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Abstract: International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) is
implementing ‘Odisha Bhoochetana’, an agricultural development project in Angul and
Balangir districts in India. Under this project, soil health improvement activity was
initiated by collecting soil samples from selected villages of the districts. Soil
information before sowing helps farmers not only to choose a crop but also in planning
crop nutritional inputs. Soil sampling, collection, and analysis is a costly and labor-
intensive activity that cannot cover the entire farmlands, hence it was conceived to use
high-speed open-source platforms like Google Earth Engine in this research to
estimate soil characteristics remotely using high-resolution open-source satellite data.
The objective of this research was to estimate soil pH from Sentinel1, Sentinel 2, and
Landsat satellite-derived indices; Data from Sentinel 1, Sentinel 2, and Landsat
satellite missions were used to generate indices and as proxies in a statistical model to
estimate soil pH. Step-wise multiple regression, Artificial Neural networks (ANN) and
Random forest (RF) regression, and Class-wise random forest were used to develop
predictive models for soil pH. Step-wise multiple regression, ANN, and RF regression
are single class models while class-wise RF models are an integration of RF-Acidic,
RF-Alkaline, and RF- Neutral models (based on soil pH). The step-wise regression
model retained the bands and indices that were highly correlated with soil pH. Spectral
regions that were retained in the step-wise regression are B2, B11, Brightness Index,
Salinity Index 2, Salinity Index 5 of Sentinel 2 data; VH/VV index of Sentinel 1 and
TIR1 (thermal infrared band1) Landsat with p-value <0.001. Amongst the four statistical
models developed, the class-wise RF model performed better than other models with a
cumulative R  2  and RMSE of 0.78 and 0.35 respectively. The better performance of
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class-wise RF models over single class models can be attributed to different spectral
characteristics of different soil pH groups. Though neural networks performed better
than the stepwise multiple regression model, they are limited to a regression while the
random forest model was capable of regression and classification. The large tracts of
acidic soils (datasets) in the study area contributed to the training of the model
accordingly leading to neutral and alkaline soils that were misclassified hindering the
single class model performance. However, the class-wise RF model was able to
address this issue with different models for different soil pH classes dramatically
improving prediction. Our results show that the spectral bands and indices can be used
as proxies to soil pH with individual classes of acidic, neutral, and alkaline soils. This
study has shown the potential in using big data analytics to predict soil pH leading to
the accurate mapping of soils and help in decision support.

Response to Reviewers: Dear Sir
          Sincere thanks for peer reviewing our research efforts. Authors are grateful to
receive a guided direction from your comments.
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Reviewers' comments: 

Reviewer #1: Fig 7, fig 6, fig 5, fig 3 need 

to be redrawn to maintain the aspect ratio 

Fig 2 need to be redrawn with frequency on 

vertical axis and pH on horizontal axis 

 

 

Redrawn as per reviewer’s suggestions 

Details of the trained model should be 

included in the results. (e.g. parameters of 

multiple linear regression; tress, min-max 

split etc for RF, layer details of ANN) 

Hyperparameter tuning process should be 

included. (e.g. graphs showing parameter 

optimisation should be included in RF) 

Which variables considered for each 

model?  Any optimization done for 

selection? 

 

Included details of the trained models as per 

reviewer’s suggestion in Line numbers 138 

-154 

Reviewer #2: Abstract should be shortened, 

it is too lengthy. Is "International Crops 

Research Institute for the Semi-Arid Tropics 

(ICRISAT) is implementing 'Odisha … but 

also in planning crop nutritional inputs." 

This kind of details needs to be mentioned 

in the abstract. 

 

Abstract has been shortened as per 

reviewer’s suggestions. 

 

Step-wise or stepwise, please maintain 

uniformity throughout the text. 

 

Step-wise has been used throughout the 

article as per reviewer’s suggestions 

Please avoid using upper case within 

sentences "Spectral regions that were 

retained" to "Spectral features that were 

retained" 

 

Revised as per reviewer’s suggestions 

ANN is not limited to regression. It can be 

used for classification also. Please correct 

the statement. 

 

Revised as per reviewer’s suggestions in 

line numbers 138-140 

The large tracts of acidic soils (datasets) in 

the study area contributed to the training of 

the model accordingly leading to neutral and 

alkaline soils that were misclassified 

hindering the single class model 

performance." Not clear to me please 

rewrite. 

 

Revised as per reviewer’s suggestion in line 

numbers 18 - 19 

Correct the definition of soil pH. It is 

negative logarithm of the hydrogen ion 

concentration. 

"For most crops, a range of 6 to 7.5 is best." 

Revised as per reviewer’s suggestions in 

line numbers 26-27 

Authors' Response to Reviewers' Comments



To "For most crops, soil pH a range of 6 to 

7.5 is the best." 

 

"insecticides and solubility of heavy metals 

depend on pH." Supporting literatures 

please. 

Supporting literature cited as per reviwer’s 

suggestion in line numbers 32 - 33 

Write full form of GPS at their first 

appearance. 

 

Written as per reviewer’s suggestions. 

Provide some review of literatures regarding 

digital soil mapping in India and worldwide. 

Based on that present the research gap and 

objectives. 

 

Literature review has been added as per 

reviewer’s suggestions. Please find it in line 

number s35-60  

 

 Materials and Methods 

What about Balangir district? 

 

Added some description on Balangir district 

as per reviewer’s suggestions (Line numbers 

76-81) 

 

Delete "from their spectral reflectance and 

backscatter data" 

 

Deleted as per reviewer’s suggestions 

Sentinel 1, Sentinel 2 or Sentinel-1, 

Sentinel-2. Please maintain uniformity 

throughout the text. 

 

Sentinel-1, Sentinel-2 has been used 

throughout article as per reviewer’s 

suggestions  

 

What are the preprocessing steps followed 

to correct the Sentinel 1, 2 and Landsat 8 

data? Please mention at least the name of 

the steps. What type of Sentinel 1 data was 

used in this study (e.g. GRD or SLC)? 

Please mention all details? How the LST 

was derived from Landsat 8 band 10 and 

11? Have you used split window algorithm 

for LST retrieval? How the land surface 

emissivity was derived which is required for 

LST retrieval? Or you have used brightness 

temperature only? Mention the date of 

Landsat 8 image collection. 

 

 

Processing steps have been added as per 

reviewer’s suggestions. (Line numbers103-

110) 

 

"Here we list the soil indices/ vegetation 

indices used with the reference and 

formula:" to "The list the soil indices/ 

vegetation indices used with the reference 

and formula are presented in Table 2." 

 

Corrected as per reviewer’s suggestions 

(Line 116) 

"one for adding variables and one for 

removing variables (Breaux 1967)." What 

were those significant level used in this 

study? Please mention that. 

 

Revised the sentence as per reviewer’s 

suggestions. (Line numbers 133 – 134) 



"ANN is a complicated form of linear 

regression" ANN is basically nonlinear 

model. Please correct this statement. What 

about activation functions and weights? 

How many hidden layers and neurons were 

used to build ANN? Please read about ANN 

from doi: 10.1007/s00484-020-01884-2 and 

doi: 10.1007/s00484-018-1583-6 and 

modify this part. 

 

Revised the sentence as per reviewer’s 

suggestions. (Line numbers 138 – 144) 

 

"integrated into a single model Class-wise 

RF" How they were integrated? 

"effect summary" to variable importance 

 

Added the method of integration of models 

as per reviewer’s suggestions. (Line 

numbers 160 -161) 

"2.4 General Statistics of soil pH in 

Balangir District" to "2.4 General Statistics 

of soil pH" 

This should be part of results. 

 

Revised as per reviewer’s suggestions 

 

"Very familiar vegetation indices NDVI and 

NMSI were 0.2 and 0.3 respectively." To 

"The correlation with very familiar 

vegetation indices NDVI and NMSI were 

0.2 and 0.3, respectively." "variables with 

p>0.01 are also removed in the SWMR 

method" p value < 0.05 is also statistically 

significant. So, why have you selected the 

threshold p  0.01 for variable removal? It 

should be p > 0.05 and in materials methods 

it was written as p > 0.001. 

"Based on the classification SWMR," How 

SWMR was used for classification? It is for 

regression only. 

 

Corrected as per reviewer’s suggestions 

"The deviation % calculated between the 

measured soil pH … The deviation % 

calculated between the measured soil pH." 

How the deviation % was calculated? Why 

it was interpolated? Where are the maps of 

soil pH? 

 

Maps of soil pH added as per reviewer’s 

suggestions 

 

Somewhere "data set" in other places 

"dataset".  Please maintain uniformity 

throughout the text. 

 

Dataset has been used throughout the 

article. Revised as per reviewer’s 

suggestions 

Why the authors have calculated accuracy 

and kappa for a regression problem (when 

the dependent variable (soil pH) is 

continuous)? 

We have classified soil ph into different 

classes to test whether the model will be 

able to classify the soil pH into different 

classes. Revised as per reviewer’s 

suggestions.  



 

Always write result in past tense. 

 

Please reduce the length of results section 

by deleting repeating sentences. 

Discussion 

"Orissa are Alfisols (Mishra 2007); Alfisols 

generally" to "Orissa are Alfisols (Mishra 

2007). Alfisols generally" 

"huge number of multi-collinear, dependent 

variables" to "huge number of multi-

collinear variables" 

"The factors that were selected by the 

SWMR model soil pH prediction are" to 

"The factors that were selected by the 

SWMR model for soil pH prediction were" 

"reported in an article by (Lee et al. 2003) 

which emphasizes" to "reported by Lee et 

al. (2003) emphasizing" 

"and many others (Csillag et al. 1993; 

Fernández and Hoeft 2009; Foster 1981)." 

To "etc. (Csillag et al. 1993; Fernández and 

Hoeft 2009; Foster 1981)."Replace 

references before 2000 by new ones. 

Revised as per reviewer’s suggestions 

"This study also found that the model for 

prediction was based on blue (0.45 - 0.51 

µm) and SWIR (1.57 - 1.65 µm) bands with 

30 m spatial resolution which has also been 

reported (Bannari et al. 2016)."  What was 

similar, please write that. 

 

Mentioned as per reviewer’s suggestions in 

line numbers 301-302 

Delete "RF model over fitted the soil pH 

predictions with high R2 for calibration and 

not so significant (< 0.5) R2 for validation 

and test datasets (Fig. 4)." 

 

Deleted as per reviewer’s suggestions 

 

Delete "The major reason for the superiority 

of RF models over SWMR and ANN can be 

attributed to multiple regression trees, 

which are capable of performing 

classification as well as regression (Svetnik 

et al. 2003)." 

Deleted as per reviewer’s suggestions 

 

Delete "that is an ensemble model of 

various simple regressions is a proven 

method" 

"ANN requires more number of dependent 

variables" dependent or independent? 

Deleted as per reviewer’s suggestions 

 

Delete "The accuracy to identify acidic soils 

is 75%, 75%, 82%, and 99% for SWMR, 

ANN, RF, … wise RF models with the 

Deleted as per reviewer’s suggestions 



highest R2 and lowest RMSE." Why the 

authors have calculated accuracy and kappa 

for a regression problem? Your dependent 

variable (y) i.e. soil pH is continuous. 

Regression models should be evaluated 

using R2, RMSE not by accuracy and 

kappa. accuracy and kappa is used for 

classification problem when the dependent 

variable (y) is categorical or class variable. 

 

Delete "This indicated that the acidic and 

neutral soils impact the soil temperature 

while alkaline soils alter the color of soils. 

Similar results have been reported in an 

article by (Lee et al. 2003) which 

emphasizes the importance of red edge and 

short wave infra-red spectral reflectance in 

estimating soil pH." 

Deleted as per reviewer’s suggestions 

Delete "For validation dataset R2 and 

RMSE are 0.88 and 0.33 respectively, the 

class-wise RF models failed to distinguish 

different soil pH classes with a 5 - 10% 

overlap between the classes. R2 and RMSE 

for test datasets are 0.54 and 0.50 

respectively. The classes are not well 

defined for test data and all for acidic 

groups of soils the soils with <5 and > 6 

have more RMSE." Do not repeat the results 

again. 

"soil pH with better accuracy than 

interpolation method has been reported by 

several researchers" to "soil pH provided 

better accuracy than interpolation method" 

 

Deleted as per reviewer’s suggestions 

 

Conclusion 

Delete "with an R2=0.45, RMSE=0.74, and 

Cohen's Kappa = 0.43. Though ANN 

performed better than the stepwise multiple 

regression model, it was limited to a 

regression while the random forest model 

was capable of regression and 

classification…. cirrus clouds or haze in the 

satellite image." 

Deleted as per reviewer’s suggestions 

Delete "The average R2 for class-wise RF 

models is 0.93, 0.88 & 0.54 for calibration, 

validation, and test data respectively. 

Similarly, the average RMSE for 

calibration, validation, and test datasets is 

0.23, 0.33, and 0.50 respectively." Avoid 

repetition. 

Deleted as per reviewer’s suggestions 



 

Delete "The salient features of this study 

are…estimation with 70% accuracy even 

with less (r≈0.5) related remote sensing 

variables." 

 

Deleted as per reviewer’s suggestions 

Have you downloaded the level 2 

atmospherically corrected Sentinel 2 

images. Please check the spectral signatures 

of soil. It should not decrease at B12 I 

suppose. 

 

Data has been processed in Google earth 

engine on Sentinel-2 L2 data. And the 

graphs presented have been checked and the 

results are the same as before. 

The reflectance decreases at B12 

 

 

Remove border lines and gridlines from Fig. 

3, 4, 6 and 7. 

Revised as per reviewer’s suggestions 

Fig. 4 Write the RMSE, RPD within the 

plots only. Present the values upto 2 

decimal places 

- 

Fig. 5 Which panel represent Angul and 

Balangir needs to be mentioned. 

Table 1. Present the descriptive statistics of 

training, validation and test dataset like min, 

max, mean, SD, skewness and kurtosis 

Revised and added (Table.3) as per 

reviewer’s suggestions 

Table 3. How the cumulative r, RMSE, 

accuracy and kappa were calculated? 

Please include line number in the 

manuscript for easier review. 

The details of accuracy and kappa is give in 

Line numbers 160-173 

Reviewer #3: - Introduction section: review 

of literatures on use of ML techniques using 

satellite derived spectral bands & indices in 

soil pH/soil properties not included. This is 

to be added 

Added the literature review on ML 

techniques in line numbers 52-60 as per 

reviewer’s suggestions 

- The details of methodology of ML based 

spatial prediction models are missing - this 

is to be included 

Added as per reviewer’s suggestions 

- The proper reasons for better performance 

of RF model compare to other models are to 

be added. 

Added in line numbers 307-312 as per 

reviewer’s suggestions 

- Several references cited are missing in the 

reference list. 

References checked as per reviewer’s 

suggestions 

- Spectral variability of soil surface depends 

on cover conditions such as bare soil 

spectral response will be different compare 

to same with vegetation covers / other land 

uses. So, evaluation of models for pH 

prediction are to be done in different soil 

cover conditions. 

Under different soil covers the soil 

properties and it’s relationship with 

reflectance or backscatter may be hindered 

so, the images without or minimal soil cover 

have been choosen.  
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Detecting Soil pH from Open Source Remote Sensing Data: A Case Study of Angul and 1 

Balangir districts, Odisha State 2 

 3 

Abstract 4 

Soil sampling, collection, and analysis is a costly and labor-intensive activity that cannot cover the entire 5 

farmlands, hence it was conceived to use high-speed open-source platforms like Google Earth Engine in this 6 

research to estimate soil characteristics remotely using high-resolution open-source satellite data. The objective 7 

of this research was to estimate soil pH from Sentinel-1, Sentinel-2, and Landsat-8 satellite-derived indices; Data 8 

from Sentinel-1, Sentinel-2, and Landsat-8 satellite missions were used to generate indices and as proxies in a 9 

statistical model to estimate soil pH. Step-wise multiple regression (SWMR), Artificial Neural networks (ANN) 10 

and Random forest (RF) regression were used to develop predictive models for soil pH. SWMR, ANN, and RF 11 

regression models. The SWMR greedy method of variable selection was used to select the appropriate independent 12 

variables that were highly correlated with soil pH. Variables that were retained in the SWMR are B2, B11, 13 

Brightness Index, Salinity Index 2, Salinity Index 5 of Sentinel-2 data; VH/VV index of Sentinel 1 and TIR1 14 

(thermal infrared band1) Landsat-8 with p-value <0.05. Amongst the four statistical models developed, the class-15 

wise RF model performed better than other models with a cumulative correlation coefficient of 0.87 and RMSE 16 

of 0.35. The better performance of class-wise RF models can be attributed to different spectral characteristics of 17 

different soil pH groups. More than 70% of the soils in Angul and Balangir districts are acidic soils and therefore 18 

the training of the dataset was affected by that leading to misclassification of neutral and alkaline soils hindering 19 

the performance of single class models. Our results showed that the spectral bands and indices can be used as 20 

proxies to soil pH with individual classes of acidic, neutral, and alkaline soils. This study has shown the potential 21 

in using big data analytics to predict soil pH leading to the accurate mapping of soils and help in decision support. 22 

Keywords: soil pH, GEE, Sentinel, Landsat-8, ANN, random forest, Odisha  23 

 24 

1 Introduction 25 

Soil pH is defined as the negative logarithm of the hydrogen ion concentration. Soil pH is an important indicator 26 

of soil health that affects crop yields, crop suitability, plant nutrient availability, and soil micro-organism activity. 27 

Soil pH is an excellent indicator of a soil's suitability for plant growth. For most crops, soil pH a range of 6 to 7.5 28 

is the best. When implementing different precision agriculture practices, site-specific management of soil pH is 29 

one of the most promising strategies in fields with substantial variability in soil pH. Soil pH influences the 30 
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effectiveness and use efficiency of fertilizers, (von Tucher et al. 2018; Wang et al. 2018), herbicides (Buerge et 31 

al. 2019; Liu et al. 2018) and insecticides  and solubility of heavy metals depend on pH (Kah et al. 2007; Spadotto 32 

and Hornsby 2003). Therefore, it is quite necessary to measure soil pH to make effective decisions regarding 33 

sowing, fertilization, and other crop management practices.  34 

Currently, a variety of techniques are being used to investigate the soil pH status, including traditional soil 35 

sampling methods and other novel methods with soil sensors. In-situ measurements can directly obtain steady and 36 

accurate soil pH but cannot represent a large area spatially. Furthermore, these ground measurements consume 37 

time and labor, and it is expensive to maintain both the quality and dense network of the observations (Chang and 38 

Islam 2000; Elshorbagy and Parasuraman 2008).  Among these novel methods, digital soil mapping using remote 39 

sensing data has emerged as a promising and reliable new technique (Eisele et al. 2015; McBratney et al. 2003).  40 

Remote Sensing (RS) is well established as a cost-effective, rapid, and reproducible means of providing 41 

quantitative and spatially distributed data on soil properties. The increasing power of RS technologies (e.g., Global 42 

Positioning systems, airborne and satellite platforms, unmanned aerial vehicles, and ground-based sensors), 43 

geographic information systems (GIS) and spatial data models (e.g., DEM-Digital Elevation Model) is offering 44 

new ways forward in soil science (Eli-Chukwu 2019; Grishin and Timirgaleeva 2020; Rodrigo-Comino et al. 45 

2020) .  46 

Digital soil mapping is being employed to assess the spatial distribution of soil properties in agricultural areas and 47 

other land resources (Forkuor et al. 2017; Minasny et al. 2013; Taghizadeh-Mehrjardi et al. 2016) (. Recently, in 48 

several studies, soil properties such as soil pH (Pahlavan-Rad and Akbarimoghaddam 2018) , soil organic matter 49 

(Byrne and Yang 2016), electrical conductivity (Ranjbar and Jalali 2016), and phosphorus (Wilson et al. 2016), 50 

have been predicted and mapped. 51 

SoilGrids 2.0 (De Sousa et al. 2020; Hengl et al. 2017) provides global estimates of some basic soil properties 52 

such as organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse 53 

fragments) at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm) with 250 m resolution. Estimates are made 54 

from the previously collected soil data which is used for training the models and with 158 covariates (primarily 55 

derived from MODIS land products, SRTM DEM derivatives, climatic images and global landform and lithology 56 

maps, which were used to fit an ensemble of machine learning methods—random forest and gradient boosting 57 

and/or multinomial logistic regression. However, these estimates are coarser in resolution and cannot explain the 58 

within field variability. The availability of better resolution satellite images (10 – 30 m resolution) help us to 59 

improve the accuracy of soil information estimated from the remotely sensed data.  60 
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The Department of Agriculture, Government of Odisha–and the International Crops Research Institute for the 61 

Semi-Arid Tropics (ICRISAT) are implementing a developmental project initiative called “Bhoochetana”(Wani 62 

et al. 2016). Under this project soil analysis, nutrient management recommendations, and treatment are being 63 

shared with farmers. This will help increase productivity through improved practices. To fulfill this objective 64 

ICRISAT has collected and analyzed soil samples from all the villages of Angul and Balangir districts of Odisha 65 

state. In this research, we have used this ground truth data to test whether the satellite-derived indices can act as 66 

proxies to predict soil pH through models.  67 

2 Materials and Methods 68 

The Study Region 69 

The District of Angul situated at the heart of Odisha. The district lies within the geographical limits of 20° 42ʹ 70 

08.15ʺ N latitude and 83° 28ʹ 49.43ʺ E longitude at an average altitude of 142m. The total geographical area of 71 

the district is 6790 km2; total cultivated area of 3460 km2 and a forest area of 1540 km2. Out of the total cultivated 72 

area, only 16% of are is under irrigation and the rest is rainfed.  Soils that are predominant in the district are Red 73 

and Black soils. The area receives an annual rainfall of 1290 mm and the crops that are majorly grown are rice 74 

and mung bean occupying 80% of total cultivated area. 75 

Balangir district is one of the less developed districts of the Odisha state with severe agrarian crisis 76 

(https://rcdcindia.org/places/regional-offices/bolangir/). The district is located within the geographic limits of 20º 77 

09' N, 21º 05' N latitudes and   82º 41' E to 83º 42' E longitudes. The percent of cultivated area is more than 50% 78 

with rice, mung bean and cotton as major crops. Out of the total cultivated area of 346000 ha only 53920 ha is 79 

irrigated which accounts to 15% of total cultivated area. Soils of Balangir are predominantly mixed red & yellow 80 

soils followed by red and black soils. 81 

2.1 Soil Data Collection and Analysis 82 

In May-June 2018, the ICRISAT team collected and analyzed 2244 soil samples from the districts of Angul (766) 83 

and Balangir (1478), Odisha under the Bhoochetana project (Wani et al. 2016). Soil pH was analyzed in the soil 84 

laboratory using standard operating methods. Data needed to be processed before performing any analysis. The 85 

data with incorrect lat/long locations were omitted and after that, the entire data was corrected for outliers using 86 

the nearest neighbor method. The data with distance > 0.01 (mean ≈ median) from the nearest cluster were omitted.  87 

Finally, the number of soil datasets that remained are 2073 (634 for Angul and 1438 for Balangir districts). This 88 

soil data is partitioned into training, validation, and test datasets for model building. The details of the dataset are 89 

given in Table.1. 90 
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2.2 Satellite data 91 

Open source satellite data Sentinel-1(Potin et al. 2012; Torres et al. 2012), Sentinel-2 (Drusch et al. 2012; Gascon 92 

et al. 2014), and Landsat-8 (Loveland and Irons 2016; Roy et al. 2014) data have been used to estimate soil pH. 93 

The Sentinel-1 mission provides data from a dual-polarization C-band Synthetic Aperture Radar (SAR) instrument 94 

at 5.405GHz (C band) which consists of Ground Range Detected (GRD) scenes. These images are processed using 95 

the Sentinel-1 Toolbox to generate a calibrated, ortho-rectified products. Sentinel-1 image of 15th June, 2018 along 96 

with its two bands VV & VH have been used in developing soil pH model 97 

(https://code.earthengine.google.com/2649fcc9747730a8e234d126b012af96 ). The Sentinel-2 mission carries the 98 

multispectral instrument which measures the reflected solar spectral radiances in 13 spectral bands ranging from 99 

the visible to the shortwave infrared (SWIR) bands with 5-day revisit time and a spatial resolution of 10-60 m 100 

over land and coastal areas (Drusch et al. 2012). Out of the 13 spectral bands only 10 spectral bands in different 101 

spectral regions namely Blue (B2), Green (B3), Red (B4), Red Edge (B5, B6 & B7), NIR (B8 & B8A), SWIR(B11 102 

&B12) were relevant to this study.  The Sentinel-2 L2 data are obtained by rectifying the L1 images using sen2cor 103 

model and these datasets are provided through GEE repository. However, we have very limited cloud-free images 104 

and also the soil should be free from the crop. To select a cloud-free image with the possible nearest date of soil 105 

sample collection, the Sentinel-2 image of 17th June, 2018 covered by 4 tiles of Sentinel-2 image were used in this 106 

study (https://code.earthengine.google.com/8ab3197dac35ef60e7a49fc969594329 ). Similarly, the land surface 107 

temperature retrieved from the brightness temperature of thermal bands 10 & 11 of Landsat-8 ((Roy et al. 2014) 108 

using the algorithm given by (Parastatidis et al. 2017) which uses different emissivity sources 109 

(https://code.earthengine.google.com/59642309908906db1bb599fce7e1cb50 ).  110 

Soil and vegetation indices (Table.2) were generated using satellite data with the aid of Google Earth Engine 111 

(GEE) (Gorelick 2013; Gorelick et al. 2017) which is a freely available cloud-based platform for processing 112 

geospatial datasets. Using GEE JavaScript API various indices were estimated from Sentinel-1, Sentinel-2, and 113 

Landsat-8 data and were extracted for each point of soil sampling. Backscatter of Sentinel-1 mission, Reflectance 114 

of 10 spectral bands combined with soil indices developed from the Sentinel-2 spectral bands and LST retrieved 115 

from thermal bands of Landsat-8 were used as proxies to soil pH. The list the soil indices/ vegetation indices used 116 

with the reference and formula are presented in Table. 2.  117 

2.3 Developing Statistical models for predicting soil pH 118 

To use the satellite derived soil indices as proxies to pH, a proper fitting model is required. Collinearity exists 119 

between spectral bands and soil indices so, to eliminate collinearity variance inflation factor (VIF) is employed 120 
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and the variables with VIF value less than 4 are selected and in the third step in SWMR through forward and 121 

backward selection the variables have been selected to develop the soil pH estimation models. Generally, the 122 

linear and non-linear regression methods are used to develop a model with predictors that have probability 123 

(p<0.05). Deep Learning and Machine Learning techniques such as ANN and Random forest respectively are also 124 

used to develop a model to predict pH from the soil indices developed from remotely sensed data. For the model 125 

building the predictor being pH while the satellite-derived band reflectance and indices are taken as predictands. 126 

The models developed in this study are:  127 

2.3.1 Step-Wise Multiple Regression model (SWMR) 128 

SWMR is a combination of the forward and backward selection techniques. SWMR is a modification of the 129 

forward selection so that after each step in which a variable was added, all candidate variables in the model are 130 

checked to see if their significance has been reduced below the specified tolerance level. If a non-significant 131 

variable is found, it is removed from the model. Step-wise regression requires two significance levels: one for 132 

adding variables and one for removing variables (Breaux 1967). In this study for both forward and backward 133 

regression we have used a significant probability level of 0.05. The variables or the indices have been selected in 134 

three step process; in the first step Pearson’s correlation of 0.2 was used to select variables; in the second step the 135 

VIF with <5 were used to retain the  136 

2.3.2 ANN regression (ANN) 137 

Neural networks belong to deep learning methods. ANN is a complicated form of non-linear regression designed 138 

to be able to model complex structures in the data. ANN studies the relationship of the independent variable with 139 

each of the dependant variables and develops hidden layers of various regression models and ultimately which 140 

are summed up to finally predict the predictor. These hidden layers perform various types of mathematical 141 

computation on the input data and recognize the patterns that are part of. This process is quite complex but we 142 

have built-in algorithms for these models which eases the analysis (Kartalopoulos and Kartakapoulos 1997). ANN 143 

model was developed using Jmp 14.0 statistical software (J. Li and Mocko 2020), which develops hidden layers 144 

of the model using 3 transformation functions (TanH, Linear, and Gaussian) and a learning rate of 0.1. ANN 145 

model developed in the study had nine hidden nodes with three linear, three tangential and three Gaussian 146 

transformations.  147 

2.3.3 Random forest (RF) 148 

A Random Forest (RF) is an ensemble technique capable of performing both regression and classification tasks 149 

with the use of multiple decision trees and a technique called Bootstrap Aggregation, commonly known as 150 
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bagging. The basic idea behind this is to combine multiple decision trees in determining the final output rather 151 

than relying on individual decision trees (Breitenbach et al. 2003). The random forest developed in the study has 152 

100 trees with boot strap rate of 1 and with minimum split of 5 trees per sample and maximum split of 500 trees 153 

per sample.  154 

2.3.4 Class-wise RF 155 

Different soil types with different soil pH values will interact differently with the electromagnetic spectrum. 156 

Therefore, individual RF models for every soil pH class were developed using Balangir data and tested for Angul 157 

soil data. Random forest models for each soil pH class RF-Acidic, RF-Alkaline, and RF-Neutral were 158 

developed and integrated into a single model Class-wise RF to be able to compare it with SWMR, ANN, and RF 159 

models. The class-wise RF classified every single point into the probable class by using K-means clustering 160 

method within the algorithm. 161 

First, we compare the integrated Class-wise RF model with SWMR, ANN, and RF, and later we tried to separately 162 

study each model (RF-Acidic, RF-Alkaline, and RF-Neutral) in detail.  163 

Pearson’s r of the correlation, coefficient of determination (R2) (Ozer 1985) and root square mean error (RMSE) 164 

(Fichter 1984) were used as measures of model performance and to compare between models. The effect summary 165 

of each variable in the models was described in terms of contribution percentage. All statistical analyses were 166 

carried out using JMP ® software version 14.0 (SAS Institute Inc., USA). Coefficient of determination (R2) (Ozer 167 

1985) and root square mean error (RMSE) (Fichter 1984) were used as measures of model performance and to 168 

compare between models. The effect summary of each variable in the models was described in terms of 169 

contribution percentage. All statistical analyses were carried out using JMP ® software version 14.0 (SAS Institute 170 

Inc., USA) (Sall et al. 2017). Accuracy percentage was calculated by estimating the error between the measured 171 

soil pH and the estimated soil pH. Cohen’s Kappa (Cohen 1960)  was calculated to see how accurately soil pH 172 

estimation models were able to estimate soil pH.  173 

3 Results  174 

3.1 General Statistics of soil pH in Balangir District 175 

The soil was collected from 8 blocks and 93 villages of Angul district; 14 blocks and 170 villages of Balangir 176 

district, from each village at least five soil samples, were collected. From the frequency distribution graph of soil 177 

pH of Angul, it is evident that more than 75% of soils are acidic and less than 2% soils are alkaline (Fig.2).  178 

Almost 60% of soils of Balangir are acidic, 30% soils are neutral and only 10% soils are alkaline (Fig.2). The 179 

summary statistics of the soil pH data collected from Angul and Balangir districts is given in Table.3 from which 180 
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it is evident that the soil pH ranged between 4.06 to 8.16 for Balangir district and 4.0 to 7.8 for Angul districts.  181 

The coefficient of variation is 17% and 16% for Angul and Balangir districts respectively. From skewness the 182 

Balangir soil pH data is left skewed whereas Angul soil pH data is right skewed. From the kurtosis it is seen that 183 

both Angul and Balangir soil pH data is platykurtic (Table.3). A simple Pearson’s correlation was calculated 184 

between soil pH and spectral bands and indices; the reflectance of B11, B12 & B5 has shown a higher correlation 185 

of -0.46, -0.45 & -0.44 respectively with the soil pH in comparison with other spectral bands. Similarly, Salinity 186 

Index-6 (SI6) has shown a higher correlation of 0.39 with the soil pH (Fig.3a). Very familiar vegetation indices 187 

NDVI and NMSI were 0.2 and 0.3 respectively. The Sentinel-2 spectral signatures of acidic, alkaline, and neutral 188 

soils are shown in Fig.3b which clearly indicates that the soils with different pH can be identified with B4, B5, 189 

and B11 and B12 spectral bands. 190 

3.2 Soil pH Prediction models 191 

Among the ANN and RF models, the class-wise RF model was found to perform better than the other three models 192 

with 0.97, 0.88 & 0.77 coefficient of correlation (r) for calibration, validation, and test datasets respectively 193 

(Table.4). The class-wise RF models performed far better than SWMR, ANN, and RF models. R2 for class-wise 194 

RF models is 0.94, 0.87, and 0.54 for calibration, validation, and test datasets respectively (Fig.4). Even RMSE is 195 

quite lower than other models with 0.23, 0.48, and 0.63 for calibration, validation, and test datasets respectively 196 

(Table.4). The other three models SWMR, ANN, and RF performed almost similarly, however, the RF model 197 

performed slightly better than SWMR and ANN with 0.89, 0.57, and 0.46 Pearson’s correlation coefficient for 198 

calibration, validation, and test datasets respectively (Table.4). R2 and RMSE are the measures that indicate the 199 

higher model performance of class-wise RF models, Cohen’s kappa and accuracy percentage were also estimated 200 

to test the ability of models to classify.  201 

Sentinel-2, Sentinel-1, and Landsat-8 data and their derived spectral indices were used to develop soil pH, 202 

prediction models. Three different regression models (SWMR. ANN, RF, and Class-wise RF models) were 203 

developed to identify the best method to predict soil pH from satellite data. Step-wise multiple linear regression 204 

(SWMR) model was built to relate soil pH with remote sensing variables and it yielded an R2 of 0.26, 0.20, and 205 

0.17 for calibration, validation, and test datasets respectively (Fig.4, 5 & 6). The multi-collinear variables are 206 

removed before developing SWMR, ANN, and RF models using the VIF method, and variables with p<0.05 are 207 

also removed in the SWMR method which retains only the significant variables in the model. The SWMR model 208 

found variables B2, B11, Brightness Index, SI2, SI5, T11, and VH/VV to significantly affect the soil pH.  209 
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Amongst the statistical models, the class-wise RF model was found to perform better than the other three models 210 

with 0.97, 0.88 & 0.77 coefficient of correlation (r) for calibration, validation, and test datasets respectively 211 

(Table.4). The class-wise RF models performed far better than SWMR, ANN, and RF models. R2 for class-wise 212 

RF models is 0.94, 0.87, and 0.54 for calibration, validation, and test datasets respectively (Fig.4,5 & 6). Even 213 

RMSE is quite lower than other models with 0.23, 0.48, and 0.63 for calibration, validation, and test datasets 214 

respectively (Table.4). The other three models SWMR, ANN, and RF performed almost similarly, however, the 215 

RF model performed slightly better than SWMR and ANN with 0.89, 0.57, and 0.46 Pearson’s correlation 216 

coefficient for calibration, validation, and test datasets respectively (Table.4). R2 and RMSE are the measures that 217 

indicate the higher model performance of class-wise RF models, Cohen’s kappa and accuracy percentage were 218 

also estimated to test the ability of models to classify. The derived soil pH for all sites is classified into three 219 

categories viz., alkaline, acidic, and neutral. Accuracy percentage (Ac) and Cohen’s Kappa (K) (Cohen 1960) 220 

indicate the efficiency of the model to identify different soil, pH classes.  The higher the accuracy percentage 221 

higher is the performance of the model. Similarly, Cohen’s Kappa > 0.5 is required for a good and reliable 222 

classification (Vieira et al., 2010). Based on the classification SWMR, ANN, RF, and class-wise RF models 223 

showed an overall accuracy of 67%, 68%, 74%, and 98% respectively (Table.4). Similarly, Cohen’s Kappa for all 224 

the datasets for SWMR, ANN, RF, and class-wise RF models showed a cumulative Kappa of 0.24, 0.26, 0.43, 225 

and 0.96 respectively (Table.4). Class-wise RF models showed exceptionally high accuracy and a perfect score 226 

of Cohen’s Kappa with 97%, 99% & 99% accuracy and 0.97, 0.97 & 0.99 Kappa coefficient for calibration, 227 

validation, and test datasets respectively (Table.4). All the single class models (SWMR, ANN, and RF) showed 228 

more than 60% accuracy in estimating soil pH correctly for different classes however, the RF model had an 229 

accuracy of 77%, 63% and 74% for calibration, validation and test datasets respectively (Table.4). Kappa 230 

coefficient was less than 0.5 for all the single class models (SWMR, ANN, and RF) with RF slightly better than 231 

other models with 0.58, 0.26, and 0.24 for calibration, validation, and test datasets respectively. 232 

The deviation % calculated between the measured soil pH and the model estimated soil pH by SWMR, ANN, RF, 233 

and class-wise RF models for Angul and Balangir districts is presented in Fig. 7 & 8.  The deviation percentage 234 

was calculated for each location and it is spatially interpolated in QGIS 3.8 software using inverse distance 235 

weighted (IDW) method of interpolation.  Spatially interpolated deviation % for Balangir district ranged between 236 

-29.8% - 57.7%, -29.4% - 55.7%, -22.6% - 38.7% and -14.9% - 28.5% for SWMR, ANN,RF and class-wise  RF 237 

models respectively (Fig.7 & 8). Spatially interpolated deviation % for Angul district ranged between -31.3% - 238 

40.3%, -37.5% - 56.9%, -24.0% - 42.5% and -16.5% - 29.9% for SWMR, ANN,RF and class-wise RF models 239 
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respectively (Fig. 7 & 8). As Balangir district soil pH data is used as calibration the percentage error is less than 240 

+/-5% except for few places which have more than 10 -15% error, whereas for Angul district data which is used 241 

as test most of the locations had more than 15% error particularly for SWMR and ANN and comparatively less 242 

for RF model. The IDW interpolation of class-wise RF models showed that for Balangir the deviation percentage 243 

for most of the locations is <+/-5%; for Angul district, the deviation percentage is in the limits of +/-10% but for 244 

the northern part of the district for some locations the deviation is more than +/- 20%. 245 

Though the upper and lower range of error depicts the extent of error in the predicted soil pH, it is also misleading 246 

if only one data point has a very high error. Therefore the error of predicted soil pH is partitioned into 11 error 247 

classes with a class interval of 5. The proportion of data partitioned into different deviation percentage classes is 248 

shown in Fig.9.   For SWMR models only 22.7% of predicted soil pH dataset has an error +/-5%, 35.2% of data 249 

set error is the range of +/- 15 – 20%,   18.8% of dataset error is the range of  +/- >20% (Fig.9). For ANN models 250 

only 25.3% of predicted soil pH dataset has an error +/-5%, 32.9% of dataset error is the range of +/- 15 – 20%,   251 

20.3% of dataset error is the range of +/- >20%. For RF models only 32.9% of predicted soil pH dataset has an 252 

error +/-5%, 29.2% of dataset error is the range of +/- 15 – 20%,   13.7% of dataset error is the range of  +/- >20% 253 

(Fig.9). For class wise RF models 67.2% of predicted soil pH dataset has an error +/-5%, 10.2% of data set error 254 

is the range of +/- 15 – 20%,   2.4 % of dataset error is the range of  +/- >20% (Fig.9). 255 

3.3 Class-wise RF models 256 

Already in the earlier paragraphs, the class-wise RF models are compared with single class models (SWMR, 257 

ANN, and RF), here we study each class model i.e., RF-Acidic, RF-Alkaline and RF-Neutral models in detail. 258 

From Fig.4, 5 & 6 and Table.4 it is observed that class-wise RF models for each soil pH class performed far better 259 

with high R2 (0.94, 0.77 & 0.59 for calibration, validation and test datasets respectively) and low RMSE (0.23, 260 

0.33 & 0.50) for calibration, validation, and test datasets respectively) than RF model. An in-depth study of each 261 

model will provide more insights into the relation of soil pH with the satellite spectral data (Table.4). The 262 

coefficient of determination (R2) for RF-acidic, RF-neutral, and RF-alkaline soil class for calibration data is 0.86, 263 

0.79, and 0.66 respectively (Table.4). RMSE for RF-acidic, RF-neutral, and RF-alkaline soil pH prediction models 264 

is 0.27, 0.18, and 0.11 for the calibration dataset (Table.4). R2 for validation is 0.60, 0.44, and 0.33 and RMSE of 265 

0.38, 0.27, and 0.14 for RF-Acidic, RF-Neutral, and RF-Alkaline models respectively. The test data R2 for RF-266 

acidic and RF-Neutral is 0.41 and 0.25, but for RF-Alkaline the datasets have very few data points due to which 267 

the R2 and RMSE for RF-alkaline models cannot be calculated. RMSE for test data is 0.54 and 0.29 for RF-acidic 268 
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and RF-neutral soil pH models (Table.4). The higher R2 values of RF-acidic, RF-neutral, and RF-alkaline and 269 

lower RMSE indicate that class-wise RF models perform far better than single class models. 270 

To study the spectral characteristics of different soil pH classes the major spectral bands and Indices that 271 

influenced the models and their contributions are plotted in a graph (Fig.7). The spectral bands and indices that 272 

help to identify acidic and neutral soil pH classes are similar; B5, B11/B12, SI6, T10, and T11. But for alkaline 273 

soils, the spectral bands that influence the soil pH are AVI, B8, B8A, VH/VV, and SSSI (Fig.7). Scatterplot of 274 

RF-acidic, RF-neutral, and RF-alkaline model predicted soil pH against measured soil pH of Angul and Balangir 275 

districts (Fig.4). For the calibration dataset the R2 value is 0.93 and RMSE is 0.23; with a clear distinction between 276 

acidic, neutral, and alkaline classes. The estimated soil pH is very close to the measured soil pH. But for validation 277 

and test data sets we observe an overlap between the classes indicating the misclassification of the model. 278 

However, the classes are more distinct when compared with all the datasets of single class models. 279 

 280 

4 Discussion 281 

4.1 Soil pH Prediction Models 282 

The soil data of Angul and Balangir districts collected under the Bhoochetana project indicated that the majority 283 

soils are acidic. As documented by Mishra in his review regarding the Soils of Orissa, the predominant soils of 284 

Angul and Balangir of Orissa are Alfisols (Mishra 2007). Even in this study most of the soils of the study area 285 

were classified as acidic (Fig.2). 286 

The generally used vegetation indices NDVI, NMSI1, and NMSI2 on an average for the districts is 0.3, -0.35, 287 

0.02 indicated scanty or no vegetation with very little moisture in the soils of the study area during the image 288 

acquisition time. The model efficiency depends on the use of the optimum number of variables with less 289 

multicollinearity; as a huge number of multi-collinear, dependent variables increase the standard error of the 290 

predictions. Therefore, using the VIF method the multi-collinear variables were removed and used for model 291 

development consequently. SWMR method was found useful in variable selection. The factors that were selected 292 

by the SWMR model soil pH prediction are B2, B11, Brightness Index, SI2, SI5, T11, and VH/VV indicated that 293 

the Blue, Red, Red Edge and SWIR regions of the electromagnetic spectrum were affected by changes in the soil 294 

pH. Similar results have been reported in an article by (Lee et al. 2003) which emphasizes the importance of the 295 

visible region, red edge, and short wave infra-red spectral reflectance in estimating soil pH of Alfisols. The exact 296 

reason for the response of these bands cannot be ascertained as soil pH is influenced by many factors such as 297 

parent material, climate, topography, soil water content, organic matter content, land management and many 298 
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others (Neina 2019; Pahlavan-Rad and Akbarimoghaddam 2018; Zhang et al. 2018). Similar findings have been 299 

reported by (Bai et al. 2016) in which Landsat-8 OLI (Operational Land Imager) satellite data is used to estimate 300 

soil pH. This study also found that the model for prediction was based on blue (0.45 – 0.51 µm) and SWIR (1.57 301 

– 1.65 µm) bands with 30 m spatial resolution which has also been reported by (Bannari et al. 2016). 302 

From the results (Table.4) it is quite evident that the RF model performance was better than other models i.e., 303 

SWMR and ANN. Although, RF showed an R2 value of 0.8 for calibration dataset, indicating a higher performance 304 

model for predicting soil pH, for validation and test dataset the R2 drastically reduced implying that the model 305 

cannot be applied for prediction with a new dataset.  306 

The better performance of class-wise RF models over single class models can be attributed to different spectral 307 

characteristics of different soil pH groups. Every soil character has a unique spectral signature and any changes 308 

in the soil's physical and chemical properties also alter its spectral signature. Therefore, one model for all the 309 

classes will not be sufficient to provide reliable soil pH estimated using satellite data proxies. The outperformance 310 

of random forest regression over methods of regression for estimating soil characteristics using spatial and satellite 311 

data has earlier been reported by (Ließ et al. 2012; Yang et al. 2016). Generally, the random forests regression 312 

have given more reliable soil pH estimates than Linear and neural network regression; as random forests have 313 

unique characteristics such as (i) it incorporates the interaction between predictors, (ii) it is based on ensemble 314 

learning theory, which allows it to learn both simple and complex problems; (iii) random forest does not require 315 

much fine-tuning of its hyper-parameters as compared to deep learning techniques (ANN). However, ANN 316 

requires more number of dependent variables and huge dataset for developing several hidden layers which in turn 317 

provide final estimates (Ahmad et al. 2017; Gopal and Bhargavi 2019; Mekonnen et al. 2019). As we have only 318 

provided less than 15 dependent variables to the model, the ANN model performance was hindered.  319 

In the case of the RF model, the coefficient of determination and RMSE for calibration dataset was found to 320 

indicate a good model but a look at R2 and RMSE for validation and test datasets showed that it is similar to 321 

SWMR and ANN models.  When examined the misclassification of single class models to identify the correct soil 322 

pH class using the prediction models; it is found that the models failed to identify the alkaline soils correctly in 323 

many instances leading to poor accuracy of 3.1 %, 5.3%, and 9.5% for SWMR, ANN, and RF models respectively. 324 

The highest accuracy of classification is calculated for acidic soils with an accuracy percentage of 88%, 89% & 325 

91.5% respectively for SWMR, ANN, and RF models. The overall classification accuracy was affected by higher 326 

misclassifications in the alkaline group of soils. The lower percentage of accuracy can be attributed to the less 327 

number of soil samples of alkaline soils that affect the training set and ultimately the model performance. The soil 328 
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pH predicted by RF-Acidic, RF-Neutral, and RF-Alkaline models have been consolidated and compared with 329 

other single class models to verify the performance of class-wise RF models. It is obvious and understandable that 330 

the accuracy of classification will be more than 90% as we are already providing the class details to the models. 331 

But R2 and RMSE are the measures that indicate the higher model performance of class-wise RF models with the 332 

highest R2 and lowest RMSE.  333 

4.2 Class-wise RF models  334 

The better performance of the class-wise RF models can be attributed to the multiple decision trees. Comparatively 335 

less performance of RF-neutral and RF-alkaline models is basically due to the less number of data points compared 336 

to RF-acidic; as (Millard and Richardson 2015) mentioned model performance depends on the quality and quantity 337 

of the training dataset. Error percentage of more than 15% for all the models is observed towards the northern part 338 

of the district which can be due to the presence of haze or a thin layer of cirrus clouds in the satellite image. Any 339 

model and in particular the RF models can be tuned with good training data. More number of training samples 340 

helps the model to understand the behavior of the data to classify the data into various classes. The out 341 

performance of random forest instead is that it combines the predictions of many decision trees into a single 342 

model. The logic is that a single even made up of many mediocre models will still be better than one good model. 343 

A random forest can reduce the high variance from a flexible model like a decision tree by combining many trees 344 

into one ensemble model. 345 

Millard and Richardson (Millard and Richardson 2015) tried to examine the relationship between the size of 346 

training data and model performance; they found that In addition to being as large as possible, the training data 347 

sets used in RF classification should also be randomly distributed. 348 

The alkaline soils mostly influence the reflectance in visible and NIR regions whereas acidic and neutral soils 349 

influence the SWIR and TIR regions of the electromagnetic spectrum. For RF and RF acidic models, B11, SI6, 350 

T11 & B5 contributed up to 40 – 50% (Fig.10). As the majority of the soils in the study area are acidic the variable 351 

contributions for the RF model and RF-acidic model are almost similar. For the RF-alkaline model, the major 352 

contribution was observed from T11 and VV bands. Similarly for RF- neutral model the Sentinel-2 spectral bands 353 

B2, B4, B5, B8 & B11 contributed more than 40% for the model generation (Fig.10). However, for acidic soils, 354 

the model failed to provide the right estimates for locations with soil pH less than 5.  Use of soil and vegetation 355 

indices to estimate soil pH with better accuracy than interpolation method has been reported by several researchers 356 

(Bai et al. 2016; Chang and Islam 2000; Malley et al. 1999; Merry and Janik 2001; Roelofsen et al. 2015; Zhang 357 

et al. 2018) as interpolation is just a statistical method of estimating the soil pH without any other soil information. 358 
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Remote sensing data to estimate soil pH also gives an idea of spectral characteristics of the location which also 359 

alters with time, climate, vegetation, soil condition, etc. So, the use of remote sensing data can give a better picture 360 

of the soil properties of the given location better than interpolation. These models have been applied to Balangir 361 

and Angul districts of Orissa to estimate the soil pH areas whose soil pH is not known which is presented in 362 

Fig.11. 363 

5 Conclusions 364 

In this research, it was observed that the satellite data with high spatial, spectral, and temporal resolutions can 365 

estimate soil pH with fairly good accuracy. Amongst the three statistical models developed, the random forest 366 

model performed better than other models. The RF model misclassified the alkaline group of soils due to which 367 

the overall accuracy was affected. As every soil type or every soil pH class has its spectral signature, therefore 368 

models were developed for each pH class. The R2 and RMSE of class-wise random forest models were far better 369 

than an all-inclusive RF model.  370 

The salient features of this study are  371 

1. Use of open-source satellite data, multiple sensors; their spectral and soil, and vegetation indices 372 

developed from them.  373 

2. Processing of the satellite data in an open-source, high-performance Google Earth Engine (GEE) 374 

platform. 375 

3. Use of simple linear regression as well as deep learning (ANN) and machine learning (RF) statistical 376 

techniques to develop soil pH, estimation models.  377 

4. Availability of extensive, well-distributed, and reliable village level measured soil pH data of Angul and 378 

Balangir districts of Odisha state. 379 

All these features enabled us to develop class-wise RF soil pH estimation models which can give soil pH 380 

estimation. 381 
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Detecting Soil pH from Open Source Remote Sensing Data: A Case Study 

of Angul and Balangir districts, Odisha State 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. a). Geographical map of Odisha state with Angul district (green) and Balangir 

district (pink). b). Land cover classified Sentinel 2 image of Angul c). Land cover 

classified Sentinel 2 image of Angul. 
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Fig.2 Frequency distribution of soil pH at Angul and  Balangir districts. 

 

 

Fig.3.a) Pearson’s correlation coefficient estimated between measured soil pH and 

spectral bands and satellite indices of Angul and Balangir districts soil pH data. 
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Fig.3 b) Average of Sentinel-2 Spectral signatures of Acidic, Neutral and Alkaline group 

of soils of Angul and Balangir districts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 Scatterplot between measured and estimated soil pH by SWMR, ANN and RF models for 

calibration dataset.  
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Fig.5 Scatterplot between measured and estimated soil pH by SWMR, ANN and RF models for 

validation dataset. 
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Fig.6 Scatterplot between measured and estimated soil pH by SWMR, ANN and RF models for 

test datasets 
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Fig.7 Interpolated map of deviation percentage calculated between measured and 

estimated soil pH for SWMR, ANN, RF and Class-wise RF models for Balangir district.  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Fig.8 Interpolated map of deviation percentage calculated between measured and 

estimated soil pH for SWMR, ANN, RF and Class-wise RF models for Angul district.  

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Fig.9 Proportion of Balangir and Angul soil pH data estimated by 4 prediction models 

partitioned into 11 classes of percent deviation ranging from < -20% to > 20%. 

 

 

 

 

 

 

 

 

 

Fig.10 Percent contribution of five important spectral bands and indices for RF-Acidic, 

RF- Neutral and RF- Alkaline models. 
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Fig. 11 Maps of Class-wise RF model predicted soil pH for Balangir and Angul districts. 
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Detecting Soil pH from Open Source Remote Sensing Data: A Case Study 

of Angul and Balangir districts, Odisha State 

 

Table.1 Partitioning of soil data for calibration, validation and testing of soil pH 

prediction models. 

Dataset Percentage No.of datasets 

Training 60% of Balangir data 834 

Validation 20% of Balangir data 285 

Test 20% of Balangir data + 100% Angul data 279 + 634 

 

 

Table.2 Indices developed from Sentinel-1, Sentinel-2 and Landsat-8 satellite data 

Index Acronym Formula Reference 

Advanced Vegetation Index AVI √(𝐵4 + 1) ∗ (256 − 𝐵3) ∗ (𝐵4 − 𝐵3)
3

 

(Banerjee et al., 

2014)(Banerjee 

et al., 2014) 

Normalized Differential 

Vegetation Index 
NDVI 

𝐵8 − 𝐵4

𝐵8 + 𝐵4
 

(Tucker et al., 

1979) 

Normalized Differential 

Salinity Index 
NDSI 

𝐵4 − 𝐵8

𝐵4 + 𝐵8
  

(Khan et al., 

2001) 

Normalized Moisture Stress 

Index 1 
NMSI1 

𝐵8 − 𝐵11 

𝐵8 + 𝐵11
 (Gao, 1996) 

Red Edged Inflection Point REIP 700 + (40 ∗
(

𝐵4 + 𝐵7
2 ) − 𝐵5

𝐵6 − 𝐵5
 

 

(Vogelmann et 

al., 1993) 

Advanced Vegetation Index AVI √𝐵8 ∗ (1 − 𝐵4) ∗ (𝐵8 − 𝐵4)
3

 
(Rikimaru et al., 

2002) 

Bare Soil Index BSI 
(𝐵11 + 𝐵4) − (𝐵8 + 𝐵2)

(𝐵11 + 𝐵4) + (𝐵8 + 𝐵2)
 

(Li and Chen, 

2014) 

Brightness Index BI 

(𝐵6 − 𝐵4) − (𝐵5 − 𝐵2)

(𝐵6 − 𝐵4) + (𝐵5 − 𝐵2)
∗ 100 + 100 

 

(Todd and 

Hoffer, 1998) 

Salinity Index 1 SI1 √𝐵2 ∗ 𝐵4
2

 

(Douaoui et al., 

2006) 

Salinity Index 2 SI2 
 

√𝐵3 ∗ 𝐵4
2

 

Salinity Index 3 SI3 √𝐵32 + 𝐵42 + 𝐵822
 

Salinity Index 4 SI4 √𝐵32 + 𝐵422
 

Salinity Index 5 SI5 
𝐵2

𝐵4
 

Salinity Index 6 SI6 
𝐵2 − 𝐵4

𝐵2 + 𝐵4
 

Soil Salinity and Sodicity 

Index 
SSSI 𝐵11 − 𝐵12 

(Bannari et al., 

2016) 

 

 

Table



Table.3 Descriptive statistics of the soil pH data collected from Angul and Balangir 

districts in the year 2018. 

S.No Descriptive Statistics Balangir Angul 

1 Number of observations 1422 647 

2 Blocks 14 8 

3 Villages 170 93 

4 Mean 6.25 5.65 

5 Minimum 4.03 4.00 

6 Maximum 8.16 7.80 

8 Standard deviation  0.98 0.96 

9 Coefficient of Variation (%) 16 17 

10 Skewness (Fisher) -0.02 0.31 

11 Kurtosis (Fisher) -1.00 -0.92 

 

Table.4 Pearson’s correlation coefficient (r), RMSE, Accuracy (Ac) and Cohen’s Kappa 

coefficient (K) for SWMR, ANN, RF and class-wise RF models. 

Models Datasets 
r 

RMSE Accuracy 

 

Cohen’s 

Kappa 

 

SWMR 
Cumulative 0.50 0.88 0.67     0.24 

Calibration 0.51 0.86 0.63     0.28 

Validation  0.45 0.85 0.59     0.17 

Test 0.42 0.91 0.74     0.18 

 

  ANN 

Cumulative 0.48 0.89 0.68     0.26 

Calibration 0.58 0.81 0.64     0.29 

Validation  0.51 0.82 0.61     0.21 

Test 0.30 0.98 0.74     0.20 

 

RF 

Cumulative 0.70 0.74 0.74     0.43 

Calibration 0.89 0.53 0.77     0.58 

Validation  0.57 0.78 0.63     0.26 

Test 0.46 0.88 0.74     0.24 

 

Class-wise 

RF 

 

Cumulative 0.87 0.35 0.98     0.98 

Calibration 0.97 0.23 0.97     0.97 

Validation  0.88 0.33 0.97     0.97 

Test 0.77 0.50 0.99     0.99 

 

 

 

 

 

 

 

 



Table.5 Coefficient of determination (R2) and RMSE for RF-Acidic, RF-Neutral and RF-

Alkaline models. 

 

Datasets 

R2 RMSE 

Acidic Neutral Alkaline Acidic Neutral Alkaline 

Calibration 0.86 0.79 0.66 0.27 0.18 0.11 

Validation 0.60 0.44 0.33 0.38 0.27 0.14 

Test 0.41 0.25 - 0.54 0.29 - 

 

 


