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Abstract Monolithic fluid-structure interaction (FSI) of blood flow with
arterial walls is considered, making use of sophisticated nonlinear wall mod-
els. These incorporate the effects of almost incompressibility as well as of
the anisotropy caused by embedded collagen fibers. In the literature, rela-
tively simple structural models such as Neo-Hooke are often considered for
FSI with arterial walls. Such models lack, both, anisotropy and incompress-
ibility.

In this paper, numerical simulations of idealized heart beats in a curved
benchmark geometry, using simple and sophisticated arterial wall models,
are compared: we consider three different almost incompressible, anisotropic
arterial wall models as a reference and, for comparison, a simple, isotropic
Neo-Hooke model using four different parameter sets.

The simulations show significant quantitative and qualitative differences
in the stresses and displacements as well as the lumen cross sections. For the
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Time for one time step GMRES iter
Coupling Algorithm 1CPU 2CPUs 4CPUs 1CPU 2CPUs 4CPUs
Dirichlet-Neumann 31 s 26 s 22 s 15 15 15
Neumann-Dirichlet 866 s 729 s 635 s 567 567 567
Neumann-Neumann
(αs = 0.5, αf = 0.5)

590 s 501 s 434 s 274 274 274

Neumann-Neumann
(αs = 0.999, αf = 0.001)

40 s 34 s 30 s 20 21 21

Neumann-Neumann
(αs = 0.9999, αf = 0.0001)

32 s 28 s 24 s 15 15 15

Monolithic
Dirichlet-Neumann

12 s 8 s 5 s 11 25 50

Table 1.1 A comparison of different Steklov-Poincaré fluid-structure interaction
algorithms, that is, Dirichlet-Neumann, Neumann-Dirichlet, Neumann-Neumann
(using different scaling factors), and the monolithic Dirichlet-Neumann precon-
ditioner (composed GCE [14]). A parallel overlapping Schwarz preconditioner is
used for the blocks where the number of subdomains is identical to the number
of CPUs. For the monolithic Dirichlet-Neumann preconditioner the number of
GMRES iteration grows since the inverse in the block is replaced by a one-level
overlapping Schwarz preconditioner. Nonetheless, the monolithic scheme is faster
and shows a better scalability. Results from [17, Table 1].

Neo-Hooke models, a significantly larger amplitude in the in- and outflow
areas during the heart beat is observed, presumably due to the lack of fiber
stiffening. For completeness, we also consider a linear elastic wall using
16 different parameter sets. However, using our benchmark setup, we were
not successful in achieving good agreement with our nonlinear reference
calculation.

1 Introduction

We are interested in fluid-structure interaction (FSI) problems in biome-
chanics, notably the interaction of blood flow with arterial walls. In hemo-
dynamics the densities of the fluid and the structure are similar, that is,
ρf ≈ ρs, and the structure is soft, compared to other FSI applications, for
instance, in aeroelasticity. In this regime, strong FSI coupling schemes are
most suitable, and monolithic FSI coupling schemes have been demonstrated
to be most competitive; see, e.g., [6,16,30,29,13,33,37,18,28,12,20].

In [17], we have compared, in the context of hemodynamics, different
segregated strong coupling schemes based on Steklov-Poincaré formulation
of the FSI problem [15]. We have considered Dirichlet-Neumann, Neumann-
Dirichlet, Neumann-Neumann (using different scalings) and a monolithic
approach, that is, the composed Dirichlet-Neumann preconditioner [13]. The
monolithic approach [13] was significantly faster, by a factor of two to four,
than the fastest segregated approach (segregated Dirichlet-Neumann) and
showed a better parallel scalability [17, Table 1]; see also Table 1.1.

Here, the Dirichlet-Neumann algorithms refer to using S′−1s , the in-
verse of the structure tangent, as a preconditioner for S′f + S′s, the sum
of the tangents of the fluid and structure Steklov-Poincaré operators. The
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segregated Dirichlet-Neumann method [15], the scaled Neumann-Neumann
method [17], and the monolithic Dirichlet-Neumann method [13] are closely
related, and the performance will be very similar if exact solvers are used for
the tangent problems. Therefore, the performance benefit of the monolithic
method comes from the use of inexact solvers for the blocks.

Our focus is on the application of sophisticated structural models for
the arterial wall since we are interested in quantities inside the arterial
wall, such as the transmural stresses, which are associated with atherogen-
esis, that is, the narrowing of arteries due to plaque formation. Note that
by sophisticated structural models we refer to geometrically and physically
nonlinear, hyperelastic, and anisotropic models since the main interest here
is the analysis of the blood-wall interaction under physiological conditions.
If supra-physiological loadings are to be analyzed, for example, resulting
from balloon-angioplasty, then even more complex models describing the
stress-softening response associated with microscopic damage need to be
applied; see e.g. [5,9]).

The state of the art in the hyperelastic modeling of the passive re-
sponse of arterial wall tissue considers (almost) incompressibility and also
anisotropy from stiffening collagen fibers. The resulting problems are al-
ready difficult to solve iteratively without FSI, that is, as a structural me-
chanics problem alone [11,21]. It was then shown in [7,6] that FSI simula-
tions with such challenging structural models are feasible. It is known from
experiments that arterial walls show some visco-elastic behavior; we there-
fore have also considered visco-elastic effects in our FSI simulations [7,6].
However, it was already concluded in [7] that the influence of viscoelasticity
on our quantities of interest, for example, the wall shear stresses, is rather
small. Therefore, we usually focus on almost incompressible, anisotropic
hyperelastic models without viscoelasticity.

However, since much simpler models for the structure are often used in
hemodynamics, it is of interest to investigate the structural model’s influ-
ence on the simulation results. Our FSI simulations in [23] have already
indicated that sophisticated structural models, such as the model denoted
ΨA in [10,3,6] (originally introduced in [8]), result in a qualitatively different
deformation of the wall compared to Neo-Hooke oder linear elasticity [23,
Section 6.3 and Fig. 18]. We also showed in numerical tests that, even for
the relatively small time steps necessary in our context, adding a coarse
level to an overlapping Schwarz preconditioner [23, Fig. 19] will accelerate
the convergence. In this paper, we now investigate in more detail how the
response of simpler structural models, such as Neo-Hooke, is different from
the results obtained with more sophisticated models, which incorporate the
almost incompressibility of biological soft tissue as well as the anisotropy
from stiffening collagen fibers in the arterial wall.
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Fig. 2.1 Stress-strain plots for the experimental data and the different material
models. A good fit can not be achieved using the Neo-Hooke material model,
however, NH1 yields a sufficient fit for the ∆l/l0 < 0.2.

2 Arterial wall models

Let F := ∇ϕ be the deformation gradient mapping infinitesimal vectorial
elements in the reference configuration onto the current configuration. The
mapping of infinitesimal volume elements is then described by J := det F. In
order to automatically fulfill the principle of objectivity, we consider models
formulated in the right Cauchy-Green deformation tensor C := FTF. For
hyperelastic materials, a strain energy density function Ψ as a function of the
deformation tensor is defined. In order to guarantee a physically reasonable
material response avoiding a loss of material stability [35], here, polyconvex
energy functions in the sense of [2] will be considered. By evaluation of the
second law of thermodynamics, the 2nd Piola-Kirchhoff stress tensor and
the Cauchy stress tensor can be computed by

S = 2
∂Ψ

∂C
and σ = J−1FSFT ,

respectively. Based on the Cauchy stress tensor, the von Mises stresses can
be computed. For a convenient construction of suitable strain energy den-
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sity functions, often the invariants of the functional arguments in the en-
ergy function are considered. For isotropic materials, the principle invariants
of C, that is,

I1 = tr C, I2 = tr[Cof(C)], I3 = det C,

with Cof(C) = det(C)C−T , are taken into account and thus, Ψ := Ψ(I1, I2, I3).
Note that in the context of soft biological tissues, often the dependence on
the second invariant is omitted. Thereby, the material response is mainly
governed by normal stretches described through I1 and volume changes de-
scribed by I3 = (det F)2. As a result of embedded collagen fibers, arterial
wall tissues behave anisotropically. The fibers are wound crosswise helically
around the artery and in healthy arteries symmetrically disposed with re-
spect to the axial direction. Assuming a weak interaction between the fiber
families, the resulting anisotropy can be modelled by superimposing two
transversely isotropic models. For the individual fiber family and thus, the
description of transverse isotropy, the structural tensor M = a⊗ a, ‖M‖ =
1 [36] is considered as additional argument in the strain energy density func-
tion. Herein, the preferred direction vector a describes the fiber orientation.
Thus, for a coordinate-invariant formulation, the mixed invariants

J4 = tr[CM], J5 = tr[C2M],

are taken into account. Whereas J4 describes the square of the stretch in
fiber direction a, the physical meaning of J5 is unclear.

2.1 Simple, isotropic material model: Neo-Hooke

As a simple, isotropic nonlinear material model, we consider a standard
compressible Neo-Hookean energy. It is often written in the form

ΨNH = Ψvol + Ψisoch,

where the volumetric and isochoric parts are given by

Ψvol =
κ

2
(ln(I

1/2
3 ))2 and Ψisoch =

µ

2
(I
−1/3
3 I1 − 3).

The material parameters are κ and µ and modulate an increase of energy
related to a volume change and a change of isochoric deformations, respec-
tively. Due to the fact that soft biological tissues are mostly assumed to
be almost incompressible, here, the volumetric energy will be used as a
penalty function to adjust for the quasi-incompressibility constraint. Since
the stresses are obtained as derivatives of the energy functions with respect
to the deformation tensor, an increase of µ thus corresponds to an increase
in stiffness and for incompressibility mainly modulates the slope in stress-
strain diagrams of uniaxial tension tests. Since the Neo-Hookean model is
not able to catch the stiffening of the tissue caused by the collagen fibers,
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Parameter set κ in kPa µ in kPa

NH1 2 500.0 50.4
NH2 3 333.3 67.1
NH3 6 333.3 127.52
NH4 7 333.3 147.65

Table 2.1 Material parameter sets for the Neo-Hooke model. Higher indices cor-
respond to a higher stiffness.

the parameters were fitted by hand to the experiments in [25]; see also [8].
There, uniaxial tension tests were performed in circumferential and axial
direction of human artery segments. Whereas the parameter set NH1 was
fitted to approximate the slope of the experimental curves (media) in the
range 0 < ∆l/lo < 0.2, the set NH2 approximately corresponds to the aver-
age slope of the experimental curve in the range 0 < ∆l/lo < 0.235 and thus,
results in a slightly stiffer behavior. NH3 and NH4 were chosen significantly
stiffer in order to obtain a similar lumen area as the anisotropic models
before the start of the heart beat; see also section 4.1. The parameter sets
are summarized in Table 2.1.

The resulting stress-stretch curves are compared with the experiments
in Figure 2.1. Note that the experimental data shows a slight hysteresis
resulting from a negligible visco-elastic response. We will see in the FSI
simulations in section 4 that, for NH1 and NH2, the resulting material
behavior is significantly softer compared to the sophisticated, anisotropic
models; see Figure 4.2.

For the sets NH3 und NH4 the in- and outflow lumen in the simulations
presented later is, at the end of the ramp, similar to the lumen areas of
the sophisticated models. These parameter sets correspond well for a spe-
cific loading scenario in a structural problem, but due to their artificially
stiff response, the associated stress-strain curves will not match well the
experimental curves on average. For all parameter sets, the compression
modulus κ was chosen such that the volume change of the model response
was kept below 1% in the uniaxial tension tests.

Note that, in the benchmark computations presented in [6, Figure 21],
based on the material model ΨA, the increase of the arterial circumference
during the heartbeat was below 20 %.

2.2 Anisotropic material models

Following the analysis in [10], we consider different anisotropic and quasi-
incompressible material models for arterial walls. They are of the form

ΨX = ΨX,iso(I1, I3) +

2∑
a=1

Ψ ti
X,(a)(I1, I3, J

(a)
4 , J

(a)
5 )
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where X ∈ {A,B,E}. Herein, the mixed invariants are considered sepa-

rately for the two fiber family directions a(a), a = 1, 2, i.e., J
(a)
4 = tr(CM(a))

and J
(a)
5 = tr(C2M(a)) with M(a) = a(a) ⊗ a(a). In detail, the individual

functions are

Model ΨA [8]

ΨA,iso(I1, I3) = ε1(Iε23 + I−ε23 − 2) + c1(I1I
−1/3
3 − 3),

Ψ ti
A,(a)(I1, J

(a)
4 , J

(a)
5 ) = α1

〈
I1J

(a)
4 − J (a)

5 − 2
〉α2

,

Model ΨB (isochoric and anisotropic part from [26])

ΨB,iso(I1, I3) = ε1(Iε23 + I−ε23 − 2) + c1(I1I
−1/3
3 − 3),

Ψ ti
B,(a)(I3, J

(a)
4 ) =

k1
2k2

(
exp

(
k2

〈
J
(a)
4 I

−1/3
3 − 1

〉2)
− 1

)
,

Model ΨE (anisotropic part from [27])

ΨE,iso(I1, I3) = ε1(Iε23 + I−ε23 − 2) + c1(I1 − 3− ln(I3)),

Ψ ti
E,(a)(J

(a)
4 ) =

k1
2k2

(
exp

(
k2

〈
J
(a)
4 − 1

〉2)
− 1

)
.

Herein, the Macauley brackets 〈(•)〉 := ((•) − |(•)|)/2 filter out nega-
tive values. Note that ΨA,iso = ΨB,iso. The models ΨB and ΨE are based
on the well-known Holzapfel, Gasser, and Ogden model, where the trans-
versely isotropic parts do not include I1 and J5. They are formulated such
that a specifically stiff response is purely generated in the fiber directions.
In contrast to this, the model ΨA includes J5 and even a coupling of I1
with J4. Although J5 may not directly have a physical meaning, the term
I1J4−J5 as part of ΨA was found in [34] to describe the change of infinites-
imal area elements with normal vectors perpendicular to the fiber direc-
tion. Due to the coupling term I1J4 in this model, a somewhat dispersed
stiffness around the fiber direction is also included. Only the model ΨB is
formulated in a volumetric-isochoric split. Whereas this may enable a more
direct quantitative interpretation of the material parameters, it also renders
the model response questionable under purely volumetric loading since the
stress response will then be purely isotropic. In addition to that, the uncon-
trolled volume change in the isochoric energy may be problematic in finite
element formulations where, for example, the volume change is only consid-
ered as volume average of each finite element, or associated terms are used
for reduced integration. Summarizing, all models are quasi-incompressible,
provided that sufficiently large parameters in the volumetric penalty func-
tions are considered, they are highly nonlinear, anisotropic, polyconvex, and
widely used, but each of them has certain advantages and disadvantages. We
use the parameters for the media fitted in [10, Figure 2] to the experiments
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performed in [25] which are given in Table 2.2. Note that the parameters
used here for ΨA correspond to ΨA Set 2 in [10] and are identical to the
parameters used for ΨA in [6]. Although the models ΨA and ΨB have the
same isotropic part Ψ∗,iso, the parameters for Ψ∗,iso are not the same.

Model c1 in kPa ε1 in kPa ε2 α1 in kPa α2 k1 in kPa k2
ΨA 17.5 499.8 2.4 30 001.9 5.1 - -
ΨB 10.7 207.1 9.7 - - 1 018.8 20.0
ΨE 9.7 95.3 3.8 - - 687.6 20.0

Table 2.2 Material parameter sets for nonlinear, anisotropic models. The pa-
rameters for ΨA correspond to ΨA Set 2 in [10].

Note that all parameters for the simple isotropic and the sophisticated
anisotropic models were obtained from adjusting to uniaxial tension tests
which correspond to extreme values of stress ratios of circumferential to
axial stresses ranging from 0 to infinity, which are often found difficult, al-
ready for engineering materials [31]. In real arteries, however, a uniaxial
stress scenario cannot be expected and rather biaxial stress scenarios ap-
pear with stress ratios of moderate intensity in between the extreme values.
Therefore, in principle, it would be advantageous to also include biaxial test
data, but these are in turn difficult to obtain for soft biological tissues and
their accuracy should be considered critically, especially for experiments
performed on individual layers like the media and adventitia of small arter-
ies. Uniaxial tests may therefore be considered more reliable, but a perfect
match of the models with the experimental data should not be overrated.
Therefore, the somewhat better agreement of model ΨA with the nonlinear
experimental stress-strain response (cf. Figure 2.1) should not be given too
much importance.

3 The curved tube fluid-structure benchmark problem

Although the final goal is the simulation of patient-specific arteries [4], the
systematic, comparable analysis of numerical schemes is enhanced by con-
centrating on standardized boundary value problems. Therefore, we make
use of the benchmark problem introduced in [6], a curved tube with an elas-
tic wall; the inner radius of the tube is 0.15 cm, the outer radius is 0.21 cm,
the radius of the curvature is 1 cm and the length of the straight part towards
the outflow is also 1 cm; see [6, Figure 1] and also our figures in section 4.
As a result, the in- and outflow areas are approximately 0.0707 cm2 at the
start of our simulations.
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Fig. 3.1 At the red nodes the displacement is fixed y-direction. Image taken
from [6] (copyright Wiley).

3.1 Mesh

We use a tetrahedral mesh with matching fluid and solid nodes at the inter-
face. The mesh has 66 648 degrees of freedom for u, 3 515 d.o.f. for p, 425 700
d.o.f. for ds, 28 044 d.o.f. for λ, and 66 648 d.o.f. for df . In particular, we
use Mesh #3 in [6, Table 6], where mesh convergence has been observed [6,
Figure 21 and Figure 44] for F̄ finite elements.

3.2 Boundary conditions

The displacement of the structure is fixed in axial direction at the faces at
both ends of the tube as well as at the red nodes in Figure 3.1. Combining
these boundary conditions, we obtain a statically determined structure.

As in [6], we use an absorbing boundary condition [32] at the outlet
in order to reduce wave reflections. Note that these absorbing boundary
conditions are based on a one-dimensional model for the fluid and a simple
linear model for the structure, that is, it uses a simple relation between the
outflow area A and the pressure P ,

P =
β

π

(√
A−

√
A0

)
,

where A0 is the area at t = 0, and β is a parameter. In our nonlinear setting,
this absorbing boundary condition will not remove reflections completely.
Note that we have chosen β as in [6], such that it corresponds to a Young
modulus of 120 kPa and a Poisson ratio of 0.49. We have used these values for
all numerical experiments, that is, for all material models and all parameter
sets. It is clear that for parameter sets corresponding to a significantly
different stiffness of the structure the value of β will not be suitable to
remove wave reflections, and some difficulties in our simulations may be
due to this effect; see section 4.
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4 Numerical results

In our numerical experiments, we consider the fluid structure interaction
of fluid flow in the curved tube benchmark geometry defined in [6]. The
benchmark in [6] was computed using ΨA with the same parameters as
here; see section 2.2 for all material parameters.

The geometry consists of a curved and a straight section and can be
seen as an idealized coronary artery; in particular, it corresponds only to
the media, neglecting the intima and adventitia of the arterial wall. The tube
is composed of a single material, that is, we use the nonlinear hyperelastic
material models described in section 2 and the corresponding parameters.
The fiber angle is set to βf = 43 degrees. As the spatial discretization, we use
P2–P1 (Taylor–Hood) finite elements for the fluid and P2 elements for the
geometry problem. For the structure, we use either P2 elements for the linear
elastic or Neo-Hooke wall models or F̄ finite elements (corresponding to a
P2–P0–P0 discretization in the linear case) for the anisotropic wall models.
We solve the monolithic system containing the fluid, the solid, and the
geometry, using matching nodes at the fluid-structure interface. As in [6],
a convective explicit (CE) approach is used, resulting in stronger limits
for the size of the time steps than a fully implicit method. We have also
implemented a fully implicit scheme. Here, we are, however, interested in
the influence of the material response rather than the numerics and the
performance.

We use the LifeV software library [1], based on Trilinos [24], coupled
to the Finite Element Analysis Program (FEAP 8.2); cf. for a description
for the lightweight interface coupling both software packages [19,22]. Fol-
lowing [6, section 4.2], we use a smooth ramp to apply an interior blood
pressure of 80 mmHg to initiate the necessary prestretch of the arterial wall
before the start of the heart beat. Using a smooth ramp can reduce un-
wanted oscillations by an order of magnitude; see, e.g., [7, section 4.2.2].

4.1 Flow rate, lumen area, and pressure at the in- and outflow

Neo-Hooke models NH1 and NH2 Our simulations show several difficulties
with the Neo-Hooke parameter sets NH1 and NH2; see Figure 4.2. First,
we observe that the sets NH1 and NH2 result in a material behavior, which
is significantly softer than the other models: for NH1 and NH2, already
briefly after the ramp phase (which ends at t = 0.1 s), the outflow areas
are significantly larger than the maximum outflow area during the heart
beat in the benchmark [6]; see Figure 4.2. Second, for both data sets, the
computations fail near the end of the ramp shortly after strong oscillations
are visible in the outflow pressure and flow rate. We believe that this is a
result of wave reflections at the outflow: for NH1 and NH2 the absorbing
boundary condition, using the parameters described in section 3.2, does not
work well enough.
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Fig. 4.1 Von Mises stresses for ΨA at time t = 0.536 s.

However, it is already clear from the ramp phase that NH1 and NH2

will result in in- and outflow areas, which are larger than the ones for the
sophisticated models; see Figure 4.2. We will therefore consider the param-
eter sets NH3 and NH4 in section 4.1 for the comparison in the heart beat
phase.

Sophisticated arterial wall models Results for the sophisticated wall models
are compared in Figure 4.3. It is interesting that the in- and outflow areas
are significantly larger for ΨA than for ΨB and ΨE . The results for ΨA,
however, match those computed earlier in the benchmark [6]. Consulting
the data fits in Figure 2.1 (or [10, Figure 2]), we observe that the curves
for ΨB and ΨE seem to be quite similar, whereas the curves for ΨA have a
slightly different shape: the curve for ΨA, for the circumferential direction,
is steeper for large stretches than for the other models. This is especially
visible for ∆l/l0 > 0.25. On the other hand, it is below the curves of ΨB
and ΨE for ∆l/l0 ≈ 0.225.

Considering the numerical values of the parameters (see Table 2.2), let
us note that for ΨA the exponent ε2 is smaller than for the other two models
while the multiplicative constants c1 and ε2 are larger.

Note that one may be tempted to compute an (average) circumferential
stretch, for instance, at the outflow from the increase in area. For ΨA, the
increase in area from 0.070 cm to almost 0.093 cm, visible in Figure 4.3,
corresponds to an (average) circumferential stretch of only about 1.15 or an
increase of 15 percent. For an adequate analysis of the stress-strain response,
this value is, however, misleading since the stress (and the stretch) is far from
homogeneous along the circumferential and radial direction; see Figures 4.1,
4.7 and 4.9. The stresses in the wall are also concentrated at the interior of
the wall, that is, at the interface to the fluid; see Figures 4.7 and 4.9.

This result may also seem surprising, since the earlier quasistatic com-
putations in [10] indicate a smaller lumen for ΨA than for the other models.
However, in [10] a higher internal blood pressure of 24 kPa (≈ 180 mmHg)
was simulated, and a plaque was present in the lumen. Indeed, the larger
lumen observed in [10] seems to be due to localized stretch near the plaque;
see [10, Figures 7 to 11]; also note that the thickness of the model was only
2 mm in [10, Figures 7 to 11].
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Fig. 4.2 Flow rate, area, and pressure at the inflow and the outflow for Neo-
Hooke using different parameter sets.

We also observe that the results in Figure 4.2 are quite similar for ΨB
and ΨE in terms of flow rate, pressure, and lumen area. However, for ΨB
small oscillations are visible during the ramp phase; see Figure 4.3 for 0 <
t < 0.2 s and the zoom into the same data in Figure 4.4. The oscillations
then vanish during the heart beat. However, since the ramp phase is only
used to introduce the prestretch, we still consider this a valid simulation,
despite the visible oscillations.

Heart beat phase using the sophisticated wall models and the Neo-Hooke
models NH3 and NH4 We have also created two parameter sets for Neo-
Hooke, NH3 and NH4 which show a similar in- and outflow area as the Ψ∗
models; see Figure 4.2. The sets NH3 and NH4 were chosen such that they
have, at the end of the ramp, a similar in- and outflow lumen area as the
models ΨB and ΨE ; see Figure 4.3. The set NH3 is slightly softer, the set
NH4 is slightly stiffer. For both Neo-Hooke sets the lumen area is slightly
smaller than for ΨA; see Figure 4.2.

It is clear from our simulations that the amplitude of the lumen area is
much larger in NH3 and NH4 than in all other Ψ∗ models; see Figure 4.3.
This is, presumably, due to lack of fiber stiffening, which is present in the Ψ∗
models. This is also a clear indication that high stresses are present, locally,
in the simulations with the Ψ∗ models.

Only relatively small differences between the models are visible in the
flow rate and pressure.
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Fig. 4.3 Flow rate, area, and pressure at the inflow and the outflow for the
different material models ΨA (parameter set 2) [8] to ΨE [27] and, additionally,
for two Neo–Hooke (NH3 and NH4) parameter sets. The time interval t = 0 s
to t = 0.1 s is the smooth ramp which introduces the prestretch, the heartbeat
starts at t = 0.2 s. We see significant differences between the Ψ∗ models and the
Neo–Hooke model with respect to the outflow area: for NH3 and NH4 the outflow
area has a significantly larger amplitude during the heart beat, presumably, since
the model lacks fiber stiffening. Interestingly, ΨA (with parameter set 2) yields a
significantly larger outflow area than the other Ψ∗ models.
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Fig. 4.4 Numerical instabilities are visible for ΨB during the ramp phase; cf. Fig-
ure 4.3 for the full plot.

4.2 Comparison of displacements

In Figures 4.5 and 4.6, the displacement of the structure is depicted at
t = 0.2 s and t = 0.536 s, respectively. Significant differences are visible in
the displacement.

While differences between the two Neo-Hooke models NH3 and the stiffer
NH4 are visible, these differences are small compared to the sophisticated
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ΨE ΨE

NH3 NH4

Fig. 4.5 Displacement of the arterial wall for ΦA, ΦB , ΦE , NH3, und NH4 at
t = 0.2 s.

models ΨA, ΨB , and ΨE . First, the displacements for the Neo-Hooke models
are significantly smaller for t = 0.2 s as well as for t = 0.536 s. Second, the
tube bends outwards for the Neo-Hooke models, whereas it bends inwards
for the Ψ∗ models. We see from these results that, when the Neo-Hooke
material model is used with parameters which result in a similar lumen area
then the structure is significantly stiffer than in the other models. Lacking
the terms for the stiffening fibers the Neo-Hooke model shows a completely
different qualitative behavior than the other models.

When comparing the models ΨA, ΨB , and ΨE , it is striking that the
displacement is smaller in ΨA than in the other Ψ∗ models and that the
displacement is higher in the ΨE model than in the other models. Note that
in section 4.1, ΨA showed a larger lumen area than the other Ψ∗ models.

4.3 Comparison of the stresses

When comparing the stresses of the different material models and parameter
sets, all Ψ∗ models show a very similar stress distribution; see Figure 4.7
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Fig. 4.6 Displacement of the arterial wall for ΦA, ΦB , ΦE , NH3, und NH4 at
t = 0.536 s.

for t = 0.2 s and Figure 4.9 for t = 0.536 s. All models show a very strong
concentration of the stresses at the lumen interface and very low stresses at
the outside of the tube.

The stress distributions of the Neo-Hooke models is, however, signifi-
cantly different. The stresses are less localized at the lumen interface, in-
stead significant stresses are visible in the complete cross section of the tube.
Both observations are valid at t = 0.2 s as well as at t = 0.536 s.

4.4 Linear elastic wall models

We have also performed simulations using a linear elastic wall model. It is
clear that a good fit of a linear elastic model to the experimental data can-
not be achieved since the strongly nonlinear response of the wall cannot be
reproduced; cf. Figure 2.1. Furthermore, if the geometrically linearized set-
ting is considered, the solution of mechanical equilibrium equations in the
undeformed configuration may not match well with the large deformations
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Fig. 4.7 Visualization of the von Mises stresses at t = 0.2 s.

ΨA

σvM ∈ [ 2.3 kPa, 114.0 kPa]
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σvM ∈ [ 1.9 kPa, 67.5 kPa]
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σvM ∈ [13.4 kPa, 46.7 kPa]
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σvM ∈ [13.0 kPa, 45.6 kPa]

Fig. 4.8 Visualization of the von Mises stresses at t = 0.2 s (uses the scale of
ΨE); see Figure 4.7 for the respective results with individual color scales.

appearing in the artery. However, the aim of this analysis is to highlight the
unphysical (pathological) behavior when using linear models. To avoid an
analysis, where a potentially good-natured problem is considered acciden-
tally, we have performed a large number of simulations using 15 different
linear elastic parameter sets; see Figure 4.11, where we also have provided
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Fig. 4.9 Visualization of the von Mises stresses at t = 0.536.
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Fig. 4.10 Visualization of the von Mises stresses at t = 0.536 s (uses the scale of
ΨE); see Figure 4.9 for the respective results with individual color scales.

ΨA as a reference. The set LEn refers to E = n · 1000000 dyn/cm2 and
ν = 0.49, which corresponds to a slightly compressible material.

We observe in Figure 4.11 that the softest parameter set (LE1) is quite
close to the reference model ΨA in the time interval 0 s < t < 0.05 s with
respect to the inflow and outflow areas as well as for the inflow and out-
flow pressures. Of course, in this time interval less than half of the stretch
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Fig. 4.11 Flow rate, area, and pressure at the inflow and the outflow for linear
elasticity using different parameter sets, where LE1 is exhibits the softest and
LE15 the stiffest behavior.

in the inflow and outflow areas has occurred. However, briefly after 0.05 s,
oscillations are visible and the simulation fails. Using stiffer parameter sets
(LE2, . . . , LE14), the oscillations occur later, however, the inflow and out-
flow area as well as the pressure move further away from the reference ΨA.
Only for LE15 unphysical oscillations in the simulation are avoided.

It can be assumed that the onset of the oscillations and the subsequent
failure of the simulations for LE1 to LE14 are at least partially due to our
boundary conditions; see section 3.2. In particular, the absorbing boundary
condition may not be effective enough to remove wave reflections at the
outflow for these parameter sets and the scarce boundary conditions for
the structure may be prone to amplify oscillations, especially for soft wall
models.

The stiffest parameter set LE15 avoids any visible oscillations for 0 s <
t < 0.1 s, however, the behavior in the simulation of the ramp phase is clearly
too stiff if compared to the reference model ΨA: the inflow and outflow areas
are significantly too small at t = 0.1 s. However, the inflow and outflow
pressures are quite close to the reference for t = 0.1 s.

Despite the oscillations in the ramp phase, we have also computed the
heart beat phase with the linear elastic models which did not fail. Here,
we observe very large displacements which clearly seem unphysical; see Fig-
ure 4.12 for LE5 at t = 0.13 s. From the large displacements we conclude
that, during the heart beat, LE5 seems to be significantly too soft, if com-
pared to the reference. On the other hand, it is clearly visible that, during
the ramp phase, it is too stiff, compared to the reference.

We can conclude that using linear elastic wall models, using our setup,
we were not successful in achieving a good agreement with the nonlinear
reference.
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Fig. 4.12 Displacement of the arterial wall for LE5 at 0.13 s.

4.5 Numerical properties of the nonlinear wall models

The numerical properties of the wall models are not identical. It is inter-
esting that, although the results in Figure 4.3 are quite similar for ΨB and
ΨE , numerically, their performance is quite different.

In Figure 4.13, we present the time steps used in the simulation, and
in Figure 4.14, we compare the Newton steps needed for each second of
simulation time. In Figure 4.15, we compare the number of GMRES itera-
tions needed for each second of simulation time.

For the time stepping, we chose an initial time step of 10−4 which was
increased to 10−3 and t = 0.2s. However, we have observed, that for ΨB ,
initially, for 0 < t < 0.1 s, five times smaller time steps were needed to
achieve convergence; note that the time steps size has been adjusted manu-
ally until convergence could be achieved. As a consequence, also the number
of Newton iterations and the number of GMRES iterations for each second
of simulation time is larger for 0 < t < 0.1s; see Figures 4.14 and 4.15. How-
ever, we see that also for t > 0.1s the computational cost remains higher
for ΨB than for all other models: in Figure 4.15, ΨB needs, on average,
the largest number of GMRES iterations, which indicates worse numerical
properties of the linearized systems.

We also see that the computational cost in terms of iteration numbers
is significantly smaller for the Neo-Hooke models compared to ΨA, ΨB , and
ΨE : for example, for t > 0.2 s the number of GMRES iterations for each
second of simulation time is smaller by almost a factor of two or more for
the Neo-Hooke models.

Among the Ψ∗ models, the model ΨA needs the lowest number of GMRES
iterations for each second of simulation time although the difference to ΨE
is small.

5 Conclusion

We have performed and analyzed monolithic fluid-structure interaction sim-
ulations in a curved tube benchmark geometry using three different sophis-
ticated hyperelastic material models developed for arterial walls which have
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Fig. 4.13 Time step sizes used in the simulations. For ΨB , initially, smaller time
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Fig. 4.14 Newton iteration counts for each second of simulation time for the
different models. Initially, for 0 s < t < 0.1 s, significantly more Newton iterations
are needed for ΨB for each second of simulation time.
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significantly more GMRES iterations are needed for ΨB .
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been successfully fitted to experimental data. These models account for the
almost incompressibility of biological soft tissue as well as for the anisotropy
from collagen fiber stiffening in arterial walls. We have also performed sim-
ulations using a simple Neo-Hooke model for the wall using four different
parameter sets. We have found that the three sophisticated hyperelastic
models showed a qualitatively similar behavior. Using the Neo-Hooke hy-
perelastic energy the results turned out to be different, even qualitatively.
Additional simulations using the geometrically linearized setting and a lin-
ear elastic material model have shown significant numerical issues and a non-
realistic qualitative and quantitative response in the considered benchmark
problem. With view to the numerical performance, two of the anisotropic
models from [8] and [27] have shown good properties, whereas the model
based on the well-known anisotropic function [26] required a significantly
larger number of Newton and GMRES iterations. Apparently, a purely iso-
choric, anisotropic strain energy density poses a challenge with respect to
the numerical computation. Summarizing, several material models which
show a quite comparable stress-strain response under uniaxial tension in
circumferential- and axial direction, will not automatically lead to compa-
rable results in simulations of arterial walls. Thereby, the results show that
the decision for a particular material model should be made carefully and
appears not to be a black box task.

6 Appendix: Monolithic Algorithm for Fluid-Structure
Interaction

After discretization in space and time, the fully coupled nonlinear FSI sys-
tem given by


F (un+1

f , pn+1,dn+1
f ) + 0 + CT1 λn+1 + 0

0 + S (dn+1
s ) + CT3 λn+1 + 0

C1 un+1
f + C2 dn+1

s + 0 + 0

0 + C4d
n+1
s + 0 + H dn+1

f

 =


bf
bs
C2 dns
0

 .

(6.1)

Here, λ is the vector of Lagrange multipliers which are used to enforce
the balance of normal stresses across Γ . Let us note that the fluid subprob-
lem F and the solid subproblem S are nonlinear (unless a linear elastic wall
model is used), whereas the geometry subproblem H is linear. The matri-
ces C1 and C2 are used to enforce the continuity of the velocity on Γ , the
transposed matrices CT1 and CT3 account for the balance of normal stresses,
while C4 accounts for the geometric adherence. In the case of conforming
meshes and conforming discretizations at the fluid-structure interface, we
have C1|Γ = I|Γ , C3|Γ = −I|Γ , C2|Γ = 1/∆tC3, C4|Γ = I|Γ , where I|Γ
is the identity matrix defined on the interface Γ . For details on the fluid-
structure interaction, see [6].
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fluid–structure interaction in arteries with anisotropic polyconvex hyperelas-
tic and anisotropic viscoelastic material models at finite strains. Internat.
J. Numer. Methods in Biomed. Engrg, 32(10):e02756–n/a, 2016. http://dx.

doi.org/10.1002/cnm.2756 Also Preprint 03/2015 at http://tu-freiberg.
de/fakult1/forschung/preprints.

7. D. Balzani, S. Deparis, S. Fausten, D. Forti, A. Heinlein, A. Klawonn, A. Quar-
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