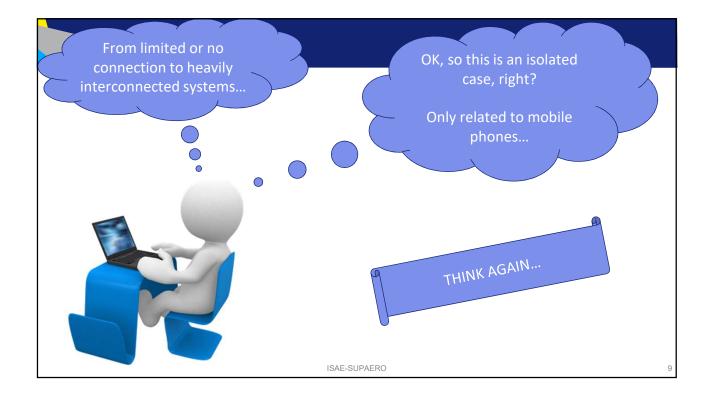
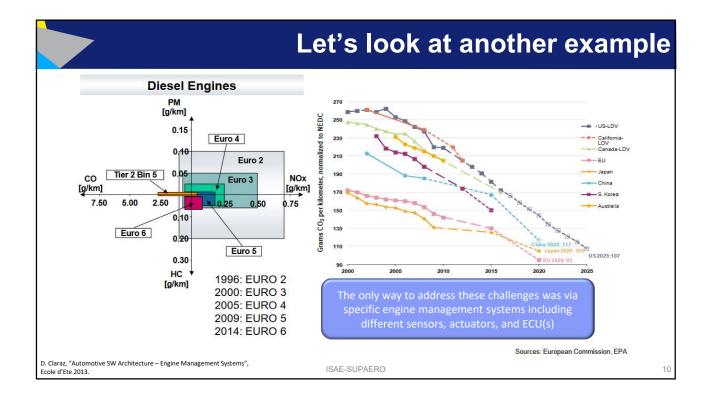
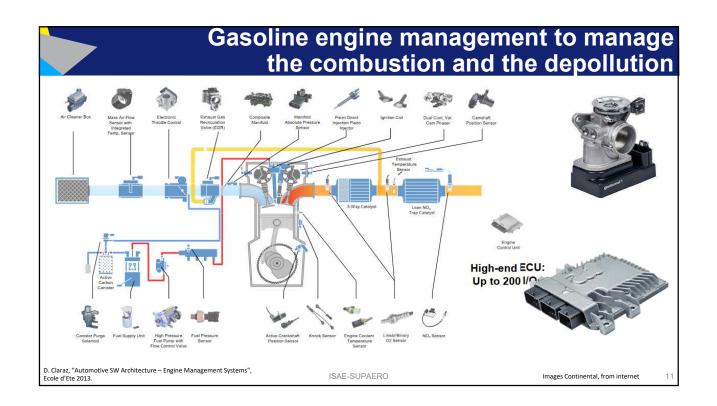
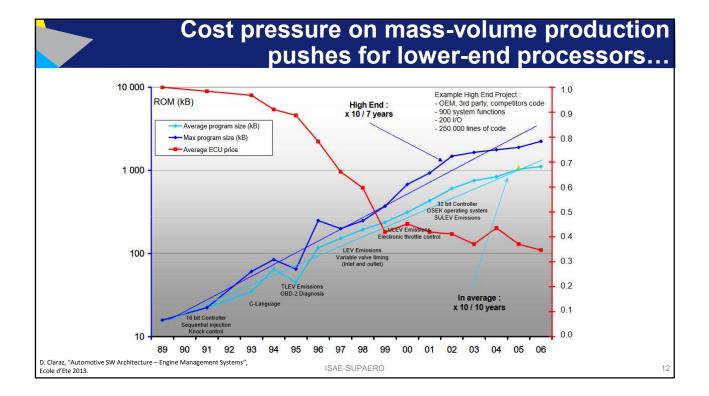


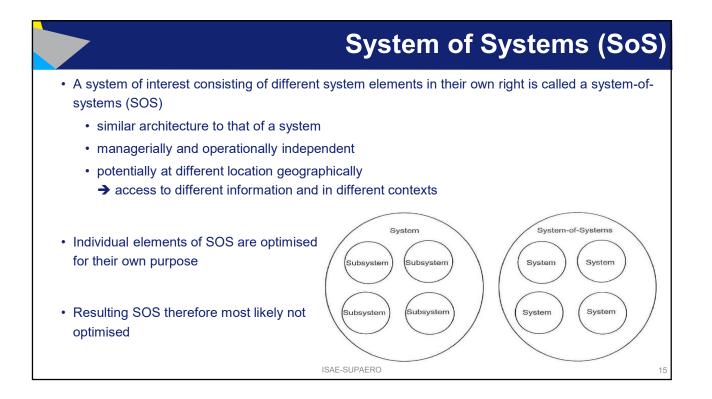
	How new technologies increase engineering complexity and what to do about it
th	ooking at <mark>novel technologies</mark> that step-by-step are coming into our lives, we can be impressed by ne results, by the possibilities new products offer, and by the way they slowly change our lives as rell.
a	hese networked technologies are often communicating continuously with other systems and have certain degree of autonomy for taking decisions. Such "Cyber Physical Systems" (CPS), with ometimes the human in the loop, pose real challenges to industries.
in w di	ooking from a systems design point of view, such new technologies tend to increase the omplexity a designer or an engineer needs to manage. Characterised by multiplicity, by interdependence, by a certain degree of heterogeneity, with continuous interactions, and overall with a product or system behaviour that is difficult to predict, such systems, such systems are also ifficult to validate. And, if it concerns safety-critical embedded systems, to get those systems ertified.
a	till, this is a road that is taken, and when looking for example at autonomous vehicles of utonomous drones, such technologies are being considered, so to be able to cover the takeholder requirements, or more in general the expectations from our society.
m de	o, what to do about them This presentation aims at analysing the challenges and to propose a nethodology to support the design process. Starting from a new value-based approach to system esign and engineering, research directions are suggested for the coming years, so to be able to repare the future.

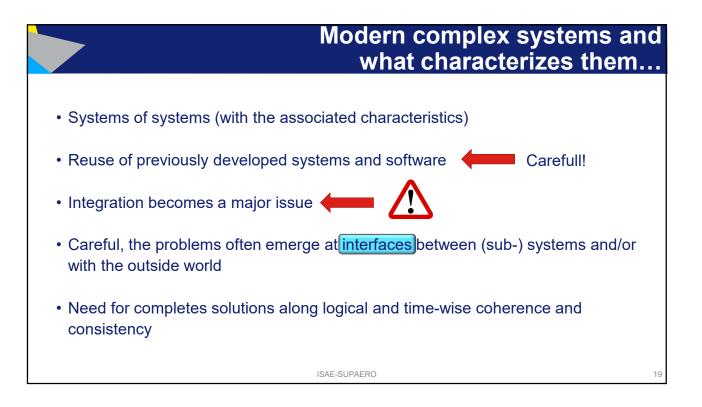


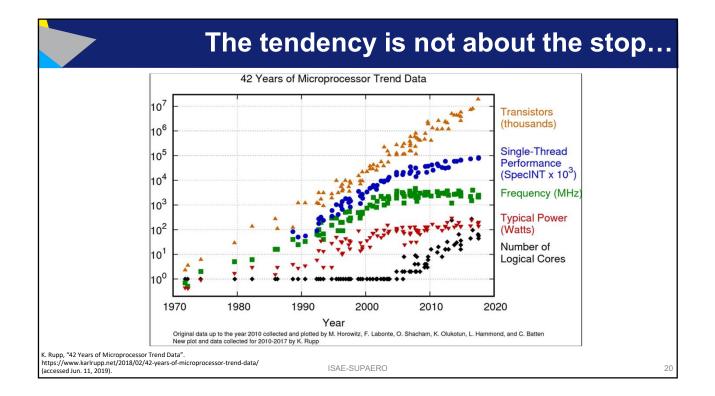




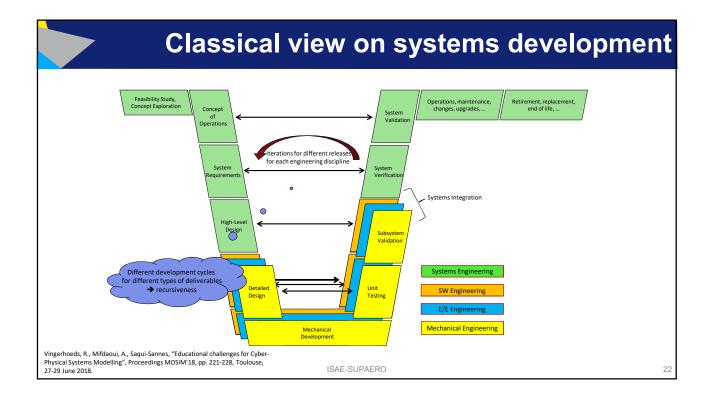


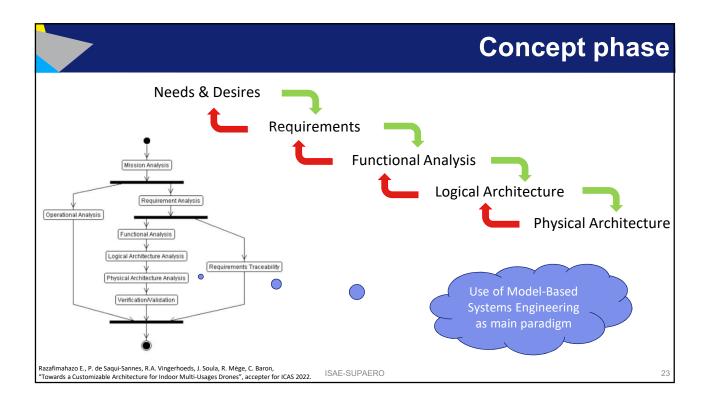


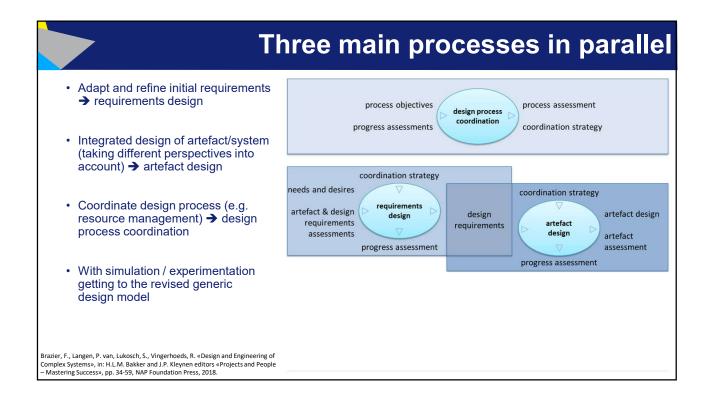


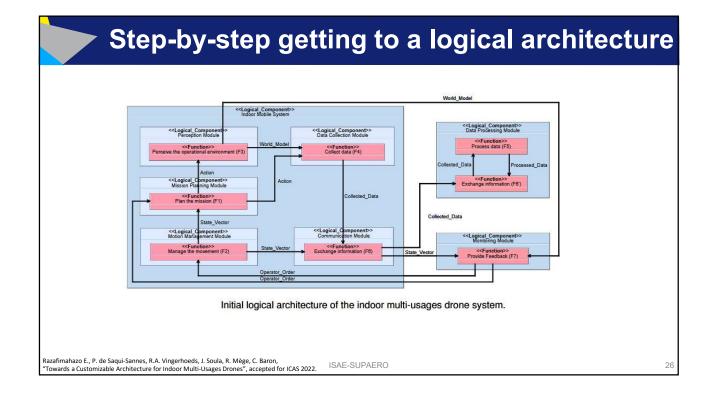

Complex systems are systems that display behaviour that is unexpected, emerging, and/or unpredictable.

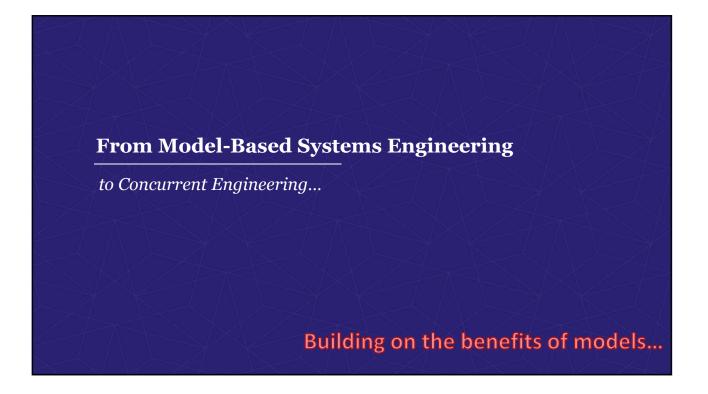
- · Large scale applications, distributed, with many participants, multiple interests, multiple perspectives,
- The involvement of many stakeholders with different, sometimes conflicting, interests and goals, requiring extensive cooperation and coordination throughout the system's lifecycle,
- Decision-making by stakeholders on the basis of uncertain, incomplete, inconsistent, or ambiguous information,
- · Continuous change that may span many years,
- Systems of systems embedded and connected autonomous sub-systems with different norms and values, rules of engagement and agreement, communication architectures, and requirements for trust,
- Many parts and many dependencies between parts and with the environment,
- Technology not readily available at the beginning of the program,
- · Not one unique objective measure to determine the quality of a design,
- · Emergent behavior, unexpected events

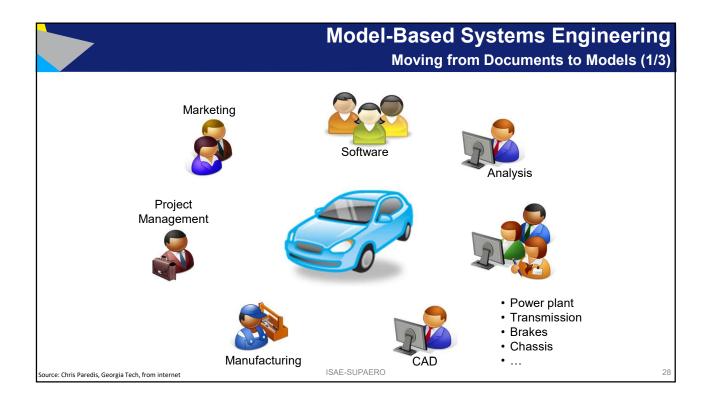

Extended from

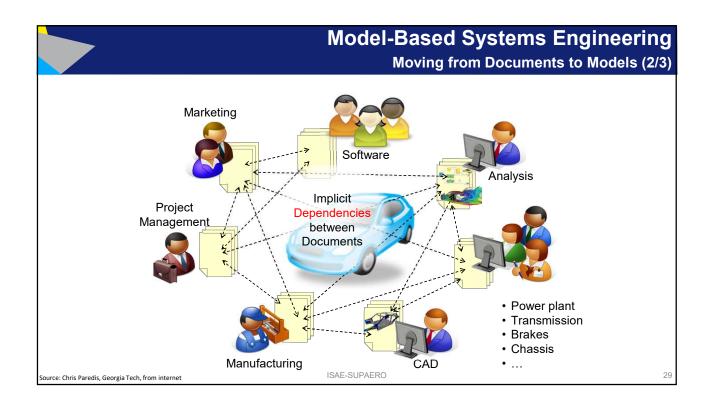

Food, R. L., (1990). "Liberating Systems Theory", In: Liberating Systems Theory. Contemporary Systems Thinking. Springer, Boston, MA., and Poel I. (2009). "Values in engineering design". In: Meijers A, editor. Handbook of the Philosophy of Science. Volume 9: Philosophy of technology and engineering sciences. Amsterdam: Elsevier, pp. 973–1006. Well, isn't this exactly what we are talking

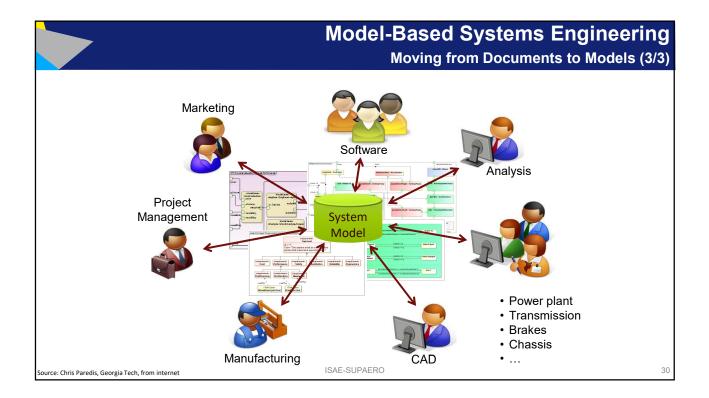


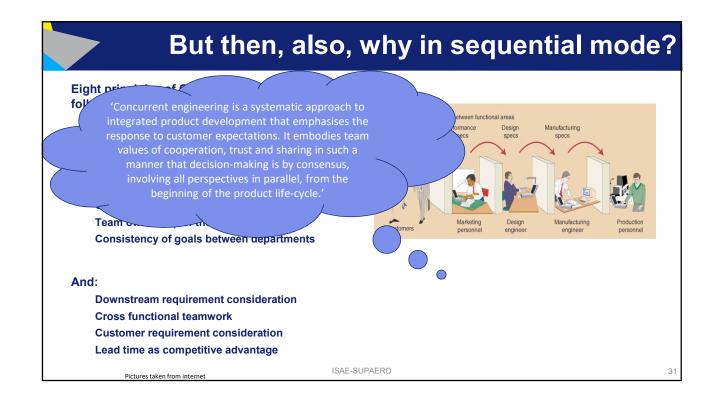


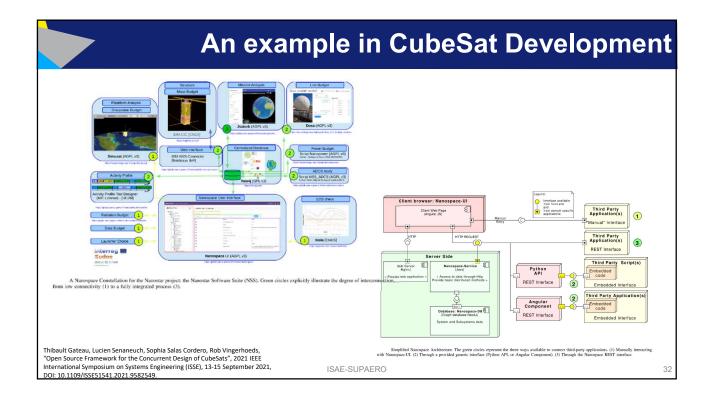


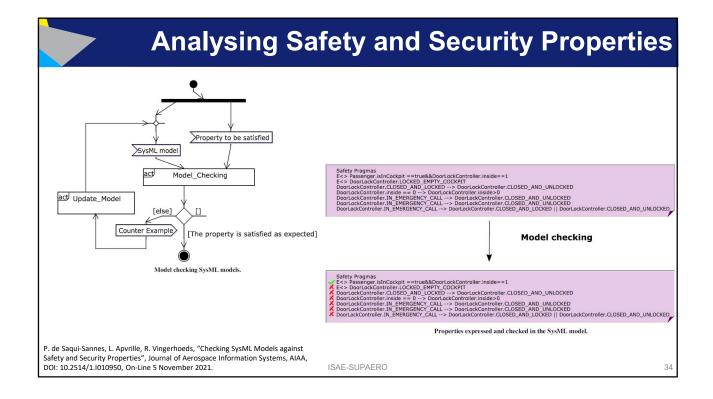


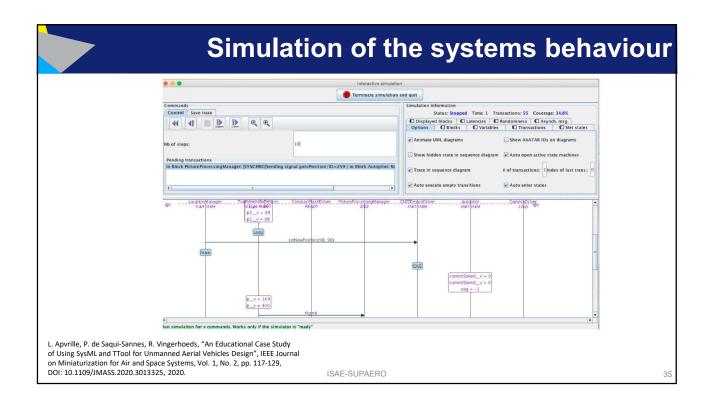


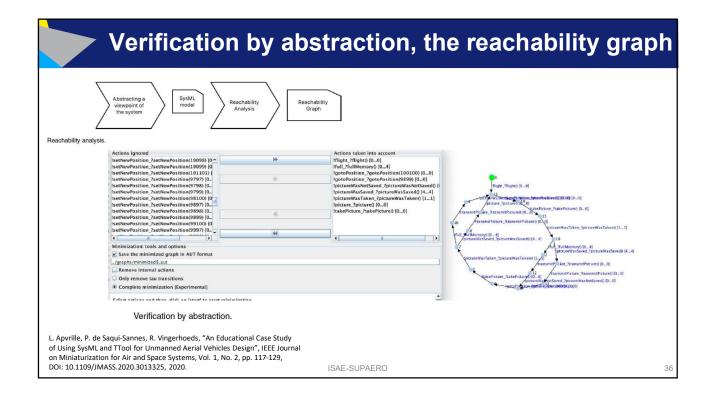

		5 Gan	st	a	rt	t	o el	abo	rate
Functional requirements will drive the functional a architecture	ISSESSI	ment for the c	desig	ın aı	nd '	will	lead to a	logical	
Behavioural requirements will drive the performant solutions are performant enough			Type			het		roposed Trace to	
	ID	System requirement	(FBSE)	Priority	01 0	2 03 0	04 stakeholder need	s Functions	Stakeholder(s
		The system shall use the provided							
Structural requirements will impose (partial)	Sys.R.01.04	The system shall use the provided Building_Data when available. The system shall be compatible with IFC	Functional	Medium	x 3	*	x 51k.Nd.01.04	Process data	BIM_Expert
	Sys.R.01.04.01	Building, Data when available. The system shall be compatible with IFC files. The system shall read the provided	Structural	Medium Medium Medium	x x		x Stk.Nd.01.04 Stk.Nd.01.04 x Stk.Nd.01.04	Process data	BIM_Expert
solutions and constraints and therewith limit the		Building, Data when available. The system shall be compatible with IFC files. The system shall read the provided Building, Data. The system shall store the provided		Medium Medium Medium Medium	x x x x x x		Stk.Nd.01.04 x Stk.Nd.01.04		
	Sys. R. 01. 04. 01 Sys. R. 01. 04. 02	Building, Bata when available. The system shall be compatible with IFC lies. The system shall read the provided Building, Data. The system shall store the provided Building, Data into a memory. The system shall be able to process the	Structural Functional	Medium	× × ×		SHk.Nd.01.04 x SHk.Nd.01.04 x SHk.Nd.01.04	Process data Process data	BIM_Expert BIM_Expert
solutions and constraints and therewith limit the	Sys.R.01.04.01 Sys.R.01.04.02 Sys.R.01.04.03	Building, Data when available. The system shall be compatible with IFC files. The system shall read the provided Building, Data. The system shall store the provided Building, Data into a memory.	Structural Functional Functional	Medium Medium	× × ×	* * *	Stk.Nd.01.04 x Stk.Nd.01.04 x Stk.Nd.01.04 x Stk.Nd.01.04	Process data Process data Process data	BIM_Expert BIM_Expert BIM_Expert
solutions and constraints and therewith limit the	Sys.R.01.04.01 Sys.R.01.04.02 Sys.R.01.04.03 Sys.R.01.04.04	Building, Data when available. The system shall be compatible with IPC files. The system shall read the provided Building, Data. The system shall be able to process the provided Building, Data. The system shall be able to use the 20	Structural Functional Functional Functional	Medium Medium Medium	× 3 × 3 × 3 × 3 × 3 × 3	x x x	Stk.Nd.01.04 x Stk.Nd.01.04 x Stk.Nd.01.04 x Stk.Nd.01.04 x Stk.Nd.01.04	Process data Process data Process data	BIM_Expert BIM_Expert BIM_Expert BIM_Expert
solutions and constraints and therewith limit the	Syn.R. 01.04.01 Syn.R. 01.04.02 Syn.R. 01.04.03 Syn.R. 01.04.04	Building, Data when exolution. The system shall be comparised with IFC files. The system shall need the provided dualing, Data is an emerory. The system shall need and the specified provided Building, Data is not provided Building, Data is not provided Building, Data is the system shall be able to use the 20 plan of the Building.	Structural Functional Functional Functional Structural	Medium Medium Medium Medium	x 3 x 3 x 3 x 3 x 3 x 3 x 3	x x x	SHLNG.01.04 X SHLNG.01.04	Process data Process data Process data	BIM_Expert BIM_Expert BIM_Expert BIM_Expert BIM_Expert
 solutions and constraints and therewith limit the design space Experiential considerations influence the design 	Syn. R. 01.04.01 Syn. R. 01.04.02 Syn. R. 01.04.03 Syn. R. 01.04.04 Syn. R. 01.04.05 Syn. R. 01.04.05	Building (Data when available. The system shall be compatible with IFC Bites. The system shall need the provided Building (Data). The system shall be all to proceed Building (Data) into a memory. The system shall be all to proceed provided Building, Data. The system shall be all to suce the BUI model of the Building. The system shall be all to suce the BUI model of the Building.	Structural Functional Functional Structural Structural	Medium Medium Medium Medium	× × × × × × × × × × × × × × × × × × ×	x x x x	SH-MA 01.04 X SH-MA 01.04	Process data Process data Process data Process data	BIM_Expert BIM_Expert BIM_Expert BIM_Expert BIM_Expert BIM_Expert
solutions and constraints and therewith limit the design space	5yn R 01.04.01 5yn R 01.04.02 5yn R 01.04.02 5yn R 01.04.03 5yn R 01.04.05 5yn R 01.04.05 5yn R 01.05 5yn R 01.05 5yn R 01.05	Insiding Crasts where available. The reptern half are comparised with FCF time. The reptern half are comparison of the Insiding Crast. The reptern half are also the process the provider balding. Data. The reptern half are also the process the provider balding. The half is the the THE The reptern half are last in the THE model of the balding. The reptern half are last in the THE Model of the balding.	Structural Punctional Functional Functional Structural Functional	Medium Medium Medium Medium	x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3	x x x x x x x	SRN400.04 X SRN400.05 X SRN400.05	Process data Process data Process data Process data Process data Eschange Information Plan the mission & Provide	BIM_Lapert BIM_Expert BIM_Expert BIM_Expert BIM_Expert BIM_Expert Operator

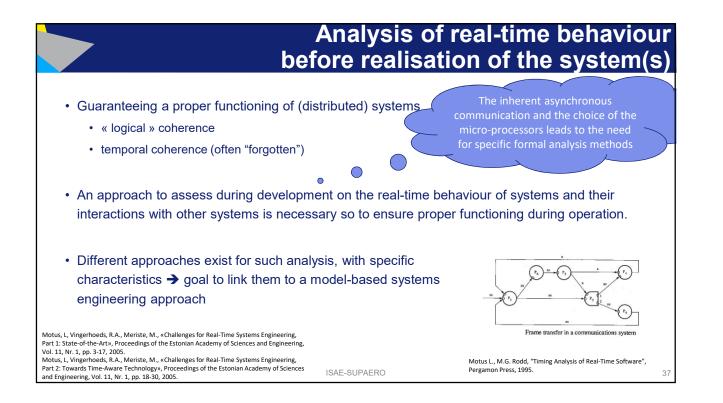


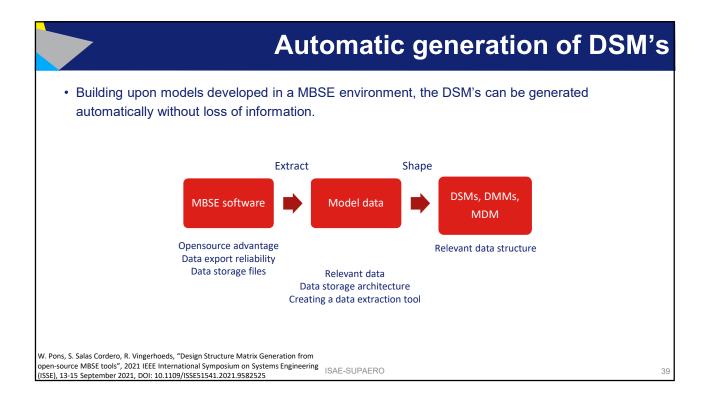


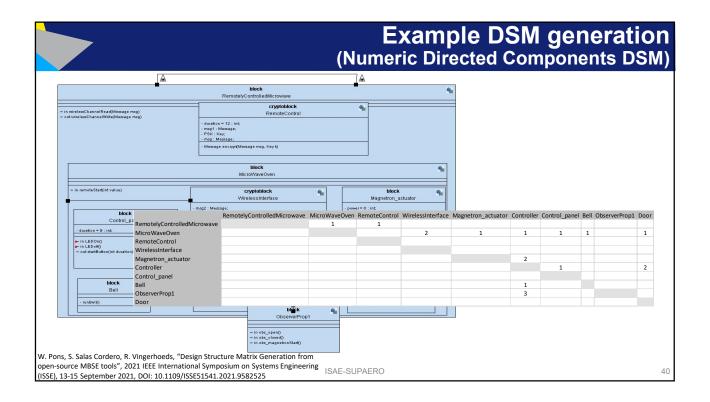


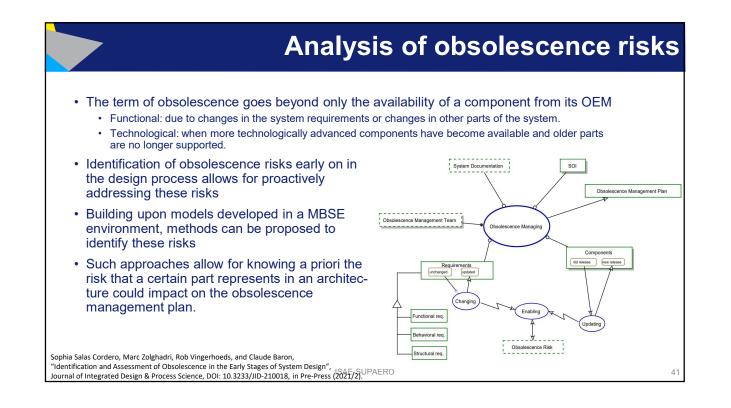


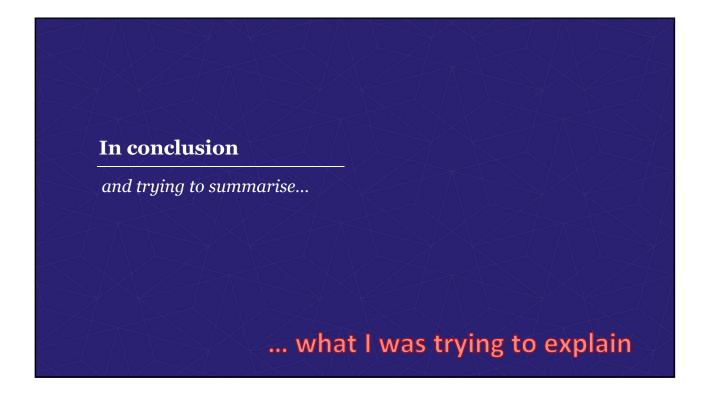




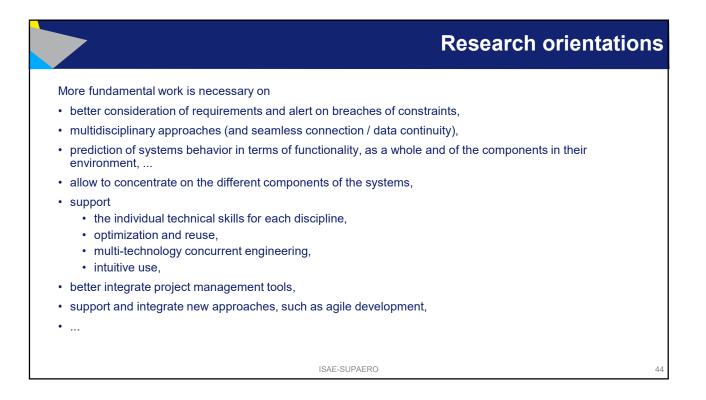


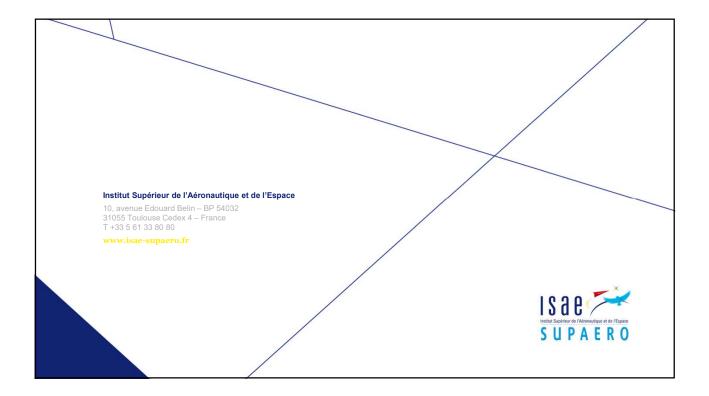






Design Str	uct	u	re	N	//a	ati	riz	K ((D	S	SN
A network modelling tool used to represent the elements											
comprising a system and their interactions, thereby	OBDH	R	1	0	1	1	1	1	0	1	1
highlighting the system's architecture or designed structure.	Communications	2	2	0	0	0	0	0	3	0	0
nighting the system's architecture of designed structure.	Structure	4	0	8	4	4	4	4	0	1	4
	Payload	0	0	0	B	0	0	0	0	0	0
DSMs are particularly well suited for applications in complex	Power	1	1	0	1	R	1	1	6	1	1
systems development and in the area of engineering	ADCS	0	0	1	0	0	R	0	5	0	0
management.	Propulsion	0	0	1	0	0	0	×	3	0	0
management.	Mission	0	1	4	1	0	0	0	R	0	0
	Thermal	0	0	0	0	1	0	0	5	R	0
Due to their structure, DSM's allow for analysing using matrix	Navigation	0	0	0	0	0	0	0	1	0	X
operations.	1	communit	cations St	udure p	syload	PONO,	NDC9 Pro	pulsion N	ission T	Navi Navi	gation
 Their creation, however can be very cumbersome and error pror 	ne.										
Salas Cardara C. Fartin D. Vinaschande "Consurrant Consentual Design											
Salas Cordero, C. Fortin, R. Vingerhoeds, "Concurrent Conceptual Design Jencing for MBSE of Complex Systems through Design Structure Matrices", seedings of the Design Society: DESIGN Conference, Vol. 1, pp. 2375-2384, ISAE-SUPAERO ISAE-SUPAERO											




Conclusions

- Novel (networked and intelligent) technologies are step-by-step taking a bigger place in our lives, but
 increase design complexity of the concerned system(s)
- A structured design approach starting with analysis of needs, desires and values leading into requirements is proposed, linked to a recurrent use of three in parallel running design processes on requirements design, the artefact design and the design coordination.
- The use of MBSE is recommended from the earliest starts, but not only to draw, but to do analyses as well on the logical coherency and completeness, the time-wise behavior, links to complementary tools, etc
- · The adoption of concurrent engineering offers interesting possibilities

ISAE-SUPAERO

		_
	Reference	S
1.	Apvrille L., P. de Saqui-Sannes, R. Vingerhoeds, "An Educational Case Study of Using SysML and TTool for Unmanned Aerial Vehicles Design", IEEE Journal on Miniaturization for Air and Space Systems, Vol. 1, No. 2, pp. 117-129, DOI: 10.1109/JMASS.2020.3013325, 2020.	
2.	Brazier, F., Langen, P. van, Lukosch, S., Vingerhoeds, R. «Design and Engineering of Complex Systems», in: H.L.M. Bakker and J.P. Kleynen editors «Projects and People – Mastering Success», pp. 34-59, NAP Foundation Press, 2018.	
3.	Claraz D., "Automotive SW Architecture – Engine Management Systems", Ecole d'Ete 2013.	
4.	Flood, R. L., (1990). "Liberating Systems Theory", In: Liberating Systems Theory. Contemporary Systems Thinking. Springer, Boston, MA.	
5.	Gateau Th., Lucien Senaneuch, Sophia Salas Cordero, Rob Vingerhoeds, "Open Source Framework for the Concurrent Design of CubeSats", 2021 IEEE International Symposium on Systems Engineering (ISSE), 13-15 September 2021, DOI: 10.1109/ISSE51541.2021.9582549.	
6.	Motus L., M.G. Rodd, "Timing Analysis of Real-Time Software", Pergamon Press, 1995.	
7.	Motus, L, Vingerhoeds, R.A., Meriste, M., «Challenges for Real-Time Systems Engineering, Part 1: State-of-the-Art», Proceedings of the Estonian Academy of Sciences and Engineering, Vol. 11, Nr. 1, pp. 3-17, 2005.	
8.	Motus, L, Vingerhoeds, R.A., Meriste, M., «Challenges for Real-Time Systems Engineering, Part 2: Towards Time-Aware Technology», Proceedings of the Estonian Academy of Sciences and Engineering, Vo 11, Nr. 1, pp. 18-30, 2005.	
9.	Poel I. (2009). "Values in engineering design". In: Meijers A, editor. Handbook of the Philosophy of Science. Volume 9: Philosophy of technology and engineering sciences. Amsterdam: Elsevier, pp. 973–1006	
10.	Pons W., S. Salas Cordero, R. Vingerhoeds, "Design Structure Matrix Generation from open-source MBSE tools", 2021 IEEE International Symposium on Systems Engineering (ISSE), 13-15 September 2021 DOI: 10.1109/ISSE51541.2021.9582525	
11.	Razafimahazo E., P. de Saqui-Sannes, R.A. Vingerhoeds, J. Soula, R. Mège, C. Baron, « Towards a Customizable Architecture for Indoor Multi-Usages Drones », accepted for ICAS 2022	
12.	Rupp K., *42 Years of Microprocessor Trend Data*, https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/ (accessed Jun. 11, 2019).	
13.	Saqui-Sannes P. de, L. Apvrille, R. Vingerhoeds, "Checking SysML Models against Safety and Security Properties", Journal of Aerospace Information Systems, AIAA, DOI: 10.2514/1.1010950, On-Line 5 November 2021.	
14.	Salas Cordero S.K., C. Forlin, R. Vingerhoeds, "Concurrent Conceptual Design Sequencing for MBSE of Complex Systems through Design Structure Matrices", Proceedings of the Design Society: DESIGN Conference, Vol. 1, pp. 2375-2384, Cambridge University Press, doi:10.1017/dsd.2020.96, October, 26-29 2020.	
15.	Salas Cordero S.K., Marc Zolghadri, Rob Vingerhoeds, and Claude Baron, "Identification and Assessment of Obsolescence in the Early Stages of System Design", Journal of Integrated Design & Process Science, DOI: 10.3233/JID-210018, in Pre-Press (2021/2).	
16.	Vingerhoeds, R., Mifdaoui, A., Saqui-Sannes, "Educational challenges for Cyber-Physical Systems Modelling", Proceedings MOSIM 18, pp. 221-228, Toulouse, 27-29 June 2018.	
	ISAE-SUPAERO	45

