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PERMODELAN MOLEKUL, SINTESIS, PENCIRIAN DAN AKTIVITI 

SITOTOKSIK TERBITAN BAHARU KALKON, PIRAZOLINA DAN 

PIRIMIDINA 

 

ABSTRAK 

 

Tiga siri baharu terbitan kalkon yang mempunyai aktiviti antikanser yang baik 

telah dikaji iaitu dua siri terbitan tri-kalkon S1(1-7) dan S2(1-7), dan satu terbitan 

mono-kalkon S3(1-7). Tiga siri lain pirazolina Ai-Aiii dan pirimidina Bi-Biii daripada 

mono-kalkon juga telah dikaji menggunakan AutoDock 4.2.6. Interaksi antara molekul 

dan tenaga pengikatan bagi sebatian yang dicadangkan telah dikenalpasti untuk 

disintesis dan dicirikan. Sebatian yang terbaik telah dipilih untuk analisa lebih lanjut 

secara simulasi MD menggunakan AMBER 14. Sebatian berikut yang terdiri daripada 

terbitan kalkon, S1-1, S1-2, S2-1, S2-2, S3-1, S3-(3-5), terbitan pirazolina, Ai-Aiii dan 

pirimidina, Bi-Biii daripada mono-kalkon S3-(1,3-5) menunjukkan afiniti pengikatan 

yang tinggi bagi interaksi dengan tapak pengikatan aktif EGFR. Semua terbitan 

kalkon, pirazolina dan pirimidina yang dipilih ini telah disintesis untuk ujian aktiviti 

sitotoksik terhadap sel kanser payudara dan aktiviti perencatan EGFR. Sintesis terbitan 

kalkon telah dijalankan secara kondensasi Claisen-Schmidt manakala penutupan 

gelang bagi mono-kalkon telah membentuk terbitan pirazolina dan pirimidina. 

Struktur kimia bagi sebatian yang disintesis telah ditentukan melalui teknik 

spektroskopi seperti FTIR, 1H NMR, 13C NMR dan analisa unsur CHN. Aktiviti 

antiproliferatif bagi sebatian yang disintesis terhadap sel kanser payudara (MCF-7 dan 

MDA-MB-231) telah ditentukan secara ujian 3-(4,5-dimetiltiazol-2-il)-2,5-

difeniltetrazolium bromida (MTT). Aktiviti  perencatan faktor pertumbuhan epidermis 

bagi sebatian yang paling sitotoksik telah dinilai menggunakan ujian Kinase ADP-



xxiv 

Glo™ (Promega, Madison). Yang menariknya, sebatian S1-1 dan S1-2 menunjukkan 

aktiviti antiproliferatif yang kuat bagi MCF-7 (2.23 ± 0.11 dan 2.04 ± 0.01 µM) serta  

MDA-MB-231 (6.44 ± 0.11 dan 3.75 ± 0.26 µM), relatif kepada tamoksifen dengan 

IC50 masing-masing sebagai 9.3 ± 0.44 dan18.92 ± 1.43 µM. Analisa ikatan hidrogen 

yang menyeluruh sepanjang simulasi dinamik molekul 7 ns bagi sebatian S1-1 dan S1-

2 telah menunjukkan kemampuan sebatian ini untuk mengekalkan interaksi yang 

diperlukan bagi perencatan, terutamanya interaksi dengan MET 793 dan LYS 745. 

Pengiraan MM-GBSA menunjukkan bahawa ligan membentuk ikatan yang kuat dalam 

tapak aktif, dengan tenaga pengikatan -56.6 dan -44.04  kcal/mol bagi sebatian S1-1 

and S1-2, masing-masing. Tenaga pengikatan ini adalah setara dengan TAK-285 (-

66.17 kcal/mol), yang menunjukkan bahawa sebatian S1-1 dan S1-2 menunjukkan 

peningkatan yang ketara dalam rawatan ketahanan antikanser. Ini disebabkan oleh 

kesan yang berpotensi terhadap EGFR sebagai perencat yang diramalkan oleh kajian 

simulasi dinamik molekul dan analisa EGFR secara in vitro. Kesan anti-ER yang 

mungkin telah diramalkan oleh kajian secara in vitro.  
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MOLECULAR MODELLING, SYNTHESIS, CHARACTERISATION AND 

CYTOTOXICITY ACTIVITY OF NEW CHALCONE, PYRAZOLINE AND 

PYRIMIDINE DERIVATIVES 

 

ABSTRACT 

 

Three new series of novel chalcone derivatives with promising anti-cancer 

activity were studied which are two series of tri-chalcone derivatives S1(1-7) and S2(1-

7) and a series of mono-chalcone derivatives S3(1-7). Another three series of 

pyrazoline Ai-Aiii and pyrimidine Bi-Biii from mono-chalcone were also studied by 

AutoDock 4.2.6.  The intermolecular interactions and binding energies of the proposed 

compounds were determined to be synthesised and characterized. The best compounds 

were selected for further investigation by MD simulation using AMBER 14. The 

following compounds of chalcone derivatives S1-1, S1-2, S2-1, S2-2, S3-1, S3-(3-5), 

pyrazoline derivatives Ai-Aiii and pyrimidine Bi-Biii from mono-chalcone S3-(1,3-5) 

demonstrated the highest binding affinity for the interaction with the active EGFR 

binding site. These selected chalcones, pyrazoline and pyrimidine derivatives were 

synthesised to test their cytotoxicity activity against breast cancer cell lines and EGFR 

inhibitory activity. Synthesis of the chalcone derivatives was performed via a Claisen-

Schmidt condensation while the ring-closing of mono-chalcones formed the 

pyrazoline and pyrimidine derivatives. The chemical structures of the synthesised 

compounds were confirmed using spectroscopic techniques such as FTIR, 1H NMR, 

13C NMR and elemental analysis (CHN analysis). Antiproliferative activity of the 

synthesised compounds against breast cancer cell lines (MCF-7 and MDA-MB-231) 

were evaluated using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide 

assay (MTT). The epidermal growth factor inhibition activity of the most cytotoxic 
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compounds was assessed using ADP-Glo™ Kinase Assay (Promega, Madison). 

Interestingly, compounds S1-1 and S1-2 showed potent antiproliferative activity of 

MCF-7 (2.23 ± 0.11 and 2.04 ± 0.71 µM) and  MDA-MB-231 (6.44 ± 0.01 and 3.75 ± 

0.26 µM), relative to tamoxifen IC50 of 9.3 ± 0.44 and 18.92 ± 1.43 µM, respectively. 

Extensive hydrogen bond analysis throughout 7 ns molecular dynamics simulation of 

compounds S1-1 and S1-2 demonstrated the capacity of these compounds to retain the 

interactions that exert the inhibitory effect, especially interactions with MET 793 and 

LYS 745. The MM-GBSA calculations illustrated that the ligands form a powerful 

bond within the target site with binding energies of -56.6 and -44.04  kcal/mol for 

compounds S1-1 and S1-2, respectively. These binding energies were comparable with 

TAK-285 (-66.17 kcal/mol), which indicated that compounds S1-1 and S1-2 showed 

a significant improvement in the anticancer resistant treatment. This is due to their 

potential effects on the EGFR as inhibitors which were predicted by molecular 

dynamics simulation studies and in-vitro EGFR analysis. Their possible anti-ER effect 

was predicted by the in-vitro studies. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the study 

1.1.1 Cancer 

Cancer is a group of diseases with abnormal cell growth that can spread into or 

invade nearby tissues. Cancer arises due to the transformation of a normal cell into a 

tumour cell, progressing from a lump to a malignant tumour. Such transformation is 

due to the low capability of the normal cells to neutralise the production of excess free 

radicals in the surrounding, causing the cells to grow out of control in an irregular way 

(Cooper, 2000). Cancer remains a major global health problem, affecting both 

developed and developing countries and has also been reported as the second-highest 

cause of death after cardiovascular diseases. According to the 2014 World Health 

Organization report, breast cancer is one of the most common cancer, diagnosed in 

women and a major cause of death worldwide (Fitzmaurice et al., 2017).  

There are many types of cancer treatment, depending on the type of cancer and 

stages of diagnosis. Some cancer patients need only one treatment while others need a 

combination of treatments, such as surgery with chemotherapy and/or radiation 

therapy (Nowecki & Jeziorski, 2017). Other treatments include 

immunotherapy, targeted therapy or hormone therapy (Coates et al., 2015; 

Vanderpuye et al., 2017). If cancer has not spread into the surrounding tissues, surgery 

and radiotherapy can remove the tumour. If the cancer cells have spread, systemic 

treatment such as chemotherapy is needed which involves the use of agents that act by 

inhibiting cell division in cancerous cells and ultimately destroying them.  

The use of chemotherapeutic agents has been associated with the reduction of 

the mortality rate (Perazella, 2012; Thavendiranathan et al., 2013; Dasari & 

https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000045729&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000270742&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000045110&version=Patient&language=English
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Tchounwou, 2014; Zhang et al., 2018). However, these chemotherapeutic agents lead 

to adverse effects as a result of damage to normal body cells and organ toxicities which 

reduced the quality of life in cancer patients (Eckhardt, 2002; Skrzydlewska et al., 

2005; Varmus, 2006; Hassan et al., 2016). On balance, these chemotherapeutic agents 

cannot differentiate between the two types of cells (Tang et al., 2017). Such effects 

include hand-foot syndrome, neuropathy, allergic reactions, diarrhea, mouth sores, 

loss of appetite, nausea, vomiting, easy bleeding which increase infections, fatigue 

(Sommariva et al., 2016), chronic kidney disease (Perazella, 2012), cardiac injury, 

heart failure and liver damage (Dasari & Tchounwou, 2014), dermatological toxicities 

such as hair loss, skin and nail damage (Sibaud et al., 2016).  Another major problem 

is the resistance of the cancer cells to the drugs, leading to the failure of treatment and 

also complications including relapse, metastasis and death (Hassan et al., 2016; 

Housman et al., 2014; Tang et al., 2017; Zhang et al., 2018).  

Chemo-resistance (resistance to chemotherapy) has emerged as a major 

problem in breast cancer. Acquired resistance can reverse the initial reduction of 

tumour size. This causes disease progression and conferring resistance to other 

chemotherapeutic agents with different structures and mechanisms of action, a 

phenomenon known as multidrug resistance (Tang et al., 2017). Several strategies have 

been used to overcome chemo-resistance in breast cancer including combination 

therapy, immunotherapy, gene therapy, and novel drug delivery. Although their effects 

are not satisfactory due to toxicity, and drug-drug interactions (Ji et al., 2019), the use 

of chemotherapeutic agents has shown improvement in the survival of cancer patients 

(Thavendiranathan et al., 2013; Zhang et al., 2018). The problem of chemo-resistance 

coupled with the high adverse effect has shifted the sight of the research community 

to design new agents that have minimal side effects, can overcome the challenge of 
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resistance, and can target tyrosine kinase sub-proteins such as Epidermal Growth 

Factor Receptors (EGFRs) (Ji et al., 2019).  

1.1.2 Epidermal Growth Factor Receptors (EGFRs) 

Strong EGFR expression in breast cancer has been investigated by several 

studies, especially in tamoxifen-resistant breast cancer cases (Massarweh et al., 2008; 

Li et al., 2013; Huang & Fu, 2015). Since targeting the estrogen receptor is not a unique 

survival track for breast tumours, the EGFR pathway offers the alternative. The 

positive breast tumours of the estrogen receptor (ER-α) that initially possess low or 

normal levels of EGFR usually gain drastically over-expressed EGFR during the 

development of the tamoxifen resistance (Li et al., 2013; Sharma et al., 2019). Thus, 

the combined treatment of the EGFR inhibitor with tamoxifen has demonstrated an 

improvement in the sensitivity of cancerous cells toward the tamoxifen (Gee et al., 

2003).  

EGFR acts as a significant growth signal receptor that regulates cell division 

and survival (Mok et al., 2014). It is considered as the source of stimulus for cancer 

cell proliferation. There is a strong correlation between the overexpression, 

amplification and mutation of these proteins with cancers; particularly breast cancers 

(Wykosky et al., 2011; Huang & Fu, 2015). Auto-phosphorylation of EGFR is a crucial 

step that triggers many pathways involved in the cellular division (Jotte & Spigel, 

2015). This EGFR pathway plays a significant role in carcinogenesis, progression and 

metastasis of cancer, and it is currently targeted by numerous chemotherapeutic agents 

(Chen, 2013; Goffin & Zbuk, 2013). Such agents include small molecule inhibitors 

such as chalcones in the management of cancer including breast cancer (Ji et al., 2019). 

The use of these small molecule inhibitors is encouraged by their unique structures 
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which leads to significant affinities and activities of targeting cancer cells (Elkhalifa 

et al., 2019).  

1.1.3 Chalcones, pyrazoline and pyrimidine scaffold as anticancer agent 

Chalcones (,-unsaturated ketones) represent one of the largest classes of 

plant metabolites which is a flavonoid. It is one of the natural products that has existed 

as a core structure of several drugs such as EGFR inhibitors in the development of 

anticancer agents (Youssef et al., 2004; Manojkumar et al., 2009; Lee et al., 2011; 

Bayomi et al., 2013; Xu et al., 2013; Bayomi et al., 2015; Starok et al., 2015; Wada et 

al., 2015; Qin et al., 2017). Chalcone possesses anti-EGFR kinase activity owing to its 

high hydrogen bonding and hydrophobic interactions which can inhibit the 

proliferation of cancer cells (Yang et al., 2001, Ji et al., 2013). Chalcones remain to be 

the attractive scaffolds due to their abundance in plants and easy synthesis methods. It 

has the structure of two aromatic rings joined by the α,β-unsaturated system (Sapra et 

al., 2016), as shown in Figure 1.1. Chalcone is a well-known intermediate that can be 

used to synthesise different types of heterocyclic compounds. 

Heterocyclic scaffolds can be found in a wide variety of drugs and many 

biologically active compounds of natural products. It was reported that compounds 

with the nitrogen heterocyclic scaffold, in particular, pyrazoline and pyrimidine 

exhibited several pharmacological properties and have become important in the 

development of new effective drugs for cancer. Nitrogen-based heterocyclic 

compounds makeup nearly 60% of all drugs approved by the FDA (Vitaku et al., 2014) 

and represent about 73% of the approved anticancer drugs in 2015 (Hosseinzadeh et 

al., 2018). Pyrazoline, which is a five-membered heterocyclic ring containing two 

adjacent nitrogen atoms (Figure 1.1) is among the most prominent heterocyclic 
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compounds with a wide spectrum of biological activities (Arora et al., 2012). 

Pyrimidine, on the other hand, is a 6-membered heterocyclic unit containing two 

nitrogen atoms (Figure 1.1) have been reported to have wide application, especially as 

anticancer agents (Arora et al., 2012; Sliwoski et al., 2014; James et al., 2017; Yunta, 

2017; Özdemir et al., 2018; Sever et al., 2018 ). In the last decade, substituted 

pyrimidine ring systems, have also been reported as EGFR-kinase inhibitors and 

anticancer agents ( Traxler et al., 1996; Traxler et al., 2001; Thirumurugan et al., 

2018).  

 

Figure 1.1: Chalcone, pyrazoline and pyrimidine scaffolds 

 

Recently, the presence of multi-structural units, or polyvalent, bound to a 

central core may cause simultaneous interactions with multiple receptors (Burmaoglu 

et al., 2019) has become a preferred route for the design of active agents that might be 

novel drug candidates. Compared to the monovalent, polyvalent interactions are much 

stronger and provide the basis for mechanisms of both agonizing and antagonizing 

biological interactions which are fundamentally different from those in monovalent 

systems (Chooi, 2004; Vance et al., 2008).  

 

1.2 Problem Statement 

Since chemotherapeutic drugs cannot differentiate between cancer and normal 

cells (Tang et al., 2017), there is a need to continuously develop new drugs that are 

more efficient in targeting the tumour cells and safe to the normal cells. The 
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development of new chemotherapeutic agents will be more selective to produce drugs 

with fewer side effects ( El-Azab et al., 2010; Alaa et al., 2012; Alanazi et al., 2013; 

Al-Suwaidan et al., 2013; Alanazi et al., 2014; Abdel-Aziz et al., 2016; Al-Suwaidan 

et al., 2016; Alanazi et al., 2016; Mohamed, et al., 2016). Another problem with 

chemotherapy drugs in cancer treatment is the restricted effectiveness due to drug 

resistance which targeted the tyrosine kinase sub-proteins such as Epidermal Growth 

Factor Receptor (EGFR) (Ji et al., 2019). EGFR is found on the surface of normal cells 

that are involved in cell growth when an epidermal growth factor binds to it. EGFR is 

also found at high levels on some types of cancer cells. EGFR inhibitors such as ErbB-

1 or HER-1 inhibitors are used to block these cancer cells to grow and divide. Several 

studies have investigated the EGFR expression in breast cancer. However, limited 

findings in the discovery of new anticancer agents targeting the Epidermal Growth 

Factor Receptor have initiated this work.  

Tri-chalcone derivatives with multi-structural units, causing simultaneous 

interactions with multiple receptors have become the preferred targets for the design 

of new molecules. Notably, in the last decade, few tris-chalcone compounds have been 

reported as versatile precursors for medical and industrial applications (Sum et al., 

2017; Mahmoodi & Zeydi, 2018). Recently, nitrogen-based heterocycles are 

considered a uniques scaffold for various drugs because they exhibited a wide range 

of enhanced biological activities. Based on the above-mentioned criteria, this work 

focused on the synthesis of some chosen compounds of the tris- and mono-chalcone 

derivatives, their computational docking and molecular dynamics (MD) techniques to 

examine these new compounds with chalcone, pyrazoline and pyrimidine scaffolds as 

potential EGFR inhibitors and as anticancer agents against various cancer cell lines. 

Moreover, the evaluation of their in-vitro cytotoxic activity against cancerous and non-
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cancerous cell lines of breast cells has also been determined. The EGFR kinase 

inhibitory assay of the compounds that possess the highest antiproliferative activity 

against breast cancer cell lines has also been tested to confirm the multitarget cytotoxic 

effect. 

1.3 Objectives 

The objectives of this work include: 

1. To design the active molecules using molecular docking and molecular 

dynamics (MD) techniques. 

2. To synthesise and characterise two series of tris-chalcone and a series of mono-

chalcone derivatives via a Claisen-Schmidt condensation reaction. 

3. To synthesise and characterise different series of heterocyclic derivatives with 

pyrazoline and pyrimidine scaffolds. 

4. To evaluate the in vitro cytotoxic activities and EGFR activities of the 

synthesised compounds against the breast cancer cell lines (MCF-7 and MDA-

MB-231). 
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1.4 The scope of the study 

The molecular dynamic work was done at the Molecular Modeling and Drug 

Design Lab, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-

Ahliyya Amman University, Amman, Jordan, under the supervision of the field 

supervisor, Dr. Belal O. Al-Najjar. All the synthesised compounds were characterised 

using the instruments located at the School of Chemical Sciences, Universiti Sains 

Malaysia. The selected compounds were sent to the Advanced Medical and Dental 

Institute, USM in Bertam for cytotoxicity assays under the supervision of Dr Nik Nur 

Syazni Nik Mohamed Kamal. Finally, the in vitro enzymatic assay was done in Al-

Ahliyya Amman University under the supervision of Dr Belal Al-Najjar. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Tyrosine kinase protein-inhibitors  

One of the most important targets is protein tyrosine kinase (PTK) inhibitor 

which plays an important role in the signal transduction process, leading to cell 

proliferation, differentiation, migration, metabolism and programmed cell death. 

Protein kinases are divided based on amino acids. Tyrosine kinases (TKs) 

phosphorylates the phenolic hydroxyl group of tyrosine residues while serine-

threonine kinases (STKs) phosphorylates the alcohol group of serine and threonine 

residues, as shown in Figure 2.1 (Gotink & Verheul, 2010). The signaling pathways 

involved in cancer initiation and progression rely on the activity of kinase enzymes 

which act as important co-factors in signal transduction. (Collins & Workman, 2006). 

These enzymes transfer the phosphate groups onto specific amino acid residues such 

as tyrosine, serine or threonine within protein kinases.  

The tyrosine kinase protein-inhibitors are of great interest due to their capacity 

as therapeutic agents to treat a variety of diseases, especially cancer (Gschwind et al., 

2004; Backes et al., 2008a; 2008b). Among the protein tyrosine kinase, the epidermal 

growth factor receptor (EGFR) has emerged as a key and main target for the 

development of new anticancer agents (Speake et al., 2005; Warnault et al., 2013; 

Yewale et al., 2013). EGFR kinase inhibition in cancer treatment is performed by 

blocking this enzyme with small molecules (drugs). To date, over 10 EGFR inhibitors 

have been approved by the United States Food and Drug Administration (US FDA) in 

the past two decades (Dowell et al., 2005). This includes Gefitinib, Lapatinib and 

Erlotinib (Stamos et al., 2002; Dowell et al., 2005; Ganjoo & Wakelee, 2007) 
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Figure 2.1: Important type of protein kinases (Gotink & Verheul, 2010) 

 

Epidermal Growth Factor Receptor (EGFR) is a transmembrane polypeptide 

protein that belongs to the tyrosine kinase family. EGFRs can be classified into four 

categories, namely HER1 (ErbB-1), HER2 (ErbB-2), HER3 (ErbB-3), and HER4 

(ErbB-4). They control the intracellular signal transduction pathways and are involved 

in the growth factor signaling which is important in tumour cell survival. Abnormal 

signaling of these factors leads to uncontrolled cell proliferation, inhibition of 

apoptosis, angiogenesis, migration, and metastasis of cancer cells (Feitelson et al., 

2015). EGFR is found at high levels in cancer cells. Among the protein tyrosine 

kinases, EGFR has become a target for the development of anticancer agents (Ibrahim 

et al., 2012; Prashar et al., 2012). A variety of small molecule kinase inhibitors have 

been developed to target EGFR family members. Some of the molecules which inhibit 

https://www.sciencedirect.com/topics/medicine-and-dentistry/signal-transduction-pathway
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EGFR are effective in the treatment of cancer (Steelman et al., 2016). Gefitinib and 

Erlotinib are EGFR inhibitors which interrupt signals in the target cells. Lapatinib is a 

dual tyrosine kinase inhibitor that interrupts the HER2/neu and EGFR pathways that 

are used in the treatment of breast and lung cancer. Extensive researches have been 

done on the EGFR inhibitors. Several agents that inhibit individual ErbB receptors and 

the development of multiple ErbB inhibitors have been approved for the treatment of 

cancer validating ErbB receptors as therapeutic targets. 

 

2.2 Chalcone as therapeutic agents 

Most pharmaceutical drugs for cancer treatment have a unique moiety such as 

chalcone with various biological activities. Chalcone is a precursor of flavonoids and 

isoflavonoids in the plant kingdom, representing the secondary metabolites, a naturally 

occurring compound of the terrestrial plants (Bohm, 1998; Sahu et al., 2012). Chalcone 

compounds have various biological activities including anti-infectious (Prashar et al., 

2012), anti-malarial (Domínguez et al., 2013), anticancer and antioxidative properties 

(Shaik et al., 2020), anti-inflammatory (Israf et al., 2007) anti-obesity (Birari et al., 

2011) and anti-spasmodic potential (Sato et al., 2007). Chalcone, 1,3-diphenyl-2-

propene-1-one contains a conjugated double bond that is connected by an α,β-
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unsaturated enone bridge (Kumar et al., 2013; Sapra et al., 2016). Chalcone adopts the 

cis or trans configurations (Figure 2.2) with the trans isomer being more stable and 

predominant while the cis isomer is unstable due to steric effects between the carbonyl 

group and the A-ring (Aksöz & Ertan, 2011). The ,-unsaturated carbonyl moiety in 

chalcone is capable to form irreversible bonds with biological macromolecules and 

hence resulted in toxic effects such as allergy, carcinogenicity and mutagenicity 

(Schwöbel et al., 2010). Such reactivity might be affected by the substituted pattern of 

the aromatic rings and the substituent of the double bond of the enone system 

(Amslinger et al., 2013). 

 

Figure 2.2: Chalcone in trans and cis configurations 

 

Chalcones are promising targets to be used in several cancers including breast 

cancer because of their unique structure and significant affinity for cancer cells 

(Elkhalifa et al., 2019). Many natural and synthetic chalcones have demonstrated 

activity against cancer cells owing to their ability to act and inhibit several cancer 

targets (Mahapatra et al., 2015). Therefore, the understanding of the structure, 

molecular targets and structure-activity relationship could be used to design and 

develop new chalcone derivatives with good chemotherapeutic profiles that give 

minimal adverse effect and low cost (Mahapatra et al., 2015). 
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2.2.1 Synthesis of chalcone molecules 

Chalcones are prepared by condensation reactions via base or acid catalysis 

using various routes (Özdemir et al., 2018; Sever et al., 2018). A growing number of 

new procedures for chalcones synthesis have been reported because of the 

development of different catalysts or reaction conditions. Various synthetic pathways 

of chalcones that have been reported are summarised in Figure 2.3. 

 

Figure 2.3: Some common reactions for chalcone synthesis (Sever et al., 2018) 

 

2.2.1(a) Claisen-Schmidt Condensation 

The Claisen-Schmidt condensation involves a reaction of an equimolar 

quantity of substituted acetophenone and substituted benzaldehyde which is condensed 

in the presence of aqueous-alcoholic alkaline, as shown in Figure 2.4 (Mandge et al., 
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2007). A 10% - 60% concentration of alkali is required and the reaction takes place at 

a temperature of 50℃ for 12-15 hrs or at room temperature. 

 

Figure 2.4: Synthesis of chalcone by Claisen-Schmidt condensation 

 

2.2.1(b) Aldol Condensation  

Aldol condensation involves a reaction between acetophenone and 

benzaldehyde (Figure 2.5). Acetophenone is treated with a base such as KOH or 

NaOH, and produced a product (intermediate) after reacting with benzaldehyde.  The 

intermediate is heated to produce chalcone after losing one water molecule 

(Mukaiyama, 1982; Palaniandavar & Natarajan, 1980). 

 
Figure 2.5: Synthesis of chalcone by Aldol condensation 

 

2.2.1(c) Suzuki Reaction 

The Suzuki reaction involves phenylboronic acid (1) and cinnamyl chloride (2) 

or other benzoyl chlorides (3) and phenyl vinyl boronic acid (4), as shown in Figure 

2.6 (Eddarir et al., 2003).  
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Figure 2.6: Synthesis of chalcone by Suzuki reaction 

 

2.2.1(d) Heck Reaction 

When an aryl vinyl ketone is combined with an aryl iodide under Heck reaction 

conditions, chalcones and other flavonoids are produced, as shown in Figure 2.7 

(Bianco et al., 2003; Zou et al., 2007). 

 
Figure 2.7: Synthesis of chalcone by Heck reaction 

   

2.2.1(e)  Reaction via Microwave Irradiation 

 

 Microwave irradiation is an important tool for green chemistry that 

dramatically reduces the reaction time, increases the yield and enhances product 

purities by reducing unwanted side reactions compared to conventional heating 

methods. In the preparation of chalcones and their analogs using microwave technique 

(Figure 2.8), heterogeneous and homogeneous catalysts such as potassium carbonate, 

barium hydroxide, KF-Al2O3, p-toluenesulfonic acid, zirconium tetrachloride, 

piperidine and aqueous alkali have been used (Gall et al., 1999; Blass, 2002; Bora et 

al., 2005). 
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Figure 2.8: Synthesis of chalcone by microwave-assisted reaction 

 

2.2.1(f) Reaction via Ultrasound Irradiation 

Ultrasound irradiation has been employed in organic synthesis to accelerate 

and enhance the performance of the reaction. Compared to the conventional method, 

ultrasonic irradiation is a green synthetic technique in chemical reactions. Chalcones 

and their derivatives can be synthesized through ultrasound irradiation using 

heterogeneous and homogeneous catalysts such as potassium carbonate, basic Al2O3, 

amino-grafted zeolite, Ba(OH)2, pulverized KOH and KF-Al2O3 (Fuentes et al., 1987; 

Wei et al., 2005; Calvino et al., 2006).  

Younis and co-workers (2016) reported that the reaction of substituted 

acetophenone (5) with acetic acid under ultrasonic activation to form (6) which react 

with a series of aldehydes (7) in water as a benign medium to form (8) with improved 

yield and reaction time (Figure 2.9).  

 
Figure 2.9: Synthesis of chalcone by ultrasound irradiation reaction 

 

2.2.1(g) Reaction via solvent-free reaction 
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Rothenberg and colleagues (2001) posited that solid-solid reactions take place 

when a liquid melt is produced and this could be a eutectic mixture from mixed 

reactants.  A high concentration of reactants in this solvent-free reaction increased the 

reaction rate. In Figure 2.10, benzaldehyde and acetophenone were mixed and melted 

before adding the base (NaOH). This results in the formation of a pasty mixture as the 

solid product of chalcone is produced and separated from the solution. 

 
Figure 2.10: Synthesis of chalcone by solvent-free reaction 

 

2.2.2 Anticancer activities of chalcone molecules 

Chalcones exist in nature and can be found in plants which are commonly used 

as traditional folklore remedies (Żyszka et al., 2017). Chalcone derivatives play a 

significant role in the design and development of anticancer drugs as they have 

excellent activity against various cell lines (Anto et al., 1995; Boumendjel et al., 2008; 

Kumar et al., 2010; Mohamed et al., 2012). Some examples of the chalcone derivatives 

(Figure 2.11) include Sofalcone (9), an anti-ulcer drug that increases the amount of 

mucosal prostaglandin for the gastroprotective effect against Helicobacter pylori 

(Higuchi et al., 2010) while Metochalcone (10) was approved as a choleretic drug 

(Sahu et al., 2012). Cucurmine (11) are the core structure of several drugs with a wide 

range of biological applications, including EGFR inhibition as well as antitumour 

activities (Bayomi et al., 2015; Bayomi et al., 2013; Lee et al., 2011; Manojkumar et 

al., 2009; Qin et al., 2017; Starok et al., 2015; Wada et al., 2015; Xu et al., 2013; 

Youssef et al., 2004). Butein (12) and Flavokawain B (13) are natural chalcones with 

anticancer activities, which were extracted from traditional Chinese medicinal herbs 
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(Yang et al., 2018) and the roots of Piper methysticum (Abu et al., 2013), respectively. 

Compounds 12 and 13 have been successfully utilised as EGFR inhibitors (Ji et al., 

2013; Yang et al., 1998) in the development of anticancer agents.  

 
Figure 2.11: Example of drugs with chalcone scaffold 

 

Kotra and co-workers (2010) have synthesised a new series of quinolinyl 

chalcone compounds 14 (Figure 2.12) which were found to possess anticancer activity 

(Kotra et al., 2010). 

 
Figure 2.12: Synthesis of quinolinyl chalcone compounds 14 

 

Mizuno et al. (2010) have reported the synthesis of retinoid-chalcone hybrids 

15, as shown in Figure 2.13. The cyano-derivative (R1=CN, R2=R3=H) was identified 
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as an anticancer agent with an IC50 value of 0.66 M against colon cancer cell line 

HT-29 (Mizuno et al., 2010). 

 
Figure 2.13: Synthesis of retinoid-chalcone hybrids 15 

 

Kumar et al. (2010) reported the synthesis of indolyl chalcones 16 (Figure 

2.14). which were identified as anticancer agents with IC50 values of 0.03 and 0.09 

M, against MIA PaCa-2 cell line. 

 
Figure 2.14: Synthesis of indolyl chalcones 16 

 

Syam and his co-workers (2012) have synthesised an anticancer chalcone 17, 

as shown in Figure 2.15 and studied their anti-tumour activity against the MCF-7 

(human breast cancer), A549 (human lung cancer), PC3 (human prostate cancer), HT-

29 (colorectal cancer) and WRL-68 human normal liver cell lines. Empirical analysis 

revealed that most of the compounds are effective against the cancer cell lines that 

were tested. 
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Figure 2.15: Synthesis of chalcone 17 

 

Ngameni et al. (2013) reported the synthesis of O-allyl chalcones 18 which 

were found to possess anticancer activity with IC50 values below or around 10 µM 

(Figure 2.16)  

 
Figure 2.16: Synthesis of O-allyl chalcones 18 

 

Furthermore, Champelovier and his co-workers (2013) have reported the 

synthesis of compounds 19 and 20, the cytotoxicity of both chalcones was produced 

by ROS generation, G2/M accumulation leading to inhibit the growth of LN229 cell. 

nevertheless, compound 20 caused an irreversible cell death process on both quiescent 

and proliferative cells, which should be considered as a possible side-effect. 

Compound 19 caused proliferative cell culture, which should be considered a good 

candidate and as a new emerging treatment targeting cell death pathways in 

glioblastoma cells.   
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Jain et al. (2014) have developed halogenated chalcone-based derivatives 21 

and evaluated their anticancer activity against prostate (PC-3), ovarian (OVCAR-5), 

colon (COLO-205), neuroblastoma (IMR-32) and liver (HEP-2) cancer cell lines. The 

values were compared to the standards used (paclitaxel, adriamycin and 5-fluorouracil) 

and were found to show good anticancer activity (IC50 = 49.9 μΜ) against COLO-205. 

 

Ketabforoosh and his co-workers (2014) reported the synthesis of a series of 

chalcones 22 and flavanones 23 (Figure 2.17) and studied their anti-tumour activity 

against the MCF-7, MDA-MB-231 (human breast cancer), and SK-N-MC (human 

neuroblastoma) cell lines. The introduction of a halogen to the 3,4-dimethoxyphenyl 

part of both series and the attachment of a pyrrolidinyl ethoxy group on the C-7 

position of the flavanone derivatives has proven to increase their activity. The 3-

halogenated chalcones are more active and more potent than etoposide which was used 

as a standard drug against all tested cell lines. 

 
 

Figure 2.17: Synthesis of chalcones 22 and flavanones 23 
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In 2015, El-Feky and co-workers have studied several new phthalazine-1,4-

diones anticancer activity in vitro on HCT-116 colon cancer cells and MCF-7 breast 

cancer cells. Chalcone 24 was reported to be active against both cancer cell lines with 

the IC50 values of 2.21 and 1.0 μΜ in colon and breast cancer, respectively, compared 

to the standard drug doxorubicin with the IC50 values of 0.81 and 0.72 μΜ, 

respectively.  

 

 

In 2015, a series of quinazolinone-chalcone derivatives 25 were synthesised by 

Wani and co-workers (Figure 2.18) and the compounds were found to show anticancer 

activity with the IC50 values ranging from 5.5 to 8.5 μM against HCT-116, HL-60, PC-

3, A-549, MIA PaCa-2 and MCF-7 human cell lines.  

 
 

Figure 2.18: Synthesis of quinazolinone-chalcone derivatives 25 



23 

 

Do and his co-workers (2016) have synthesised some heterocyclic chalcones 

26 (Figure 2.19) that have cytotoxic activity with IC50 = 12.51 M. The chalcone 

contains a phenothiazine moiety on the Ar ring and a thiophene heterocycle on the Ar1 

ring. 

 
 

Figure 2.19: Synthesis of heterocyclic chalcones 26 

 

A new series of 3-aryl thiophene-2-aryl and heteroaryl chalcones 27 (Figure 

2.20) were synthesised and tested in vitro on HCT-15 colon cancer cell lines. The best 

anticancer activity was shown by 27a (R1=R3=H, R2=OMe) and 27g (R1=H, R2=OMe, 

R3=2,4,6-tri-Me) with IC50 values of 21 μg/mL and 22.8 μg/mL, respectively, 

compared to the IC50 value of the reference compound, doxorubicin of 25 μg/mL 

(Venkataramireddy et al., 2016). 

 
 

Figure 2.20: Synthesis of heteroaryl chalcones 27 

 

Apoptosis or programmed cell death is a natural way to remove cells that are 

aging from the body. There are a lot of anticancer therapies that trigger apoptosis 
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induction to kill malignant cells. However, long-term treatment with certain drugs 

might decline drug sensitivity in cancers which is caused by resistance. Developing 

new drugs to resist tumour by targeting apoptosis regulators is an attractive strategy 

for new cancer therapies. Zhao et al. (2017) have reported some novel indolyl-chalcone 

derivatives, 28 and 29 which inhibited the growth of A549 lung cancer cells effectively 

by causing apoptosis in vitro and in vivo with the IC50 values ranging from 2.46 to 

49.35 μM. 

 

Tumour suppressor protein p53 induces cell cycle arrest and apoptotic cell 

death to prevent cancer development. Activation and stabilization of p53 through small 

organic molecules is an attractive approach for the treatment of cancers. Iftikhar et al. 

(2017) have reported a series of modified chalcones, 30 with various substituents such 

as chloro, fluoro, methoxy, nitro, benzyloxy, 4-methyl benzyloxy. These chalcones 

which were tested against human colorectal (HCT116) and breast (CAL-51) cancer 

cell lines revealed potent antiproliferative activities, comparable to its positive control, 

Nutlin-3. It was found that conjugated ketone is important for antiproliferative and p53 

stabilizing activity of the chalcones. (E)-1-phenyl-3-(3,4,5-trimethoxyphenyl)prop-2-

en-1-one 30 exhibited GI50 (growth inhibition) value of 0.473 ± 0.043 μM against 

HCT-116 cells. 
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In cancer therapeutic targets, four binding sites that can disrupt microtubule 

dynamics are taxanes, vinca alkaloids, laulimalide and colchicine. In many cancers, 

tubulin inhibitors target the first two sites such as paclitaxel (Tax) and vinblastine but 

dose-limiting toxicity and drug resistance are the issues. However, agents targeting the 

colchicine-binding site have minimal multidrug resistance due to high toxicity. 

Therefore, there is a need to develop a microtubule inhibitor that binds to the 

colchicine-binding site with low side effects. Chalcone-based compounds have been 

reported to show potent anti-tubulin activity. Since the binding of certain chalcones to 

tubulin can be inhibited by colchicine, they may directly bind to β-tubulin through the 

colchicine-binding pocket. Since chalcones are abundantly found in many edible 

fruits, they can be relatively safe to humans. Lindamulage et al. (2017) have reported 

some quinolone-chalcone compounds 31 with a promising activity which prefer to kill 

cancer over non-cancer cells. Both the compounds (R=H and R=OMe) bind to the 

colchicine binding pocket, leading to cell death. Importantly, both compounds (R=H 

and R=OMe) effectively killed the tumour cells that showed resistance to colchicine, 

paclitaxel and other agents. The best anticancer activity was shown by 31 (R=OMe) 

with IC50 values from 0.12 μM (MDA-MB-468) to 1.11 μM (U87MG). 

 


