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Abstract: In this paper, we propose a distributed diagnosis strategy by using reflectometry in
highly complex wiring networks. Although the problem of sensors number optimization is greatly
studied in the literature, it is not well investigated in complex wiring networks diagnosis. Our
proposed approach is based on two principles which are diagnosis sensors number and location
optimisation using Bayesian Networks and measure uncertainty estimation. It consists in four
steps: (1) sensors implementation in a deterministic case, (2) influential parameters on diagnosis
measure identification, (3) diagnosis measure modelling using Bayesian Networks, (4) sensor
number and location optimization. Here, our objective is to minimize both sensors number and

a wire diagnosis measure uncertainty.
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1. INTRODUCTION

In recent years, we have witnessed a paradigm shift in
the automotive and aeronautic industries. The appear-
ance of “X-by-wire” technology, replacing the traditional
mechanical and hydraulic control systems with electronic
ones, increases embedded systems complexity. Moreover,
cumulated wire length rise up to 4 km in a modern car and
400 km in an aircraft AUZANNEAU [2012]. A part of these
wiring networks have been identified as likely responsible
of several tragic mishaps such as the crash of TWA Flight
800 in July 1996 and Swissair Flight 111 in September
1998. Monitoring, diagnosis and maintenance are consid-
ered as a nightmare when wire harness is out-of-sight or
unreachable without dismantling the external structure. It
is also highly expensive in terms of money, time, resources,
risk and persons. Each year, US Navy spends 1.8 million
person-hours for its aircraft wiring systems maintenance
FURSE and HAUPT [2001].

Reflectometry is a powerful technique for detection and
localisation of electric faults in wiring networks. The idea
is to inject a wideband test signal down the wire. During
its propagation, a part of its energy reflects back to the
injection port when it crosses impedance discontinuities.
Then, a received signal analysis, called “reflectogram”,
gives location information about the detected wire fault.
In the literature, many types of reflectometry techniques
are proposed. The main difference between these varieties
lies on the injected test signal type and reflected signal pro-

cessing techniques. Time Domain Reflectometry (TDR)
uses a pulse (Gaussian, rectangular,etc.) as a test signal
and measures the time delay between the injected and
received signal to determine the fault location. Frequency
Domain Reflectometry (FDR) uses a set of sinusoidal
waves as a test signal and analyses the phase and/or
magnitude of the reflected wave FURSE et al. [2003].
Although FDR and TDR have proved their efficiency in
fault detection and localisation for single wires, they are
not so efficient in complex wiring networks. Indeed, both
need to use a high voltage signal to detect intermittent
faults. However, the test signal levels may interfere with
the native ones, if applied while the target system (aircraft,
automobile, etc) is running.

For those reasons, researchers have focused on innova-
tive methods for “on-line” diagnosis in wiring networks
aiming at reducing the consequences of intermittent and
arc faults. To do so, other types of reflectometry have
been proposed such as Sequence Time Domain Reflectom-
etry (STDR) SHARMA et al. [2007] and Spread Spec-
trum Time Domain Reflectometry (SSTDR) that inject a
pseudo-noise code TAYLOR and FAULKNER [1996], WEI
and LI [2011] to diagnose wires in real time. These methods
are able to detect and locate faults on live wires even when
the test signal level is well below the noise margin of the
signal already on the wire.

In order to limit the bandwidth allocated to system signal
and reduce inter-signal and Electromagnetic Compatibil-
ity (EMC) interference, Multiple Carrier Reflectometry



(MCR) NAIK et al. [2006], AMINI et al. [2009] and Multi-
Carrier Time Domain Reflectometry (MCTDR) LELONG
and OLIVAS [2009] are proposed for fault detection and
location in a complex and very complex wiring network.
Indeed, both operate in a parallel testing mode thanks to
multiple carriers use. The most interesting characteristic
of the latest methods is their flexibility to diagnose and
monitor live wires in a much shorter time.

In practice, a distributed diagnosis strategy is necessary
when multiple reflectometers (referred also as diagnosis
sensors) are implemented in order to guarantee a reliable
and continuous diagnosis in complex wiring system. A
multi-sensor architecture offers better robustness, relia-
bility and network coverage. However, there are major
problems associated with such an architecture (Fig.1):
sensor reliability, optimal sensor number and location,
signal processing, data exchange, sensor communication,
resource allocation (bandwidth and memory), etc.
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Fig. 1. Multi-Reflectomer Architecture Principles

In this paper, we focus on the number and location of
diagnosis sensors that impact the diagnosis measure qual-
ity and then, we estimate the level of confidence for each
proposed architecture. Firstly, we consider a deterministic
case implementation where each wire of the network is
related at least to one reflectometer. Secondly, we propose
to remove one or more reflectometers from the network and
estimate the measure uncertainty. Our main objective is
to find the best trade-off between optimal sensors number
and wiring network diagnosis reliability with a reasonable
maintenance cost.

The remainder of the paper is organized as follows: In
section 2, we present an overview of existing diagnosis
sensors number optimisation works. In section 3, we intro-
duce our proposed diagnosis approach in a complex wiring
network using Bayesian Networks. Finally, we conclude
with a brief recall of our proposed strategy and future
works perspective.

2. RELATED WORKS

Our work is related to the integration of uncertainties
caused by the lack of knowledge in terms of integrated
components behaviour and random evolution of the stud-
ied environment such as sensors number and location.
Indeed, uncertainty requires the use of probabilities that,
by propagation, allows access to levels of confidence in
the obtained measure GODICHAUD et al. [2009], VIL-
LENEUVE et al. [2011]. In this paper, we focus on the
sensors number used to diagnose wiring networks and cor-
responding confidence levels by using Bayesian Networks.

Although the problem of sensors number optimisation is
well studied in the literature STASZEWSKI and WOR-
DEN [2001], NAOREM and MAKARAND [2009], it is
not well investigated in complex wiring networks diagnosis
using reflectometry. Wiring networks, which can carry in-
formation or energy, are composed of different cable types
which are connected to each other. Each cable in a network
is defined by its own characteristic impedance, propagation
velocity, conductivity, permittivity, length, type, etc. In
this study, we consider the following hypothesis:

H;. Each cable has a short length (less than 100 meter) in
order to inject high frequency waves to reduce signal
attenuation and dispersion.

H,. Each cable in the network has homogeneous phys-
ical properties (permittivity, conductivity, propaga-
tion velocity, etc).

Hj. The wiring network is arborescent (no loop). Each
cable is either connected to at least 2 other wires or
to one load, as depicted on Fig.2 (The J; are wire
junctions)

Fig. 2. An example of Complex Wiring Network

Commonly, the number of sensors implemented in a n-
branch network is equal to n to ensure a maximum network
coverage. In such an implementation, it is clear that all
the wires are diagnosed at least by one reflectometer.
However, as waves transmit test and system signal through
a wire simultaneously and in different directions, these
signals may interfere with each other and potentially
cause false alarms or useful signals distortion, leading to
errors. Moreover, on financial side, the implementation of
a great number of sensors in high complex networks, such
as those found in automotive and aeronautic industries,
is extremely expensive in economic terms but also with
respect to the space and volume.

Aiming at reducing the total number of sensors, author
in LELONG [2010] has recently proposed to implement
Nsensor sensors in a complex network where:

J—1
Nsensor = Z (nj - 1) (1)
=0

where J represents the total junctions number in a network
and n; is branches number (excluding the trunks) of
the jh junction. Equation (1) is established under some
assumptions which are: (1) All network trunks are on one
or more path(s) from one reflectometer to another. (2)



For each junction with more than one branch, there is at
most only one branch that is not related to a reflectometer.
Although the number of reflectometers implemented in
the network is reduced, the obvious question here is:
“How much confidence shall we have in obtained diagnosis
measure?”.

To answer that question, we aim in this work at finding
a good trade-off between the number of sensors and the
diagnosis measure confidence by using probabilistic based
model.

3. DIAGNOSIS STRATEGY IN A COMPLEX WIRING
NETWORK

There are two possible approaches to tackle our optimi-
sation problem. The first one (used later) is to define the
multi-sensor architecture (number and location) from a
predefined confidence level to respect. The second one (not
shown here) is to characterize the level of confidence in an
obtained measure for a multi-sensor architecture which is
already implemented. In this work, the proposed method
consists of four steps which are:

(1) Implement a deterministic case: each cable is con-
nected at least to one diagnosis sensor.

(2) Define influential parameters to estimate efficiency
uncertainty.

(3) Model diagnosis measure using Bayesian Networks.

(4) Optimize the number of sensors by removing one
or more reflectometers and estimate efficiency uncer-
tainty.

3.1 Deterministic Case Implementation
Let’s start with a deterministic case where the number of

sensors in a n-branch network is equal to n as it is depicted
by Fig.3. R; denotes the Reflectometer .

Fig. 3. Reflectometer Employment in a Complex Wiring
Network

In this deterministic case, all the network branches are
diagnosed at least by one diagnosis sensor which not
only enhances the network system coverage, but also
increases the diagnosis performance in terms of detection,
precise location and reliability. However, when reporting
a diagnosis measure result, it is also mandatory to give
a quantitative indication of the measure quality in order
to estimate its level of confidence. In the absence of such

indication, diagnosis measure results can not be compared,
either among themselves or relative to reference values
(case of healthy network). Therefore, it is necessary to
introduce a diagnosis measure estimation in order to
evaluate and define a confidence level.

To that end, the identification of the diagnosis main
drivers is required. The objective is then to associate a
probabilistic value to the states or modalities likely to
be taken by the different parameters in order to build a
probabilistic based model. This is what we propose at the
following sections.

3.2 Influential Parameters Identification

In wiring system diagnosis, the influential factors for the
estimation of the measure uncertainty are gathered into
groups:

Table 1. Influential Parameters

Group Parameter(s)

Cable gauge, conductivity, permittivity, characteris-
tic impedance, propagation velocity.

Signal type, amplitude, phase.

Sensors number, location, localization precision.

Network topology, geometry.

Fault type,length, width, location.

Analyser human, machine.

Environment

In this work, we focus on sensors number and locations as
influential parameters. We consider that the other param-
eters, described in Table 1 related to cable, injected signal,
network, fault, analyser and environment are constant
among the whole diagnosis tests.

3.8 Measurement Modelling using Bayesian Network

Bayesian Network is a Directed Acyclic Graph (DAG)
which encodes probabilistic relationships among variables
of interest NAIM et al. [2007]. It is made of nodes repre-
senting variables and edges denoting the direct dependen-
cies between these variables.

In order to reduce Bayesian Network implementation dif-
ficulties, we propose to divide the procedure into several
steps: (1)wiring network decomposition, (2) sub-network
definition,(3) Bayesian Networks design, and (4) integra-
tion into a global Bayesian Network PRZYTULA and
THOMPSON [2000].

(1) Wiring Network Decomposition: When the mon-
itored network topology is extremely complex, em-
bedded diagnosis may need high computing power
and processing time to extract relevant information.
To overcome these drawbacks, a solution is to dis-
tribute the diagnosis inside the network architecture.
Then, the wiring network is divided into sub-networks
with simpler topologies (in the deterministic case of
Fig.3, each sub-network is composed by a single wire).
The sub-networks are monitored by dedicated diag-
nosis systems AUZANNEAU et al. [2007], AUZAN-
NEAU and RAVOT [2007].

(2) Sub-Network Definition: After selecting one of
the sub-networks for modelling, we need to gather
some technical knowledge on that sub-system. This



Fig.

knowledge may be collected from different sources
such as: user manual, testing procedures, statistical
information on diagnosis and monitoring and also
experts.

In our case, we assume that that some kind of TDR is
used to diagnose our wiring network and two types of
faults are considered: open circuit and short circuit.
We should recall here that each sensor injects a pulse
through its corresponding cable which reflects back
to the injection port when it crosses impedance dis-
continuities. Then, the analysis of the received signal
gives information (detection and location) about the
detected wire fault. In our model, I' is the reflection
coefficient of the wave at the fault, where I' = 1 for
an open circuit and I' = —1 for a short circuit, as
depicted on the example of Fig.4.
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4. Obtained Reflectogram Example: Open and Short
Circuit Fault

Bayesian Networks Design: In this step, the in-
formation gathered during sub-network definition and
the presence of wiring diagnosis experts are required.
As Bayesian Network construction is an iterative pro-
cess, this phase may be repeated several times. Let’s
discuss about Bayesian Network design for a wiring
sub-network. We assume that the cable to diagnose is
perfect (there is no additional noise). We define the
variables of interest in Table.2.

The probabilities are provided by diagnosis or
maintenance experts. Following, the Bayesian Net-
work may be tested in the presence of diagnosis ex-
perts. We notice that our obtained Bayesian model
has a simple structure and a low number of probabil-
ities to assess. Thus, it is very attractive in terms
of minimal time processing, low complexity imple-
mentation and configuration, and minimal resource
allocation such as memory.

Global Model Integration: In this step, we inte-
grate wiring sub-networks in a global Bayesian Net-
work. To do so, we create an additional top-level
integration network. The network selects the sub-
system(s) that is (are) defined by diagnosis measure
as the source(s) of fault(s).

We should notice, here, that the Bayesian Networks
for sub-networks are not isolated from each other.

Table 2. Variables of Interest

Variable Description Modality

Sensor_State diagnosis sensor state Functioning
Faulty

RSignal_Nature reflectogram nature No pic

Fault_Nature

Signal_Injection
Signal_Reception

Sensor_Reliabilty

detected fault nature

pulse signal injection
reflected signal reception

sensor reliability quality

Positive pic
Negative pic
No Fault
ShortCircuit
OpenCircuit
Yes

No

Yes

No

Low
Medium
High

Very High

Sensor_State
Furictionning  98.0
Fauity 200 £
//
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Low 60 mE |
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Fig. 5. The Bayesian Network structure.
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Fach diagnosis sensor may see its own sub-network
and a part of other sub-networks causing information
redundancies. So, each Bayesian Network should keep
track during sub-network modelling of the influences
of its sub-networks neighbours. The simplest solution
is to apply a communication protocol between diag-
nosis sensors to share information and decision. This
is not the purpose of this paper.

After obtaining a measure of the diagnosis in a complex
wiring network using Bayesian Networks, it is mandatory
to estimate the level of confidence in this measure for our
deterministic case. The steps to be followed for evaluating
and expressing the diagnosis measure uncertainty are well
described in ISO [1995].




3.4 Sensor Number and Location Optimisation

In this step, we aim at reducing the number of sensors
in the network with respect to a predefined confidence
level (for example 90%). We can tackle this problem by
different manners. In one hand, we may randomly remove
sensors one by one from the network and estimate at each
time the measure uncertainty until we reach a predefined
confidence level. In the other hand, we may decompose
our network in several generic networks of “Y” or “star’
shape AUZANNEAU et al. [2007] as depicted by Fig.6.
‘We note here that each sub-network has only one junction
(or ramification). We propose to implement a single sensor

Sub-network A

=
-

Sub-network C

Fig. 6. Complex Wiring Network Decomposition

in each sub-network. Then, we apply the 4 steps process
previously described using Bayesian Networks. After ob-
taining diagnosis measure results, a step of confidence level
estimation is introduced to qualify the obtained measure.
It is clear that using this approach reduces the number
of sensors in the network with respect to some confidence
levels and then decreases ambiguities caused by signals
interference and information redundancy without neglect-
ing the important cost reduction in terms of purchase,
implementation, configuration and maintenance.

In order to validate our approach, we need to compare dif-
ferent sensors implementation procedures, described pre-
viously, in terms of diagnosis measure quality, processing
time, resource allocation and of course cost which will be
the purpose of future works.

4. CONCLUSION

In this work, we proposed a wiring network distributed
diagnosis strategy using reflectometry. In the context of
complex and very complex wiring networks, we divided
the process into several steps: network decomposition, sub-
network definition, Bayesian Networks design for each sub-
network, and finally integration into a global Bayesian
Network to extend measure result.

We aimed in this paper at finding a good trade-off be-
tween minimal sensors number and wire diagnosis measure
uncertainty. Thus, to tackle sensors number optimisation
problem, we proceeded in stages. Firstly, we implemented

multi-sensor architecture in a deterministic case. Secondly,
we defined influential parameters on diagnosis measure.
Then, we modelled diagnosis measure using Bayesian Net-
work. Finally, we proposed two different approaches to op-
timize the sensor number and location in wiring networks.
As future works, we will implement and test our proposed
strategy to extend the optimal number and location of
diagnosis sensors in complex networks.
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