = 2coeff ∗ (?! (@@t) – ?!(??t)) (7) 
 

One major problem with the DDML is that the linear representation of the relationship between 

2 and the value differences is that 2 increases infinitely with high value differences. That might 

lead to an underprediction of RTs for high value differences[144]. Previous work has shown that 

a successful way of changing this is by implementing a non-linear sigmoidal relationship 

between the 2 and the trial-wise value difference of the options[47,49,144]. This model, called 

DDMS, constrains the growth of 2 with the value difference to the asymptote 2max. To 

accomplish this the linear mapping function from the DDML is passed through the sigmoid 

function S (Eq. 8 and 9).  

 

2t = S [2coeff * (SV(LLt) - SV(SSt))]	(8)  

 

S(m) = 
2 ∗ 2max

1 + exp	(−H)
− 2max	(9)  

 

Equivalent to the softmax models described earlier we included a version of the model in which 

we added a condition-based shift parameter to the DDMS model (Eq. 10 to 12) in one of the 

projects. 

RTt ~ wfpt (α+	/1*	It, τ	+	/τ	*	It, z	+	/z*	It, 2	+	/4*	It)	(10) 

 

2t = S [(2coeff 	+	/4coeff 	*	It) * (SV(LLt) – SV(SSt))]	(11)  

 

S(m) = 
2 ∗ (2max + /4max ∗ It)

1 + exp	(−H)
− (2max + /4max ∗ It)	(12)  

 

The additional s-parameters capture the shift in value from one condition to the other, while I 

is still a dummy variable indicating which condition the trial t belongs to. Next, we will discuss 

the second task included in the project presented here. 
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Two-Step Task 

Performance on this second behavioral task employed here has also been proposed as a 

possible marker for psychiatric diseases in computational psychiatry[145]. It is called the Two-

Step Task (TST). Theories describing decision-making emphasize the distinction between two 

systems that work in concert to control behavior[146–148]. The two systems are differentiated 

along the lines of the trade-off between accuracy and computational demands. One system is 

fast and automatic but sometimes inaccurate, while the other is slow and effortful but more 

accurate. The fast system is often compared to Thorndike’s law of effect, which states that an 

action that was rewarded is more likely to be repeated[149]. This resonates well with the RPE 

signal represented by the DA signaling in the VS and it has been proposed that the two are one 

and the same[149,150]. Consequently, recent research has formalized both systems within the 

framework of RL[19,21,22]. The fast and automatic system is formalized as model-free (MF) TD 

learning described above, whereas the slow and deliberate system is formalized as model-based 

(MB) learning. MF learning is called model-free because it lacks a representation of causal 

structures in the environment. It learns the value of an action by a weighted average of past 

rewards (i.e., TD learning). This produces fast but inflexible response tendencies or habits, 

which may form the basis of addictions[151]. MB learning on the other hand stores an explicit 

causal model of the environment and uses this model to formulate plans for future actions. 

While the computational costs of MB learning are thus much higher it also has a higher potential 

for accurate choices because changes in the environment can be quickly incorporated into the 

decision-making processes. The favored method of dissociating these mechanisms of learning 

and value-based decision-making is the TST[21]. The TST is a sequential decision-making task 

in which participants must make a series of choices between two abstract picture stimuli (Figure 

4). Each trial consists of two stages. In the first stage participants must choose between two 

stimuli. In each trial the first stage stimuli are always the same two abstract fractals. These two 

first stage stimuli probabilistically determine which of two possible second stages are presented 

subsequent to choice execution. To be precise, one first stage stimulus leads to one second stage 

with a probability of seventy percent (common transition) and with a probability of thirty 

percent (rare transition) to the other possible second stage. This is reversed for the other first 

stage stimulus. Each possible second stage has its own pair of abstract picture stimuli. 

Traditionally, the second stage stimuli are associated with a probability of returning a constant 

reward. The reward probability associated with each of the four (two for each stage) second 

stage stimuli is slowly and independently changing in form of a predetermined quasi-random 

walk. The rare transitions allow for a dissociation between MF and MB choice behavior. Since 
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the MF strategy is insensitive to the underlying causal structure of the task it will simply 

increase the probability of a choice based on the reception of reward independent of the 

transition preceding it (Figure 5 A). Choices guided by MB learning reflect an interaction 

between the transition type and the reward. A choice that is rewarded after a rare transition will 

lead to a decrease of the probability to repeat the associated choice (Figure 5 B). The behavior 

of participants usually reflects a mixture of these two types (Figure 5 C). This version of the 

task has been criticized for creating situations in which MB strategies do not perform best and 

thus not being optimal for dissociating the two systems[22]. A potential remedy for the problems 

with the original task version is replacing the reward probabilities with continuous rewards that 

also vary in the form of predefined quasi-random walks[22]. This version of the TST was used 

in the projects presented here. The TST has proven to be a valuable tool to characterize the 

neurobiological implications of the two systems within this RL framework. 

 
Figure 4. Schematic representation of the Two-Step task. In each trial participants start in the first stage (pink). 
Their decision in this stage probabilistically determines which of two possible second stages will be presented 
next. One first stage stimulus (left side) leads to the brown second stage with a probability of 70% and with 30% 
to the yellow second stage. The other first stage stimulus (right side) does the same but with reversed probabilities. 
Second stage choices are rewarded based on predetermined quasi-random walks. Figure adapted from Kool and 
colleagues[22]. 

 
Figure 5. Visualization of the behavioral patterns reflecting the different systems within RL. The y-axis represents 
the probability of repeating the first stage choice of the previous trial. A) Model-free behavior simply guided by 
the reception of a reward in the previous trial. B) Model-based behavior guided by the reception of reward as well 
as the transition type in the previous trial. C) A mixture of both types of RL. Adapted from Kool and colleagues[22]. 
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As mentioned before, the MF decision-making is supposedly mediated by DA signaling 

in the mesocorticolimbic system[150]. Further studies also identified a correlation between MB 

value representations and activity in the vmPFC/OFC[152,153]. This fits nicely with earlier 

research that showed expected future rewards are represented in the VS and vmPFC[154]. That 

frontal areas involved in the mesocorticolimbic DA system play an important role in processes 

supposed to contribute to MB learning, such as forward planning, mental simulations and 

representing real world contingencies, further highlights the importance of frontal executive 

control[21,81,155–157]. Importantly, there is evidence that DA signaling in the VS has also been 

shown to represent both MF and MB learning to a degree proportional to the choice behavior. 

In line with this, presynaptic DA levels in the VS were found to correlate with MB choice 

behavior in healthy control participants[155,157]. As many current views of addiction emphasize 

the disbalance between a hypersensitized reward system and a reduction in frontal executive 

control over the developed habits and action impulses[55,135] (see above), the TST presents an 

intriguing option to explore changes in decision-making processes in GD.  

In the context of addictions, the TST has produced mixed results. A range of studies 

failed to identify any difference in MF and MB learning between control and alcohol dependent 

participants[145,158,159]. In contrast, other results indicated impaired MB learning in participants 

suffering from alcohol dependence[160], binge drinking[161] and metamphetamine 

dependence[158]. Up to this date there is little research about the balance between MF and MB 

learning in GD. Wyckmans and colleagues[24] demonstrated that participants suffering from GD 

show reduced MB learning when compared to healthy control participants. This effect was 

driven by trials in which no rewards were received. A similar effect could be seen in the RTs 

of participants suffering from GD. The researchers observed a significantly faster RT after 

unrewarded trials and hypothesized that this could be caused by reduced loss aversion and less 

flexible habit-like behavior. In line with the results from Wyckmans and colleagues[24], reduced 

reactivity to losses and stronger loss anticipation have been demonstrated in participants 

suffering from GD before[162]. Because addiction related cues are suspected to increase 

impulsivity[13,32,33] and dependence on pathological habits[26,163], it is natural to assume that 

participants suffering from GD might decrease their reliance on MB systems[23,164] in favor of 

a more MF choice behavior. How the choice patterns produced by the TST can be analyzed 

using computational psychiatry[14] will be discussed next. 
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Analysis of the Two-Step Task 

Model agnostic analysis. Identical to the analysis of the temporal discounting data, 

analysis of the TST can be accomplished with approaches that are less modeling heavy. The 

first option is to simply analyze the final score participants achieve during the task, as higher 

scores are usually associated with a stronger MB influence. A second approach that utilizes less 

cognitive modeling is assessing the likelihood of making the same first stage choice in the 

current trial as in the previous trial (pStay) with a hierarchical generalized linear model 

(HGLM)[21]. The main effects of reward (representing if the last trial was rewarded), transition 

(common or rare) and the reward x transition interaction are included in the model. A significant 

effect of reward would indicate MF choices, while a significant interaction between reward and 

transition would indicate MB behavior. In this analysis both terms can be significant, 

demonstrating that both systems influence the pStay. To disentangle cue-reactivity and group 

effects, additional factors like group and condition as well as their interactions can be added to 

the model. As described above, the version of the TST used in the project at hand did use 

continuous rewards, making the interpretation of the reward factor difficult as it is not yes (1) 

or no (0). To overcome this, we included an analysis of second stage RTs. There is evidence 

from previous research that suggests that longer second stage RTs after a rare transition are 

associated with stronger MB control, because participants employing more MB control expect 

a common transition but are startled by a rare transition[165]. We thus additionally constructed a 

HGLM which included the factors transition (common or rare), condition (VRgambling or 

VRneutral) and group (gambling or non-gambling control) to model second stage RTs. 

 

Softmax choice rule. Like the temporal discounting task, there is a range of possible 

ways to include computational modeling in the analysis of the TST. One possible cognitive 

computational modeling approach is based on the analyses from Otto and colleagues[166]. The 

so called ‘hybrid model’ combines an RL model that learns state-action values (Q-values) for 

the options in the different stages with a softmax or a DDM choice rule. For the first stage both 

the MB and MF Q-values are tracked, whereas there are only MF Q-values (QMF) in the second 

stage. The update of QMF-values in both stages on trial t is achieved via the prediction error K 

(Eq. 13 to 16). The subscript j (j ϵ [1,2]) denotes the two possible actions in each stage, while i 

denotes the stage presented. 

 

	Q56Ms78,:, a8,:Q = 	Q56Ms78,:"#, a;8,:"#Q + MR7 +	/<# ∗ 	 S!Q ∗ δ7,:	(13) 
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	Q56Ms#;,:, a8,:Q = 	Q56Ms#,:"#, a8,:"#Q + MR# +	/<$ ∗ 	 S!Qδ#,:"# + MR7 +	/<# ∗ 	 S!QK,7(14) 

 

δ#,: =	Q56Ms7,:"#, a8,:"#Q − Q56Ms#,:"#, a8,:"#Q(15) 

 

δ7,: = r7,:"# −	Q56Ms7;,:"#, a8,:"#Q(16) 

 

In the equations above, r represents the second stage rewards of the previous trial (t-1). As there 

are no first stage rewards, first stage QMF-values are updated based on the second stage QMF-

values and the second stage prediction error (K,7). R# and R7	represent the first and second stage 

learning rates (i.e., the impact of RPEs on future reward expectation). To help model 

convergence, the learning rates were transformed into standard normal space [-4, 4]. The model 

described here is a shift model that models condition effects on parameter estimates by shift 

parameters that are added onto the main parameters. I again represents the session presented at 

trial t. By removing s terms, the model can be used for single conditions, like the first hyperbolic 

temporal discounting model described above.  

Model based Q-values (QMB, see Eq. 17) are calculated based on the transition 

probabilities between the first and the second stage and the second stage QMF-values, as there 

are no rewards in the first stage. 

 

	W=>M/#, X?Q = 	YM/7#Z/#, X?Q	HX[	W=@(/7#, X) + YM/77Z/#, X?Q	HX[	W=@(/77, X)	(17) 

 

Since there are no further stages to the task, for the second stage, QMF = QMB. The softmax 

choice rule governing second stage choices (Eq. 18) is analogous to the temporal discounting 

softmax choice rule described above. Here, .7 governs the choice stochasticity. 

 

YMXA,! = XZ/7,!Q =

exp ]M.7 + /)# ∗ S!QW=@%#(X)^

∑ exp ]M.7 + /)# ∗ S!QW=@%#(X
B)^C&

(18) 

 

The softmax choice rule governing first stage choices (Eq. 19) adds separate weighting 

parameters for QMF and QMB (.=@ and .=>) that model the impact of these Q-values on first 

stage choices. The selection of actions in the first stage is thus modelled by weighing the 

influences of MB and MF Q-values. 
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YMXA,! = XZ/#,!Q

=

`[aM(.=> + It ∗ /)=>QW=>%$(X) + (.=@ + It ∗ /)=@)W=@%$(X) + Mb + 	It	*	/DQ ∗ c`a(X))

∑ `[aM(.=> + It ∗ /)=>QW=>%$(X′) + (.=@ + It ∗ /)=@)W=@%$(X′) + Mb + 	It	*	/DQ ∗ c`a(X
B))C&
,

(19)	 

 

Furthermore, we included the parameter b that models the tendency to repeat the action from 

the previous trial (perseveration). Rep takes a value of 1 if the corresponding action was taken 

on trial t-1, and 0 otherwise. Based on previous work on RL[167,168] we also included a term that 

decayed the Q-values of unchosen options in both stages (Eq. 20). The decay rate ηdecay 

determines the speed of this decay towards the center of the reward walks (.5). 

 

!#$%&'()$"#*,, , %*,,&

= !#$%&'()$"#*,,-., %*,,-.& ∗ )REFGHI + /JEFGHI ∗ SK*

+ ,1 − )REFGHI + /JEFGHI ∗ SK*/	∗ 	0.5	(20) 

 

DDM choice rule. Parallel to the analysis of the temporal discounting, it is possible to 

add a range of models that employ a DDM choice rule (see above) to model participant choices 

and RTs in the TST. Again, the three different DDMs replaced the softmax choice rule as 

described above. However, the trial wise drift-rates depended on the difference in Q-values 

between options (∆L'( and ∆L')  respectively). For second stage options, this is only the case 

for QMF value differences (Eq. 21): 

 

2M7,! = M2NOPQQM7 +	/4NOPQQ%# ∗ 	S!Q ∗ 	∆L')%#
(21)  

 

The DDM choice rule for the first stage includes QMF and QMB values and separate drift-rate 

coefficients (2coeffMB and 2coeffMF) for both (Eq. 22): 

 

vR#,: = M2NOPQQ'( +	S! 	 ∗ /4NOPQQ'(Q ∗ ∆L'( 	+ M2NOPQQ') +	S! 	 ∗ /4NOPQQ')Q ∗ ∆L')%$
+ (b

+	S! 	 ∗ /D)(22) 
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The DDML formulation of the model only used the drift rates derived from equations 20 and 

21. For the DDMS version the drift-rates are additionally passed through a sigmoid function S 

to prevent the underestimation of RTs for high value differences (see Eq. 23): 

 

?(H) =

2 ∗ ]2SCT%* 	+	/4+,-%*
∗ 	 	S!^

	

1 + `[a	(−H)
− ]2SCT%* 	+	/4+,-%*

∗ 	 	S!^ (23) 

 

In all the described models, separate DDM parameters are estimated for the first and second 

stage of the task. Next the process of parameter estimation itself will be discussed.  

 

Hierarchical Bayesian modelling 

Estimating the best fitting parameter values for these cognitive models is a complex 

optimization problem. The fields computational psychiatry and cognitive modeling have 

recently focused more and more on hierarchical Bayesian parameter estimation to fit cognitive 

models to behavioral data. The process and background of hierarchical Bayesian modelling will 

be concisely described here. For a broader and more fundamental discussion the reader is 

referred to Farrell and Lewandowsky[15]. The idea behind Bayesian parameter estimation and 

modelling is based on the Bayes Theorem of conditional probabilities (Eq. 24). 

 

Y(X|h) =

Y(h|X) ∗ Y(h)

Y(X)
(24) 

Here the Y(X|h) is the conditional probability of a given that b was observed. Y(h|X)	is the 

same but vice versa (i.e., the conditional probability of b if a was observed). Y(X) and Y(h) in 

turn represent the probabilities of observing a and b respectively. In the context of parameter 

estimation with Bayesian cognitive modelling this rule is translated to give a probability 

distribution over possible parameter value (Eq. 25).  

Y(i|j) =

Y(j|i) ∗ Y(i)

Y(j)
(25) 

 

In this equation, Y(i|j) is the probability of parameter values given the data. It represents the 

probability distribution over the possible parameter values called the posterior. The mode of 

this distribution gives us the most likely value of a parameter in our sample. Having a 

distribution over parameter values is one advantage Bayesian cognitive modelling has over 
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frequentists approaches that only deliver point estimates. Y(i) is the prior and represents the 

prior beliefs we have about the probability distribution over possible parameter values. This 

can either be an uninformative prior in which every possible parameter value has the same 

probability or an informative prior, which reflects prior knowledge about the possible shape of 

the posterior. An informative prior could for instance be the posterior obtained in a similar 

study. The application of a prior is the other fundamental difference from frequentist statistics 

where prior knowledge about the probability of parameter values is not included in the 

estimation process. Y(j|i) is the likelihood and describes the probability of having obtained 

the data y considering the prior knowledge about the parameter values. Finally, the term Y(j) 

represents the probability of the data that was obtained, irrespective of parameter values. It is 

called marginal likelihood or evidence. For the purposes of Bayesian cognitive modelling this 

term is negligible as it does not impact the relative values of the posterior and is often left out 

As the posterior cannot be derived analytically it is numerically approximated by 

drawing a sufficiently large sample from it. By doing so it is possible to infer the main properties 

of the distribution even without knowing the explicit formula. To put it differently, Bayesian 

parameter estimation replaces the unknown posterior distribution with a large number of 

samples that can be analyzed as if they were the true posterior. Drawing samples from the 

posterior distribution is possible because we have access to the right side of equation 25. The 

prior is either a theoretically founded assumption or uninformative, while the likelihood of the 

observed data given the parameter values can be calculated from our data and the cognitive 

model. Given these terms, we can sample from the posterior using a class of algorithms called 

Markov Chain Monte Carlo (MCMC)[169]. In Bayesian cognitive modelling, algorithms start 

off at a plausible starting value that is provided. From this starting value a random walk is 

generated that is biased towards parameter values with a higher posterior probability. At each 

step the algorithm takes a guess based on a gaussian distribution (noise). Then this guess is 

compared to the current value. If the probability of the guess is higher or at least equal to the 

current value, the guess is accepted as the new value. If it is not, the guess is either discarded 

or still accepted with a small probability. After enough samples are drawn in this way, the 

algorithm will converge on the target distribution i.e., the posterior. To ensure that the posterior 

is correctly approximated, all samples drawn in the early phase of the random walk are 

discarded. This is called the burn-in period. There are however at least two issues this sampling 

algorithm might run into. The first problem is convergence. It might happen that the algorithm 

gets stuck in a parameter subspace it cannot break out of (local optimum) and therefore creates 

imperfect samples. One way to address this is to have the MCMC run several times from 
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different starting values and compare if the resulting posteriors match. The different runs are 

called chains and the convergence of these chains is an important diagnostic tool in Bayesian 

cognitive modelling. Chain convergence is commonly expressed as the R-hat statistic[170] 

comparing within-chain variance with between-chain variance. Values between 1 and 1.01 are 

mostly deemed acceptable. The second possible problem is autocorrelation. As the algorithm 

steps from sample to sample, two samples that are drawn close together will not be independent. 

Only samples that are far apart are essentially uncorrelated. A way to combat this 

autocorrelation is to only keep every x-th sample. However, in practice this problem can often 

be safely ignored.  

To make the process of sampling from the posterior more efficient and stable with lower 

amounts of data it is possible to employ hierarchical models[15]. In hierarchical models there 

are multiple levels of parameters. Group level parameters (hyperparameters) describe 

distributions from which single-participant parameters are drawn. Estimating these together 

enables the data points from the different participants to inform each other and create more 

stable parameter estimates from fewer trials. More extreme single-participant parameter 

estimates are drawn towards the group mean by a degree governed by the width of the 

hyperparameter distribution determined by the variance between participants. This shrinkage 

towards the group mean reduces the effects of noise and stabilizes the parameter estimates. 

Moreover, hierarchical modelling enables meaningful group comparisons based on the 

hyperparameter estimates. Comparing the posterior distribution for the group mean, for 

instance, enables a qualified assessment of the evidence in favor or against a possible group 

difference. The evidence can be quantified in by the directional Bayes Factor (dBF). To achieve 

this, the posteriors of the hyperparameter of interest can be overlayed and the dBF defined as 

the probability mass above or below zero of the difference distribution between the two[171]. 

Thus, a dBF of 3 would imply that a more positive value for one of the groups is three times 

more likely than the reverse. When groups or conditions are compared this is a liberal value 

because it is based on testing against zero and not for directionality. Directional Bayes Factors 

are usually categorized similar to effect sizes[172]. A dBF of 3 is seen as moderate evidence and 

a value above 12 is seen as strong evidence. Directional Bayes Factors above 100 are considered 

extreme evidence. 

Hierarchical Bayesian cognitive modelling in the projects presented here was done with 

the JAGS software package (version 4.3.0)[173] and the programming language R[174] as well as 

with python and the pystan toolbox and STAN (version 2.27)[175]. A final crucial part of the 

computational modeling of decision-making processes is the comparison between different 
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models describing the same data. Throughout the dissertation projects described here we used 

two different measures of model fit. First, we used the Deviance Information Criterion 

(DIC)[176] to compare relative model fits. Second, we employed the Watanabe-Akaike 

Information Criterion (WAIC)[177] using the loo-package (version 2.41) in the R programming 

language. In both measures, lower values represent better model fits. 

 

Physiological cue-reactivity 
Assessing cue-reactivity on a physiological level using brain imaging techniques such 

as functional magnetic-resonance imaging (fMRI) is at least difficult in the context of VR. 

There are VR headsets that allow VR presentation in a fMRI scanner, however, those are not 

commonly available yet. VR within scanners is usually presented via monitors and thus lacks 

proper immersion. Further impedance of the ecological validity of VR environments presented 

in a scanner is the lack of free exploration of the environment. Participants must stay still to not 

disturb image acquisition. A fairly easy and cheap method to quantify psychophysiological 

responses to stimulation is the measurement of physiological variables such as the EDA[43] and 

heart rate. Measuring these physiological indicators enables participant to fully explore a virtual 

environment without restraints on movement and immersion, while still enabling some 

conclusions about physiological processes involved. In the projects described here EDA and 

hear rate were obtained to quantify the level of physiological cue-reactivity. In the following 

section this text will discuss both in turn. 

 

Electrodermal activity  

The term EDA is an umbrella term for measures stemming from the assessment of the 

changes of the conductive properties of the skin in response to a constant current applied to the 

skin[43,178]. Biologically, the signal originates from the eccrine sweat glands located within the 

skin[179]. What makes these sudomotor glands so interesting is that they are only innervated by 

the sympathetic axis of the autonomous nervous system (ANS)[43,178,179]. The ANS regulates 

the body equilibrium and prepares the body for action or rest[180]. The two main axes of the 

ANS are the parasympathetic and the already mentioned sympathetic axis. Parasympathetic 

activity is mostly coupled to vegetative functions and rest. Sympathetic activity in contrast 

prepares the body for action and is consequently often linked to fight-or-flight responses. 

Central control of the ANS and the sympathetic system specifically is relayed over 

thermoregulatory posterior part of the hypothalamus and through the tegmental areas of the 

pons and the reticular nuclei of the medulla oblongata[178]. Over the years, electrodermal 
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responses have been shown to be closely linked to emotional states and appetitive 

conditioning[178,181–184]. Consequently, brain areas involved in these processes have been linked 

to the EDA. Most commonly found areas are frontal areas like the vmPFC, the dlPFC, the ACC 

as well as limbic areas including the amygdala, hippocampus and striatum[178,182–185].  In 

particular, the tight circuitry involving the NAcc, amygdala and vmPFC important for 

appetitive conditioning are relevant for the context of cue-reactivity as these two concepts are 

tightly related. Unsurprisingly, there is an abundance of research that reported electrodermal 

responses after addiction related stimuli were presented [29]. As mentioned above the EDA 

signal is comprised out of several semi-independent quantities (Figure 6)[43]. It can be roughly 

separated into the slowly varying tonic component and a fast phasic component. The tonic 

component consists mainly out of the skin conductance level (SCL), which is a slow indicator 

of general sympathetic arousal. The phasic component consists of skin conductive responses 

(SCRs). These SCRs can either be coupled to specific events or occur spontaneously without 

being tied to a specific event.  

 
Figure 6. The electrodermal activity signal consists out of several semi-independent quantities. These are roughly 
grouped into slowly varying tonic components (SCL and electric components) and the fast-changing phasic 
components (SCR and non-specific SCRs/nSCRs). Figure adapted from Braithwaite and colleagues[43]. 
 

Both components of the signal can be quantified in different ways. The tonic general 

arousal of the sympathetic axis of the ANS can either be quantified as the part of the EDA 

signal that has been cleaned from SCRs and forms a baseline level of activity (i.e., the SCL) or 

the number of spontaneous non-specific SCRs (nSCR) within a specified time frame[186] (see 

below). Similarly, there are several possible measures of event-related SCRs of the phasic 

component[43] (Figure 7). Usually, an event related average (ERA) of a defined time window 
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around the stimulus is created. The resulting SCR curve (see Figure 7 for an example) can then 

be decomposed into a range of interesting parameters. First, the amplitude describes the 

difference between the peak of the SCR and the underlying baseline conductance. Second, the 

latency describes the time between the stimulus onset and the start of the SCR. Third, the rise 

time captures the time between the onset of the SCR and its peak. Finally, there is the half 

recovery time which is the time between the SCR’s peak and the reduction to a value half the 

way to the baseline conductance. 

 
Figure 7. Illustration of an idealized SCR and its components. The latency describes the time from stimulus 
presentation to the onset of the SCR. The amplitude describes the distance between the peak of the SCR and the 
baseline activity, while the rise time describes the time from the onset of the SCR until the peak is reached. Finally, 
the half recovery time describes the time needed until the signal has recovered halfway back to the baseline activity.  
Figure adapted from Braithwaite and colleagues[43]. 
 

In the projects described in this thesis, we were mainly interested in the SCL as we had 

no time locked stimulus presentation but broader time windows in which participants were 

presented with different environments. To extract the signals that we need from the EDA signal 

we employed a technique called continuous decomposition analysis (CDA)[186].  In CDA it is 

assumed that an EDA signal is comprised out of a driver for the phasic activity, a driver for 

tonic activity and a so-called impulse response function (IRF). An IRF represents the biological 

response profile of the sweat gland to activity in the sympathetic fibers. The drivers present the 

nerve activity underlying the process of sweat secretion (Eq. 26). For the phasic driver this 

consists out of short bursts of many sympathetic fibers in concert, while the tonic driver reflects 

weaker but consistent firing.  

 

klm = (lcn2`cUOVAN + lcn2`cWXC,AN) ∗ 	S'o	(26) 

 

CDA first deconvolves the EDA signal and identifies tonic and phasic drivers in turn with the 

help of a first estimate of an IRF. The resulting drivers are then assessed to check if the 
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deconvolution was successful. Criteria for this assessment are measures of mathematical 

plausibility of the resulting drivers. The process is repeated with an improved estimate of the 

IRF based on gradient descent until an acceptable goodness of fit is reached. Finally, the 

resulting drivers can be analyzed with common statistical methods. SCRs can for instance be 

detected with common peak detection algorithms. Within the scope of this project all CDA 

analyses were implemented with the ledalab toolbox[186] in Matlab (MathWorks). 

Data acquisition was performed with a BioNomadix-PPGED wireless remote sensor 

together with a Biopac MP160 data acquisition system (Biopac Systems, Santa Barbara, CA, 

USA). A GSR100C amplifier module with a gain of 5V, low pass filter of 10 Hz and a high 

pass filter DC were included in the recording system. The system was connected to the 

acquisition computer running the AcqKnowledge software. Triggers for the events within the 

VR-environments were send to the acquisition PC via digital channels from the VR-PC.  

Disposable Ag/AgCl electrodes were attached to the thenar and hypothenar eminences of the 

non-dominant palm. Isotonic paste (Biopac Gel 101) was used to ensure optimal signal 

transmission. The signal was measured in micro-Siemens units (mS). 

 

Heart rate 

Like the EDA, the pulse frequency or heart rate is regulated by the ANS[180]. Contrary 

to the eccrine sweat glands forming the source of the EDA signal, however, the heart rate is 

regulated by both the sympathetic and parasympathetic axes of the ANS. Consequently, it forms 

a less clear measure of sympathetic physiological arousal than the EDA. Nevertheless, it has 

often been used in the context of cue-reactivity in addiction related disorders[29]. Acquisition of 

the heart rate signal was obtained with a photoplethysmogram (PPG)[187] optical transducer run 

with the BioNomadix-PPGED wireless remote sensor together with a Biopac MP160 data 

acquisition system (Biopac Systems, Santa Barbara, CA, USA). The setup used the same 

parameters as described for the acquisition of the EDA signal. PPG measures the heart rate by 

exploiting the reflective properties of blood to near infrared light. A PPG transducer placed on 

top of the skin close to capillary beds (e.g., fingertips, the ear lobe or thenar and hypothenar 

eminences of a hand) emits near infrared light and measures the reflected light via a detector. 

The amount of reflected near infrared light changes in accordance with capillary blood volume. 

In this way the waveform of the signal produced by the PPG transducer peaks when the capillary 

blood volume is at a maximum, i.e., when a heartbeat pumps blood into them. By counting the 

peaks occurring in a specific time window the signal can be converted to the standard measure 

beats per minute or short BPM. 
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Studies 
Study 1 

Study 1 summary. The recent emergence of high-performance VR technology makes it 

possible to create experimental designs that can examine the effects of contexts on cognitive 

processes realistically in a lab environment. This opportunity to create ecologically valid 

stimulation in highly controllable environments is extremely relevant for studies of psychiatric 

disorders, and especially in addiction-related disorders. However, before it is possible to 

confidently apply VR methods widely it must be established that commonly used behavioral 

tasks generate reliable data within VR environments. The aim of the first study of this 

dissertation project was therefore to establish the reliability and validity of data obtained within 

our VR environments tailored towards cue-reactivity in GD. Furthermore, we aimed to check 

if there are systematic effects caused by our VR environments in a group of healthy control 

participants. Finally, we aimed to assess whether sequential sampling models can be used to 

model behavioral data obtained in VR. The study was designed in a way to replicate the design 

of the second study presented here as much as possible, while adding a non-VR condition. The 

results showed good to excellent test-retest reliability estimates for the discount rate log(k), 

whereas they were poor to moderate for additional DDM parameters. Differences in the 

parameter estimates between standard lab testing and VR were mostly numerically small and 

of inconclusive directionality, indicating no systematic effects caused by VR exposure. Finally, 

exposure to VR generally increased tonic skin conductance measures irrespective of which VR 

environment participants explored. Taken together, Study 1 demonstrated the reliability of 

temporal discounting parameters obtained in VR, and thereby setting the stage for Study 2. 

Study 1 has been published in Scientific Reports in 2021[133].  
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Recent research has exploited the development of high-performance virtual reality (VR) technology to increase 
the ecological validity of stimuli presented in studies of cue-exposure1–3,  counterconditioning4, equilibrium 
 training5, social  gazing6 and gambling behavior in healthy control  participants7. Furthermore, it has been shown 
to increase immersion and arousal during gambling  games8. However, before VR can be widely applied with 
con!dence it is important to establish that commonly applied behavioral tasks still yield reliable data in a VR 
context. Research focusing on psychiatric disorders, where one goal is to create reliable diagnostic markers based 
behavioral tasks and model-based computational approaches, would bene!t from behavioral tasks that produce 
reliable parameters on a single participant level in VR.

A core characteristic of many psychiatric and neurological disorders is a detrimental change in decision-
making processes. "is is especially evident in addiction-related disorders such as substance  abuse9–11 or gam-
bling  disorder12–14. One approach to study such changes in decision making is computational  psychiatry15, which 
employs theoretically grounded mathematical models to examine cognitive performance in relation to psychiatric 
disorders. Such a model-based approach allows for a better quanti!cation of the underlying latent  processes16.

One process that has been implicated in a range of psychiatric disorders is the discounting of reward value 
over time (temporal discounting): both steep and shallow discounting is associated with di#erent psychiatric 
 conditions9. In temporal discounting tasks, participants make repeated choices between a !xed immediate reward 
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and larger but temporally delayed  rewards17. Based on binary choices and/or response time (RT) distributions, the 
degree to which participants discount the value of future rewards based on the temporal delay provides a measure 
of individual impulsivity. Increased temporal discounting is thought to be a trans-diagnostic marker with rel-
evance for a range of psychiatric  disorders9, with addictions and related disorders being prominent  examples18,19.

"ere is preliminary evidence that temporal discounting might be more pronounced when addiction 
related cues are present. Participants who su#er from gambling disorder for instance tend to exhibit steeper 
 discounting12,20 and increased risk-taking21 in the presence of gambling-related stimuli or environments. "ese 
!ndings resonate with theories of drug addiction such as incentive sensitization  theory22 which emphasize a 
prominent role for addiction-related cues in the maintenance of drug addiction (see below). Identifying the mech-
anisms underlying such behavioral patterns and how they are modulated by addiction-related cues is essential to 
the planning and execution of successful interventions that aim to reverse these changes in decision-making23,24.

Accordingly, the concept of cue-reactivity plays a prominent role in research on substance use  disorders25, 
but has more recently also been investigated in behavioral addictions such as gambling  disorder26. Cue-reactivity 
refers to conditioned responses to addiction-related cues in the environment and is thought to play a major role 
in the maintenance of addiction. Cue-reactivity can manifest in behavioral measures, as described above for 
temporal discounting and risk-taking, but also in subjective reports and/or in physiological  measures25. Incentive-
Sensitization  "eory22,27 states that neural circuits mediating the incentive motivation to obtain a reward become 
over-sensitized to addiction-related cues, giving rise to craving. "ese motivational changes are thought to be 
mediated by dopaminergic pathways of the mesocorticolimbic  system28–30. In line with this, craving following cue 
exposure correlates with a modulation of striatal value signals during temporal  discounting12, and exposure to 
drug-related cues increases dopamine release in striatal circuits in  humans30. While studying these mechanisms 
in substance use disorders is certainly of value, it is also problematic because substances might have direct e#ects 
on the underlying neural substrates. Behavioral addictions, such as gambling disorder, however, might o#er a 
somewhat less perturbed view on the underlying mechanisms.

Studies probing cue-reactivity in participants su#ering from gambling disorder have typically either used 
picture  stimuli12,13,21,31–38 or real-life gambling environments (i.e. gambling facilities)20. Both methods come with 
advantages and disadvantages. While presenting pictures in a controlled lab environment enables researchers to 
minimize the in$uence of noise factors and simpli!es the assessment physiological variables, it lacks the ecologi-
cal validity of real-life environments. Conversely, a !eld study in a real gambling outlet arguably has high ecologi-
cal validity but lacks the control of confounding factors and makes it di%cult to obtain physiological measures.

By equipping participants with head-mounted VR-glasses and su%cient space to navigate within the VR-
environment, a strong sense of immersion can be created, which in turn generates more realistic stimulation. 
In this way VR also o#ers a potential solution for the problem of ecologically valid addiction-related stimuli 
for studies in the !eld of cue-reactivity7,8. For example, Bouchard et al.2 developed a VR-design that is built 
to provide ecologically valid stimuli for participants su#ering from gambling disorder by placing them in a 
virtual casino. "e design can be used in treatment in order to test reactions and learned cognitive strategies 
in a secure environment. "e present study builds upon this idea to create a design that allows assessment of 
behavioral, subjective and physiological cue-reactivity in VR-environments. Participants are immersed in two 
rich and navigable VR environments that either represent a (neutral) café environment or a gambling-related 
casino environment. Within these environments, behavioral cue-reactivity can be measured via behavioral tasks 
implemented in VR. Given that immersion in the virtual environment takes place in a controlled lab setting, the 
measurement of physiological variables like electrodermal  activity39 and heart rate, as indicators of physiological 
cue-reactivity25,26, is also easily accommodated.

Studies using computational modeling to asses latent processes underlying learning and decision-making 
increasingly include not only binary decisions, but also response times (RTs) associated with these decisions, e.g. 
via sequential sampling models such as the dri' di#usion model (DDM)40. "is approach has several potential 
advantages. First, leveraging the information contained in the full RT distributions can improve the stability of 
parameter  estimates41,42. Second, by conceiving decision making as a dynamic di#usion process, a more detailed 
picture of the underlying latent processes  emerges43–47. Recent studies, for instance, applied these techniques to 
temporal discounting, where they revealed novel insights into e#ects of pharmacological manipulation of the 
dopamine system on choice  dynamics46. Likewise, we applied these techniques to examine the processes underly-
ing reinforcement learning impairments in gambling  disorder48 and decision-making alterations following medial 
orbitofrontal cortex  lesions45. Importantly, most standard lab-based testing settings use keyboards, button boxes 
and computer screens to record responses and display stimuli during behavioral tasks. In contrast, in the present 
study we used VR-controllers in a 3D virtual space. "is represents a fundamentally di#erent response mode, 
because in VR, participants have to physically move the controller to the location of the chosen option and then 
execute a button press to indicate their choice, adding additional motor complexity. In particular in the context 
of RT-based modeling, a crucial question is therefore whether responses obtained via VR-controllers allow for 
a comprehensive RT-based computational modeling, as previously done using standard approaches. "erefore, 
we also explored the applicability of dri' di#usion modeling in the context of behavioral data obtained in VR.

Besides validating our VR-design with a healthy cohort of participants, the study at hand investigated the 
stability of parameters derived from temporal discounting tasks, in particular the discount rate log(k). Recently, 
the reliability of behavioral tasks as trait indicators of impulsivity and cognitive control has been called into 
 question49,50, in particular when compared to questionnaire-based measures of self-control49. It has been argued 
that the inherent property that makes behavioral tasks attractive for group-based comparisons renders them less 
reliable as trait  markers51. Speci!cally, Hedge et al.51 argue that tasks having a low between participant variability 
produce robust group e#ects in experimental studies and are therefore employed frequently. However, some 
of these tasks su#er from reduced test–retest-reliability for individual participants due to their low between-
participant variability. Notably, Enkavi et al.49 reported a reliability of 0.65 for the discount rate k, the highest 
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of all behavioral tasks examined in that study, and comparable to the reliability estimates of the questionnaire-
based measures. "is is in line with previous studies on the reliability of k, which provided estimates ranging 
from 0.7 to 0.7752,53. Importantly, as outlined above, both the actual response mode and the contextual setting 
of VR-based experiments di#er substantially from standard lab-based testing situations employed in previous 
reliability studies of temporal  discounting49,52–55. "erefore, it is an open question whether temporal discount-
ing measures obtained in VR exhibit a reliability comparable to the standard lab-based tests that are typically 
used in psychology.

Taken together, by examining healthy non-gambling participants on di#erent days and under di#erent con-
ditions (neutral vs. gambling-related VR environment, standard lab-based testing situation), we addressed the 
issue of reliability of temporal discounting in virtual versus standard lab environments. We furthermore explored 
the feasibility of applying the dri' di#usion model in the context of RTs obtained via VR-compatible control-
lers. Finally, we also examined physiological reactivity during exploration of the di#erent virtual environments. 
"e speci!c virtual environments employed here are ultimately aimed to examine these processes in gambling 
disorder (e.g. the setup includes a gambling-related and a neutral cafe environment). However, the present study 
has more general implications for the application of behavioral and psychophysiological testing in virtual envi-
ronments by examining the reliability of model-based analyses of decision-making in lab-based testing versus 
testing in di#erent VR environments in a group of young non-gambling controls.

We hypothesized that the data produced on di#erent days and under di#erent conditions would yield only 
little evidence in favor of systematic shi's in temporal discounting behavior within a group of healthy non-gam-
bling participants, suggesting only insubstantial e#ects caused by the di#erent environments in our VR-design. 
Furthermore, we hypothesized that temporal discounting would show a strong reliability, adding further strength 
to the case that temporal discounting is stable over time and can be applied in VR. Finally, we hypothesized that 
we could capture latent decision variables in a VR context with the DDM.

�������
������������Ǥ� "irty-four healthy participants (25 female) aged between 18 and 44 (mean = 26.41, std = 6.44) 
were invited to the lab on three di#erent occasions. Participants were recruited via $yers at the University of 
Cologne and via postings in local internet forums. No participant indicated a history of traumatic brain injury, 
psychiatric or neurological disorders or severe motion sickness. Participants were additionally screened for gam-
bling behavior using the questionnaire Kurzfragebogen zum Glückspielverhalten (KFG)56. "e KFG ful!lls the 
psychometric properties of a reliable and valid screening instrument. No participant showed a high level (> 15 
points on the KFG) of gambling a%nity (mean = 1.56, std = 2.61, range: 0 to 13).

Participants provided informed written consent prior to their participation, and the study procedure was 
approved by the Ethics Board of the Germany Psychological Society. "e procedure was in accordance with the 
1964 Helsinki declaration and its later amendments or comparable ethical standards.

��Ǧ�����Ǥ� "e VR-environments were presented using a wireless HTC VIVE head-mounted display (HMD). 
"e setup provided a 110° !eld of view, a 90 Hz refresh rate and a resolution of 1440 × 1600 Pixel per eye. Par-
ticipants had an area of about 6   m2 open space to navigate the virtual environment. For the execution of the 
behavioral tasks and additional movement control participants held one VR-controller in their dominant hand. 
"e VR-so'ware was run on a PC with the following speci!cations: CPU: Intel Core i7-3600, Memory: 32.0 GB 
RAM, Windows 10, GPU: NVIDIA GeForce GTX 1080 (Ti). "e VR-environments themselves were designed 
in Unity. Auditory stimuli were presented using on-ear headphones.

��Ǧ������������Ǥ� "e two VR-environments both consisted of a starting area and an experimental area. 
"e starting area was the same for both VR-environments. It consisted of a small rural shopping street and a 
small park. Participants heard low street noises. "e area was designed for familiarization with the VR-setup and 
the initial exploration phase. "e experimental area of the environments di#ered for the two environments. For 
the  VRneutral environment it contained a small café with a bu#et (Fig. 1a–c). Participants could hear low conversa-
tions and music. "e gambling-related environment  (VRgambling) contained a small casino with slot machines and 
a sports betting area (Fig. 1d–f). "e audio backdrop was the sound of slot machines and sports. "e $oorplan 
of both of these experimental areas was identical but mirrored for the café (Fig. 1a, d). Both experimental areas 
additionally included eight animated human avatars. "ese avatars performed steady and non-repetitive behav-
iors like gambling and ordering food for the gambling-related and neutral environments, respectively. Both 
experimental areas (café and casino) had entrances located at the same position within the starting area of the 
VR-environments, which were marked by corresponding signs.

����������������������Ǥ� Participants were invited to the VR lab for three di#erent sessions on three 
di#erent days. "e time between the sessions was between one day and nineteen days (mean = 3.85, std = 3.36). 
During the three sessions participants either explored one of two di#erent VR environments (VR-sessions) fol-
lowed by the completion of two behavioral tasks, or simply performed the same two behavioral tasks in a stand-
ard lab-testing context (Lab-session). If the session was a VR-session, electrodermal activity (EDA)39 was meas-
ured during a non-VR baseline period and the exploration of the VR-environments. "e order of the sessions 
was pseudorandomized. At the !rst session, not depending on if VR was applied or not, participants arrived at 
the lab and the behavioral tasks were explained in detail. If the session was a Lab-session, participants proceeded 
with the two behavioral tasks. If the session was the !rst of the VR-sessions, participants were subsequently 
familiarized with the VR-equipment and handling. Participants were seated and a !ve-minute EDA baseline 
was measured (baseline phase). For both VR-sessions participants were then helped to apply the VR-equipment 
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and entered the VR-environments. Within the VR-environments participants !rst explored the starting area for 
5 min (!rst exploration phase). A'er these !ve minutes participants were asked to enter the experimental area 
of the environment (either the café or the casino) (Fig. 1). Participants were instructed to explore the interior 
experimental area for !ve minutes (second exploration phase). Each of the three phases was later binned into 
!ve one-minute intervals and labeled as B (1 to 5) for the baseline phase, F (1 to 5) for the !rst exploration phase 
and S (1 to 5) for the second exploration phase. During the exploration the experimenter closely monitored the 
participants and alerted them if they were about to leave the designated physical VR-space. A'er the second 
exploration phase participants were asked to proceed to a terminal within the VR-environment on which the 
behavioral tasks were presented.

��������������������������Ǥ� EDA was measured using a BioNomadix-PPGED wireless remote sensor 
together with a Biopac MP160 data acquisition system (Biopac Systems, Santa Barbara, CA, USA). A GSR100C 
ampli!er module with a gain of 5 V, low pass !lter of 10 Hz and a high pass !lter DC were included in the 
recording system. "e system was connected to the acquisition computer running the AcqKnowledge so'ware. 
Triggers for the events within the VR-environments were send to the acquisition PC via digital channels from 
the VR-PC. Disposable Ag/AgCl electrodes were attached to the thenar and hypothenar eminences of the non-
dominant palm. Isotonic paste (Biopac Gel 101) was used to ensure optimal signal transmission. "e signal was 
measured in micro-Siemens units (mS).

����������������Ǥ� Participants performed the same two behavioral tasks with slightly varied rewards and 
choices in each of the three sessions: a temporal discounting  task17 and a 2-step sequential decision-making 
 task57,58. Results from the 2-step task will be reported separately. In the temporal discounting task participants 
had to repeatedly choose between an immediately available (smaller-but-sooner, SS) monetary reward of 20 
Euros and larger-but-later (LL) temporally delayed monetary rewards. "e LL options were multiples of the SS 
option (range 1.025 to 3.85) combined with di#erent temporal delays (range 1 to122 days). We constructed three 
sets of six delays and 16 LL options. Each set had the same mean delay and the same mean LL option. Combin-
ing each delay with every LL option within each set resulted in three sets of 96 trials. "e order of presentation 
of the trial sets was counter balanced across participants and sessions. All temporal discounting decisions were 
 hypothetical59,60. In the VR-version of the task two yellow squares were presented to the participants (Fig. 2). 
One depicted the smaller o#er of 20 Euros now, while the other depicted the delayed larger o#er. For the lab-
based testing session were presented in the same way except that the color scheme was white writing on a black 
background. O#ers were randomly assigned to the le'/right side of the display and presented until a decision 
was made. "e next trial started 0.5 to 1 s a'er the decision. Participants indicated their choice either by aiming 
the VR-controller at the preferred option and pulling the trigger (VR-sessions) or by pressing the corresponding 
arrow key on the keyboard (Lab-session).

�����Ǧ������������������������������Ǥ� "e behavioral data from the temporal discounting task was 
analyzed using several complementary approaches. First, we used a model-free approach that involved no a 
priori hypotheses about the mathematical shape of the discounting function. For each delay, we estimated the LL 

Figure 1.  Experimental areas of the VR-environments. (a) Floorplan of the café within the VR-neutral 
environment. (b) View of the main room of the café. (c) View of the bu#et area of the café. (d) Floorplan of the 
casino within the VR-gambling environment. (e) View of the main room of the casino. (f) View of the sports bar 
within the casino.
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reward magnitudes at which the subjective value of the LL reward was equal to the SS (indi#erence point). "is 
was done by !tting logistic functions to the choices of the participants, separately for each delay. Subsequently, 
these indi#erence points were plotted against the corresponding delays, and the area under the resulting curve 
(AUC) was calculated using standard  procedures61. AUC values were derived for each participant and testing 
session, and further analyzed with the intra-class correlation (ICC) and the Friedman Test, a non-parametric 
equivalent of the repeated measures ANOVA model.

����������������������Ǥ� Previous research on the e#ects of the delay of a reward on its valuation pro-
posed a hyperbolic nature of  devaluation62,63. "erefore, the rate of discounting for each participant was also 
determined employing a cognitive modeling approach using hierarchical Bayesian  modeling16. A hierarchical 
model was !t to the data of all participants, separately for each session (see below). We applied a hyperbolic 
discounting model (Eq. 1):

Here, SV(LL) denotes the subjective (discounted) value of the LL. A and D represent the amount and the delay 
of the LL, respectively. "e parameter k governs the steepness of the value decay over time, with higher values of 
k indicating steeper discounting of value over time. As the distribution of the discount rate k is highly skewed, 
we estimated the parameter in log-space (log[k]), which avoids numerical instability in estimates close to 0.

"e hyperbolic model was then combined with two di#erent choice rules, a so'max action selection  rule64 
and the dri' di#usion  model44. For so'max action selection, the probability of choosing the LL option on trial 
t is given by Eq. (2).

Here, the β-parameter determines the stochasticity of choices with respect to a given valuation model. A β 
of 0 would indicate that choices are random, whereas higher β values indicate a higher dependency of choices 
on option values. "e resulting best !tting parameter estimates were used to test the ICC and systematic session 
e#ects via comparison of the posterior probabilities of group parameters.

Next, we incorporated response times (RTs) into the model by replacing the so'max choice rule with the dri' 
di#usion model (DDM)43–46. "e DDM models choices between two options as a noisy evidence accumulation 
that terminates as soon as the accumulated evidence exceeds one of two boundaries. In this analysis the upper 
boundary was set to represent LL choices, and the lower boundary SS choices. RTs for choices of the immedi-
ate reward were multiplied by − 1 prior to model estimation. To prevent outliers in the RT data from negatively 
impacting model !t, the 2.5% slowest and fastest trials of each participant were excluded from the  analysis44,45. 
In the DDM the RT on trial t is distributed according to Wiener !rst passage time (wfpt) (Eq. 3).

Here α represents the boundary separation modeling the tradeo# between speed and accuracy. τ represents 
the non-decision time, re$ecting perception and response preparation times. "e starting value of the di#usion 
process is given by z, which therefore models a potential bias towards one of the boundaries. Finally, rate of 
evidence accumulation is given by the dri'-rate v.

We !rst !t a null model  (DDM0), where the value di#erence between the two options was not included, such 
that DDM parameters were constant across  trials45,46. We then used two di#erent temporal discounting  DDMS, 
in which the value di#erence between options modulated trial-wise dri' rates. "is was done using either a linear 
 (DDML) or a non-linear sigmoid  (DDMS) linking  function47. In the  DDML, the dri'-rate v in each trial is linearly 
dependent on the trial-wise scaled value di#erence between the LL and the SS options (Eq. 4)44. "e parameter 
vcoeff  maps the value di#erences onto v and scales them to the DDM:

(1)SV(LLt)=
At

(

1 + exp(k) ∗ Dt
)

(2)P(LLt)=
exp

(

SVLLt ∗ β
)

exp
(

SVSSt ∗ β
)

+ exp
(

SVLLt ∗ β
)

(3)RTt ∼ wfpt (α, τ , z, v)

(4)νt = νcoeff ∗ (SV(LLt) − SV(SSt))

Figure 2.  Presentation of the temporal discounting task in VR. Participants had to repeatedly decide between 
a small but immediate reward (SS) and larger but temporally delayed rewards (LL). Amounts and delays were 
presented in yellow squares. During the inter-trial intervals (.5–1 s) these squares contained only question 
marks. Participants indicated their choice by pointing the VR-controller at one of the yellow squares and pulling 
the trigger.
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One drawback of a linear representation of the relationship between the dri'-rate v and trial-wise value dif-
ferences is that v might increase in!nitely with high value di#erences, which can lead the model to under-predict 
RTs for high value  di#erences45. In line with previous  work45,46 we thus included a third version of the DDM, 
that assumes a non-linear sigmoidal mapping from trial-wise value di#erences to dri' rates (Eqs. 5 and 6)43:

Here, the linear mapping function from the  DDML is additionally passed through a sigmoid function S with 
the asymptote vmax, causing the relationship between v and the scaled trail-wise value di#erence m to asymptote 
at vmax.

We have previously reported detailed parameter recovery analyses for the  DDMS in the context of value-based 
decision-making tasks such as temporal  discounting45, which revealed that both subject-level and group-level 
parameters recovered well.

����������������������������Ǥ� All models were !t to the data of all participants in a hierarchical Bayes-
ian estimation scheme, separately for each session, resulting in independent estimates for each participant per 
session. Participant-level parameters were assumed to be drawn from group-level Gaussian distributions, the 
means and precisions of which were again estimated from the data. Posterior distributions were estimated via 
Markov Chain Monte Carlo in the R programming  language65 using the JAGS so'ware  package66. For the DDM’s 
the Wiener module for JAGS was  used67. For the group-level means, uniform priors over numerically plausible 
parameter ranges were chosen (Table 1). Priors for the precision of the group-level distribution were Gamma 
distributed (0.001, 0.001). "e convergence of chains was determined by the R-hat  statistic68. Values between 
1 and 1.01 were considered acceptable. Comparisons of relative model !t were performed using the Deviance 
Information Criterion (DIC), where lower values re$ect a superior model  !t69.

��������������������ơ������������������������Ǥ� Potential systematic session e#ects on group level 
posterior distributions of parameters of interest were analyzed by overlaying the posterior distributions of each 
group level parameter for the di#erent sessions. Here we report the mean of the posteriors of the estimated group 
level parameters and the di#erence distributions between them, the 95% highest density intervals (HDI) for both 
of these as well as directional Bayes Factors (dBF) which quantify the degree of evidence for reductions versus 
increases in a parameter. Because the priors for the group e#ects are symmetric, this dBF can simply be de!ned 
as the ratio of the posterior mass of the di#erence distributions above zero to the posterior mass below  zero70. 
Here directional Bayes Factors above 3 are interpreted as moderate evidence in favor of a positive e#ect, while 
Bayes Factors above 12 are interpreted as strong evidence for a positive  e#ect71. Speci!cally, a dBF of 3 would 
imply that a positive directional e#ect is three times more likely than a negative directional e#ect. Bayes Factors 
below 0.33 are likewise interpreted as moderate evidence in favor of the alternative model with reverse direc-
tionality. A dBF above 100 is considered extreme  evidence71. "e cuto#s used here are liberal in this context, 
because they are usually used if the test is against a  H0 implying an e#ect of 0. In addition, we report the e#ect 
size (Cohen’s d) based on the mean posterior distributions of the session means, the pooled standard deviations 
across sessions and the correlation between sessions.

������������Ǥ� "e test–retest reliability of the best !tting parameter values between the three sessions was 
analyzed using the intra-class correlation coe%cient (ICC). "e ICC-analysis was done in the R programming 
 language65 and was based on a mean-rating of three raters, absolute agreement and a two-way mixed model. ICC 
values below 0.5 are an indication of poor test–retest reliability, whereas values in the range between 0.5 and 0.75 
indicate a moderate test–retest  reliability72. Higher values between 0.75 and 0.9 indicate a good reliability, while 
values above 0.9 suggest an excellent test–retest reliability.

(5)vt = S (vcoeff∗(SV(LLt) − SV(SSt)))

(6)S(m) =
2 ∗ vmax

1+ exp(−m)
− vmax

Table 1.  Ranges for the uniform priors of group-level parameter means. Ranges were chosen to cover 
numerically plausible values. Parameters included in multiple models are only listed once.

Parameter Prior for group mean
log(k) Uniform(− 20, 3)
so'max β Uniform(0, 10)
v Uniform(− 100, 100)
τ Uniform(.1, 6)
α Uniform(.01, 5)
z Uniform(.1, .9)
vcoe# Uniform(− 100, 100)
vmax Uniform(0, 100)
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������������������������������Ǥ� A frequently used index of sympathetic activity is electrodermal activity, 
i.e. changes in skin conductance (SC)73. Here the physiological reactivity to the VR-environments is measured 
as the slowly-varying skin conductance level (SCL)39. "us, the SCL was extracted from the EDA signal using 
continuous decomposition analysis (CDA) via the Ledalab  toolbox74 for Matlab (MathWorks). For the decon-
volution, default settings were used. "e resulting signal was then transformed into percentage change from the 
mean signal of the !ve minutes baseline phase at the beginning of the experiment. Subsequently, !ve one-minute 
bins were constructed for each phase of the VR-session (baseline phase, the !rst exploration phase and the sec-
ond exploration phase). An alternative way of classifying tonic sympathetic arousal can be the number of spon-
taneous phasic responses (SCR) in the EDA  signal74. Again, the signal was divided in one-minute bins and the 
number of spontaneous SCRs during each bin was calculated from the phasic component of the deconvoluted 
EDA signal using the Ledalab toolbox. "e resulting values were similarly transformed into percentage change 
from the mean number of SCRs during the !ve baseline bins. To test whether entering the VR-environments had 
a general e#ect on sympathetic arousal, we compared the values for the last time point of the base line phase (B5) 
with the !rst time point of the !rst exploration phase (F1) for both sessions using a non-parametric Wilcoxon 
Signed-Rank Test. To test whether there was a di#erential e#ect of entering the di#erent experimental areas of 
the VR-environments on sympathetic arousal, for both measures the di#erences between the last time point of 
the !rst exploration phase (F5) and the !rst time point of the second exploration phase (S1) were compared 
across VR-sessions using a non-parametric Wilcoxon Signed-Tanks  Test75. E#ect sizes are given as r76, computed 
as the statistic Z divided by the square-root of N. E#ect sizes between 0 and 0.3 are considered small and e#ect 
sizes between 0.3 and 0.5 are considered medium and r values > 0.5 are considered large e#ects.

��������������������������Ǥ� Raw behavioral and physiological data as well as JAGS model code is available 
on the Open Science Framework (https:// osf. io/ xkp7c/ !les/).

�������
�������������������������Ǥ� "e analysis of the AUC values revealed no signi!cant session e#ect across 
participants (Friedman Test: Chi-Squared = 1.235 df = 2 p = 0.539). Furthermore, the ICC value was 0.93 (95% 
con!dence interval (CI): 0.89–0.96) (p < 0.001) indicating an excellent test–retest reliability of temporal dis-
counting AUC values over the three sessions (Table 2). Pairwise correlations between all sessions can be found 
in the supplementary materials (Supplementary Fig. S1).

�������� ������� ����Ǥ� For the hyperbolic model with so'max choice rule, the group level posteriors 
showed little evidence for systematic e#ects of the di#erent sessions on log(k) (all BFs < 3 or > 0.33) (Fig. 3a, c 
and Table 2). In contrast, the so'max β parameter was higher (re$ecting higher consistency) in the  VRneutral ses-
sion compared to the other sessions (vs. Lab: dBF = 0.01 and vs.  VRgambiling: dBF = 0.048) (Fig. 3b, d and Table 2). 
"is indicates that a higher β in the  VRneutral session was approximately 100 (Lab) or 20  (VRgambling) times more 
likely than a lower β . "ere was little evidence for a systematic e#ect between the Lab and  VRgambling sessions 
(dBF = 0.446).

"e ICC value for the log(k) parameter indicated an excellent test–retest reliability of 0.91 (CI: 0.86–0.96) 
(p < 0.001) (Table 3). For the β-parameter of the so'max choice rule the ICC value was 0.34 (CI: 0.17–0.53) 
(p < 0.001) indicating a poor test–retest reliability (Table 3). "e pairwise correlations of estimated parameter 
values between all sessions can be found in the Supplement (Supplementary Figs. S2 and S3). Pairwise correla-
tions between all sessions for both parameters can be found in the supplementary materials (Supplementary 
Figs. S2 and S3).

��������ơ�����������������������Ǥ� Model comparison revealed that the  DDMS had the lowest DIC in 
all conditions (Table 4) replicating previous  work45,46,48. Consequently, further analyses of session e#ects and 
reliability focused on this model. For the log(k) parameter, the 95% HDIs showed a high overlap between all 
sessions indicating no systematic session e#ects, however the BFs showed moderate evidence for a reduced 
log(k) in the  VRneutral-session (Fig. 4a, d and Table 5). A lower value in the  VRneutral-session was about seven (Lab-
session dBF = 6.756) or four times  (VRgambling dBF = 3.86) more likely than a lower value. Similarly, the posterior 

Table 2..  95% HDIs for the two parameters of the hyperbolic discounting model. HDIs are described by the 
min. value !rst and the max value second. Directional Bayes Factors (dBF) are calculated as BF = i/(1-i), with i 
being the probability mass of the di#erence distributions above zero. E#ect sizes are given as Cohen’s d.

Session
Log(k) β

Mean HDI dBF d Mean HDI dBF d
Lab − 4.083 − 4.643 − 3.530 – – .417 .355 .489 – –
VRneutral − 4.348 − 4.912 − 3.797 – – .577 .461 .714 – –
VRgambling − 4.274 − 4.882 − 3.687 – – .448 .363 .547 – –
Lab-VRneutral .266 − .520 1.054 2.712 .38 − .16 − .31 − .024 .01 .9
Lab-VRgambling .191 − .620 1.01 2.162 .3 − .03 − .148 .081 .446 .18
VRgambling-VRgeutral .074 − .746 .885 1.264 .1 − .129 − .29 .023 .048 .56

https://osf.io/xkp7c/files/
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distributions of vmax, vcoe# and α were highly overlapping, whereas some of the dBFs gave moderate evidence for 
systematic directional e#ects within these parameters (Figs. 4b, c, e, f, and 5b, e, Table 5). vcoe#, mapping trial-
wise value di#erence onto the dri' rate, was lowest in the Lab-session and highest in  VRneutral (Lab-VRneutral 
dBF = 0.074, Lab-VRgambling = 0.2,  VRgambling-VRneutral = 0.228). "us, an increase in vcoe# in  VRneutral compared to 
the Lab-session was approximately thirteen times more likely than a decrease. Likewise, it was approximately 
!ve times more likely that there was an increase in the  VRneutral compared to the  VRgambling-session. For vmax, 
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Figure 3.  Posterior distributions of the parameters of the hyperbolic discounting model. Colored bars represent 
the corresponding 95% HDIs. (a) Posterior distribution of the log(k) parameter (re$ecting the degree of 
temporal discounting) for all three sessions. (b) Posterior distribution of the β or inverse temperature parameter 
(re$ecting decision noise). (c) Pairwise di#erence distributions between the posteriors of the log(k) parameters 
of all three sessions. (d) Pairwise di#erence distributions between the posteriors of the β parameters of all three 
sessions.

Table 3.  Summary of the results of the ICC analysis for the AUC values as well as the two parameters of 
the hyperbolic discounting model with a so'max choice rule. Lower and upper bound describe the 95% 
con!dence interval.

Parameter ICC p Lower bound Upper bound
AUC .93 < .001 .89 .96
log(k) .91 < .001 .86 .95
β .34 < .001 .17 .53

Table 4.  Summary of the DICs of all DDM models in all sessions. Ranks are based on the lowest DIC in all 
sessions.

Model Lab VRneutral VRgambling Rank
DDM0 9275.7 9569.8 9225.7 3
DDML 7558.9 7921.4 7663.0 2
DDMS 6992.3 7327.2 7033.1 1
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the upper boundary for the value di#erence’s in$uence on the dri' rate, the dBFs indicated that a positive shi' 
from  VRgambling to  VRneutral was !ve times more likely than a negative shi' (dBF = 0.203) but there was only very 
little indication of a systematic di#erence between both of them and the Lab-session. Finally, a reduction of the 
boundary separation parameter α was !ve times more likely than an increase when comparing the  VRneutral to 
the Lab-session (dBF = 0.255). "ere was little evidence for any other systematic di#erences. "e bias parameter 
z displayed high overlap in HDIs and little evidence for any systematic e#ects between sessions (all dBFs > 0.33 
or < 3) (Fig. 5c, f and Table 5). For the non-decision time parameter τ there was extreme evidence for an increase 
in the VR-sessions compared to the Lab-session (both dBFs > 100), re$ecting prolonged motor and/or percep-
tual components of the RT that was more than 100 times more likely than a shortening of these components 
(Fig. 5a, d and Table 5).
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Figure 4.  Posterior distributions of the parameters of the  DDMS model. Colored bars represent the 
corresponding 95% HDIs. (a) Posterior distributions of the log(k) parameter for all three sessions. (b) Posterior 
distributions of the vcoe# parameter (mapping the dri' rate onto the trial wise value di#erence). (c) Posterior 
distributions of the vmax parameter (setting an asymptote for the relation between the trial wise value di#erence 
and the dri' rate). (d) Pairwise di#erence distributions between the posterior distributions of the log(k) 
parameters of the three sessions. (e) Pairwise di#erence distributions between the posterior distributions of the 
vcoe# parameters of the three sessions. (f) Pairwise di#erence distributions between the posterior distributions of 
the vmax parameters of the three sessions.

Table 5.  Directional Bayes factors (dBF) and e#ect sizes (Cohen’s d) for all between session comparisons for 
all parameters of the  DDMS. Means and HDIs of the posteriors and di#erence distributions are summarized 
in the supplementary materials (Supplementary Table S1). BFs are calculated as BF = i/(1 − i), with i being the 
probability mass of the di#erence distributions above zero.

Contrast
log(k) vcoe" vmax τ α z
dBF d dBF d dBF d dBF d dBF d dBF d

Lab-VRneutral 6.756 .37 .074 .37 .377 .2 > 100 1.2 .255 .224 .530 .2
Lab-VRgambling 1.679 .19 .200 .59 1.573 .09 > 100 1.5 .358 .160 1.118 .04
VRgambling-VRneutral 3.860 .29 .228 .27 .203 .34 3.413 .17 .629 .070 .458 .2
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"e ICC value for the log(k) parameter was 0.7 (CI: 0.56–0.8) indicating a moderate test–retest-reliability 
(Table 5). For the other  DDMS parameters, ICC values were substantially lower (Table 6). Pairwise correlations 
between all sessions for all parameters can be found in the supplementary materials (Supplementary Figs. S4–S9).

�����Ǧ����������������������������������������������������Ǥ� In light of the lower ICC values for the 
 DDMS parameters beyond log(k), we ran additional analyses. Speci!cally, we hypothesized that these lower ICC 
values might be attributable to $uctuations of state factors, e.g. mood, fatigue or motivation, between the di#er-
ent sessions. "erefore, we explored within-session reliability of these parameters, separately for each session. 
Trials where split into odd and even trials and modelled separately using the  DDMS, as described above. In gen-
eral, within-session split-half reliability was substantially greater than test–retest reliability, and mostly in a good 
to excellent range (range: − 0.1 for vcoe# in  VRgambling to 0.94 for τ in  VRneutral). "e lower test–retest reliabilities of 
some of the  DDMS parameters are therefore unlikely to be due to the speci!cs of the parameter estimation proce-
dure. Rather, these !ndings are compatible with the view that the parameters underlying the evidence accumula-
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Figure 5.  Posterior distributions of the remaining parameters of the  DDMS model. Colored bars represent 
the corresponding 95% HDIs. (a) Posterior distributions of the τ parameter (non-decision time) for all three 
sessions. (b) Posterior distributions of the α parameter (separation between decision boundaries). (c) Posterior 
distributions of the z parameter (bias towards one decision option). (d) Pairwise di#erence distributions 
between the posterior distributions of the τ parameters of the three sessions. (e) Pairwise di#erence distributions 
between the posterior distributions of the α parameters of the three sessions. (f) Pairwise di#erence distributions 
between the posterior distributions of the z parameters of the three sessions.

Table 6.  Summary of the results of the ICC analysis of the  DDMS parameters.

Parameter ICC p Lower bound Upper bound
log(k) .7 < .001 .56 .8
vcoe# .11 .14 − .053 .3
vmax .33 < .001 .16 .52
τ .19 .033 .019 .38
α .42 < .001 .24 .59
z .4 < .001 .22 .58
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tion process might be more sensitive to state-dependent changes in mood, fatigue or motivation. Full results for 
the split-half reliability analyses can be found in the supplementary materials (Supplementary Tables S3–S5).

����������������������� ȋ���ȌǤ� "e data of 8 of the 34 participants had to be excluded from the EDA 
analysis, due to technical problems or missing data during one of the testing sessions. Physiological reactivity 
in the remaining 26 (18 female) participants was analyzed by converting the SCL signal as well as the nSCRs 
into percent change from the mean level during the base line phase. Both signals were then binned into !ve 
one-minute intervals for each of the three phases (baseline, !rst exploration and second exploration phase). All 
comparisons were tested with the Wilcoxon Signed Rank Test. Entering the VR-environments (comparing bin 
B5 to bin F1 for both environments individually) resulted in a signi!cant increase in the SCL values for both VR-
environments  (VRneutral: Z =  − 3.67, p < 0.001, r = 0.72;  VRgambling: Z =  − 3.543, p = 0.002, r = 0.695) (Fig. 6c, d). "e 
e#ect was large in both sessions (r > 0.5). However, for the number of spontaneous SCRs (nSCRs), this e#ect was 
only signi!cant in the neutral VR-environment (neutral: Z =  − 2.623, p = 0.009, r = 0.515; gambling: Z =  − 0.013, 
p = 0.99, r = 0.002). "ere was no signi!cant di#erence between the two sessions, but the e#ect was of medium size 
(Z =  − 1.7652, p = 0.078, r = 0.346) (Fig. 6a, b). To test whether entering the speci!c experimental areas of the two 
VR-environments (virtual café vs. virtual casino) had di#erential e#ects on physiological responses, the increase 
in sympathetic arousal from the end of the !rst exploration phase to the start of the second exploration phase 
was examined (comparing bin F5 to bin S1, see Fig. 6b, d). "e SCL (neutral: Z =  − 0.7238, p =  − 0.469, r = 0.142; 
gambling: Z =  − 0.089, p = 0.929, r = 0.017) as well as the nSCRs (neutral: Z =  − 1.943, p = 0.052, r = 0.381; gam-
bling: Z = 0.982, p = 0.326, r = 0.193) assessed for each session individually showed no signi!cant e#ect. "e e#ect 
size was medium (r = 0.381) for the nSCRs of the  VRneutral-session and small for all other comparisons (r < 0.3). 
Furthermore, the Wilcoxon Signed-Ranks test indicated no signi!cant di#erences between the two experimental 
areas on both sympathetic arousal measures (SCL: Z =  − 0.572, p = 0.381, r = 0.11; nSCRs.: Z =  − 1.7652, p = 0.078, 
r = 0.346) (Fig. 6b, d). For the nSCRs however, the e#ect was of a medium size (r = 0.346).
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Figure 6.  Results of the EDA measurements divided into 15 time points over the course of the baseline phase, 
measured before participants entered the VR-environments, and the !rst and second exploration phases. Each 
of the three phases is divided into !ve one-minute bins (B1-5: pre-VR baseline, F1-5: !rst exploration phase in 
VR, S1-5: second exploration phase VR). (a) Median percent change from baseline mean for no. of spontaneous 
SCRs over all participants. (b) Boxplot of percentage change from baseline mean for no. spontaneous SCRs over 
all participants. (c) Median percent change from baseline mean of SCL over all participants. (d) Boxplots of 
percentage change from base line mean of SCL over all participants.
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����������
Here we carried out an extensive investigation into the reliability of temporal discounting measures obtained in 
di#erent virtual reality environments as well as standard lab-based testing. "is design allowed us the joint assess-
ment of physiological arousal and decision-making, an approach with potential applications to cue-reactivity 
studies in substance use disorders or behavioral addictions such as gambling disorder. Participants performed a 
temporal discounting task within two di#erent VR-environments (a café environment and a casino/sports bet-
ting environment:  VRneutral vs.  VRgambling) as well as in a standard computer-based lab testing session. Exposure to 
VR generally increased sympathetic arousal as assessed via electrodermal activity (EDA), but these e#ects were 
not di#erentially modulated by the di#erent VR environments. Results revealed good to excellent test–retest 
reliability of model-based (log(k)) and model-free (AUC) measures of temporal discounting across all testing 
environments. However, the  DDMS parameters modelling latent decision processes showed substantially lower 
test–retest reliabilities between the three sessions. "e split-half reliability within each session was mostly good 
to excellent indicating that the lower test–retest reliability was likely caused by the participants current state and 
not by factors within the modelling process itself.

To test how well temporal discounting, as a measure of choice impulsivity, performs in virtual environments 
we implemented a VR-design that is built for possible future application in a cue-reactivity context. Healthy 
controls displayed little evidence for systematic di#erences in choice preferences between the Lab-session and 
the VR-sessions. "is was observed for model-free measures (AUC), as well as the log(k) parameter of the hyper-
bolic discounting model with the so'max choice rule and the dri' di#usion model with non-linear dri' rate 
scaling  (DDMS). Model comparison revealed that the  DDMS accounted for the data best, con!rming previous 
 !ndings43,45,46,48. Although generally, discount rates assessed in the three sessions were of similar magnitude, in 
the  DDMS there was moderate evidence for reduced discounting (i.e., smaller values of log(k)) in the  VRneutral 
session. "e reasons for this could be manifold. One possibility is that environmental novelty plays a role, such 
that perceived novelty of the  VRneutral session might have been lower than for the  VRgambling and Lab-sessions. 
Exposure to novelty can stimulated dopamine  release77, which is known to impact temporal  discounting78. None-
theless, e#ect sizes were medium (0.37 and 0.29) and the dBFs revealed only moderate evidence. Numerically, 
the mean log(k)’s of the so'max model showed the same tendency, but here e#ects were less pronounced. One 
possibility is that the inclusion of additional latent variables in the  DDMS might have increased sensitivity to 
detect this e#ect. "ere was also evidence for a session e#ect on the scaling parameter ( v coe#). Here, the impact 
of trial-wise value di#erences on the dri' rate was attenuated in the Lab-session, with dBFs revealing strong 
 (VRneutral) or moderate evidence  (VRgambling) for a reduction in vcoe# in the Lab-session. Again, e#ect sizes were 
medium. Nevertheless, the data suggest increased sensitivity to value di#erences in VR. "is e#ect might be due 
to the option presentation in the Lab-session compared to the VR-sessions. "e presentation of options within VR 
might have been somewhat more salient, which might have increased attention allocated to the value di#erences 
within the VR-sessions. However, this remains speculative until further research reproduces and further assesses 
these speci!c e#ects on the DDM parameters. Boundary separation (α), dri' rate asymptote (vmax) and starting 
point (z) showed little evidence for systematic di#erences between sessions. "e only  DDMS parameter showing 
extreme evidence for a systematic di#erence between the lab- and VR-sessions was the non-decision time (τ). 
"is e#ect is unsurprising, as it describes RT components attributable to perception and/or motor execution. 
Given that indicating a response with a controller in three-dimensional space takes longer than a simple button 
press, this leads to substantial increases in τ during VR testing. Finally, the good test–retest reliability of log(k) 
from the  DDMS furthermore indicates that RTs obtained in VR can meaningfully be modeled using the DDM. 
"e potential utility of this modeling approach in the context of gambling disorder is illustrated by a recent study 
that reported reduced boundary separation (α) in participants su#ering from gambling disorder compared to 
healthy controls in a reinforcement learning  task48. Given that there are mixed results when it comes to the e#ect 
of addiction related cues on  RTs79–81, the e#ects of these cues on the latent decision variables included in the 
DDM could provide additional insights. Taken together, these results show that VR immersion in general does 
not in$uence participants inter-temporal preferences in a systematic fashion and might open up a road to more 
ecologically valid lab experiments, e.g., focusing on behavioral cue-reactivity in addiction. "is is in line with 
other results showing the superiority of VR compared to classical laboratory  experiments6.

"e present data add to the discussion concerning the reliability of behavioral  tasks9,50–53,55 in particular in 
the context of computational  psychiatry15,82. To examine test–retest reliability, the three sessions were performed 
on di#erent days and with a mean interval of 3.85 days between sessions. "e test–retest reliability for the AUC 
and the log(k) parameter of the hyperbolic discounting model with so'max choice rule were both excellent. For 
the log(k) of the  DDMS the ICC was good, but slightly lower than for AUC and so'max. Nevertheless, the dis-
count rate log(k) was overall stable regardless of the analytical approach. "e ICC of 0.7 observed for the  DDMS 
was comparable to earlier studies on temporal discounting  reliability52,53. Kirby and  colleagues52 for instance 
demonstrated a reliability of 0.77 for a 5-week interval and 0.71 for 1 year. "is shows that at least over shorter 
periods from days to weeks, temporal discounting performed in VR has a reliability comparable to standard 
lab-based testing. Enkavi and  colleagues49 stress that in particular di#erence scores between conditions (e.g. 
Stroop, Go-NoGo etc.), show unsatisfactory reliability due to the low between participants variation created by 
commonly used behavioral tasks. Assessment of di#erence scores was not applicable in the present study. Never-
theless, there was no positive evidence for systematic e#ects on log(k) (with the exception of the potential novelty 
e#ects discussed above), and the test–retest reliability between all conditions was at least good across analysis 
schemes, indicating short-term stability of temporal discounting measured in VR. It is worth noting, however, 
that temporal discounting shares some similarities with questionnaire-based measures. As in questionnaires, 
in temporal discounting tasks participants are explicitly instructed to indicate their preferences. "is might be 
one reason why the reliability of temporal discounting is o'en substantially higher than that of other behavioral 
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 tasks49,52,53,55. Other parameters of the  DDMS showed lower levels of test–retest reliability. Especially the vcoe# 
parameters were less reliable, at least when estimated jointly with νmax. In the  DDML, which does not su#er from 
potential trade-o#s between these di#erent dri' rate components, the ICC of vcoe# was good (Supplementary 
Table S2). Similarly, here log(k) also showed an excellent ICC.

"e substantially lower test–retest reliability exhibited by the parameters of the  DDMS that represent latent 
decisions processes, compared to log(k) or AUC warrants further discussion. Prior publications from our  lab24,41 
have extensively reported parameter recovery of the DDMs model and revealed a good recovery performance. 
"e low test–retest reliability is therefore unlikely to be due to poor identi!ability of model parameters. One pos-
sible reason for this discrepancy between log(k)/AUC and the other parameters is that the tendency to discount 
value over time might be a stable trait-like factor, while the latent decision processes re$ected in the other  DDMS 
parameters might be more substantially in$uenced by state e#ects. While this could explain the low test–retest 
reliability, it would predict that these parameters should nonetheless be stable within sessions. We addressed this 
issue in a further analysis of within-session split-half reliability (see Supplementary Tables S3–S5). "e results 
showed a good-to-excellent within-session stability for most parameters, with the dri' rate coe%cient vcoe# 
being a notable exception. "is is compatible with the idea that latent decision processes re$ected in the  DDMS 
parameters might be a#ected by factors that di#er across testing days, but are largely stable within sessions, such 
as mood, fatigue or motivation.

VR has previously been used to study cue-reactivity in participants su#ering from gambling  disorder2,3,83, but 
also in participants experiencing  nicotine84 and  alcohol1 use disorders. Our experimental set-up extends these 
previous approaches in several ways. First, we included both a neutral and a gambling-related environment. "is 
allows us to disentangle general VR e#ects from speci!c contextual e#ects. Second, our reliability checks for 
temporal discounting show that model-based constructs with clinical relevance for  addiction18,23 can be reliably 
assessed when behavioral testing is implemented directly in the VR environment. Together, these advances might 
yield additional insights into the mechanisms underlying cue-reactivity in addiction, and contextual e#ects in 
psychiatric disorders more generally.

Understanding how addictions manifest on a computational and physiological level is important to further 
the understanding the mechanisms underlying maladaptive decision-making. Although alterations in neural 
reward circuits, in particular in ventral striatum and ventromedial prefrontal cortex, are frequently observed in 
gambling disorder, there is considerable heterogeneity in the directionality of these  e#ects85. Gambling-related 
visual cues interfere with striatal valuation signals in participants su#ering from gambling disorder, and might 
thereby increase temporal  discounting12. In the present work, assessment of physiological reactivity to VR was 
limited to electrodermal activity (EDA). EDA is an index of autonomic sympathetic arousal, which is in turn 
related to the emotional response to addiction related  cues39,86–88. "e skin conductance level (SCL) is increased 
in participants with substance use disorders in response to drug related  cues86. Additionally, it has been shown 
that addiction related cues in VR can elicit SCR responses in  teen87 and  adult88 participants su#ering from a 
nicotine addiction. In our study, we mainly used this physiological marker to assess how healthy participants 
react to VR exposure. For the number of spontaneous responses in the EDA signal (nSCRs), the increase upon 
exposure to VR (B5 vs. F1) was only signi!cant in the  VRneutral environment. "e e#ect size for the di#erence 
between both environments was medium. Given that the two starting areas of the VR-environments were iden-
tical, this di#erence might have been caused by random $uctuations. However, an increase in the number of 
spontaneous SCRs during VR immersion has been reported  previously5 and thus warrants further investigation. 
"e SCL, on the other hand, increased substantially upon exposure to VR, as indicated by a signi!cant increase 
between the last minute of baseline recording (B5) and the !rst minute of the !rst exploration phase (F1). "e 
e#ect sizes indicated a large e#ect. SCL then remained elevated throughout both exploration phases (F1 to S5) 
but did not increase further when the virtual café/casino area was entered. "ese results suggest that exposure 
to VR increases sympathetic arousal as measured with SCL in healthy control participants independent of the 
presented VR environment.

"ere are several limitations that need to be acknowledged. First, there was considerable variability in 
test–retest intervals across participants. While most of the sessions were conducted within a week, in some 
participants this interval was up to 3 weeks, reducing the precision of conclusions regarding temporal stability of 
discounting in VR. Other studies, however, have used intervals ranging from 5 to 57  weeks52 or three  months53, 
and have reported comparable reliabilities. Moreover, there is evidence for a heritability of temporal discount-
ing of around 30 and 50 percent at the ages of 12 and 14 years  respectively89. "is increases the con!dence in 
the results obtained here. Nevertheless, a more systematic assessment of how long these trait indicators remain 
stable in VR would be desirable and could be addressed by future research. Second, the sample size was lower 
compared to larger studies conducted  online49, and the majority of participants was female. Both factors limit the 
generalizability of our results. However, large-scale online studies have shortcomings of their own, including test 
batteries that take multiple hours and/or multiple sessions to  complete49,50, potentially increasing participants’ 
fatigue, and which might have detrimental e#ects on data quality. We also note that the present sample size 
was su%ciently large to reveal stable parameter estimates, showing that in our design participants performed 
the task adequately. "irdly, the immersion in VR might have been reduced by the available physical lab space. 
To ensure safety, the experimenter had to at times instruct participants to stay within the designated VR-zone. 
"is distraction might have reduced the e#ects caused by the VR-environments, because participants were not 
able to fully ignore the actual physical surroundings. Additionally, it might have in$uenced the EDA measure-
ments in an unpredictable way. Future research would bene!t from the implementation of markers within the 
VR-environments in order to ensure safety without breaking immersion. Moreover, participants had to spend 
about thirty minutes in the full VR-setup. "e behavioral tasks were presented a'er the exploration phase, 
such that participants might have been fatigued or experienced discomfort during task completion. Finally, the 
study at hand did not include participants that gamble frequently or are su#ering from gambling disorder and 
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is therefore not a cue-reactivity study itself, but rather a methodological validation for future studies using this 
and similar designs. Due to the fact that participants here were supposed to be fairly unfamiliar with gambling 
environments this study could not determine how ecologically valid the gambling environment actually is. "is 
needs to be addressed in future research. In relation to that, cue-reactivity in gambling disorder is determined by 
many individual  factors37. "e VR-design presented here is designed for slot machine and sports betting players, 
and thus not applicable for other forms of gambling.

Overall, our results demonstrate the methodological feasibility of a VR-based approach to behavioral and 
physiological testing in VR with potential applications to cue-reactivity in addiction. Healthy non-gambling 
control participants showed little systematic behavioral and physiological e#ects of the two VR environments. 
Moreover, our data show that temporal discounting is reliable behavioral marker, even if tested in very di#erent 
experimental settings (e.g. standard lab testing vs. VR). It remains to be seen if such gambling-related environ-
ments produce cue-reactivity in participants su#ering from gambling disorder. However, results from similar 
applications have been  encouraging2,3. "ese results show the promise of VR applications jointly assessing of 
behavioral and physiological cue-reactivity in addiction science.
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Study 2 
Study 2 summary. The second study we implemented for the dissertation project 

presented here built upon the feasibility findings of study 1 and depicts the major addiction-

related research focus therein. After reliability and general validity of our design had been 

established in the first study, we invited participants reporting frequent gambling behavior as 

well as non-gambling participants to our VR lab to test if and how our VR environments can 

provoke cue-reactivity effects in the participants suffering from problematic gambling 

behavior. We tested subjective, physiological, and behavioral cue-reactivity with the measures 

and tasks described above. Replicating earlier studies on group differences between non-

gambling control participants and participants suffering from GD in temporal discounting tasks 

and the TST, we found increased temporal discounting and decreased MB control in the 

gambling group. However, these differences were not systematically modulated by the VR 

environment presented to the participants, suggesting the absence of strong behavioral cue-

reactivity in our design. Importantly, participants in the GD group indicated a strong and 

selective increase of subjective craving in response to exposure to the virtual casino. Taken 

together these results warrant caution when applying VR in research and therapy in the context 

of addiction-related disorders, because VR might not generally replicate the effects of real-life 

gambling environments. Nevertheless, VR shows promise for research and therapeutic 

intervention strategies in the context of GD, given that we were able to induce the desire to 

gamble in participants reporting frequent gambling behavior.  
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Abstract 34 

High-performance virtual reality (VR) technology has opened new possibilities for the 35 

examination of the reactivity towards addiction-related cues (cue-reactivity) in addiction. In 36 

this preregistered study (https://osf.io/4mrta), we investigated the subjective, physiological, and 37 

behavioral effects of gambling-related VR environment exposure in participants reporting 38 

frequent or pathological gambling (n=31) as well as non-gambling controls (n=29). On two 39 

separate days, participants explored two rich and navigable VR-environments (neutral: café vs. 40 

gambling-related: casino/sports-betting facility), while electrodermal activity and heart rate 41 

were continuously measured using remote sensors. Within VR, participants performed a 42 

temporal discounting task and a sequential decision-making task designed to assess model-43 

based and model-free contributions to behavior. Replicating previous findings, we found strong 44 

evidence for increased temporal discounting and reduced model-based control in participants 45 

reporting frequent or pathological gambling. Although VR gambling environment exposure 46 

increased subjective craving, there was if anything inconclusive evidence for further behavioral 47 

or physiological effects. Instead, VR exposure substantially increased physiological arousal 48 

(electrodermal activity), across groups and conditions.  VR is a promising tool for the 49 

investigation of context effects in addiction, but some caution is warranted since effects of real 50 

gambling environments might not generally replicate in VR. Future studies should delineate 51 

how factors such as cognitive load and ecological validity could be balanced to create a more 52 

naturalistic VR experience.  53 
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 3 

Introduction 54 

Goal-directed decision-decision making is a key aspect of optimal behavior in a complex 55 

environment. Alterations therein in the form of prepotent, impulsive response patterns and 56 

habitual tendencies may result in adverse consequences in the long run. A prominent example 57 

for this are addiction related disorders such as substance-use-disorders [1–3] or behavioral 58 

addictions like gambling disorder (GD)[4–6]. Assessing the processes underlying decision 59 

making in general and impaired decision making specifically is difficult, because often not even 60 

the agent itself knows why a decision was made. A tool to study the processes that underly 61 

decision-making impairments is computational psychiatry[7]. The young field of computational 62 

psychiatry employs theoretically grounded mathematical models to quantify these processes 63 

and assess how they are perturbed in psychiatric disorders[8], with the aim of establishing 64 

common (transdiagnostic) computational markers [9]. This might in turn inform the 65 

development of effective interventions and/or treatment targets and might support the 66 

identification of vulnerable individuals.  67 

 68 

Studies investigating maladaptive decision-making have identified several related but 69 

distinct processes that play a role across psychiatric disorders. One process is the discounting 70 

of reward value over time (temporal discounting), as both steep and shallow discounting are 71 

associated with different psychiatric conditions[1]. In temporal discounting tasks, participants 72 

repeatedly choose between a fixed immediate reward and larger rewards that are temporally 73 

delayed[10]. The degree of temporal discounting is then estimated from choices and/or response 74 

time (RT) distributions via computational models. Altered temporal discounting is suspected to 75 

be a transdiagnostic marker for several psychiatric disorders[1,9], with addictions and related 76 

disorders forming a prominent example[9,11]. 77 

 78 

Another cognitive process that has received considerable attention for quantifying goal-79 

directed control of decision-making is reinforcement learning (RL)[12]. RL is thought to depend 80 

on two systems, a habitual “model-free” system that learns stimulus-response associations, and 81 

a goal-directed “model-based” system that computes action consequences via a model of the 82 

environment[13]. The degree to which participants use goal-directed or habitual RL is often 83 

assessed with the 2-step task[14,15], a two-stage decision-making task where first stage decisions 84 

probabilistically determine the presented second stage, and thereby the rewards that can be 85 

obtained. Reduced model-based RL is associated with a range of subclinical symptoms[16] and 86 

addiction related disorders including GD[17] and substance use disorder[18]. 87 
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 88 

Prominent characteristics of addiction are compulsive drug seeking and insensitivity to 89 

negative consequences[19]. Incentive-sensitization theory[20–22] postulates that neural circuits 90 

mediating the incentive motivation to obtain rewards become sensitized to reward-predictive 91 

cues, giving rise to craving and drug-seeking behavior. These effects are thought to be mediated 92 

by the mesocorticolimbic dopamine system[22]. For example, exposure to addiction-related cues 93 

is correlated with the modulation of striatal value signals during temporal discounting[6], and 94 

increases striatal dopamine release in humans[23]. Across substance-use disorders and 95 

behavioral addictions, such effects are referred to as cue-reactivity[24–26]. Cue-reactivity 96 

manifests on a physiological and subjective level[24,25]. Additionally, exposure to addiction-97 

related cues might increase temporal discounting[6,27,28], modulate risk-taking[29] and impair 98 

cognitive performance[30].  99 

 100 

Cue-reactivity in GD has been examined using visual cues[4,6,29,31–38] or real-life 101 

gambling environment exposure[27,28]. Both methods arguably represent extremes on the 102 

spectrum between highly controlled laboratory environments and field studies. Field studies 103 

have high ecological validity but lack control over confounding factors and complicate the 104 

assessment of physiological variables. Conversely, lab studies yield control over confounding 105 

variables but lack ecological validity. We recently proposed a virtual reality (VR) approach that 106 

combines ecological validity with the advantages of a highly controlled lab environment[39–41]. 107 

VR allows the concurrent measurement of physiological, subjective, and behavioral cue-108 

reactivity in an ecologically valid virtual environment. Participants are equipped with head-109 

mounted displays and immersed in two rich and navigable VR environments: a (neutral) café 110 

or a (gambling-related) casino. Participants explore the environments and subsequently perform 111 

behavioral tasks within them.  112 

 113 

We have shown that behavioral data obtained in VR yield reliable estimates of temporal 114 

discounting[39], and allow for a comprehensive RT-based modeling via the drift-diffusion model 115 

(DDM)[39,42,43]. Here, the decision process is modelled as a dynamic diffusion process between 116 

two boundaries, providing both a more detailed account of the underlying latent decision 117 

processes[44–48] and more stable parameter estimates[49,50]. Recent studies have successfully 118 

applied this approach to disentangle dopamine effects on temporal discounting[48], quantify 119 

reinforcement learning impairments in GD[51] and clarify effects of medial orbitofrontal cortex 120 

lesions on decision-making[46]. 121 
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 122 

This pre-registered VR study had three aims. First, we extended previous VR work on 123 

cue-reactivity in addiction [40,52,53] by comprehensively modeling the effects of gambling-124 

related environments in GD on cognitive processes during decision-making. We hypothesized 125 

that participants reporting frequent and/or pathological gambling behavior would show overall 126 

increased temporal discounting[9,11] and reduced model-based RL[17] compared to non-gambling 127 

controls. Additionally, we predicted that exposure to a VR gambling context would increase 128 

subjective craving (urge-to-gamble), further increase temporal discounting[5,10] and further 129 

reduce model-based RL[17] in GD compared to controls. We hypothesized that physiological 130 

cue-reactivity in GD would manifest as increased heart rate and skin-conductance responses 131 

during exposure to a VR gambling context.  132 

  133 
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Methods 134 

Participants. Thirty-one participants (three female) reporting regular gambling and at 135 

least one DSM-V[19] criterion for gambling disorder aged between 20 and 41 (mean = 26.06, 136 

std = 5.43) as well as thirty non-gambling control participants (three female) in a matched age 137 

range (mean = 26.83, std = 4.65) were invited to the lab on three different testing days. Groups 138 

were additionally matched on years of education and smoking (Table 1). Participants were 139 

recruited via flyers posted at local gambling venues and via postings in local internet forums. 140 

No participant reported a history of traumatic brain injury, psychiatric or neurological disorders 141 

or severe motion sickness. 142 

 Participants provided informed written consent prior to their participation, and the study 143 

procedure was approved by the Ethics Board of the Germany Psychological Society. The 144 

procedure was in accordance with the 1964 Helsinki declaration and its later amendments. 145 

 146 
Table 1. Summary of group characteristics. p-values printed in bold font are significant at .05. 147 

Screening Gambling Group Control Group Group 
Difference 

Gender (male/ female) 
28/3 26/3 X2(1) < 0.001,  

p = 1 

Age 
26.06 (5.34) 26.83 (4.65) U = 426,  

p = 0.73 

Years of education 
12.1 (1.68) 12.07 (1.25) U = 454.5,  

p = 0.94 

DSM-V criteria for GD[19] 
5.32 (2.41) 0 (0) U = 899,  

p < 0.001 
Beck Depression Inventory 
(BDI)[54] 

13.45 (10.08) 6.45 (5.53) U = 639,  
p < 0.01 

Symptom-Checklist 90 
(SCL90) [55] 

0.93 (0.7) 0.34 (0.29) U = 684,  
p < 0.001 

South Oaks Gambling 
Screen (SOGS)[56] 

8.23 (4.55) 0.24 (0.83) U = 873.5, 
p < 0.001 

Kurzfragebogen zum 
Glücksspielverhalten 
(KFG)[57] 

24.55 (13.61) 3.21 (11.3) 
U = 851,  
p < 0.001 

Alcohol Use Disorder 
Identification Test 
(AUDIT)[58] 

9.84 (8.87) 4.79 (3.08)  
U = 580.5, 
p = 0.052 

Fagerström Test for 
Nicotine Dependence 
(FTND)[59] 

1.32 (2.5) 0.69 (1.37) 
U = 483,  
p = 0.52 

Gambling-Related 
Cognitions Scale 
(GRCS)[60]  

70.35 (26.25) 26.55 (8.14) 
U = 878,  
p < 0.001 

Gamblers’ Beliefs 
Questionnaire (GBQ)[61] 

30.29 (19.32) 26.21 (15.89) U = 483,  
p = 0.62 

 148 

 149 
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 7 

VR-Setup. The VR-environments were presented using a wireless HTC VIVE head-150 

mounted display (HMD). The setup provided a 110° field of view, a 90 Hz refresh rate, and a 151 

resolution of 1440 x 1600 Pixel per eye. Participants had an area of about 6m2 open space to 152 

navigate the virtual environment. For the execution of the behavioral tasks and additional 153 

movement control participants held one VR-controller in their dominant hand. The VR-154 

software was run on a PC with the following specifications: CPU:  Intel Core i7-3600, Memory: 155 

32.0 GB RAM, Windows 10, GPU: NVIDIA GeForce GTX 1080 (Ti). The VR-environments 156 

themselves were designed in Unity. Auditory stimuli were presented using on-ear headphones. 157 

 158 

VR-Environments. The VR set-up consisted of two environments, one neutral 159 

environment (VRneutral) and one gambling-related environment (VRgambling). Environments 160 

contained an identical starting area and different experimental areas. Participants were placed 161 

in the middle of a small rural shopping street with a small park adjacent to it. Participants heard 162 

low street noises. The starting area was intended to familiarize participants with VR and control 163 

for possible confounding effects of entering VR. From this starting area participants could move 164 

to the experimental area by entering one of the houses on the shopping street. The entrances 165 

were in the same location for both environments. The actual experimental area differed for the 166 

two VR environments (see Figure 1). In the VRneutral environment the experimental area 167 

comprised a small café including customers and buffet (Figure 1b, c). Participants were 168 

surrounded by low conversation and music. In the VRgambling environment the experimental 169 

participants were presented a small casino containing slot machines and a sports betting room 170 

(Figure 1e, f). Participants could hear slot machine sounds and sports. The floorplan of the 171 

VRgambling experimental area was a mirrored version of the VRneutral experimental areas floorplan 172 

(Figure 1a, d). Both environments contained eight animated human avatars that performed non-173 

repetitive movements like gambling or ordering food. 174 
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 175 
Figure 1. Experimental areas of the VR-environments a) Floorplan of the café within the VR-neutral 176 
environment b) View of the main room of the café c) View of the buffet area of the café d) Floorplan of 177 
the casino within the VR-gambling environment e) View of the main room of the casino f) View of the 178 
sports bar within the casino 179 

 180 

Experimental procedure. Participants were invited for three testing sessions on three 181 

different days. The mean interval between sessions was 2.06 days with a range from 1 to 7 days. 182 

During the first session, participants complete a range of questionnaires and working memory 183 

tasks (see baseline screening). This session took approximately two and a half hours. In the 184 

second and third session participants entered one of the two VR environments. The order of the 185 

two VR environments was counter-balanced across participants. Upon arrival at the lab for the 186 

VR-sessions participants were first introduced to the VR equipment and handling. Subsequently 187 

they received detailed instructions for the behavioral tasks to be performed in VR. Participants 188 

were then seated, and a five-minute baseline measurement of physiological measures was 189 

obtained (baseline phase). The experimenter then helped the participants to apply the VR 190 

headset. Upon VR immersion, participants found themselves in the starting (outdoor) area of 191 

the VR environment and were instructed to explore it for five minutes (first exploration phase). 192 

Participants were then instructed to enter the interior experimental area of the VR environment 193 

and explore it for an additional five-minute period (second exploration phase). Experimental 194 

phases were each divided into five one-minute bins (B1 to B5 for the baseline phase, F1 to F5 195 

for the first exploration phase and S1 to S5 for the second exploration phase). Following S5, 196 

participants were asked to proceed to the behavioral tasks, which were presented on a terminal 197 

within the experimental area.  198 

 199 

Physiological measurements. Electrodermal activity (EDA)[62] was measured using a 200 

BioNomadix-PPGED wireless remote sensor together with a Biopac MP160 data acquisition 201 

b
c

f e

a b c

d e f
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system (Biopac Systems, Santa Barbara, CA, USA). A GSR100C amplifier module with a gain 202 

of 5V, low pass filter of 10 Hz and a high pass filter DC were included in the recording system. 203 

The system was connected to the acquisition computer running under Biopac’s AcqKnowledge 204 

software. Triggers for the events within the VR-environments were send to the acquisition PC 205 

via digital channels from the VR-PC.  Disposable Ag/AgCl electrodes were attached to the 206 

thenar and hypothenar eminences of the non-dominant palm. Isotonic paste (Biopac Gel 101) 207 

was used to ensure optimal signal transmission. The signal was measured in micro-Siemens 208 

units (mS). The same Biopac MP160 system with a BioNomadix-PPGED wireless remote 209 

sensor was used to record the heart rate at the fingertip. 210 

 211 

Temporal discounting task. Participants completed two behavioral tasks in each VR 212 

environment: a temporal discounting task[10] and the Two-Step task[14,15] (a sequential RL task). 213 

The temporal discounting task consisted out of 96 choices between an immediate (smaller-but-214 

sooner, SS) reward fixed at 20 Euros, and larger but delayed (larger-later, LL) rewards. LL 215 

options were created by multiplying the SS option with a range of factors (range 1.025 to 3.85) 216 

combined with different temporal delays (range 1 to 122 days). Two sets of LL options were 217 

created by taking all possible combinations of six delays and 16 factors for each set. The two 218 

sets were matched for mean LL amount and mean delay. The order of presentation of the two 219 

sets was counterbalanced across participants. Participants were informed that one trial per 220 

session would be randomly selected and paid out in form of voucher for a widely known online 221 

store.  222 

Options per trial were presented in two yellow squares on a black background on a 223 

display positioned within the experimental area of the VR environments (Figure 2). Offers were 224 

randomly assigned to the right or left side of the virtual display. Participants could take as long 225 

as they wanted to make a response, but they were instructed to decide intuitively. After a 226 

decision was made by aiming at the preferred option with the VR controller and pulling the 227 

trigger, a short inter-trial-interval (ISI) of .5 to 1 seconds followed. During this ISI the two 228 

yellow squares were filled with questions marks. Subsequently the next trial started.  229 

 Sequential RL task. Next, participants completed 200 trials of a modified version of the 230 

2-step task proposed by Daw and colleagues[14]. The task consists of two stages. On each stage, 231 

participants choose between two abstract visual cues. The first stage (S1) consisted of two 232 

stimuli, one of which had to be chosen. Depending on the choice in S1, participants were then 233 

taken to one of two second stages (S2) that were characterized by different colors and different 234 

available stimuli. Here, one of the two S2 stimuli was selected, and rewarded with points 235 
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ranging from 0 to 99. One S1 cue led to one second stage with a probability of 70% (“common” 236 

transition) and to the other with a probability of 30% (“rare” transition). Transitions were 237 

reversed for the other S1 option and fixed across trials. Following selection of an S2 option, the 238 

obtained points were shown below the chosen picture for one second. S2 rewards were 239 

determined by four independent Gaussian random walks with reflecting boundaries (min: 0, 240 

max: 99). These walks were pre-computed and counterbalanced across sessions. Participants 241 

were informed about the task structure and their comprehension of the task was repeatedly 242 

questioned by the experimenter. Additionally, participants completed five example trials to get 243 

used to the task timing. In both stages, participants had three seconds to log their response. If 244 

they failed to do so they received zero points and the next trial started. Motivation to perform 245 

the task correctly was ensured by linking the final score to an additional financial reward that 246 

participants could receive. This was done by multiplying the final score of the participant with 247 

a factor of .0005 resulting in an additional reward of between five and nine €.  248 

 249 

Baseline screening. During the first session, participants answered a range of 250 

questionnaires, and their working memory capacity was probed. A list of the questionnaires can 251 

be found in Table 1. To probe the working memory capacity of the participants we applied four 252 

established tests. First, participants completed the Rotation Span Task, which tests the ability 253 

to memorize a sequence of arrow orientations while being distracted by a letter rotation task[63]. 254 

Second, participants had to memorize sequences of letters, while doing simple calculations. 255 

This Operation Span Task was adapted from the Complex Span Task[64]. Third, we tested the 256 

listening span of participants by having them remember the last words of sentences presented 257 

in variably sized blocks. This task was adapted from the German version of Reading Span 258 

Task[65]. Fourth, participants performed a forward and a backward version of the Digit Span 259 

Task. Participants  heard sequences of digits and had to remember them in the same or reversed 260 

order[66]. 261 

 262 

Temporal discounting: model-agnostic analysis. Temporal discounting data were first 263 

analyzed with a model-free approach, without a-priori model assumptions. Points of subjective 264 

equivalence between SS and LL rewards (indifference points) were estimated by fitting logistic 265 

functions to the choices for each delay. Indifference points were then plotted per participant 266 

and the area under the resulting curve (AUC) was calculated following standard procedures[67]. 267 

AUC values were compared across groups and sessions using a mixed ANOVA. 268 

 269 
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Temporal discounting: computational modeling. The effect a delay has on the subjective 270 

valuation of a reward can be accurately modelled by a hyperbolic function[68,69]. We therefore 271 

employed hierarchical Bayesian modeling to determine each participant’s rate of discounting 272 

for the different sessions[8]. A hierarchical hyperbolic discounting model was fit to data of each 273 

group individually (Eq. 1):  274 

SV(LLt)	= At

(1	+	(exp(k	+	$!	*	It))	*	Dt)
	(1)	  275 

 276 

Here, SV(LLt) is the subjective (discounted) value of the LL on trial t. A and D represent the 277 

objective reward amount and the delay to the LL, respectively. The steepness of the hyperbolic 278 

discounting function is governed by the parameter k (discount rate). To avoid numerical 279 

instability of k-values close to, we estimated the parameter in log-space (log[k]). The parameter 280 

sk represents the change in log(k) from the VRneutral to the VRgambling session. Finally, It is a 281 

dummy variable coding the experimental session for trial t.  282 

The hyperbolic model was subsequently combined with two different choice rules, a 283 

softmax action selection rule[12] and the drift diffusion model (DDM)[45]. Softmax determines 284 

the probability of choosing the LL option on a given trial t (Eq. 2):  285 

P(LLt)	=
exp(SV(LLt)	*	(+	+	$"	*	It),

exp(SV(SSt)	*	(+	+	$"	*	It),+ exp(SV(LLt)	*	(+	+	$"	*	It),
	(2)  286 

Here, the % -parameter determines choice stochasticity with respect to model-based subjective 287 

values. For % = 0 choices are random, whereas higher % values reflect stronger dependency of 288 

choices on modeled values. Again, we included a term ((+) modeling condition-dependent 289 

changes in decision noise. 290 

 291 

The second choice rule we applied was the DDM. In addition to the choices, the DDM 292 

includes response times (RTs) in the analysis to decompose RT distributions into latent decision 293 

processes. Recently, the DDM has increasingly been applied in the context value-based 294 

decision-making, including temporal discounting[39,46,48] and reinforcement learning[44,45] and 295 

models two-alternative forced-choice decisions as a noisy evidence accumulation process 296 

between two boundaries. As soon as the evidence in favor of one option exceeds the 297 

corresponding boundary, the process terminates, and the choice is executed. The upper 298 

boundary coded LL choices, whereas the lower boundary coded SS choices. RTs of SS choices 299 

were multiplied with -1 prior to the model estimation. We excluded, the 2.5% slowest and 300 

fastest trials of each participant from the analysis to prevent outlier trials from negatively 301 

impacting model fit[45,46].  302 
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Within the DMM, the RT on trial t is then distributed according to the Wiener first 303 

passage time (wfpt) (Eq. 3): 304 

RTt ~ wfpt (α+	(-*	It, τ	+	(τ	*	It, z	+	(z*	It, 5	+	(0*	It)	(3) 305 

Here 6 represents the boundary separation reflecting the speed-accuracy tradeoff. The 306 

non-decision time τ models RT components unrelated to the evidence accumulation process 307 

(e.g. perception and motor preparation). The starting point of the diffusion process is modeled 308 

via the bias z. Finally, the rate of evidence accumulation is described by the drift-rate v. The s-309 

parameters ((α, (τ, 	(2 , (0) again model condition effects on the corresponding parameters, and 310 

It is the dummy-coded condition predictor for trial t. 311 

We compared three different versions of the DDM. First, we fit a null model (DDM0) 312 

with a constant drift rate[46,48]. We then compared two DDMs that incorporated hyperbolic 313 

discounting, either via a linear (DDML) or a non-linear (DDMS) mapping of trial-wise value 314 

differences on drift rates. For the DDML, vcoeff maps the value differences onto v: 315 

5t = (5coeff   +	(0coeff  *	It) ∗ (:; (<<t) – :;(::t)) (4) 316 
One problem with such a linear mapping is that v might increase infinitely with high value 317 

differences, leading to a substantial under-prediction of RTs for high value differences[46]. As 318 

in previous work[46,48], we therefore also examined a non-linear model (DDMS) (Eq. 5 and 6)[44]: 319 

5t = S [(5coeff 	+	(0coeff 	*	It) * (SV(LLt) – SV(SSt))]	(5)  320 

S(m) = 
2 ∗ (5max + (0max ∗ It)
1 + exp	(−F) − (5max + (0max ∗ It)	(6)  321 

This formulation caps the drift rate at 5max.  322 

We and others have shown that both group- and subject-level DDMS parameters recover 323 

well when combined with value-based decision models including temporal discounting[44,46,48]. 324 

 325 

2-step task: model-agnostic analysis. Here we modelled second stage RTs using a 326 

hierarchical generalized linear model (HGLM) with the factors transition (common or rare), 327 

session (VRgambling or VRneutral) and group (gambling or non-gambling control)[70]. The 2.5% 328 

slowest and fastest trials per each participant were excluded from the analysis to reduce the 329 

negative impact of outlier trials on model fit[45,46]. We also performed a standard model-agnostic 330 

analysis of the 2-step task, modelling the probability to repeat previous trial first stage choices 331 

(pStay) as a function of transition, group and previous reward[14]. Since the present 2-step task 332 

version employed continuous rewards for S2, this analysis was conducted using a moving 333 

average of recent rewards to categorize trials into rewarded and unrewarded trials. In addition, 334 
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we assessed the final score participants achieved in both conditions with a mixed model 335 

ANOVA including group and session as factors.  336 

 337 

2-step task: computational modeling. We again combined an RL model that learns state-338 

action values (Q-values) for options in the different stages with both a softmax and a DDM 339 

choice rule. The softmax model was based on the hybrid model proposed by Otto and 340 

colleagues[71]. Here, both model-free (MF) and model-based (MB) Q-values are tracked for S1 341 

options, whereas S2 options only have MF Q-values. QMF-values for both stages are updated 342 

on trial t via the prediction error G (Eq. 7 to 10). The subscript j (j ϵ [1,2]) denotes the two 343 

possible actions in each stage, while i denotes the stage presented. 344 

	Q34Is56,8, a6,8L = 	Q34Is56,89:, a;6,89:L + IM5 +	(<# ∗ 	 N=L ∗ δ5,8	(7) 345 

	Q34Is:;,8, a6,8L = 	Q34Is:,89:, a6,89:L + IM: +	(<$ ∗ 	 N=Lδ:,89: + IM5 +	(<# ∗ 	 N=LG$5,					(8) 346 

δ:,8 =	Q34Is5,89:, a6,89:L − Q34Is:,89:, a6,89:L(9) 347 

δ5,8 = r5,89: −	Q34Is5;,89:, a6,89:L(10) 348 

 349 

Here, r corresponds to the S2 reward obtained on the previous trial. As there are only S2 350 

rewards, S1 QMF-values are based on the QMF-values of the S2 options (equation 11) and on the 351 

S2 prediction error. M: and M5	represent the S1 and S2 learning rates (i.e., the impact of 352 

prediction errors on future reward expectation). Learning rates were modeled in standard 353 

normal space [-4, 4], and back-transformed to the interval [0, 1] via the inverse cumulative 354 

normal distribution function. 355 

 356 

In contrast, model-based Q-values (QMB, see Eq. 11) take the S1-S2 transition 357 

probabilities as well as S2 QMF-values into account: 358 

 359 

	T>?I(:, U@L = 	VI(5:W(:, U@L	FUX	T>A((5:, U) + VI(55W(:, U@L	FUX	T>A((55, U)	(11) 360 

 361 

Since there are no further stages to the task, for S2, QMF = QMB. The S2 softmax choice rule is 362 

analogous to the one described for temporal discounting. Here, %5 governs the choice 363 

stochasticity (Eq. 12):  364 

(14)VIUB,= = UW(5,=L =
ZX[(I%5 + (+# ∗ N=LT>A%#(U))

∑ ZX[(I%5 + (+# ∗ N=LT>A%#(U′))C&
(12)						 365 

 366 
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The S1 softmax choice rule then includes separate weighting parameters for QMF and QMB (%>A 367 

and %>?) that model the impact of these Q-values on S1 choices (Eq. 13):  368 

VIUB,= = UW(:,=L369 

=
ZX[I(%>? + It ∗ (+>?LT>?%$(U) + (%>A + It ∗ (+>A)T>A%$(U) + I^ + 	It	*	(DL ∗ _Z[(U))

∑ ZX[I(%>? + It ∗ (+>?LT>?%$(U′) + (%>A + It ∗ (+>A)T>A%$(U′) + I^ + 	It	*	(DL ∗ _Z[(UE))C&
,370 

(13)	 371 

 372 

Action selection in S1 is thus modelled by weighing the influence of MB and MF Q-values in 373 

a softmax choice rule. Additionally, the parameter ^ models perseveration, i.e., the tendency to 374 

repeat the previous action. Rep takes a value of 1 if the corresponding action was taken on trial 375 

t-1, and 0 otherwise. It again represents the dummy-coded session. 376 

 377 

Finally, we included a term that decayed the Q-values of unchosen stimuli in both stages[72,73] 378 

with a decay-rate ηdecay towards the center of the reward walks (.5) (Eq. 14). For the modelling 379 

process the reward values were multiplied by 100 as these values were presented to the 380 

participants. 381 
 	382 

"#$%&'()$#$*,, , &*,,'383 

= "#$%&'()$#$*,,-., &*,,-.' ∗ *MFGHIJ + (KFGHIJ ∗ NL+384 

+ -1 − *MFGHIJ + (KFGHIJ ∗ NL+0	∗ 	0.5	(14) 385 

 386 

We again extended this modeling approach using the same three DDM choices rules 387 

previously described for the temporal discounting task, with the key difference that now trial-388 

wise drift-rates depended on the differences in Q-values between options (∆M'( and ∆M')  389 

respectively). For S2, this depended only on QMF value differences (Eq. 15): 390 

5N5,= = I5OPQRRN5 +	(0OPQRR%# ∗ 	N=L ∗ 	∆M')%#(15)  391 

For S1, to take both QMF and QMB values into account, we included separate drift-rate 392 

coefficients 5coeffMB and 5coeffMF (Eq. 16):  393 

vS:,8 = I5OPQRR'( +	N= 	 ∗ (0OPQRR'(L ∗ ∆M'( 	+ I5OPQRR') +	N= 	 ∗ (0OPQRR')L ∗ ∆M')%$ + (^394 

+	N= 	 ∗ (D)(16) 395 

As for the temporal discounting models, the DDML simply used the drift rates from equations 396 

15 and 16. In contrast, for the DDMS these drift-rates were additionally passed through a 397 

sigmoid function S (see Eq. 17):  398 
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:(F) =
2 ∗ d5TCU%* 	+	(0+,-%*

∗ 	 	N=e
	

1 + ZX[	(−F) − d5TCU%* 	+	(0+,-%*
∗ 	 	N=e (17) 399 

For all models, separate DDM parameters were estimated for the first and second stage of the 400 

task. 401 

 402 

Hierarchical Bayesian Models. All models were fit to the data of all participants in a 403 

hierarchical Bayesian estimation scheme. Models not including session effects were fit 404 

separately per session, yielding separate estimates per participant and session. For group-level 405 

means we employed weakly informative uniform or normal priors over numerically plausible 406 

ranges (see Supplementary Table 1). For parameters modelling condition effects we used 407 

Gaussian priors with means of 0. Participant-level parameters were drawn from group-level 408 

Gaussian distributions, the means, and precisions of which were again estimated from the data. 409 

We used Markov Chain Monte Carlo to estimate posterior distributions for all model 410 

parameters. Temporal discounting modeling was done in R [74] using the JAGS software 411 

package (version 4.3.0)[75] and the Wiener module for JAGS [76]. 2-step task modeling used 412 

Python in conjunction with the pystan toolbox and STAN (version 2.27) [77]. We ran four chains 413 

for each model. For JAGS, chains consisted out of one million samples. Only the last 15000 414 

were kept and the rest was discarded as a burn-in. For STAN, chains consisted of 7000 samples 415 

of which the first 3000 were discarded as a burn-in. Chain convergence was assessed using the 416 

fg statistic[78] where values £ 1.01 were considered acceptable. To determine the best fitting 417 

DDM in both tasks we calculated the Watanabe-Akaike Information Criterion (WAIC)[79] using 418 

the loo-package (version 2.4.1) in R. Lower WAIC values represent better fits. 419 

 420 

Session and group effects on model parameters. To quantify potential session, group 421 

and interaction effects, we compared the group-level posterior distributions across groups and 422 

conditions. We then examined the 95% highest density intervals (HDI) and calculated 423 

directional Bayes Factors (dBF) quantifying the degree of evidence for a reduction vs. an 424 

increase in a parameter. Because priors for group-level parameters were symmetric, dBFs can 425 

simply calculated as the ratio of the posterior mass of the difference distribution above zero to 426 

the posterior mass below zero[80]. Here, dBFs above 3 are interpreted as moderate evidence in 427 

favor of a positive effect, while Bayes Factors above 12 are interpreted as strong evidence for 428 

a positive effect[81]. Specifically, a dBF of 3 would imply that a positive effect is three times 429 

more likely, given the data, than a negative effect. Bayes Factors below 0.33 are likewise 430 

interpreted as moderate evidence in favor of the alternative model with reverse directionality. 431 
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A dBF above 100 is considered extreme evidence[81]. The cutoffs used here can be considered 432 

liberal, because they are usually used if the test is against a H0 implying an effect of exactly 0. 433 

 434 

Analysis of physiological data. Electrodermal activity (EDA) is a frequently employed 435 

index of sympathetic activity[82]. VR-related physiological arousal was first assessed using the 436 

tonic skin conductance level (SCL)[62] via continuous deconvolution analysis (CDA), using 437 

default settings in the Ledalab toolbox[83] for Matlab (The MathWorks). SCL was subsequently 438 

transformed into percentage change from the mean signal of the five-minute baseline phase and 439 

split into fifteen one-minute bins, five per experimental phase (pre-VR baseline [B], first 440 

exploration [F] and second exploration [S]). We additionally examined the number of 441 

spontaneous phasic skin conductance responses (SCR)[83]. The phasic component of the EDA 442 

signal was again divided into fifteen one-minute bins. For each bin we calculated the number 443 

of spontaneous SCRs. The resulting values were transformed into percentage change from the 444 

mean number of spontaneous SCRs during the five baseline bins.  445 

Heart rate (HR) was analyzed in a similar fashion. The signal was converted into the 446 

percent change from baseline mean and divided into fifteen one-minute bins described above. 447 

Again, we compared bin B5 to F1 to assess the effect of immersion into VR and bins F5 and 448 

S1 to test for physiological cue-reactivity using Wilcoxon Signed-Ranks Tests[84]. 449 

To test for general VR effects, the last baseline bin (B5) was compared to the first bin 450 

of the first exploration phase (F1) via non-parametric Wilcoxon Signed-Ranks Test[84]. To test 451 

for specific cue-reactivity effects, the last bin of the first exploration phase (F5) was compared 452 

to the first bin of the second exploration phase (S1), i.e. focusing on the time point were the 453 

specific gambling vs. neutral environment was entered, using non-parametric Wilcoxon 454 

Signed-Ranks Tests[84]. Effect sizes were calculated as the Z statistic divided by the square-root 455 

of N and reported as r[85]. Absolute r values above .5 are considered large effects, while values 456 

between .3 and .5 are considered medium. Values below .3 are considered small. The 457 

significance level was Bonferroni corrected for the number of statistical tests for each signal 458 

type. 459 

 460 

Subjective urge to gamble. Participants rated their subjective urge to gamble on a 10-461 

point likert scale at five time points: at the beginning of the experiment (B1), at the end of the 462 

baseline phase (B5), at the end of the first exploration phase (F5), at the end of the second 463 

exploration phase (S5) and after completion of behavioral testing (end). Participants were 464 

prompted verbally and verbally reported their urge to gamble. Such verbal reports have been 465 
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used successfully in previous cue-reactivity research [86] and for comparable VR designs[41]. 466 

Ratings were analyzed using a mixed model ANOVA. 467 

 468 

  469 
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Results 470 

Subjective urge to gamble. Participants reported their subjective desire to gamble on a 471 

10-point likert scale at five time points (see methods section). A mixed model ANOVA revealed 472 

a main effect of group (F(1) = 78.94, p <.001, ηp
2 = .434, i.e. an overall greater urge to gamble 473 

in the GD group) and a significant three-way interaction between group, session, and time point 474 

(F(3.059) = 2.81, p = .04, ηp
2 = .002). Simple effects analysis showed that this interaction was 475 

mostly due to an increased urge to gamble upon entering the gambling area in VRgambling in the 476 

GD group but not the control group (t = -11.197, p < .001) (Figure 2). This increase was also 477 

significantly greater than the increase caused by the experimental area of the VRneutral 478 

environment (t = -11.973, p < .001).  VRgambling exposure thus increased subjective craving 479 

specifically in the gambling group. 480 

 481 
Figure 2. Subjective urge-to-gamble (craving) was verbally reported via a 10-point-likert scale at five 482 
time points, at the beginning and end of the pre-VR baseline phase (B1, B5), at the end of the first VR 483 
exploration phase (F5, VR outdoor area) and at the end of the second VR exploration phase (S5, VRneutral 484 
vs. VRgambling) and upon completion of the experimental tasks (End). 485 
 486 

Temporal discounting: model-agnostic analysis. A mixed model ANOVA on area-487 

under-the curve values (AUC, a model-agnostic measure of temporal discounting, see methods 488 

section) revealed significantly steeper discounting (i.e., smaller AUC values) in gamblers vs. 489 

controls (F = 16.871, p <.001, ηp
2 = .216) (Figure 3 a and b). There was, however, no significant 490 

main effect of the VR session (F = .546, p = .463, ηp
2 < .001) and no significant group x session 491 

interaction (F = 1.686, p = .199, ηp
2 = .002). 492 
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 493 
Figure 3. Violin plot of AUC values for the GD group (a) and non-gambling controls (b). Lines connect 494 
single participant data points. Dashed red lines represent the median and solid black lines the mean. 495 
 496 

Temporal discounting softmax choice rule. Group level posteriors revealed extreme 497 

evidence for an increased discount rate log(k) in the gambling group (dBF>100, 95% HDI: min 498 

= .52, max = 2.501) (Figure 4 a and Table 2). However, there was only moderate evidence a 499 

further increase in discounting in the VRgambling environment gamblers (sk dBF = 3.338; 95% 500 

HDI: min = -.156, max = .325) (Figure 4 c and Table 3). In contrast, controls showed strong 501 

evidence for reduced discounting in the VRgambling session (dBF = 0.072, 95% HDI: min = -502 

.733, max = .081). Decision noise (%) was overall lower in controls vs. gamblers (dBF <0.01, 503 

95% HDI: min = -.492, max = -.08) (Figure 4 b and Table 2). There was no conclusive evidence 504 

for a VR effect on % in either group (Controls: dBF = 1.410, 95% HDI: min = -.055, max = 505 

.065; Gambling: dBF = 2.476, 95% HDI: min = -.087, max = .17) (Figure 4 d and Table 3). 506 

Gambling

VRNeutral VRGambling
0

0.25

0.5

0.75

1

AU
C

Control

VRNeutral VRGambling
0

0.25

0.5

0.75

1
a ba ba ba b

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.16.459889doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.459889
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

 507 
Figure 4. Hyperbolic temporal discounting model with a softmax choice rule. Group level posterior 508 
distributions for the gambling (blue) and control group (red). a) discount-rate log(k). b) softmax 7. c) 509 
shift parameter sk describing the shift in log(k) from the VRneutral to the VRgambling session. d) shift 510 
parameter $/ describing the shift in softmax 7 from the VRneutral to the VRgambling session.  Horizontal 511 
lines denote 95% highest posterior density intervals. 512 
 513 
 514 
Table 2. Posterior means and directional Bayes Factors (dBF) for the parameters of the hyperbolic temporal 515 
discounting model with softmax (left) and DDMS choice rule (right). dBF values around 1 indicate that values 516 
are evenly distributed around 0. dBFs are calculated as BF = i/(1-i), with i being the probability mass of the 517 
posterior distributions above zero. dBFs for group difference are based on the difference distributions between 518 
groups. Values are reported as Gambling > Control.  519 

 Softmax Model   DDMS     
Model 
parameter 

GD: 
Mean 

CON: 
Mean 

dBF 
group 

 GD: 
Mean 

CON: 
Mean 

dBF 
group 

GD:  
dBF  
vs. 0  

CON: 
dBF 
vs. 0 

log(k) -3.371  -4.884 448.116  -3.428 -4.791 353.78 - - 
!																			 .406 .679 .003  - - - - - 

vcoeff - - -  .21 .267 .106 >100 >100 
vmax - - -  1.772 1.86 .387 >100 >100 
# - - -  2.85 3.013 .224 - - 
z - - -  .499 .544 .01 - - 
$ - - -  .911 1.09 .023 - - 

 520 

 521 
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Table 3. Mean and Directional Bayes Factors (dBF) values for the shift parameters of the hyperbolic temporal 524 
discounting model with a softmax and a DDMs choice rule. dBFs values around 1 indicate that values are evenly 525 
distributed around 0. dBFs are calculated as BF = i/(1-i), with i being the probability mass of the posterior 526 
distributions above zero. dBFs for group difference are based on the difference distributions between groups. Values 527 
are reported as Gambling > Control. dBFs for group comparisons are based on the difference distributions of the 528 
posteriors of both groups. 529 
 530 

 Softmax Model    DDMS     
Model 
parameter 
(shift) 

GD: 
Mean 

CON: 
Mean 

dBF 
group 

GD: 
dBF 
vs. 0  

Con: 
dBF 
vs. 0 

 GD: 
Mean 

CON: 
Mean 

dBF 
group 

GD: 
dBF 
vs. 0 

Con: 
dBF 
vs. 0 

sk .088 -.309 19.457 3.338 .072  -.01     -.442 21.888 1.119 .031 
%.																					 .006 2.476 .564 1.41 2.476  -  - - - 

svcoeff - -  - - -  .03 .096 .137 6.643 48.758 
svmax - - - - -  .047 .104 .516 3.499 4.675 
s! - - - - -  -.196  -.029 .263 .089 .707 
sz - - - - -  .001 .007 .615 1.195 2.166 
s" - - - - -  .02 .065 .369 1.577 6.964 

 531 
 532 
Table 4. Summary of the WAICs of all drift diffusion models (DDM) in all sessions. Ranks are based on the 533 
lowest WAIC in all sessions. 534 

 535 
 536 

Temporal discounting drift diffusion model choice rule. Model comparison revealed that 537 

the DDMS (DDM including a sigmoidal drift rate modulation) accounted for the data best 538 

(Table 4), replicating previous findings[39,46,48,51]. Further analyses focused on the DDMS. The 539 

group-level posterior distributions for log(k) again indicated extreme evidence for stronger 540 

discounting in the gambling group (dBF > 100, 95% HDI: min = .43, max = 2.293) (Figure 5 a 541 

and Table 2). There was only anecdotal evidence for an increase in temporal discounting in the 542 

VRgambling session (modelled by the sk parameter) in the gambling group (dBF = 1.119, 95% 543 

HDI: min = -.234, max = .249) (Figure 6 a and Table 3). In the control group however, there 544 

was strong evidence for decreased discounting in the VRgambling session (dBF = 0.031, 95% 545 

HDI: min = -.915, max = .004) (Figure 6 a and Table 3). For the vcoeff parameter, mapping trial 546 

wise value differences to the drift rate, we found moderate evidence in favor of a higher 547 

influences of trial wise value differences in the control group compared to the gambling group 548 

(dBF = .106, 95% HDI: min = -.144, max = .029) (Figure 5 d and Table 2), mirroring the effects 549 

observed for the decision noise parameter % in the softmax model. The gambling and the control 550 

groups displayed moderate and very strong evidence in favor of an increase in vcoeff in the 551 

VRgambling session ((0OPQRR Gambling: dBF = 6.643, 95% HDI: min = -.019, max = .087; 552 

 Gambling  Controls   
Model VRneutral VRgambling VRneutral VRgambling Rank 
DDM0 8197.4 7563.7 7558.3 6925.3 3 
DDML 6596.5 6021.7 6296.5 5748 2 
DDMS 6243.5 5611 5619 5142.4 1 
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Control: dBF = 48.758, 95% HDI: min = .007, max = .2) (Figure 6 d and Table 3). For 5max, 553 

the upper boundary for the trial-wise value difference’s influence on the drift rate, the dBF 554 

indicated only anecdotal evidence for a difference between groups (dBF = 0.387, 95% HDI: 555 

min = -.37, max = .193) (Figure 5 b and Table 2). Furthermore, both groups showed moderate 556 

evidence for an increase in 5max in the VRgambling session (s5max Gambling: dBF = 3.499, 557 

95% HDI: min = -.073, max = .167; Control: dBF = 4.675, 95% HDI: min = -.113, max = .325) 558 

(Figure 6 b and Table 3). The group level posterior distributions for the 6 parameter, governing 559 

the trade-off between speed and accuracy, showed only moderate evidence in favor of an 560 

increased accuracy focus in controls (dBF = 0.224, 95% HDI: min = -.524, max =.194) (Figure 561 

5 e and Table 2). s0 parameter group level posterior distributions revealed strong evidence for 562 

a decrease in boundary separation in VRgambling in gamblers (dBF = 0.089, 95% HDI: min = -563 

.478, max = .089) (Figure 6 e and Table 3). For controls, there was no conclusive evidence for 564 

directional effects (dBF = 0.707, 95% HDI: min = -.313, max = .259) (Figure 6 e and Table 3). 565 

The bias parameter z revealed extreme evidence for a more pronounced bias towards SS vs. LL 566 

choices in gamblers vs. controls (dBF = 0.009, 95% HDI: min = -.083, max = -.008) (Figure 5 567 

c and Table 2). Session effects on z were of inconclusive directionality (sz Gambling: dBF = 568 

1.195, 95% HDI: min = -.024, max = .026; Control: dBF = 2.166, 95% HDI: min = -.02, max 569 

= .034) (Figure 6 c and Table 3). For the non-decision time h there was strong evidence for a 570 

reduced value in gamblers (dBF = 0.023, 95% HDI: min = -.381, max = -.005), reflecting faster 571 

motor and/or perceptual RT components (Figure 5 f and Table 2). There was moderate evidence 572 

for an increased non-decision time in the control group in the VRgambling session (sh dBF = 573 

6.924, 95% HDI: min = -.094, max = .135). This was not the case for the gambling group (sh 574 

dBF = 1.576, 95% HDI: min = -.045, max = .175) (Figure 6 f and Table 3). 575 
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 576 
Figure 5. Hyperbolic temporal discounting model with drift diffusion model choice rule: parameter 577 
posterior distributions from the VRneutral condition.  a) discount-rate log(k). b) maximum drift-rate vmax. 578 
c) starting-point z.  d) drift-rate coefficient vcoeff. e) boundary separation α. f) non-decision time τ. 579 
Horizontal lines denote 95% highest posterior density intervals. 580 
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 581 
Figure 6. Hyperbolic temporal discounting model with drift diffusion model choice rule: s-parameters 582 
modeling the change in each parameter from the VRneutral to the VRgambling session. a) discount-rate log(k). 583 
b) maximum drift-rate vmax. c) starting-point z.  d) drift-rate coefficient vcoeff. e) boundary separation α. 584 
f) non-decision time τ. Horizontal lines denote 95% highest posterior density intervals. 585 
 586 

2-step task: model-agnostic analyses. Numerically, non-gambling controls scored more 587 

points overall (Mean [SD]: Gambling group, VRgambling: 118.835 [9.931], VRneutral: 116.751 588 

[10.768], Control group, VRgambling: 120.096 [11.066], VRneutral: 121.535 [10.524]), although a 589 

mixed model ANOVA revealed that the main effect of group did not reach significance (F(1) 590 

= 3.788, p = .056, ηp
2 = .021). Likewise, there was no significant effect of session (F(1) = .021, 591 

p = .887, ηp
2 = <.001), nor a group x session interaction (F(1) = .615, p = .436, ηp

2 = .007). 592 

 Second stage RTs were then analyzed as a function of transition type (common vs. 593 

rare), session (VRgambling vs. VRneutral) and group (gambling vs. non-gambling) using a 594 

hierarchical linear mixed model (see Figure 7 a to d). Here, increases in S2 RTs following rare 595 

transitions are taken as a measure of MB control[70]. This revealed significant effects of 596 

transition (p < .001, see Table 5), session (p = .002, see Table 5) and group (p < .001, see Table 597 

5) as well as a significant interaction between the transition and group (p < .001, see Table 5), 598 

reflecting a greater increase in S2 RTs following rare transitions in controls. A further model-599 

agnostic analysis of the 2-step task typically entails an analysis of S1 stay probabilities (i.e. the 600 
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probability of repeating the S1 choice made on the previous trial) as a function of previous 601 

reward and transition[14]. Since in the 2-step task version employed here, S2 rewards were not 602 

probabilistic but continuous we ran an analogous analysis using a moving average of recent 603 

rewards to categorize trials according to previous rewards. Results are presented in the 604 

supplementary materials (Supplementary Table 3). Resonating with the results from the RT 605 

analysis, this analysis revealed MF and MB influences on S1 decisions in both groups (the 606 

factor Reward and the interaction of the factors Reward*Transition both were significant at p 607 

< .001, Supplementary Table 3). Additionally, we observed a greater MB effect in the non-608 

gambling group (significant three-way interaction of Reward*Transition*Group at p < .001, 609 

Supplementary Table 3).  610 
 611 
Table 5. Results of the Hierarchical General Linear Model analysis of second stage RTs 612 
from the 2-step task, with Transition (common vs. rare), Session (gambling vs. neutral) 613 
and Group (Gambling vs. Non-gambling) as fixed effects and subject as random effect.   614 

Fixed effects     

 Estimate Std. Error t p-value 

Intercept -.067 .026 -2.61 .013 
Transition -.183 .01 -17.761 <.001 
Session .037 .012 3.043 .002 
Group -.157 .012 -13.038 <.001 
Trans*Session -.022 .015 -1.494 .135 
Trans*Group 1.121 .014 8.46 <.001 
Session*Group -.015 .017  -.888 .375 
Trans*Session*Group -.004 .02 -.179 .858 

 615 
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 616 
Figure 7. Violin plots of median S2 response times (RTs) from the 2-step task per group (top row: 617 
gambling group, bottom row: non-gambling group) and condition. Lines connect individual participant 618 
data points. a) gambling group, VRneutral, b) gambling group, VRgambling. c) control group, VRneutral. d:) 619 
control group, VRgambling.  “c” denotes common transitions, “r” denotes rare transitions. Dashed red lines 620 
represent the median and solid black lines the mean. 621 
 622 

2-step task: softmax choice rule. As pre-registered, we initially applied the hybrid model 623 

proposed by Daw and colleagues[14] and extended by Otto et al.[71]. The model includes 624 

independent learning rates for S1 and S2, MF and MB % weights for S1, and a single softmax 625 

slope parameter % for S2 (see methods). In both groups, S1 choices were modulated by MF Q-626 

values (%>A Gambling: dBF >100, 95% HDI: min = 1.504, max = 3.247, Controls: dBF >100, 627 

95% HDI: min = 1.325, max = 2.682) (Figure 8 c) and MB Q-values (%>? Gambling: dBF = 628 

64.204, 95% HDI: min = .245, max = 5.379, Controls: dBF >100, 95% HDI: min = 4.505, max 629 

= 9.597) (Figure 8 b). %>? was greater in controls (dBF = .011, 95% HDI: min = -7.791, max 630 

= -.64), but this was not the case for %>A (BFs: 2.988, 95% HDI: min = -.757, max = 1.473). 631 

There was only moderate evidence for a gambling-session related increase in %>? in both 632 

groups (Gambling: dBF: 4.692, 95% HDI: min = -.922, max = 2.811, Control: dBF: 8.442, 95% 633 

HDI: min = -.657, max = 3.455) (Figure 8 g). Other parameters modeling VRgambling effects only 634 

revealed if anything anecdotal evidence (see Figure 8 a to j and Tables 6 and 7). For a full list 635 

of all directional Bayes Factors please refer to Tables 6 and 7. 636 
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 637 
Figure 8. Hybrid model with softmax choice rule posterior distributions. Top row: Parameters values 638 
for the VRneutral session, Bottom row: shifts in parameter values in VRgambling session. a) First and second 639 
stage learning rates. b) MB weights 712. c) MF weights 713. d) perseverance parameter p. e) Second 640 
stage softmax 74. f) shift in first and second stage learning rates. g) shift in 712. h) shift in 713. i) shift 641 
in p. j) shift in 74. Horizontal lines denote 95% highest posterior density intervals. 642 
 643 
 644 
Table 6. Mean and Directional Bayes Factors (dBF) values for the parameters of the Hybrid Rl model with 645 
a softmax and a DDMs choice rule. dBFs values around 1 indicate that values are evenly distributed around 646 
0. dBFs are calculated as BF = i/(1-i), with i being the probability mass of the posterior distributions above 647 
zero. dBFs for group difference are based on the difference distributions between groups. Values are reported 648 
as Gambling > Control. dBFs for group comparisons are based on the difference distributions of the posteriors 649 
of both groups. 650 

 Softmax Model     DDMS     

Model 
Parame
ter 

GD: 
Mean 

Con: 
Mean 

dBF 
group 

GD: 
dBF 
vs. 0  

Con: 
dBF 
vs. 0  

 GD: 
Mean 

Con: 
Mean 

dBF 
group 

GD: 
dBF 
vs. 0 

Con: 
dBF 
vs. 0 

&/ .749 .188 .034 - -  -.355 -.282 .818 - - 
&0 .293 .075 .002 - -  .012 .62 .057 - - 
!12														 2.744 6.981 .011 64.204 >100  - - - - - 
!14														 2.348 1.985 2.988 >100 >100  - - - - - 
!0																					 8.718 8.014 4.503 >100 >100  - - - - - 
p .245 .662 <.001 - -  .311 .708 .011 - - 
vcoeff MB - -  - - -  3.17 8.895 .009 69.665 >100 
vcoeff MF - - - - -  2.959 2.271 3.802 >100 >100 
vcoeff2 - - - - -  6.87 6.482 1.869 >100 >100 
vmax1  - - - - -  .567 1.26 .185 30.118 >100 
vmax2 - - - - -  2.491 2.707 .252 >100 >100 
#1	 - - - - -  1.358 1.427 .22 - - 
#2	 - - - - -  1.527 1.587 .162 - - 
$1 - - - - -  1.738 1.896 .002 - - 
$2 - - - - -  .391 .421 .196 - - 

 651 
 652 
 653 
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Table 7. Posterior means and Directional Bayes Factors (dBF) for parameters modeling condition effects for 654 
2-step task models (left: hybrid RL model softmax choice rule, right: hybrid RL model with DDMS choice 655 
rule). dBF values around 1 indicate that values are evenly distributed around 0. dBFs are calculated as BF = 656 
i/(1-i), with i being the probability mass of the posterior distributions above zero. dBFs for group difference 657 
are based on the difference distributions between groups. Values are reported as Gambling > Control.  658 

 Softmax Model    DDMS     

Model 
Parameter 
(shift) 

GD: 
Mean 

Con: 
Mean 

dBF 
group
s 

GD: 
dBF 
vs. 0 

Con: 
dBF 
vs. 0 

 GD: 
Mean 

Con: 
Mean 

dBF 
group
s 

GD: 
dBF 
vs. 0 

Con: 
dBF 
vs. 0 

s&/ .749 .188 .034 14.656 2.324  .353 .1 1.823 3.388 1.872 
s&0 .293 .075 .002 14.949 1.563  .093 .251 .531 1.385 3.345 
%.!"																											 .924 1.312 .617 4.692 8.442  - - - - - 
%.!$																											 -.304 -.18 .629 .304 .513  - - - - - 
%.%																											 -.453 .534 .109 .22 5  - - - - - 
Sp .006 .123 .121 1.293 18.58  -1.236 -.364 .472 - - 
svcoeff MB - -  - - -  1.963 -.443 2.192 3.582 .772 
svcoeff MF - - - - -  -1.236 -.364 .472 .282 .58 
svcoeff2 - - - - -  .936 .83 1.027 4.322 4.864 
svmax1  - - - - -  -.942 -1.035 1.234 <.001 .01 
svmax2 - - - - -  -.006 -.266 3.629 .897 .17 
s!1	 - - - - -  .015 .069 .32 1.447 8.881 
s!2	 - - - - -  .015 .08 .118 1.991 57.06 
s"1 - - - - -  .006 -.004 2.19 1.921 .623 
s"2 - - - - -  -.002 -.001 .887 .718 .907 

 659 

2-step task: drift diffusion model choice rule. Next, we replaced the softmax choice rule 660 

with the DDM. In line with the results from the temporal discounting task, a non-linear drift-661 

rate scaling accounted for the data best, and this was the case in both groups (Table 8). In both 662 

groups, S1 choices were affected by both MF Q-value differences (5coeffMF > 0, Gambling: dBF 663 

>100, 95% HDI: min = 1.828, max = 4.3; Control: dBF >100, 95% HDI: min = 1.34, max = 664 

3.408) (Figure 9 f and Table 6) and MB Q-value differences (5coeffMB > 0, Gambling: dBF = 665 

69.665, 95% HDI: min = .414, max = 6.363; Control: dBF >100, 95% HDI: min = 5.638, max 666 

= 12.665) (Figure 9 e and Table 6). As in the softmax model, we observed extreme evidence 667 

for a greater MB effect (5coeffMB) in the non-gambling control group (dBF:.009, 95% HDI: min 668 

= -10.483, max = -1.159) (Figure 9 e and Table 6). For MF Q-values we observed moderate 669 

evidence for a higher 5coeffMF ion the gambling group compared to the non-gambling control 670 

group (BFs: 3.802, 95% HDI: min = -.915, max = 2.346) (Figure 9 f and Table 6). In both 671 

groups, we there was only anecdotal or inconclusive evidence for parameter changes in the 672 

VRgambling session (Figure 10 a to h and Table 7).  673 
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 674 
Figure 9. Hybrid RL model with a non-linear drift diffusion model choice rule. a) learning rates for S1 675 
and S2 8. b) non-decision time τ.  c) boundary separation α. d) maximum drift-rate vmax.  e) MB drift-676 
rate coefficient vcoeffMB.  f) MF drift-rate coefficient vcoeffMF. g)  drift-rate coefficient vcoeff for S2. h) 677 
perseverance parameter p.  Horizontal lines denote 95% highest posterior density intervals. 678 

 679 
Figure 10. Posterior distributions of parameters modeling condition effects for the hybrid RL model 680 
with drift diffusion model choice rule (DDMS). a) shift in the learning rate for S1 and S2 $5. b) shift in 681 
non-decision time sτ.  c) shift in boundary separation sα. d) shift in maximum drift-rate svmax21.  e) shift 682 
in MB drift-rate coefficient svcoeffMB.  f) shift in MF drift-rate coefficient svcoeffMF. g)  shift in drift-rate 683 
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coefficient svcoeff for S2. h) shift in perseverance parameter sp.  Horizontal lines denote 95% highest 684 
posterior density intervals. 685 
 686 
Table 8. Summary of the WAICs of all DDM models in all sessions. Ranks are based on the lowest 687 
WAIC in all sessions. 688 

 689 
 690 

Electrodermal activity (EDA). As preregistered, psychophysiological cue-reactivity was 691 

analyzed by converting the number of spontaneous skin conductance responses (nSCR) and the 692 

skin conductance level (SCL) into percentage change from baseline. Per phase, values were 693 

binned into fifteen one-minute intervals (five each for the baseline phase [B], first exploration 694 

phase [F] and second exploration phase [S]). All comparisons were tested for significance with 695 

the Wilcoxon Signed Rank Test. The significance level was Bonferroni corrected. Entering VR 696 

(i.e., B5 vs. F1) led to a significant increase in SCL in both groups and there was no significant 697 

difference between conditions (Figures 11 and 12 c and d and Supplementary Tables 4 and 5). 698 

The effect size was large throughout (r > .5). There was no corresponding significant change in 699 

nSCRs in either group (Figures 11 and 12 a and b Supplementary Tables 6 and 7). 700 

Psychophysiological cue-reactivity was examined by comparing the difference between F5 and 701 

S1 (i.e. the effect of entering the experimental areas: virtual café vs. virtual casino) between 702 

VRneutral and VRgambling per group.  There were no significant effects on either nSCR or SCL and 703 

therefore no evidence for psychophysiological cue-reactivity in nSCRs (Figure 11 and 12 a and 704 

b and Supplementary Tables 6 and 7) and SCL (Figures 11 and 12 c and d and Supplementary 705 

Tables 4 and 5). 706 

 707 

 Gambling  Control   
Model VRneutral VRgambling VRneutral VRgambling Rank 
DDM0 11840 13186.2 11774 13122.7 3 
DDML 7783.5 9244.9 6733.5 7871.9 2 
DDMS 7579.3 9122.2 6535.6 7593.5 1 
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 708 
Figure 11. Results of the EDA measurements in the gambling group divided into 15 time points over 709 
the course of the baseline phase, measured before participants entered the VR-environments, and the 710 
first and second exploration phases. Each of the three phases is divided into five one-minute bins (B1-711 
5: pre-VR baseline, F1-5: first exploration phase in VR, S1-5: second exploration phase VR).  a: Median 712 
percent change from baseline mean for no. of spontaneous SCRs over gambling participants. b: Boxplot 713 
of percentage change from baseline mean for no. spontaneous SCRs over gambling participants. c: 714 
Median percent change from baseline mean of SCL over gambling participants. d: Boxplots of 715 
percentage change from base line mean of SCL over gambling participants. 716 

 717 

 718 

 719 

 720 
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 722 
Figure 12. Results of the EDA measurements in the control group divided into 15 time points over the 723 
course of the baseline phase, measured before participants entered the VR-environments, and the first 724 
and second exploration phases. Each of the three phases is divided into five one-minute bins (B1-5: pre-725 
VR baseline, F1-5: first exploration phase in VR, S1-5: second exploration phase VR).  a: Median 726 
percent change from baseline mean for no. of spontaneous SCRs over control participants. b: Boxplot 727 
of percentage change from baseline mean for no. spontaneous SCRs over control participants. c: Median 728 
percent change from baseline mean of SCL over control participants. d: Boxplots of percentage change 729 
from base line mean of SCL over control participants. 730 

 731 

Heart Rate (HR). Analysis of HR proceeded along similar lines as the analysis of the 732 

EDA data described above. HR was first converted into percent signal change from baseline, 733 

and then divided into fifteen one-minute bins (five each for the baseline phase [B], first 734 

exploration phase [F] and second exploration phase [S]). We observed no overall significant 735 

increase in HR in response to VR immersion (B5 vs. F1) in either group and environment, with 736 

the VRgambling environment in the gambling group forming the single exception (Supplementary 737 

Tables 8 and 9). However, this effect was not significantly greater than in VRneutral. Likewise, 738 

entering the experimental areas of the VR environments did not significantly increase HR 739 

(Supplementary Tables 8 and 9) in either group or environment. Accordingly, there was no 740 

evidence for significant cue-reactivity effects on HR. 741 

 742 
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Discussion 744 

Here we investigated the subjective, behavioral, and physiological effects of virtual 745 

reality (VR) gambling environment exposure in regular gamblers (GD group) and matched non-746 

gambling controls. The joint assessment of these three levels of cue-reactivity in VR enabled 747 

us to thoroughly delineate several possible effects, thereby informing potential future 748 

application of VR in addiction research. Participants explored two rich and navigable virtual 749 

environments (a café environment and a casino/sports betting environment: VRneutral vs. 750 

VRgambling) and within both environments performed two behavioral tasks with high relevance 751 

for gambling disorder and addiction, temporal discounting, and a 2-step sequential RL task. In 752 

both groups, exposure to VR substantially increased sympathetic arousal as reflected in the 753 

tonic skin conductance level (SCL). However, despite the fact that the VRgambling environment 754 

selectively increased subjective craving in the GD group, no physiological measure showed a 755 

pattern consistent with physiological cue-reactivity in the gambling group. Analysis of the 756 

behavioral data revealed that previously observed group differences between gamblers and 757 

controls were replicated in VR. First, gamblers discounted delayed rewards more steeply than 758 

controls[1,5,9,10], but this effect was not differentially modulated by the VRgambling environment. 759 

Second, gamblers relied less on a model-based (MB) decision strategy during the 2-step 760 

sequential RL task[17], but this effect was again not differentially modulated by the VRgambling 761 

environment. 762 

 763 

Self-reported cue-reactivity. Participants verbally reported subjective urge-to-gamble 764 

(craving) at four time points during exposure to the virtual environments. Craving was overall 765 

higher in the gambling group, and exposure to the VRgambling environment selectively increased 766 

the subjective craving in gamblers but not controls. This is in line with earlier results[40] showing 767 

that virtual gambling environments induce subjective craving in frequent gamblers on a level 768 

comparable to gambling on real video slot machines. Thus, our VR environment exhibited 769 

ecological validity with respect to self-reported urge-to-gamble in gambling participants. 770 

 771 

Physiological cue-reactivity. How addiction manifests on a computational, 772 

physiological and neural level has important implications for treatment and relapse prevention. 773 

Alterations in neural reward processing in ventral striatum and ventromedial prefrontal cortex 774 

have been frequently observed in gambling disorder, albeit with considerable heterogeneity in 775 

the directionality of these effects[87]. Gambling-related visual cues might interfere with striatal 776 

valuation signals in GD, and might in turn increase temporal discounting[6]. Here, analysis of 777 
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physiological cue-reactivity was limited to heart rate (HR) and electrodermal activity (EDA). 778 

EDA indexes sympathetic arousal, which is tightly linked to processing of addiction-related 779 

cues[62,88–90]. For example, addiction related cues presented in VR increased SCR amplitudes in 780 

participants suffering from nicotine addiction [89,90].  In contrast, in the present study there was 781 

no significant effect of entering the specific gambling-related or neutral sections of the VR 782 

environments (i.e. comparing F5 vs. S1) in either group for any physiological measure. Instead, 783 

in both groups, the tonic skin conductance level (SCL) increased substantially upon VR 784 

immersion in both groups (effect size r between .66 and .81 in both groups and both sessions) 785 

and remained elevated until the end of the experiment, an effect we have observed previously 786 

in non-gambling controls[39]. No corresponding effects were observed for heart rate or the 787 

number of spontaneous skin conductance responses. These results suggest a general increase of 788 

sympathetic activity during VR immersion, but do not show evidence for physiological cue-789 

reactivity in GD in the present VR setting. 790 

 791 

Behavioral performance. The behavioral tasks replicated earlier results in gamblers and 792 

controls[5,17]. Regular slot machine gamblers discounted rewards substantially more steeply 793 

than controls, and this was the case across model-agnostic (AUC) and model-based measures 794 

(i.e. log(k) in softmax and diffusion models), resonating with a range of earlier results in 795 

behavioral addictions and substance-use disorders [1,5,9,10]. We likewise replicated the recent 796 

finding of reduced MB decision-making in participants suffering from GD[17]. The model-797 

agnostic analysis of RTs revealed that both groups showed longer S2 RTs after rare transitions, 798 

reflecting MB decision-making[14,17]. However, this effect was significantly increased in non-799 

gambling controls. These results were also supported by comprehensive computational 800 

modelling. A hybrid reinforcement learning (RL) model showed very strong evidence for 801 

reduced MB decision making in the gambling group, and this was the case for both softmax 802 

and DDM choice rules.  803 

 804 

Behavioral cue-reactivity. In contrast to these robust group differences, and contrasting 805 

with our preregistered hypothesis, neither temporal discounting nor model-based RL were 806 

substantially modulated by the virtual gambling environment in the GD group. A seminal study 807 

by Dixon and colleagues[27] showed increased discounting in gamblers when tested in a 808 

gambling environment, an effect that we recently replicated[28]. Other studies showed increased 809 

temporal discounting[6] or increased risk-taking[29] in participants suffering from GD in the 810 

presence of gambling-related visual cues[6,29,91]. The group level posterior distribution of the 811 
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shift parameter sk of the hyperbolic discounting model indicated only inconclusive evidence for 812 

increased discounting in the gambling group, and this was the case for both softmax and DDM 813 

choice rules. There was, however, strong evidence for decreased discounting in the VRgambling 814 

session in the non-gambling control group. There was also strong evidence that this decrease 815 

was significantly more pronounced than in gambling group (comparison of the group level 816 

posteriors of the sk parameter). The fact that non-gambling control participants tended to 817 

discount rewards less steeply in the VRgambling session is of potential interest, but it is important 818 

to note that in a previous study employing the same VR design[39] we observed the reverse 819 

effect in a group of non-gambling controls. In that study, controls if anything showed reduced 820 

temporal discounting in the VRneutral session. Effects of virtual gambling environment exposure 821 

in non-gambling controls are therefore overall inconclusive. 822 

 An analysis of the DDM parameters revealed strong evidence for a decrease in 823 

boundary separation in the VRgambling session in the GD group. Participants reporting regular 824 

slot machine gambling appeared to increasingly trade-off accuracy in favour of speed in the 825 

VRgambling session. However, there was only moderate evidence for this decrease being stronger 826 

in the gambling group than in the non-gambling control group (comparison of the group level 827 

posteriors of the s0 parameter). It is thus difficult to draw strong conclusion from this 828 

observation. Nevertheless, a tendency towards a decrease in boundary separation would 829 

indicate that regular slot machine gamblers might attend less to actual value differences 830 

between the SS and the LL, instead preferring a more rapid response rate. In addition, the group 831 

level posterior distribution of (vcoeff	in controls suggests that the value difference between the LL 832 

and the SS had a stronger influence in the trial-wise RT in the VRgambling session, indicating that 833 

non-gambling control participants placed a stronger weight onto the value differences between 834 

SS and LL in the VRgambling session. Again, there was only moderate evidence for this effect 835 

being stronger in the non-gambling control group than in the gambling group (comparison of 836 

the group level posteriors of the (vcoeff	 parameter). 837 

Taken together, earlier findings of steeper discounting in gamblers when tested in real 838 

gambling venues [27] which we recently replicated[28], did not translate to VR. Whether this is 839 

due to the specific design of the present VR environments, or due to more general effects of 840 

VR on cognitive load and/or arousal (see below) is an open question. 841 

We hypothesized that exposure the VRgambling environment would reduce MB and 842 

increase of MF decision-making in regular slot machine gamblers. This hypothesis was based 843 

on the idea that addiction-related cues might trigger pathological habits[21,92], which in turn 844 

could be related to reduced MB decision-making[16,93]. An alternative view is that addiction 845 
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might instead be associated with excessive goal-directed behavior, in particular in the presence 846 

of addiction related cues[94]. We observed the latter effect in a recent study in regular slot-847 

machine gamblers[28]. Regular gamblers showed a substantial increase in model-based control 848 

when tested in a gambling venue. However, in the present VR setting, we observed little 849 

evidence for either of these effects. Gamblers showed no evidence for longer RTs after rare 850 

transitions in the VRgambling session, an index for MB decision-making. The hybrid model 851 

parameter (+ showed only moderate evidence for an increase in MB decision-making in the 852 

VRgambling environment in both groups. 95% HDIs were overlapping with zero and the change 853 

was of similar magnitude in both groups, suggesting the absence of specific cue-reactivity 854 

effects on MB decision-making in the gambling group. A similar picture emerged for the 855 

corresponding parameters from the hybrid model with DDM choice rule. Taken together, there 856 

was no conclusive evidence for VR effects on either MB or MF decision-making in either 857 

group. As reductions in MB control constitute potential transdiagnostic markers for 858 

compulsivity-related disorders[16,93] it is interesting that the VRgambling environment did not 859 

cause effects in the gambling group. Possible explanations for the lack of cue-reactivity effects 860 

are discussed below. 861 

 862 

Conclusion. In contrast to the absence of behavioral and physiological cue-reactivity 863 

effects, the present VR set-up increased the subjective urge to gamble in participants reporting 864 

frequent slot machine gambling. This does not render VR generally unsuitable, as it has been 865 

shown here and by other groups that gambling related VR environments can induce craving[40]. 866 

Rather, behavioral, and physiological cue-reactivity effects might depend on specific VR design 867 

features. It is of course possible that different VR designs might have yielded the predicted 868 

effects. In addition to the specifics of the VR environments, more general effects of VR 869 

immersion might have precluded us from detecting physiological and/or behavioral cue-870 

reactivity effects. In particular, SCL exhibited a substantial overall effect of VR immersion 871 

across groups and conditions, replicating our previous observation[39]. This might reflect 872 

increased cognitive load of VR immersion [95,96], which could interfere with the expression of 873 

behavioral effects of gambling-related environments. Likewise, physiological correlates of VR-874 

related cognitive load could have precluded us from detecting more subtle modulation of SCL 875 

due to cue-reactivity effects. The lack of behavioral and/or physiological correlates for the 876 

reported increase in subjective craving may warrant caution for future applications of VR in 877 

exposure therapy and addiction science. Exposure therapy aims to confront patients with key 878 

stimuli and train strategies to overcome craving or fear responses. It is therefore important to 879 
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note that VR might be limited in ecological validity to reproduce real-life behavioral 880 

effects[27,28].  881 

 882 

Limitations. There are several limitations that need to be acknowledged here. First, 883 

although groups were matched on key variables, group differences on depressive symptoms 884 

and overall psychopathology remained, as in previous studies [6,17]. Second, participants spend 885 

between thirty and forty minutes in VR. Behavioral tasks were performed after the initial 886 

exploration phase. Participants might therefore have been fatigued or experienced some 887 

discomfort during task performance. Future studies might thus benefit from shorter designs. 888 

Third, the immersion in VR was constrained by the available physical lab space. The 889 

experimenter had to ensure the safety of participant by giving external instructions when 890 

needed. Distractions caused by these instructions might have reduced the immersion 891 

experienced by the participants. Additionally, such instructions might have affected 892 

physiological measures. Future research would benefit from implementing clear markers within 893 

the VR environments to ensure safety without breaking immersion. Finally, the virtual slot 894 

machines used in our design did not exactly match most recent machines used in local gambling 895 

facilities. This might have reduced the level of realism that the VR environment conveyed. 896 

However, since an increase in the subjective urge to gamble was observed in the GD group, 897 

this indicates sufficient ecological validity to produce subjective craving. Future research could 898 

benefit from improved quality of graphical assets, e.g., by creating objects that more closely 899 

resemble current video slot machines. 900 

 901 

Overall, we reproduced established group differences in decision-making between 902 

participants suffering from GD and non-gambling control participants in a VR setting: 903 

Participants reporting frequent gambling showed higher levels of temporal discounting and 904 

reduced MB decision-making, compared to non-gambling controls. However, we found little 905 

evidence for behavioral or physiological effects of virtual gambling environments in the GD 906 

group, despite these environments eliciting increased subjective craving in gamblers. Some 907 

caution is therefore warranted when applying VR in experimental or therapeutical contexts, as 908 

established behavioral effects of gambling environments[27,28] might not generally replicate in 909 

VR. Future studies should delineate how cognitive load and ecological validity could be 910 

balanced in VR to create a more naturalistic VR experience. 911 

  912 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.16.459889doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.459889
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38 

References 913 

1. Amlung, M. et al. Delay Discounting as a Transdiagnostic Process in Psychiatric 914 

Disorders: A Meta-analysis. JAMA psychiatry (2019) 915 

doi:10.1001/jamapsychiatry.2019.2102. 916 

2. Kirby, K. N. & Petry, N. M. Heroin and cocaine abusers have higher discount rates for 917 

delayed rewards than alcoholics or non-drug-using controls. Addiction 99, 461–471 918 

(2004). 919 

3. Peters, J. et al. Lower ventral striatal activation during reward anticipation in 920 

adolescent smokers. Am. J. Psychiatry 168, 540–549 (2011). 921 

4. Potenza, M. N. Review. The neurobiology of pathological gambling and drug 922 

addiction: An overview and new findings. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 923 

363, 3181–3189 (2008). 924 

5. Wiehler, A. & Peters, J. Reward-based decision making in pathological gambling: The 925 

roles of risk and delay. Neurosci. Res. 90, 3–14 (2015). 926 

6. Miedl, S. F., Büchel, C. & Peters, J. Cue-induced craving increases impulsivity via 927 

changes in striatal value signals in problem gamblers. J. Neurosci. 34, 4750–4755 928 

(2014). 929 

7. Huys, Q. J. M., Maia, T. V & Frank, M. J. Computational psychiatry as a bridge from 930 

neuroscience to clinical applications. Nat. Neurosci. 19, 404–413 (2016). 931 

8. Farrell, S. & Lewandowsky, S. Computational modeling of cognition and behavior. 932 

Computational Modeling of Cognition and Behavior (Cambridge University Press, 933 

2018). doi:10.1017/CBO9781316272503. 934 

9. Lempert, K. M., Steinglass, J. E., Pinto, A., Kable, J. W. & Simpson, H. B. Can delay 935 

discounting deliver on the promise of RDoC? Psychol. Med. 49, 190–199 (2019). 936 

10. Miedl, S. F., Peters, J. & Büchel, C. Altered neural reward representations in 937 

pathological gamblers revealed by delay and probability discounting. Arch. Gen. 938 

Psychiatry 69, 177–186 (2012). 939 

11. Bickel, W. K., Koffarnus, M. N., Moody, L. & Wilson, A. G. The behavioral- and 940 

neuro-economic process of temporal discounting: A candidate behavioral marker of 941 

addiction. Neuropharmacology 76 Pt B, 518–527 (2014). 942 

12. Sutton & Barto. Reinforcement Learning: An Introduction. (MIT Press, 1998). 943 

13. Dolan, R. J. & Dayan, P. Goals and habits in the brain. Neuron 80, 312–325 (2013). 944 

14. Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P. & Dolan, R. J. Model-based 945 

influences on humans’ choices and striatal prediction errors. Neuron 69, 1204–1215 946 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.16.459889doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.459889
http://creativecommons.org/licenses/by-nc-nd/4.0/


 39 

(2011). 947 

15. Kool, W., Cushman, F. A. & Gershman, S. J. When Does Model-Based Control Pay 948 

Off? PLoS Comput. Biol. 12, e1005090 (2016). 949 

16. Gillan, C. M., Kosinski, M., Whelan, R., Phelps, E. A. & Daw, N. D. Characterizing a 950 

psychiatric symptom dimension related to deficits in goaldirected control. Elife 5, 1–24 951 

(2016). 952 

17. Wyckmans, F. et al. Reduced model-based decision-making in gambling disorder. Sci. 953 

Rep. 9, 19625 (2019). 954 

18. Sebold, M. et al. Model-based and model-free decisions in alcohol dependence. 955 

Neuropsychobiology 70, 122–131 (2014). 956 

19. American Psychiatric Association. Diagnostic and statistical manual of mental 957 

disorders (5th ed.). (Arlington, VA: Author., 2013). 958 

20. Robinson, T. E. & Berridge, K. C. The incentive sensitization theory of addiction: 959 

Some current issues. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363, 3137–3146 (2008). 960 

21. Robinson, T. E. & Berridge, K. C. The neural basis of drug craving: An incentive-961 

sensitization theory of addiction. Brain Res. Rev. 18, 247–291 (1993). 962 

22. Berridge, K. C. & Robinson, T. E. Liking, wanting, and the incentive-sensitization 963 

theory of addiction. Am. Psychol. 71, 670–679 (2016). 964 

23. Volkow, N. D. et al. Cocaine cues and dopamine in dorsal striatum: Mechanism of 965 

craving in cocaine addiction. J. Neurosci. 26, 6583–6588 (2006). 966 

24. Carter, B. L. & Tiffany, S. T. Meta--analysis of cue--reactivity in addiction research. 967 

Addiction (1999). 968 

25. Starcke, K., Antons, S., Trotzke, P. & Brand, M. Cue-reactivity in behavioral 969 

addictions: A meta-analysis and methodological considerations. J. Behav. Addict. 7, 970 

227–238 (2018). 971 

26. Courtney, K. E., Schacht, J. P., Hutchison, K., Roche, D. J. O. & Ray, L. A. Neural 972 

substrates of cue reactivity: Association with treatment outcomes and relapse. Addict. 973 

Biol. 21, 3–22 (2016). 974 

27. Dixon, M. R., Jacobs, E. A., Sanders, S. & Carr, J. E. Contextual Control of Delay 975 

Discounting by Pathological Gamblers. J. Appl. Behav. Anal. 39, 413–422 (2006). 976 

28. Wagner, B., Mathar, D. & Peters, J. Gambling environment exposure increases 977 

temporal discounting but improves model-based control in regular slot-machine 978 

gamblers . bioRxiv (2021) doi:https://doi.org/10.1101/2021.07.15.452520. 979 

29. Genauck, A. et al. Cue-induced effects on decision-making distinguish subjects with 980 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.16.459889doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.459889
http://creativecommons.org/licenses/by-nc-nd/4.0/


 40 

gambling disorder from healthy controls. Addict. Biol. 25, 1–10 (2020). 981 

30. Tolliver, B. K. et al. Impaired cognitive performance in subjects with 982 

methamphetamine dependence during exposure to neutral versus methamphetamine-983 

related cues. Am. J. Drug Alcohol Abuse 38, 251–259 (2012). 984 

31. Potenza, M. N. et al. Gambling Urges in Pathological Gambling. Arch. Gen. Psychiatry 985 

60, 828 (2003). 986 

32. van Holst, R. J., van Holstein, M., van den Brink, W., Veltman, D. J. & Goudriaan, A. 987 

E. Response inhibition during cue reactivity in problem gamblers: An fmri study. PLoS 988 

One 7, 1–10 (2012). 989 

33. Brevers, D., Sescousse, G., Maurage, P. & Billieux, J. Examining Neural Reactivity to 990 

Gambling Cues in the Age of Online Betting. Curr. Behav. Neurosci. Reports 6, 59–71 991 

(2019). 992 

34. Brevers, D., He, Q., Keller, B., Noël, X. & Bechara, A. Neural correlates of proactive 993 

and reactive motor response inhibition of gambling stimuli in frequent gamblers. Sci. 994 

Rep. 7, 1–11 (2017). 995 

35. Crockford, D. N., Goodyear, B., Edwards, J., Quickfall, J. & El-Guebaly, N. Cue-996 

induced brain activity in pathological gamblers. Biol. Psychiatry 58, 787–795 (2005). 997 

36. Goudriaan, A. E., De Ruiter, M. B., Van Den Brink, W., Oosterlaan, J. & Veltman, D. 998 

J. Brain activation patterns associated with cue reactivity and craving in abstinent 999 

problem gamblers, heavy smokers and healthy controls: An fMRI study. Addict. Biol. 1000 

15, 491–503 (2010). 1001 

37. Kober, H. et al. Brain Activity during Cocaine Craving and Gambling Urges: An fMRI 1002 

Study. Neuropsychopharmacology 41, 628–637 (2016). 1003 

38. Limbrick-Oldfield, E. H. et al. Neural substrates of cue reactivity and craving in 1004 

gambling disorder. Transl. Psychiatry 7, e992 (2017). 1005 

39. Bruder, L. R., Scharer, L. & Peters, J. Reliability assessment of temporal discounting 1006 

measures in virtual reality environments. Sci. Rep. 1–16 (2021) doi:10.1038/s41598-1007 

021-86388-8. 1008 

40. Bouchard, S. et al. Using Virtual Reality in the Treatment of Gambling Disorder: The 1009 

Development of a New Tool for Cognitive Behavior Therapy. Front. psychiatry 8, 27 1010 

(2017). 1011 

41. Giroux, I. et al. Gambling exposure in virtual reality and modification of urge to 1012 

gamble. Cyberpsychol. Behav. Soc. Netw. 16, 224–231 (2013). 1013 

42. Ratcliff, R. & McKoon, G. The diffusion decision model: Theory and data for two-1014 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.16.459889doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.459889
http://creativecommons.org/licenses/by-nc-nd/4.0/


 41 

choice decision tasks. Neural Comput. 20, 873–922 (2008). 1015 

43. Forstmann, B. U., Ratcliff, R. & Wagenmakers, E.-J. Sequential Sampling Models in 1016 

Cognitive Neuroscience: Advantages, Applications, and Extensions. Annu. Rev. 1017 

Psychol. 67, 641–666 (2016). 1018 

44. Fontanesi, L., Gluth, S., Spektor, M. S. & Rieskamp, J. A reinforcement learning 1019 

diffusion decision model for value-based decisions. Psychon. Bull. Rev. 26, 1099–1121 1020 

(2019). 1021 

45. Pedersen, M. L., Frank, M. J. & Biele, G. The drift diffusion model as the choice rule 1022 

in reinforcement learning. Psychon. Bull. Rev. 24, 1234–1251 (2017). 1023 

46. Peters, J. & D’Esposito, M. The drift diffusion model as the choice rule in inter-1024 

temporal and risky choice: A case study in medial orbitofrontal cortex lesion patients 1025 

and controls. PLoS Comput. Biol. 16, 1–26 (2020). 1026 

47. Miletić, S., Boag, R. J. & Forstmann, B. U. Mutual benefits: Combining reinforcement 1027 

learning with sequential sampling models. Neuropsychologia 136, (2020). 1028 

48. Wagner, B., Clos, M., Sommer, T. & Peters, J. Dopaminergic modulation of human 1029 

inter-temporal choice: a diffusion model analysis using the D2-receptor-antagonist 1030 

haloperidol. J. Neurosci. 40, 7936–7948 (2020). 1031 

49. Ballard, I. C. & McClure, S. M. Joint modeling of reaction times and choice improves 1032 

parameter identifiability in reinforcement learning models. J. Neurosci. Methods 317, 1033 

37–44 (2019). 1034 

50. Shahar, N. et al. Improving the reliability of model-based decision-making estimates in 1035 

the two-stage decision task with reaction-times and drift-diffusion modeling. PLoS 1036 

Comput. Biol. 15, e1006803 (2019). 1037 

51. Wiehler, A. & Peters, J. Diffusion modeling reveals reinforcement learning 1038 

impairments in gambling disorder that are linked to attenuated ventromedial prefrontal 1039 

cortex value representations. bioRxiv 2020.06.03.131359 (2020) 1040 

doi:10.1101/2020.06.03.131359. 1041 

52. Detez, L. et al. A Psychophysiological and Behavioural Study of Slot Machine Near-1042 

Misses Using Immersive Virtual Reality. J. Gambl. Stud. 35, 929–944 (2019). 1043 

53. Dickinson, P., Gerling, K., Wilson, L. & Parke, A. Virtual reality as a platform for 1044 

research in gambling behaviour. Comput. Hum. Behav. 107, (2020). 1045 

54. Beck, A. T., Steer, R. A. & Brown, G. K. Beck depression inventory-II. San Antonio 1046 

490–498 (1996). 1047 

55. Derogatis, L. R., Lipman, R. S. & Covi, L. SCL-90: an outpatient psychiatric rating 1048 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.16.459889doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.459889
http://creativecommons.org/licenses/by-nc-nd/4.0/


 42 

scale--preliminary report. Psychopharmacol Bull 13–28 (1973). 1049 

56. Lesieur, H. & Blume, S. The South Oaks Gambling Screen (SOGS): A new instrument 1050 

for the identification of pathological gamblers. Am. J. Psychiatry (1987). 1051 

57. Petry, J. Psychotherapie der Glücksspielsucht. (Psychologie Verlags Union, 1996). 1052 

58. Bush, K., Kivlahan, D. R., McDonell, M. B., Fihn, S. D. & Bradley, K. A. The AUDIT 1053 

Alcohol Consumption Questions (AUDIT-C): An Effective Brief Screening Test for 1054 

Problem Drinking. Arch. Intern. Med. 1789–1795 (1998). 1055 

59. Fagerström, K. Determinants of tobacco use and renaming the FTND to the Fagerstrom 1056 

Test for Cigarette Dependence. Nicotine Tob. Res. 14, 75–78 (2012). 1057 

60. Raylu, N. & Oei, T. P. S. The Gambling Related Cognitions Scale (GRCS): 1058 

Development, confirmatory factor validation and psychometric properties. Addiction 1059 

99, 757–769 (2004). 1060 

61. Steenbergh, T. A., Meyers, A. W., May, R. K. & Whelan, J. P. Development and 1061 

validation of the Gamblers’ Beliefs Questionnaire. Psychol. Addict. Behav. 16, 143–1062 

149 (2002). 1063 

62. Braithwaite, J. J., Watson, D. G., Jones, R. & Rowe, M. A Guide for Analysing 1064 

Electrodermal Activity (EDA)& Skin Conductance Responses (SCRs)for 1065 

Psychological Experiments. Psychophysiology 2013, (2013). 1066 

63. Unsworth, N., Heitz, R. P., Schrock, J. C. & Engle, R. W. An automated version of the 1067 

operation span task. Behav. Res. Methods 498–505 (2005). 1068 

64. Redick, T. S. et al. Measuring Working Memory Capacity With Automated Complex 1069 

Span Tasks. Eur. J. Psychol. Assess. 28, 164–171 (2012). 1070 

65. van den Noort, M., Bosch, P., Haverkort, M. & Hugdahl, K. A Standard Computerized 1071 

Version of the Reading Span Test in Different Languages. Eur. J. Psychol. Assess. 24, 1072 

35–42 (2008). 1073 

66. Wechsler, D. Wechsler adult intelligence scale--Fourth Edition (WAIS--IV). (NCS 1074 

Pearson, 2008). 1075 

67. Myerson, J., Green, L. & Warusawitharana, M. Area Under the Curve As a Measure of 1076 

Discounting. J. Exp. Anal. Behav. 76, 235–243 (2001). 1077 

68. Mazur, J. E. An adjusting procedure for studying delayed reinforcement. 1987, 55–73 1078 

(1987). 1079 

69. Green, L., Myerson, J. & Macaux, E. W. Temporal discounting when the choice is 1080 

between two delayed rewards. J. Exp. Psychol. Learn. Mem. Cogn. 31, 1121–1133 1081 

(2005). 1082 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.16.459889doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.459889
http://creativecommons.org/licenses/by-nc-nd/4.0/


 43 

70. Otto, A. R., Skatova, A., Madlon-Kay, S. & Daw, N. D. Cognitive Control Predicts 1083 

Use of Model-based Reinforcement Learning. J. Cogn. Neurosci. 23, (2015). 1084 

71. Otto, A. R., Raio, C. M., Chiang, A., Phelps, E. A. & Daw, N. D. Working-memory 1085 

capacity protects model-based learning from stress. Proc. Natl. Acad. Sci. U. S. A. 110, 1086 

20941–20946 (2013). 1087 

72. Toyama, A., Katahira, K. & Ohira, H. Reinforcement Learning With Parsimonious 1088 

Computation and a Forgetting Process. Front Hum Neurosci. 13, 1–16 (2019). 1089 

73. Toyama, A., Katahira, K. & Ohira, H. A simple computational algorithm of model-1090 

based choice preference. Cogn. Affect. Behav. Neurosci. 17, 764–783 (2017). 1091 

74. R Core Team. R: A Language and Environment for Statistical Computing. (2013). 1092 

75. Plummer, M. A Program for analysis of Bayesian graphical models. Work. Pap. 1093 

(2003). 1094 

76. Wabersich, D. & Vandekerckhove, J. Extending JAGS: A tutorial on adding custom 1095 

distributions to JAGS (with a diffusion model example). Behav. Res. Methods 46, 15–1096 

28 (2014). 1097 

77. Carpenter, B. et al. Stan: A probabilistic programming language. J. Stat. Softw. 76, 1098 

(2017). 1099 

78. Gelman, A. & Rubin, D. B. Inference from Iterative Simulation Using Multiple 1100 

Sequences. Stat. Sci. 7 4, 457–472 (1992). 1101 

79. Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-1102 

one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017). 1103 

80. Marsman, M. & Wagenmakers, E. J. Three Insights from a Bayesian Interpretation of 1104 

the One-Sided P Value. Educ. Psychol. Meas. 77, 529–539 (2017). 1105 

81. Beard, E., Dienes, Z., Muirhead, C. & West, R. Using Bayes factors for testing 1106 

hypotheses about intervention effectiveness in addictions research. Addiction 111, 1107 

2230–2247 (2016). 1108 

82. Bach, D. R., Friston, K. J. & Dolan, R. J. Analytic measures for quantification of 1109 

arousal from spontaneous skin conductance fluctuations. Int. J. Psychophysiol. 76, 52–1110 

55 (2010). 1111 

83. Benedek, M. & Kaernbach, C. A continuous measure of phasic electrodermal activity. 1112 

J. Neurosci. Methods 190, 80–91 (2010). 1113 

84. Kerby, D. The Simple Difference Formula: An Approach to Teaching Nonparametric 1114 

Correlation. Compr. Psychol. 3, (2014). 1115 

85. Rosenthal, R., Cooper, H. & Hedges, L. Parametric measures of effect size. Handb. 1116 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.16.459889doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.459889
http://creativecommons.org/licenses/by-nc-nd/4.0/


 44 

Res. Synth. 621(2), 231–244 (1994). 1117 

86. Tiffany, S. T. A critique of contemporary urge and craving research: Methodological, 1118 

psychometric, and theoretical issues. Adv. Behav. Res. Ther. 14, 123–139 (1992). 1119 

87. Clark, L., Boileau, I. & Zack, M. Neuroimaging of reward mechanisms in Gambling 1120 

disorder: an integrative review. Mol. Psychiatry 24, 674–693 (2019). 1121 

88. Havermans, R. C., Mulkens, S., Nederkoorn, C. & Jansen, A. The efficacy of cue 1122 

exposure with response prevention in extinguishing drug and alcohol cue reactivity. ,. 1123 

Behav. Interv. Pract. Resid. Community‐Based Clin. Programs 22(2), 121–135 (2007). 1124 

89. Bordnick, P. S., Traylor, A. C., Graap, K. M., Copp, H. L. & Brooks, J. Virtual reality 1125 

cue reactivity assessment: A case study in a teen smoker. Appl. Psychophysiol. 1126 

Biofeedback 30, 187–193 (2005). 1127 

90. Choi, J. S. et al. The effect of repeated virtual nicotine cue exposure therapy on the 1128 

psychophysiological responses: A preliminary study. Psychiatry Investig. 8, 155–160 1129 

(2011). 1130 

91. Van Holst, R. J., Veltman, D. J., Bchel, C., Van Den Brink, W. & Goudriaan, A. E. 1131 

Distorted expectancy coding in problem gambling: Is the addictive in the anticipation? 1132 

Biol. Psychiatry 71, 741–748 (2012). 1133 

92. Antons, S., Brand, M. & Potenza, M. N. Neurobiology of cue-reactivity, craving, and 1134 

inhibitory control in non-substance addictive behaviors. J. Neurol. Sci. 415, (2020). 1135 

93. Gillan, C. M. et al. Comparison of the Association between Goal-Directed Planning 1136 

and Self-reported Compulsivity vs Obsessive-Compulsive Disorder Diagnosis. JAMA 1137 

Psychiatry 77, 77–85 (2020). 1138 

94. Hogarth, L. Addiction is driven by excessive goal-directed drug choice under negative 1139 

affect: translational critique of habit and compulsion theory. 1140 

Neuropsychopharmacology 45, 720–735 (2020). 1141 

95. Frederiksen, J. G. et al. Cognitive load and performance in immersive virtual reality 1142 

versus conventional virtual reality simulation training of laparoscopic surgery: a 1143 

randomized trial. Surg. Endosc. 34, 1244–1252 (2020). 1144 

96. Paas, F. Training Strategies for attaining transfer of Problemsolving skill in statistics: A 1145 

cognitive load task. J. Educ. Psychol. 84, 429–434 (1992). 1146 

 1147 

  1148 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.16.459889doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.459889
http://creativecommons.org/licenses/by-nc-nd/4.0/


 45 

Supplementary Materials 1149 
Supplementary Table 1. Priors for all parameters used in the computational 1150 
modelling analysis of the temporal discounting task.  1151 
Model 
Parameter 

Prior Model 
Parameter 
(shift) 

Prior 

log(k) uniform(-20,3) sk normal(0,.2) 
9																			 uniform(0,10) iW																					 normal(0,.2) 

vcoeff normal(0,10) svcoeff normal(0,10) 
vmax normal(0,10) svmax normal(0,10) 
6 uniform(.01,3) s0 normal(0, 2) 
z uniform(.1, .9) sz normal(0, 2) 
h uniform(0.01, 2) s6 normal(0, 2) 

 1152 
Supplementary Table 2. Priors for all parameters used in the computational 1153 
modelling analysis of the 2-step task.  1154 
Model 
Parameter 

Prior Model 
Parameter 
(shift) 

Prior 

:7 uniform(-4,4) s:7 normal(0, 1) 
:8 uniform(-4,4) s:8 normal(0, 1) 
jXY																				 normal(0,15) iW12																											 normal(0,3) 

jXZ																					 normal(0,15) iW14																											 normal(0,3) 

j[																											 normal(0,15) iW0																															 normal(0,3) 
p normal(0,10) sp normal(0, 2) 
vcoeff MB normal(0,10) svcoeff MB normal(0,10) 
vcoeff MF normal(0,10) svcoeff MF normal(0,10) 
vcoeff2 normal(0,10) svcoeff2 normal(0,10) 
vmax1  normal(0,10) svmax1  normal(0,10) 
vmax2 normal(0,10) svmax2 normal(0,10) 
61	 uniform(.01,3) s01 normal(0, 2) 
62	 uniform(.01,3) s02 normal(0, 2) 
h1 uniform(.01, 2) s61 normal(0, 2) 
h2 uniform(.01, 2) s62 normal(0, 2) 

 1155 

Supplemental model-agnostic analysis 2-step task. As described in our preregistration 1156 

we performed an additional model-agnostic HGLM analysis of the 2-step task. We modelled 1157 

the probability to repeat the choice from the previous trial (1 if the choice was repeated and 0 1158 

if it was not) as a function of the transition in the previous trial (rare or common), the reward 1159 

received in the previous trial (0 if the reward was lower than the mean of the rewards received 1160 

in the past 20 trials and 1 otherwise), the group (gambling or non-gambling control), and 1161 

finally the session (VRneutral vs VRgambling). 1162 

The results were mostly in line with the results obtained from the other analysis. The 1163 

effect of Reward (z = -4.024, p < .001) and the interaction Reward*Transition (z = 9.308, p < 1164 

.001) were significant indicating that overall participants in both groups showed MB and MF 1165 
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decision-making. Additionally, the three-way interaction Trans*Rew*Group was significant 1166 

(z = -6.389, p < .001) indicating stronger MB decision-making in the non-gambling control 1167 

group. Finally, none of the terms including the session were significant suggesting the 1168 

absence of effects specifically caused by the VR environments. 1169 

 1170 
Supplementary Table 3. Results of the supplementary HGLM analysis of 1171 
the 2-step task. The probability to repeat S1 choices (pStay) is modelled as a 1172 
function of previous transition and reward, the group affiliation and session. 1173 
p-values printed in bold font are significant at a threshold of .05.  1174 
Fixed effects     
 Estim

ate 
Std. 
Error 

z p. 
val 

Intercept 1.274 .119 10.664 <.001 
Transition -.859 .109 -7.914 <.001 
Reward -.567 .141 -4.024 <.001 
Session .17 .106 1.607 .108 
Group -.794 .1 -7.924 <.001 
Trans*Rew 1.758 .189 9.308 <.001 
Trans*Sess -.087 .131 -.661 .509 
Rew*Sess .011 .168 .065 .948 
Trans*Group .728 .123 5.893 <.001 
Rew*Group .554 .153 3.63 <.001 
Sess*Group -.208 .141 -1.476 .14 
Trans*Rew*Sess .036 .2 .178 .859 
Trans*Rew*Group -1.17 .183 -6.389 <.001 
Trans*Sess*Group -.037 .174 -.21 .834 
Rew*Sess*Group -.028 .218 -.129 .897 
Trans*Rew*Sess* 
Group .214 .261 .82 .412 

 1175 
 1176 
Supplementary Table 4. Results of Wilcoxon signed rank tests of the SCL 1177 
data for the gambling group. p-values printed in bold font are significant at a 1178 
Bonferroni corrected threshold of .004. 1179 
Comparison     
 Z df p. val r 
B5 vs F1 
VRneutral  

-4.099 30 <.001 .804 

B5 vs F1 
VRgambling 

-3.552 30 <.001 .661 

VRneutral –  
VRgambling -.683 30 .495 -.134 

F5 vs S1 
VRneutral 

-2.141 30 .032 -.42 

F5 vs S1 
VRgambling 

.729 30 .466 .143 

VRneutral –  
VRgambling -1.753 30 .008 -.344 

 1180 

 1181 

 1182 

 1183 
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Supplementary Table 5. Results of Wilcoxon signed rank tests of the SCL 1185 
data for the control group. p-values printed in bold font are significant at a 1186 
Bonferroni corrected threshold of .004. 1187 
Comparison     
 Z df p. val r 
B5 vs F1 
VRneutral  

-3.552 28 <.001 .697 

B5 vs F1 
VRgambling 

-3.917 28 <.001 .768 

VRneutral –  
VRgambling 1.139 28 .255 .223 

F5 vs S1 
VRneutral 

-1.389 28 .165 -.272 

F5 vs S1 
VRgambling 

1.389 28 .165 .272 

VRneutral –  
VRgambling -1.731 28 .084 -.339 

 1188 
Supplementary Table 6. Results of Wilcoxon signed rank tests of the nSCRs 1189 
data for the gambling group. p-values printed in bold font are significant at a 1190 
Bonferroni corrected threshold of .004. 1191 
Comparison     
 Z df p. val r 
B5 vs F1 
VRneutral  

-.25 30 .802 -.049 

B5 vs F1 
VRgambling 

-2.811 30 .005 -.551 

VRneutral –  
VRgambling 1.684 30 .092 -.33 

F5 vs S1 
VRneutral 

-.713 30 .476 -.139 

F5 vs S1 
VRgambling 

1.116 30 .265 .219 

VRneutral –  
VRgambling -1.048 30 .295 -.205 

 1192 
Supplementary Table 7. Results of Wilcoxon signed rank tests of the SCL 1193 
data for the control group. p-values printed in bold font are significant at a 1194 
Bonferroni corrected threshold of .004. 1195 
Comparison     
 Z df p. val r 
B5 vs F1 
VRneutral  

.888 28 .375 .174 

B5 vs F1 
VRgambling 

.114 28 .891 .027 

VRneutral –  
VRgambling .137 28 .89 .025 

F5 vs S1 
VRneutral 

-1.776 28 .076 -.348 

F5 vs S1 
VRgambling 

-2.852 28 .004 -.559 

VRneutral –  
VRgambling .433 28 .665 .085 
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Supplementary Table 8. Results of Wilcoxon signed rank tests of the HR 1196 
data for the gambling group. p-values printed in bold font are significant at a 1197 
Bonferroni corrected threshold of .004. 1198 
Comparison     
 Z Df p. val r 
B5 vs F1 
VRneutral  

-2.664 30 .008 -.523 

B5 vs F1 
VRgambling 

-3.53 30 < .001 -.692 

VRneutral –  
VRgambling -.387 30 .699 -.076 

F5 vs S1 
VRneutral 

-1.001 30 .316 -.197 

F5 vs S1 
VRgambling 

.182 30 .855 -.036 

VRneutral –  
VRgambling -.729 30 .4662 -.143 

 1199 
Supplementary Table 9. Results of Wilcoxon signed rank tests of the HR 1200 
data for the control group. p-values printed in bold font are significant at a 1201 
Bonferroni corrected threshold of .004. 1202 
Comparison     
 Z df p. val r 
B5 vs F1 
VRneutral  

.615 28 .539 .121 

B5 vs F1 
VRgambling 

-1.389 28 .165 -.272 

VRneutral –  
VRgambling 1.23 28 .219 -.241 

F5 vs S1 
VRneutral -.046 28 .964 -.009 

F5 vs S1 
VRgambling 1.526 28 .127 .299 

VRneutral –  
VRgambling -.66 28 .509 -.13 
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General Discussion 
To summarize, we conducted two studies employing a virtual reality (VR) cue-reactivity 

design for GD that combined the assessment of subjective, physiological, and behavioral cue-

reactivity. The first study aimed to examine the reliability of temporal discounting measures in 

VR and standard lab environments in a group of non-gambling control participants. 

Additionally, we aimed to explore the feasibility of applying sequential sampling models to 

temporal discounting data obtained in VR. The study had three main results. First, temporal 

discounting measures (AUC and log(k)) showed a good to excellent test-retest reliability across 

the VR sessions and the lab session. This was true for the model-free AUC values as well as 

for the model-based log(k) from the hyperbolic models with the softmax choice rule and the 

drift-diffusion model (DDM) choice rules. Second, the test-retest reliability of the other 

parameters of the non-linear DDMS modeling latent decision processes across sessions was 

substantially lower. However, the split-half reliability within each session was mostly good to 

excellent suggesting that lower test-retest reliability was likely a result of the current state of 

the participants and not caused by factors within the modelling process itself.  Third, there was 

only little and inconclusive evidence that the different VR environments and the lab 

environment did modulate the discounting behavior of participants differently, indicating a lack 

of general VR effects on temporal discounting. Finally, the exposure to VR generally increased 

sympathetic physiological arousal as assessed by the tonic skin conductance level (SCL). This 

was not modulated differently by the two VR environments. Taken together the results of the 

first study demonstrate the methodological feasibility of a VR-based approach to behavioral 

and physiological testing in VR and lay the groundwork for the second study presented here. 

The second study employed the VR design validated in the first study to investigate the 

subjective, behavioral, and physiological effects of VR gambling environment exposure in a 

group of regular gamblers (GD group) and matched non-gambling controls. Participants 

explored the two VR environments (neutral and gambling) and subsequently performed the 

temporal discounting tasks and the Two-Step task (TST). The study produced several important 

findings. Firstly, exposure to VR in general increased sympathetic physiological arousal as 

reflected in the tonic SCL. Secondly, we replicated earlier studies showing steeper temporal 

discounting[8,12,16,17] and decreased reliance on model-based (MB) control[24] in the GD group 

compared to non-gambling controls. Thirdly, the VRgambling environment selectively increased 

subjective craving in the GD group, as expected based on previous findings[5]. Interestingly 

however, none of the three physiological measures and neither of the two behavioral measures 
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showed conclusive evidence consistent with cue-reactivity in the GD group. Possible 

explanations for this observation are discussed below. 

The behavioral results of both studies taken together warrant important conclusions for 

the application of VR in the context of cue-reactivity in addiction related disorders. In the first 

study we replicated earlier results showing a good to excellent test-retest reliability for temporal 

discounting measures[131,132] based on computational modeling and more model agnostic 

measures. By doing so we also further informed the discussion about the reliability of temporal 

discounting as a stable trait indicator[8,131,132,188–190]. While the test-retest reliability of the 

parameters in the different DDM models describing latent decision processes was substantially 

lower, we could still establish a strong within-session reliability. Therefore, we conclude that 

temporal discounting tendencies might be more of a stable trait-like characteristic, whereas 

latent decisions processes might be more dependent on states like mood and fatigue. 

Additionally, the non-decision time parameter (3) showed a consistent pattern of increased 

perception and/or motor execution in VR, which should be the case as task execution within 

VR needs more movement due to VR controllers. These results are important because cue-

reactivity research in VR and in general could profit from the usage of sequential sampling 

models, such as the DDM, as there are mixed results when it comes to the effects of addiction-

related cues on reaction times (RT)[191–193]. Based on these encouraging results we included a 

group of frequent slot machine gamblers in the second study to investigate the cue-reactivity 

effects of our VR design. In addition, we added comprehensive analyses of the TST, which was 

impossible in the first study as the data we obtained was corrupted. In this second study we 

replicated results showing steeper temporal discounting in the GD group[8,12,16,17] across the 

model-agnostic AUC and the log(k) parameter of all models. In line with that, we also 

demonstrated reduced MB control across model agnostic analyses as well as computational 

modelling approaches in the GD group using the TST. This also replicated previous results[24]. 

Taken together, these results further increase our confidence in the application of established 

behavioral tasks in VR and the validity of using DDMs to analyze the resulting behavior. The 

most striking finding, however, was that we failed to observe conclusive evidence in favor of 

the existence of any form of behavioral cue-reactivity provoked by the VRgambling environment 

in both groups. We thus could not replicate the behavioral results observed in earlier studies 

conducted in real life gambling facilities, that showed behavioral cue-reactivity in participants 

suffering from GD[32,33]. The failure to replicate earlier findings is even more remarkable given 

that the GD group reported a selectively increased urge to gamble in the VRgambling environment, 

suggesting cue-reactivity on a subjective level. Our VR design thus induced the conscious wish 
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to gamble but failed to provoke any of the putative behavioral correlates associated with this 

induced craving.  

Resonating with the behavioral results, both studies showed that exposure to VR 

increased sympathetic physiological arousal as measured with the SCL. This is again in line 

with prior research showing increased sympathetic arousal during VR exposure[3]. 

Nevertheless, we observed no evidence for any form of physiological cue-reactivity in both 

groups in the second study. Therefore, our design again did not provoke physiological cue-

reactivity effects observed in previous studies assessing these responses using picture 

stimuli[194–196]. 

The lack of behavioral and/or physiological correlates of the reported increased 

subjective urge to gamble has important implications for future applications of VR exposure 

therapy and addiction science. Exposure therapy uses relevant stimuli to confront patients and 

train these patients to employ cognitive strategies to overcome craving and fear responses. This 

has been applied successfully in patients suffering from post-traumatic stress disorder and 

phobias using VR[197].  As the application of exposure therapy in addictions has not been as 

successful without VR in the past[198], our hope is that VR might supplement exposure therapy 

and thereby help to overcome these short comings. It is therefore important to note that, contrary 

to our expectations, VR might not provide an ecological validity high enough to produce real-

life behavioral effects of gambling related contexts[32,33]. Importantly, this does not render VR 

generally unsuitable, as it has been successfully applied in exposure therapy elsewhere[197] and 

could induce craving in the studies presented here and conducted by other groups[5]. It is 

possible that cue-reactivity in VR depends on specific design features. Therefore, it might be 

that different VR designs would have produced the predicted effects. In addition to the specific 

design of the VR environment, more general effects of VR immersion might have prevented us 

from detecting the expected physiological and/or behavioral cue-reactivity effects. In particular, 

we observed a substantial increase in the SCL upon VR immersion in both studies and across 

all groups. The SCL then remained elevated throughout the experiment. An elevated 

sympathetic physiological arousal might reflect increased cognitive load during VR 

immersion[199,200]. This in turn could interfere with the behavioral tasks performed by the 

participants and preclude us from observing the expected cue-reactivity effects. In similar 

fashion, the elevated SCL correlated to VR-related cognitive load could have prevented the 

detection of smaller modulations of the SCL caused by reactivity to the different VR-

environments. Future research could include measures of cognitive load in VR[201] to assess and 

possibly address this problem in future VR designs. Additionally, future research could train 
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participants in the usage of VR, reducing the cognitive load of participants in the actual 

study[202]. 

There is a set of limitations of this dissertation project that needs to be acknowledged 

here. First, in both studies participants spend about thirty to forty minutes immersed in VR. The 

behavioral tasks were performed after the two initial exploration phases. It is thus possible that 

participants were already fatigued or felt discomforted when the behavioral tasks started. These 

effects might not have been strong enough to produce observable effects when compared to the 

lab session in the first study but might nevertheless have blurred possible cue-reactivity effects 

in the second study. Future research should therefore contemplate to reduce the length of VR 

designs or split the exploration of the VR environments from the completion of behavioral 

tasks. Second, the physical space in which participants could move during VR immersion in 

both studies was constrained. The experimenter had to ensure the safety of participants by 

giving instructions if needed. These instructions might have reduced the immersion produced 

by our VR design. Furthermore, they might have caused unpredictable effects in the 

physiological measures, reducing our ability to detect important but subtle effects. Future 

studies would greatly benefit from increased automation of the VR environments. This could 

be realized by adding clearer boundaries, more space and recorded verbal instructions to our 

VR design. Third, the virtual slot machines used to build our virtual gambling environment did 

not exactly resemble the machines most frequently found in local gambling facilities. This 

discrepancy might have reduced the ecological validity of our VR design. However, the GD 

group in the second study reported an increased urge to gamble, suggesting an ecological 

validity sufficient to provoke craving. Future research could improve upon this by increasing 

the quality of graphical assets and design these to match current video slot machines more 

closely. Fourth, the first study only investigated the test-retest reliability and feasibility of 

employing the temporal discounting task in VR and did not conduct a thorough investigation 

of the same for the TST. It is therefore not clear how well the TST can be applied in VR. Even 

without VR the TST has been shown to produce rather poor test-retest reliabilities[46,189]. 

However, these results could be substantially improved by including RT data in the modelling 

process[46], as we did in the second study. Despite the unclear test-retest reliability of the TST, 

we have confidence in the results obtained with the TST in VR. We reproduced earlier group 

differences between non-gambling controls and the GD group[24], demonstrating that the TST 

produces similar results in VR. Furthermore, we demonstrated in the first study that sequential 

sampling models including RTs seems to produce valid results in VR. We employed a similar 
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choice rule for the TST in the second study as we did in the first and thus believe that the results 

can be interpreted with confidence.  

Conclusion 
Overall, the results obtained by both studies presented in the dissertation project at hand 

revealed further evidence for the validity of temporal discounting and the TST as possible 

diagnostic markers of GD. We demonstrated high reliability of the temporal discounting task 

and reproduced established group differences in decision-making between participants 

suffering from GD and non-gambling controls in both behavioral tasks[8,12,24]. Additionally, we 

demonstrated that behavioral data obtained by both tasks in VR can be meaningfully interpreted 

with comprehensive computational modelling, especially with models including RTs such as 

the DDM. In the context of cue-reactivity we found mixed results. While our design was 

effective in eliciting subjective craving in participants suffering from GD, we observed little 

evidence for behavioral or sympathetic physiological cue-reactivity. Therefore, caution is 

warranted when applying VR in experimental or therapeutical contexts, as established 

behavioral effects of real-life gambling environments[32,33] might not generally carry over to 

VR designs. Nevertheless, VR holds great promise for the research and therapy of addiction 

related disorders as it has been used successfully in other disorders[197]. This justifies the 

investment into VR environments for cue-reactivity studies and therapy, at least for now. Future 

research should delineate how cognitive load and ecological validity could be balanced in VR 

to create a more realistic VR experience. 
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