Unitary subgroup of the Sylow 2-subgroup of the group of normalized units in an infinite commutatuve group ring

ATTILA SZAKÁCS*

Abstract. Let G be an abelian group, K a commutative ring with unity of prime characteristic p and let V(KG) denote the group of normalized units of the group ring KG. An element $u=\sum_{g\in G} \alpha_g g \in V(KG)$ is called unitary if u^{-1} coincides with the element $u^*=\sum_{g\in G} \alpha_g g^{-1}$. The set of all unitary elements of the group V(KG) forms a subgroup $V_*(KG)$.

S. P. Novikov had raised the problem of determining the invariants of the group $V_{\star}(KG)$ when G has a p-power order and K is a finite field of characteristic p. This problem was solved by A. Bovdi and the author. We gave the Ulm-Kaplansky invariants of the unitary subgroup of the Sylow p-subgroup of V(KG) whenever G is an arbitrary abelian group and K is a commutative ring with unity of odd prime characteristic p without nilpotent elements. Here we continue this works describing the unitary subgroup of the Sylow 2-subgroup of the group V(KG) in case when G is an arbitrary abelian group and K is a commutative ring with unity of characteristic 2 without zero divisors.

Let G be an abelian group and K a commutative ring with unity of prime characteristic p. Let, further on, V(KG) denote the group of normalized units (i.e. of augmentation 1) of the group ring KG and $V_p(KG)$ the Sylow p-subgroup of the group V(KG). We say that for $x = \sum_{g \in G} \alpha_g g \in KG$ the element $x^* = \sum_{g \in G} \alpha_g g^{-1}$ is conjugate to x. Clearly, the map $x \to x^*$ is an anti-isomorphism (involution) of the ring KG. An element $u \in V(KG)$ is called unitary if $u^{-1} = u^*$. The set of all unitary elements of the group V(KG) obviously forms a subgroup, which we therefore call the unitary subgroup of V(KG), and we denote it by $V_*(KG)$.

Let G^p denote the subgroup $\{g^p : g \in G\}$ and λ an arbitrary ordinal. The subgroup $G^{p^{\lambda}}$ of the group G is defined by transfinite induction in following way: $G^{p^0} = G$, for a non-limited ordinals $G^{p^{\lambda+1}} = (G^{p^{\lambda}})^p$, and if λ is a limited ordinal, then $G^{p^{\lambda}} = \bigcap_{\nu < \lambda} G^{p^{\nu}}$.

The subring $K^{p^{\lambda}}$ of the ring K is defined similarly. The ring K is called

^{*} Research (partially) supported by the Hungarian National Research Science Foundation, Operating Grant Number OTKA T 16432 and 014279.

p-divisible if $K^p = K$.

Let G[p] denote the subgroup $\{g \in G : g^p = 1\}$ of G. Then the factorgroup $G^{\lambda}[p]/G^{\lambda+1}[p]$ can be considered as a vector space over GF(p) the field of p elements and the cardinality of a basis of this vector space is called the λ -th Ulm–Kaplansky invariant $f_{\lambda}(G)$ of the group G concerning to p.

S. P. Novikov had raised the problem of determining the invariants of the group $V_{\star}(KG)$ when G has a p-power order and K is a finite field of characteristic p. This was solved by A. Bovdi and the author in [1]. In [2] we gave the Ulm-Kaplansky invariants of the unitary subgroup $W_p(KG)$ of the group $V_p(KG)$ whenever G is an arbitrary abelian group and K is a commutative ring of odd prime characteristic p without nilpotent elements. Here we continue this works describing the unitary subgroup $W_2(KG)$ of the Sylow 2-subgroup $V_2(KG)$ of the group V(KG) in case when G is an arbitrary abelian group and K is a commutative ring with unity of characteristic 2 without zero divisors.

Note that for the odd primes p the problem of determining the Ulm– Kaplansky invariants of the group $W_p(KG)$ is based, in fact, in the following statement

$$W_p(KG) = \left\{ x^{-1} x^\star : x \in V_p(KG) \right\}$$

(see [2]). But in case p = 2 this statement is not true and in the characterization of the group $W_2(KG)$ we must keep in mind the following lemma.

Lemma 1. Let G be an abelian group of exponent 2^{n+1} (n > 0) and K a commutative ring with unity of characteristic 2 without zero divisors. Then $(V_{\star}(KG))^{2^n} = G^{2^n}$.

Proof. At first we shall prove the lemma for a finite group G. We shall use induction on the exponent of G.

Let n = 1, i.e. G is a group of exponent 4. We shall prove by induction on the order of G that $(V_{\star}(KG))^2 = G^2$.

Let $G = \langle a : a^4 = 1 \rangle$. Then the element

$$x = \alpha_0 + \alpha_1 a + \alpha_2 a^2 + \alpha_3 a^3 \in V(KG)$$

is unitary if and only if

$$xx^{\star} = 1 + (\alpha_0 + \alpha_2)(\alpha_1 + \alpha_3)(a + a^3) = 1.$$

Hence $\alpha_0 = \alpha_2$ or $\alpha_1 = \alpha_3$. If $\alpha_1 = \alpha_3$ then, according to the condition $\alpha_0 + \alpha_1 + \alpha_2 + \alpha_3 = 1$, the unitary element x has the form $x = 1 + \alpha_2(1 + a^2) + \alpha_1(a + a^3)$ and $x^2 = 1$. If $\alpha_0 = \alpha_2$ then $x = \alpha_0(1 + a^2) + \alpha_1 a + (1 + \alpha_1)a^3$.

Therefore $x^2 = a^2$ and the statement is proved for the cyclic group G of order 4.

Let G be a non-cyclic group of exponent 4 and order greater than 4. Then G can be presented as a direct product of a suitable group H and the cyclic group $\langle b \rangle$ which order divides 4.

Suppose that b is an element of second order. Then every $x \in V(KG)$ can be written in the form $x = x_0 + x_1 b$, where $x_0, x_1 \in KH$. If x is a unitary element then

$$xx^{\star} = x_0x_0^{\star} + x_1x_1^{\star} + (x_0^{\star}x_1 + x_0x_1^{\star})b = 1$$

and the equations $x_0x_0^* + x_1x_1^* = 1$, $x_0^*x_1 + x_0x_1^* = 0$ hold. Hence $(x_0 + x_1)(x_0^* + x_1^*) = 1$ and $y = x_0 + x_1 \in V_*(KH)$. By the induction hypothesis, $y^2 = h^2$ for some $h \in H$. Obviously $x^2 = h^2$.

Let b be an element of order 4. The element

$$x = x_0 + x_2 b^2 + (x_1 + x_3 b^2) b$$
 $(x_i \in KH, i = 0, 1, 2, 3)$

of the group V(KG) is unitary if and only if

(1)
$$\begin{cases} (x_0 + x_2 b^2)(x_0^* + x_2^* b^2) + (x_1 + x_3 b^2)(x_1^* + x_3^* b^2) = 1, \\ (x_0 + x_2 b^2)(x_1^* + x_3^* b^2) = 0. \end{cases}$$

Let $\chi(x_0 + x_2b^2) = \gamma$ denote the sum of coefficients of the element $x_0 + x_2b^2$. Then $\chi(x_1 + x_3b^2) = 1 + \gamma$ and from the second equation of (1) we have that $\gamma(1 + \gamma) = 0$. Since K without zero divisors, it follows that $\gamma = 0$ or $\gamma = 1$ i.e. one of the elements $x_0 + x_2b^2$ or $x_1 + x_3b^2$ is invertible. Hence for the unitary element x either $x_0 = x_2b^2$ or $x_1 = x_3b^2$. If $x_0 = x_2b^2$ then, by (1), the element $y = x_1 + x_3b^2$ is unitary in the group ring of the group $\widetilde{H} = H \times \langle b^2 \rangle$. Then, by the induction hypothesis, $y^2 = h^2$ for some $h \in H$ and obviously $x^2 = y^2b^2 = h^2b^2 \in G^2$. If $x_1 = x_3b^2$ then $y = x_0 + x_2b^2 \in V_*(K\widetilde{H})$ and $x^2 = y^2 \in G^2$. So $(V_*(KG))^2 = G^2$ for a finite group G of exponent 4.

Suppose that G is a group of exponent 2^{n+1} (n > 1) and the statement is proved for the groups of exponent less than 2^{n+1} . It is easy to see that $(V_{\star}(KG))^2 \subseteq V_{\star}(KG^2)$. From this, useing the induction hypothesis $(V_{\star}(KG^2))^{2^{n-1}} = (G^2)^{2^{n-1}}$, we have that $V_{\star}(KG)^{2^n} \subseteq G^{2^n}$. The reverse inclusion is obvious and the lemma is proved for a finite group G.

Let G be an infinite abelian group of exponent 2^{n+1} (n > 0) and $x \in V_{\star}(KG)$. Then the subgroup $H = \langle \text{supp } x \rangle$ of the support of x is finite and, by the statement proved in above, $x^{2^n} \in H^{2^n}$. This completes the proof of the lemma.

Theorem. Let λ be an arbitrary ordinal, K a commutative ring with unity of characteristic 2 without zero divisors, P the maximal divisible subgroup of the Sylow 2-subgroup S of an abelian group G, $G_{\lambda} = G^{2^{\lambda}}$, $S_{\lambda} = S^{2^{\lambda}}$, $K_{\lambda} = K^{2^{\lambda}}$. Let, further on, $V_2 = V_2(KG)$ denote the Sylow 2-subgroup of the group V = V(KG) of normalized units in the group ring KG and W = W(KG) the unitary subgroup of $V_2(KG)$. In case $P \neq 1$ we assume that the ring K is 2-divisible.

If $G_{\lambda} \neq G_{\lambda+1}$, $S_{\lambda} \neq 1$ and at least one of the ordinals $|K_{\lambda}|$ and $|G_{\lambda}|$ is infinite, then the λ -th Ulm–Kaplansky invariant $f_{\lambda}(W)$ of the group W concerning to 2 is characterized in the following way:

$$f_{\lambda}(W) = \begin{cases} \max\{|G|, |K|\}, & \text{if } \lambda = 0, \\ f_{\lambda}(V_2) = \max\{|G_{\lambda}|, |K_{\lambda}|\}, & \text{if } \lambda > 0 \text{ and } G_{\lambda+1} \neq 1, \\ f_{\lambda}(G), & \text{if } \lambda > 0 \text{ and } G_{\lambda+1} = 1. \end{cases}$$

Proof. It is easy to prove the following statements (see [3]): 1) $|K^2| = |K|$;

2) if n a nonnegative integer and $J(G^{p^n}[p])$ the ideal of the ring $(KG)^{2^n}$ generated by the elements of the form g-1 ($g \in G^{2^n}[2]$), then $V^{2^n}(KG)[2] = V(K_nG_n)[2] = 1 + J(G^{2^n}[2])$.

Note if $G_{\lambda} = G_{\lambda+1}$ or $S_{\lambda} = 1$ then, according to [3], $f_{\lambda}(V_2) = 0$ and hence $f_{\lambda}(W) = 0$.

At first we shall prove the theorem for a finite ordinal $\lambda = n$. Suppose that n is a nonnegative integer, the Sylow 2-subgroup S_n of the group G_n is not singular, $G_n \neq G_{n+1}$ and at least one of the ordinals $|K_n|$ and $|G_n|$ is infinite. Since

$$W^{2^n}[2] \subseteq V^{2^n} = V(K_n G_n),$$

it follows that

$$f_n(W) \le |V^{2^n}| \le \max\{|K_n|, |G_n|\} = \beta.$$

In the proof of the equation $f_n(W) = \beta$ we shall consider the following cases:

- A) $|K_n| \ge |G_n|,$
- B) $|G_n| > |K_n|$ and $S_n \neq S_{n+1}$,
- C) $|G_n| > |K_n|$ and $S_n = S_{n+1}$,

and in each of this cases we shall construct a set $M \subseteq W^{2^n}(KG)[2]$ of cardinality $\beta = \max\{|K_n|, |G_n|\}$ (if, keeping in mind Lemma 1, it is possible) which elements belong to the different cosets of the group $V^{2^n}(KG)[2]$ by the subgroup $V^{2^{n+1}}(KG)[2]$. This will be sufficient for the proof of the lemma, because the elements of the such constructed set M can be considered as the representatives of the cosets of the group $W^{2^n}(KG)[2]$ by the subgroup $W^{2^{n+1}}(KG)[2]$. Note that the elements of the set M we shall choose in the form yy^{\star} ($y \in V^{2^n}(KG)$).

Let A) holds, i.e. $|K_n| \ge |G_n|$.

It is easy to prove that in this case the Sylow 2-subgroup S_n of the group G_n has such element g of order 2 and there exists an $a \in G_n$ that one of the following conditions holds:

A₁)
$$G_n \neq \langle g \rangle, a \notin \langle g \rangle$$
 and $a^2 \notin \langle g \rangle$

- A₂) $G_n \neq \langle g \rangle, a \notin \langle g \rangle$ and $a^2 \in \langle g \rangle$,
- $\mathbf{A}_3) \ G_n = \langle g \rangle$

and in cases A_1) and A_2) at least one of the elements a or g do not belong to the subgroup G_{n+1} . Indeed, if $g \in G_{n+1}$ then, by condition $G_n \neq G_{n+1}$, the set $G_n \setminus G_{n+1}$ has a proper element a.

Let A₁) holds. Let α be a nonzero element of the ring K_n and $y_{\alpha} = 1 + \alpha a(1+g)$. We shall prove that the set

$$M = \left\{ x_{\alpha} = y_{\alpha} y_{\alpha}^{\star} = 1 + \alpha (a + a^{-1})(1 + g) : 0 \neq \alpha \in K_n \right\}$$

has the above declared property. Really, since $a^2 \notin \langle g \rangle$, it follows that the elements a and a^{-1} belong to the different cosets of the group G_n by the subgroup $\langle g \rangle$. Hence $x_{\alpha} \neq 1$. It is easy to see that $x_{\alpha}^* = x_{\alpha} = x_{\alpha}^{-1}$. Therefore x_{α} is a unitary element of second order of the group $V(K_nG_n)$. If $x_{\alpha} \in V^{2^{n+1}}$ then, from the condition $a^2 \notin \langle g \rangle$, it follows that the elements a and ag belong to the group G_{n+1} , but this contradicts to the choice of elements a and g. Therefore $x_{\alpha} \in W^{2^n}[2] \setminus W^{2^{n+1}}[2]$.

Suppose that the coset $x_{\alpha}V^{2^{n+1}}[2]$ coincides with $x_{\nu}V^{2^{n+1}}[2]$ for a different α and ν from K_n . Then $x_{\alpha} = x_{\nu}z$ for a suitable $z \in V^{2^{n+1}}$. Since $x_{\nu}^* = x_{\nu}^{-1}$, it follows that

$$z = x_{\alpha} x_{\nu}^{\star} = 1 + (\alpha + \nu)(a + a^{-1})(1 + g) = x_{\alpha + \nu}$$

and $x_{\alpha+\nu}$ belongs to the subgroup $V^{2^{n+1}}$ what contradicts it which was proved in above. Obviously $|M| = |K_n|$. Therefore the constructed set M has the above declared property.

Let A_2) holds.

It is easy to see that the elements of the set

$$M = \{x_{\alpha} = 1 + \alpha a(1+g) \colon 0 \neq \alpha \in K\}$$

belong to the different cosets of the group V(KG)[2] by the subgroup $V^2(KG)[2]$. Indeed, if $x_{\alpha} \in V^2$ then $a \in G_1$ and $ag \in G_1$. But this contradicts to the choice of the elements a and g and hence $x_{\alpha} \in W[2] \setminus W^2[2]$.

The equation $x_{\alpha} = x_{\nu} z$ $(z \in V^2, \alpha \neq \nu)$ is impossible since from it follows that $z = x_{\alpha} x_{\nu} = 1 + (\alpha + \nu) a(1 + g) = x_{\alpha + \nu}$, and, by proved in above, $x_{\alpha + \nu} \notin V^2$. Obviously |M| = |K| and therefore $f_0(W) = |K|$.

Let us contruct the set M in case n > 0.

Since, by Lemma 1, $f_n(W_2) = f_n(G)$ when $G_{n+1} = 1$, it follows that we can assume that $G_{n+1} \neq 1$. Let $|G_n| \neq 4$. Then the set $G_n \setminus G_{n+1}$ has neither element a, which order is not divisible by 2, or element b of order $2^r > 4$, or has a subgroup $\langle c : c^4 = 1 \rangle \times \langle d : d^2 = 1 \rangle$. Obviously in the first case $a^2 \notin \langle g \rangle$. If in the other cases we put $a = b, g = b^{2^{r-1}}$ or a = c, g = d respectively then the condition $a^2 \notin \langle g \rangle$ holds and we have the above considered case A_1).

Let $G_n = \langle a : a^4 = 1 \rangle$ and $y_\alpha = 1 + \alpha(a+1)$. Obviously the element

$$x_{\alpha} = y_{\alpha}y_{\alpha}^{\star} = 1 + (\alpha + \alpha^2)(a + a^3)$$

is unitary. Let L denote a subset of K_n that has a unique representative in every subset of the form $\{\alpha, 1 + \alpha\} \subseteq K_n$. Then the elements of the set

$$M = \left\{ x_{\alpha} = y_{\alpha} y_{\alpha}^{\star} = 1 + (\alpha + \alpha^2)(a + a^3) : 0 \neq \alpha \in L \right\}$$

belong to the different cosets of the group $W^{2^n}(KG)[2]$ by the subgroup $W^{2^{n+1}}(KG)[2]$. Really, if x_{α} coincides with x_{ν} $(\alpha, \nu \in L)$, then $\alpha + \alpha^2 = \nu + \nu^2$. Hence the equation $(\alpha + \nu)(1 + \alpha + \nu) = 0$ holds, but in the ring without zero divisors this is possible for the different α and ν only in the case $\nu = 1 + \alpha$, what contradicts to the choice of the elements of the set L. Obviously $|M| = |L| = |K_n|$. By Lemma 1, $W^{2^{n+1}} = \langle a^2 \rangle$. If $x_{\alpha}W^{2^{n+1}} = x_{\nu}W^{2^{n+1}}$ $(x_{\alpha} \neq x_{\nu})$ we get the contradictinally equation

$$1 + (\alpha + \alpha^2)(a + a^3) = a^2 + (\nu + \nu^2)(a + a^3).$$

Therefore $x_{\alpha}W^{2^{n+1}} \neq x_{\nu}W^{2^{n+1}}$ for $x_{\alpha} \neq x_{\nu}$ the case A₂) is considered.

Let A₃) holds, i.e. $G_n = \langle g \rangle$. Then $G_{n+1} = 1$. If n = 0 then $W(KG) = V_2(KG)$ and $f_0(W) = f_0(V_2) = |K|$. If n > 0 then, according to Lemma 1, $f_n(W) = f_n(G)$.

Therefore the case A) is fully considered.

Suppose now that B) holds, i.e. $|G_n| > |K_n|$ and the Sylow 2-subgroup S_n of the group G_n does not coincide with the Sylow 2-subgroup S_{n+1} of the group G_{n+1} . Then the set $S_n \setminus S_{n+1}$ has an element g of order $q = 2^r$. Let, further on, $\Pi = \Pi(G_n/\langle g \rangle)$ denote the full set of representatives of the cosets of the group G_n by the subgroup $\langle g \rangle$. Let us consider two disjunct subsets

$$\Pi_1 = \left\{ a \in \Pi \colon a^2 \notin \langle g \rangle \right\} \quad and \quad \Pi_2 = \left\{ a \in \Pi \colon a^2 \in \langle g \rangle \right\}$$

of the set Π . Since G_n is infinite, it is easy to see that $|G_n| = |\Pi| = \max\{|\Pi_1|, |\Pi_2|\}.$

Let us suppose at first that $|G_n| = |\Pi_1|$. Without loss of generality we can assume that the representative of the coset $a^{-1}\langle g \rangle$ is the element a^{-1} . Let E denote the set which has a unique representative in every subset of the form $\{a, a^{-1}\} \subseteq \Pi_1$ and $y_a = 1 + a(1 + g + \dots + g^{q-1})$. Then $|G_n| = |E|$ and the elements of the set

$$M = \left\{ x_a = y_a y_a^{\star} = 1 + (a + a^{-1})(1 + g + \dots + g^{q-1}) : a \in E \right\}$$

belong to the different cosets of the group $V^{2^n}[2]$ by the subgroup $V^{2^{n+1}}[2]$. Indeed, from the supposition $x_a \in V^{2^{n+1}}[2]$ it follows that $ag^i \in G_{n+1}$ for every $i = 0, 1, \ldots, q-1$, but this contradicts to the choice of the element $g \in G_n \setminus G_{n+1}$. It is easy to see that x_a is a unitary element and so $x_a \in W^{2^n}[2] \setminus W^{2^{n+1}}[2]$. Suppose that a and c are the distinct elements of the set E. If $x_a = x_c z$ for some $z \in V^{2^{n+1}}$ then

$$z = x_a x_c^{\star} = 1 + (a + a^{-1} + c + c^{-1})(1 + g + \dots + g^{q-1}).$$

According to the choice of the elements of the set E we have that the elements a, a^{-1}, c, c^{-1} belong to the distinct cosets of the group G_n by the subgroup $\langle g \rangle$. Hence from the condition $z \in V^{2^{n+1}}$ it follows that $a \in G_{n+1}$, $ag \in G_{n+1}$, which contradicts to the choice of the element $g \in S_n \setminus S_{n+1}$.

Let be now $|G_n| = |\Pi_2|$. If $G^2 = 1$ then W(KG) = V(KG) and $f_0(W) = f_0(V_2) = |G|$. If n > 0 and $G_{n+1} = 1$ then, by Lemma 1, $f_n(W) = f_n(G)$. Suppose that $G_{n+1} \neq 1$. Then the group G_n has such element v of order not equals to 2 that $\langle g \rangle \cap \langle v \rangle = 1$. If a such representative of the coset $a\langle g \rangle$ that $a^2 \in \langle g \rangle$ and $a^2 \neq 1$, then $a^2 = g^i \in G_{n+1}$ and, according to the choice of the element g, the integer i is divisible by 2. In this case in role of the representative of the coset $a\langle g \rangle$ in the set Π_2 we can choose the element $a_1 = ag^{-\frac{i}{2}}$. Therefore, we can assume that the set Π_2 consists of the elements of second order. Since $\langle g \rangle \cap \langle v \rangle = 1$, it follows that from the Π_2 we can choose a subset $\widetilde{\Pi}_2$ which elements belong to the distinct cosets of the group G_n by the subgroup $\langle g, v \rangle$ and $|G_n| = |\Pi_2|$. Let $y_a = 1 + av(1 + g + \cdots + g^{q-1})$. Then the set

$$M = \left\{ x_a = y_a y_a^{*} = 1 + a(v + v^{-1})(1 + g + \dots + g^{q-1}) : a \in \widetilde{\Pi}_2 \right\}$$

has the need property. Indeed, the cosets $x_a V^{2^{n+1}}$ and $x_c V^{2^{n+1}}$ coincide if and only if

$$x_a x_c = 1 + (a+c)(v+v^{-1})(1+g+\dots+g^{q-1}) \in V^{2^{n+1}}$$

Since the elements a and c belong to the distinct cosets of the group G_n by the subgroup $\langle g, v \rangle$, it follows that $av \in G_{n+1}$ and $avg \in G_{n+1}$, but this contradicts to the choice of the element $g \in G_n \setminus G_{n+1}$. So the case B) is fully considered.

Let C) holds, that is $|G_n| > |K_n|$ and the Sylow 2-subgroup S_n of the group G_n is 2-divisible.

Let us fix an element $g \in S_n[2]$ and choose such $v \in G_n \setminus G_{n+1}$ that 2 does not divide the order of element v. Since $|S_n| = [S_n : \langle g \rangle] \ge |\langle v \rangle|$ and $v \notin S_n$, it follows that the cardinality of the full set of representatives of the cosets $\Pi = \Pi(G_n/\langle g, v \rangle)$ of the group G_n by the subgroup $\langle g, v \rangle$ coincides with $|G_n|$. Obviously the set Π decomposes to the two disjunct subsets $\Pi_1 = \{a \in \Pi : a^2 \notin \langle v, g \rangle\}$ and $\Pi_2 = \{a \in \Pi : a^2 \in \langle v, g \rangle\}.$

Let $|G_n| = |\Pi_1|$, E be the set which has a unique representative in every subset of the form $\{a, a^{-1}\} \subseteq \Pi_1$ and $y_a = 1 + a(1 + v + v^{-1}(1 + g))$. Then the set M can be choosen in the following way:

$$M = \left\{ x = y_a y_a^{\star} = 1 + (a + a^{-1})(1 + v + v^{-1})(1 + g) : a \in E \right\}.$$

Indeed, from the equation $x_a = x_c z \ \left(z \in V^{2^{n+1}}, \ a \neq c \right)$ follows that

$$z = 1 + (a + a^{-1} + c + c^{-1})(1 + v + v^{-1})(1 + g) \in V^{2^{n+1}}$$

Hence, according to the construction of the set E, the elements a and av belong to the subgroup G_{n+1} , but this contradicts to the condition $v \notin G_{n+1}$.

Suppose now that $|G_n| = |\Pi_2|$. Then $v^2 \neq 1$. If $a^2 = v^2$ for some $a \in \Pi_2$, then from the condition $v \notin G_{n+1}$ it follows that *i* is an even number. Let us choose in the role of the representative of the coset $a\langle g, v \rangle$ the element $a_1 = av^{-\frac{i}{2}}$. Hence we can assume that the set Π_2 of the representatives of the group G_n by the subgroup $\langle g, v \rangle$ consists of the elements of the group $S_n = S_{n+1}$. The set

$$M = \left\{ x_a = 1 + a(v + v^{-1})(1 + g) \colon a \in \Pi_2 \right\}$$

has the need property. Indeed, if $x_a = x_c z$ for the distinct $a, c \in \Pi_2$ and for some $z \in V^{p^{n+1}}$, then $z = x_a x_c = 1 + (a+c)(v+v^{-1})(1+g)$ and $av \in G_{n+1}$. Hence $v \in G_{n+1}$ because – by the choice – $\Pi_2 \subseteq S_{n+1}$, and so we get the contradiction.

Therefore the case C) is fully considered and the statement is proved for a finite ordinal $\lambda = n$. Let us consider the case of infinite ordinal λ .

Let λ be an arbitrary infinite ordinal $R = K_{\lambda}, H = G_{\lambda} \neq G_{\lambda+1}$ and the Sylow 2-subgroup S_{λ} of the group G_{λ} is not singular. Then

$$W(KG)^{2^{\lambda}} \subseteq W(RH) \subseteq V_2(RH)$$

and by transfinite induction it is easy to prove the equation

(2)
$$V_2(KG)^{2^{\lambda}} = V_2(RH).$$

As compared to the group $V_2(RH)$ we can construct the set M as in the above shown cases A), B) and C). Since in every of this cases the set M consist of the elements of the form $x = y^{-1}y^*$ and, by (2), y belongs to the group $V_2(RH) = V_2(KG)^{2^{\lambda}}$, it follows that the elements x are the representatives of the cosets of group $W^{2^{\lambda}}(KG)[2]$ by the subgroup $W^{2^{\lambda+1}}(KG)[2]$.

Therefore for an arbitrary infinite ordinal λ the Ulm–Kaplansky invariants of the group W(KG) can be calculated in the above shown way for the case $\lambda = n$.

References

- A. A. BOVDI AND A. A. SZAKACS, The unitary subgroup of the group of units in a modular group algebra of a finite abelian *p*-group, *Math. Zametki* 6 45 (1989), 23–29 (in Russian). (English translation Math. Notes, 5–6 45 (1989), 445–450.)
- [2] A. SZAKÁCS, Unitary subgroup of the Sylow p-subgroup of the group of normalized units in an infinite commutative group ring. Acta Acad. Paed. Agriensis. Sec. Math. XXII (1994) 85–93.
- [3] A. A. BOVDI AND Z. F. PATAY, The structure of the centre of the multiplicative group of group ring of *p*-group over a ring of characteristic *p*. Vesci Akad. Nauk. Bssr. Ser. Fiz. Math. Nauk. (1978) No. 1, 5–11.

Attila Szakács Kőrösi Csoma Sándor College Institute of Business Finance Department of Mathematics 5600 Békéscsaba, Bajza u. 33. H-Hungary