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Unitary subgroup of the Sylow 2-subgroup
of the group of normalized units

in an infinite commutatuve group ring

ATTILA SZAKÁCS⋆

Abstract. Let G be an abelian group, K a commutative ring with unity of prime

characteristic p and let V (KG) denote the group of normalized units of the group ring

KG. An element u=
∑

g∈G
αgg∈V (KG) is called unitary if u−1 coincides with the element

u⋆=
∑

g∈G
αgg−1. The set of all unitary elements of the group V (KG) forms a subgroup

V⋆(KG).

S. P. Novikov had raised the problem of determining the invariants of the group

V⋆(KG) when G has a p-power order and K is a finite field of characteristic p. This

problem was solved by A. Bovdi and the author. We gave the Ulm–Kaplansky invariants

of the unitary subgroup of the Sylow p-subgroup of V (KG) whenever G is an arbitrary

abelian group and K is a commutative ring with unity of odd prime characteristic p

without nilpotent elements. Here we continue this works describing the unitary subgroup

of the Sylow 2-subgroup of the group V (KG) in case when G is an arbitrary abelian group

and K is a commutative ring with unity of characteristic 2 without zero divisors.

Let G be an abelian group and K a commutative ring with unity of
prime characteristic p. Let, further on, V (KG) denote the group of normal-
ized units (i.e. of augmentation 1) of the group ring KG and Vp(KG) the Sy-
low p-subgroup of the group V (KG). We say that for x =

∑
g∈G αgg ∈ KG

the element x⋆ =
∑

g∈G αgg
−1 is conjugate to x. Clearly, the map x → x⋆ is

an anti-isomorphism (involution) of the ring KG. An element u ∈ V (KG)
is called unitary if u−1 = u⋆. The set of all unitary elements of the group
V (KG) obviously forms a subgroup, which we therefore call the unitary
subgroup of V (KG), and we denote it by V⋆(KG).

Let Gp denote the subgroup {gp : g ∈ G} and λ an arbitrary ordinal.
The subgroup Gpλ

of the group G is defined by transfinite induction in

following way: Gp0

= G, for a non-limited ordinals Gpλ+1

=
(
Gpλ

)p

, and if

λ is a limited ordinal, then Gpλ

= ∩ν<λ Gpν

.
The subring Kpλ

of the ring K is defined similarly. The ring K is called

⋆
Research (partially) supported by the Hungarian National Research Science Founda-

tion, Operating Grant Number OTKA T 16432 and 014279.



90 Attila Szakács

p-divisible if Kp = K.
Let G[p] denote the subgroup {g ∈ G : gp = 1} of G. Then the factor-

group Gλ[p]/Gλ+1[p] can be considered as a vector space over GF (p) the
field of p elements and the cardinality of a basis of this vector space is called
the λ-th Ulm–Kaplansky invariant fλ(G) of the group G concerning to p.

S. P. Novikov had raised the problem of determining the invariants of
the group V⋆(KG) when G has a p-power order and K is a finite field of
characteristic p. This was solved by A. Bovdi and the author in [1]. In [2]
we gave the Ulm–Kaplansky invariants of the unitary subgroup Wp(KG)
of the group Vp(KG) whenever G is an arbitrary abelian group and K is a
commutative ring of odd prime characteristic p without nilpotent elements.
Here we continue this works describing the unitary subgroup W2(KG) of
the Sylow 2-subgroup V2(KG) of the group V (KG) in case when G is an
arbitrary abelian group and K is a commutative ring with unity of charac-
teristic 2 without zero divisors.

Note that for the odd primes p the problem of determining the Ulm–
Kaplansky invariants of the group Wp(KG) is based, in fact, in the following
statement

Wp(KG) =
{
x−1x⋆ : x ∈ Vp(KG)

}

(see [2]). But in case p = 2 this statement is not true and in the character-
ization of the group W2(KG) we must keep in mind the following lemma.

Lemma 1. Let G be an abelian group of exponent 2n+1 (n > 0) and

K a commutative ring with unity of characteristic 2 without zero divisors.

Then (V⋆(KG))2
n

= G2n

.

Proof. At first we shall prove the lemma for a finite group G. We shall
use induction on the exponent of G.

Let n = 1, i.e. G is a group of exponent 4. We shall prove by induction
on the order of G that (V⋆(KG))2 = G2.

Let G = 〈a : a4 = 1〉. Then the element

x = α0 + α1a + α2a
2 + α3a

3 ∈ V (KG)

is unitary if and only if

xx⋆ = 1 + (α0 + α2)(α1 + α3)(a + a3) = 1.

Hence α0 = α2 or α1 = α3. If α1 = α3 then, according to the condition
α0+α1+α2+α3 = 1, the unitary element x has the form x = 1+α2(1+a2)+
α1(a + a3) and x2 = 1. If α0 = α2 then x = α0(1 + a2) + α1a + (1 + α1)a

3.
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Therefore x2 = a2 and the statement is proved for the cyclic group G of
order 4.

Let G be a non-cyclic group of exponent 4 and order greater than 4.
Then G can be presented as a direct product of a suitable group H and the
cyclic group 〈b〉 which order divides 4.

Suppose that b is an element of second order. Then every x ∈ V (KG)
can be written in the form x = x0 + x1b, where x0, x1 ∈ KH. If x is a
unitary element then

xx⋆ = x0x0
⋆ + x1x1

⋆ + (x0
⋆x1 + x0x1

⋆)b = 1

and the equations x0x0
⋆ + x1x1

⋆ = 1, x0
⋆x1 + x0x1

⋆ = 0 hold. Hence
(x0 + x1)(x0

⋆ + x1
⋆) = 1 and y = x0 + x1 ∈ V⋆(KH). By the induction

hypothesis, y2 = h2 for some h ∈ H. Obviously x2 = h2.
Let b be an element of order 4. The element

x = x0 + x2b
2 + (x1 + x3b

2)b (xi ∈ KH, i = 0, 1, 2, 3)

of the group V (KG) is unitary if and only if

(1)

{
(x0 + x2b

2)(x0
⋆ + x2

⋆b2) + (x1 + x3b
2)(x1

⋆ + x3
⋆b2) = 1,

(x0 + x2b
2)(x1

⋆ + x3
⋆b2) = 0.

Let χ(x0 + x2b
2) = γ denote the sum of coefficients of the element

x0 + x2b
2. Then χ(x1 + x3b

2) = 1 + γ and from the second equation of
(1) we have that γ(1 + γ) = 0. Since K without zero divisors, it follows
that γ = 0 or γ = 1 i.e. one of the elements x0 + x2b

2 or x1 + x3b
2 is

invertible. Hence for the unitary element x either x0 = x2b
2 or x1 = x3b

2.
If x0 = x2b

2 then, by (1), the element y = x1 + x3b
2 is unitary in the group

ring of the group H̃ = H×〈b2〉. Then, by the induction hypothesis, y2 = h2

for some h ∈ H and obviously x2 = y2b2 = h2b2 ∈ G2. If x1 = x3b
2 then

y = x0 + x2b
2 ∈ V⋆(KH̃) and x2 = y2 ∈ G2. So (V⋆(KG))2 = G2 for a

finite group G of exponent 4.
Suppose that G is a group of exponent 2n+1 (n > 1) and the state-

ment is proved for the groups of exponent less than 2n+1. It is easy to see
that (V⋆(KG))2 ⊆ V⋆(KG2). From this, useing the induction hypothesis
(V⋆(KG2))2

n−1

= (G2)2
n−1

, we have that V⋆(KG)2
n

⊆ G2n

. The reverse
inclusion is obvious and the lemma is proved for a finite group G.

Let G be an infinite abelian group of exponent 2n+1 (n > 0) and x ∈
V⋆(KG). Then the subgroup H = 〈supp x〉 of the support of x is finite and,
by the statement proved in above, x2n

∈ H2n

. This completes the proof of
the lemma.
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Theorem. Let λ be an arbitrary ordinal, K a commutative ring with

unity of characteristic 2 without zero divisors, P the maximal divisible

subgroup of the Sylow 2-subgroup S of an abelian group G, Gλ = G2λ

,

Sλ = S2λ

, Kλ = K2λ

. Let, further on, V2 = V2(KG) denote the Sylow

2-subgroup of the group V = V (KG) of normalized units in the group ring

KG and W = W (KG) the unitary subgroup of V2(KG). In case P 6= 1 we

assume that the ring K is 2-divisible.

If Gλ 6= Gλ+1, Sλ 6= 1 and at least one of the ordinals |Kλ| and |Gλ|
is infinite, then the λ-th Ulm–Kaplansky invariant fλ(W ) of the group W
concerning to 2 is characterized in the following way:

fλ(W ) =





max{|G|, |K|}, if λ = 0,

fλ(V2) = max{|Gλ|, |Kλ|}, if λ > 0 and Gλ+1 6= 1,

fλ(G), if λ > 0 and Gλ+1 = 1.

Proof. It is easy to prove the following statements (see [3]):
1) |K2| = |K|;
2) if n a nonnegative integer and J(Gpn

[p]) the ideal of the ring (KG)2
n

generated by the elements of the form g−1
(
g ∈ G2n

[2]
)
, then V 2n

(KG)[2] =

V (KnGn)[2] = 1 + J(G2n

[2]).

Note if Gλ = Gλ+1 or Sλ = 1 then, according to [3], fλ(V2) = 0 and
hence fλ(W ) = 0.

At first we shall prove the theorem for a finite ordinal λ = n. Suppose
that n is a nonnegative integer, the Sylow 2-subgroup Sn of the group Gn

is not singular, Gn 6= Gn+1 and at least one of the ordinals |Kn| and |Gn|
is infinite. Since

W 2n

[2] ⊆ V 2n

= V (KnGn),

it follows that

fn(W ) ≤ |V 2n

| ≤ max{|Kn|, |Gn|} = β.

In the proof of the equation fn(W ) = β we shall consider the following
cases:

A) |Kn| ≥ |Gn|,
B) |Gn| > |Kn| and Sn 6= Sn+1,
C) |Gn| > |Kn| and Sn = Sn+1,

and in each of this cases we shall construct a set M ⊆ W 2n

(KG)[2] of car-
dinality β = max{|Kn|, |Gn|} (if, keeping in mind Lemma 1, it is possible)
which elements belong to the different cosets of the group V 2n

(KG)[2] by
the subgroup V 2n+1

(KG)[2]. This will be sufficient for the proof of the
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lemma, because the elements of the such constructed set M can be con-
sidered as the representatives of the cosets of the group W 2n

(KG)[2] by
the subgroup W 2n+1

(KG)[2]. Note that the elements of the set M we shall
choose in the form yy⋆

(
y ∈ V 2n

(KG)
)
.

Let A) holds, i.e. |Kn| ≥ |Gn|.
It is easy to prove that in this case the Sylow 2-subgroup Sn of the

group Gn has such element g of order 2 and there exists an a ∈ Gn that one
of the following conditions holds:

A1) Gn 6= 〈g〉, a /∈ 〈g〉 and a2 /∈ 〈g〉,
A2) Gn 6= 〈g〉, a /∈ 〈g〉 and a2 ∈ 〈g〉,
A3) Gn = 〈g〉

and in cases A1) and A2) at least one of the elements a or g do not belong
to the subgroup Gn+1. Indeed, if g ∈ Gn+1 then, by condition Gn 6= Gn+1,
the set Gn \ Gn+1 has a proper element a.

Let A1) holds. Let α be a nonzero element of the ring Kn and yα =
1 + αa(1 + g). We shall prove that the set

M =
{
xα = yαyα

⋆ = 1 + α(a + a−1)(1 + g) : 0 6= α ∈ Kn

}

has the above declared property. Really, since a2 /∈ 〈g〉, it follows that the
elements a and a−1 belong to the different cosets of the group Gn by the
subgroup 〈g〉. Hence xα 6= 1. It is easy to see that xα

⋆ = xα = xα
−1.

Therefore xα is a unitary element of second order of the group V (KnGn).
If xα ∈ V 2n+1

then, from the condition a2 /∈ 〈g〉, it follows that the elements
a and ag belong to the group Gn+1, but this contradicts to the choice of
elements a and g. Therefore xα ∈ W 2n

[2] \ W 2n+1

[2].
Suppose that the coset xαV 2n+1

[2] coincides with xνV 2n+1

[2] for a dif-
ferent α and ν from Kn. Then xα = xνz for a suitable z ∈ V 2n+1

. Since
xν

⋆ = xν
−1, it follows that

z = xαxν
⋆ = 1 + (α + ν)(a + a−1)(1 + g) = xα+ν

and xα+ν belongs to the subgroup V 2n+1

what contradicts it which was
proved in above. Obviously |M | = |Kn|. Therefore the constructed set M
has the above declared property.

Let A2) holds.
It is easy to see that the elements of the set

M = {xα = 1 + αa(1 + g) : 0 6= α ∈ K}

belong to the different cosets of the group V (KG)[2] by the subgroup
V 2(KG)[2]. Indeed, if xα ∈ V 2 then a ∈ G1 and ag ∈ G1. But this contra-
dicts to the choice of the elements a and g and hence xα ∈ W [2] \ W 2[2].
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The equation xα = xνz
(
z ∈ V 2, α 6= ν

)
is impossible since from it follows

that z = xαxν = 1 + (α + ν)a(1 + g) = xα+ν , and, by proved in above,
xα+ν /∈ V 2. Obviously |M | = |K| and therefore f0(W ) = |K|.

Let us contruct the set M in case n > 0.
Since, by Lemma 1, fn(W2) = fn(G) when Gn+1 = 1, it follows that

we can assume that Gn+1 6= 1. Let |Gn| 6= 4. Then the set Gn \ Gn+1

has neither element a, which order is not divisible by 2, or element b of
order 2r > 4, or has a subgroup 〈c : c4 = 1〉 × 〈d : d2 = 1〉. Obviously in
the first case a2 /∈ 〈g〉. If in the other cases we put a = b, g = b2r−1

or
a = c, g = d respectively then the condition a2 /∈ 〈g〉 holds and we have the
above considered case A1).

Let Gn = 〈a : a4 = 1〉 and yα = 1 + α(a + 1). Obviously the element

xα = yαyα
⋆ = 1 + (α + α2)(a + a3)

is unitary. Let L denote a subset of Kn that has a unique representative in
every subset of the form {α, 1 + α} ⊆ Kn. Then the elements of the set

M =
{
xα = yαyα

⋆ = 1 + (α + α2)(a + a3) : 0 6= α ∈ L
}

belong to the different cosets of the group W 2n

(KG)[2] by the subgroup
W 2n+1

(KG)[2]. Really, if xα coincides with xν (α, ν ∈ L), then α + α2 =
ν + ν2 . Hence the equation (α + ν)(1 + α + ν) = 0 holds, but in the
ring without zero divisors this is possible for the different α and ν only
in the case ν = 1 + α, what contradicts to the choice of the elements of
the set L. Obviously |M | = |L| = |Kn|. By Lemma 1, W 2n+1

= 〈a2〉. If
xαW 2n+1

= xνW 2n+1

(xα 6= xν) we get the contradictinally equation

1 + (α + α2)(a + a3) = a2 + (ν + ν2)(a + a3).

Therefore xαW 2n+1

6= xνW 2n+1

for xα 6= xν the case A2) is considered.
Let A3) holds, i.e. Gn = 〈g〉. Then Gn+1 = 1. If n = 0 then W (KG) =

V2(KG) and f0(W ) = f0(V2) = |K|. If n > 0 then, according to Lemma 1,
fn(W ) = fn(G).

Therefore the case A) is fully considered.
Suppose now that B) holds, i.e. |Gn| > |Kn| and the Sylow 2-subgroup

Sn of the group Gn does not coincide with the Sylow 2-subgroup Sn+1 of
the group Gn+1. Then the set Sn \ Sn+1 has an element g of order q = 2r.
Let, further on, Π = Π(Gn/〈g〉) denote the full set of representatives of the
cosets of the group Gn by the subgroup 〈g〉. Let us consider two disjunct
subsets

Π1 =
{
a ∈ Π : a2 /∈ 〈g〉

}
and Π2 =

{
a ∈ Π : a2 ∈ 〈g〉

}
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of the set Π. Since Gn is infinite, it is easy to see that |Gn| = |Π| =
max {|Π1|, |Π2|}.

Let us suppose at first that |Gn| = |Π1|. Without loss of generality we
can assume that the representative of the coset a−1〈g〉 is the element a−1.
Let E denote the set which has a unique representative in every subset of
the form

{
a, a−1

}
⊆ Π1 and ya = 1+a(1+g + · · ·+gq−1). Then |Gn| = |E|

and the elements of the set

M =
{
xa = yaya

⋆ = 1 + (a + a−1)(1 + g + · · · + gq−1) : a ∈ E
}

belong to the different cosets of the group V 2n

[2] by the subgroup V 2n+1

[2].
Indeed, from the supposition xa ∈ V 2n+1

[2] it follows that agi ∈ Gn+1 for
every i = 0, 1, . . . , q − 1, but this contradicts to the choice of the element
g ∈ Gn \ Gn+1. It is easy to see that xa is a unitary element and so
xa ∈ W 2n

[2] \ W 2n+1

[2]. Suppose that a and c are the distinct elements of
the set E. If xa = xcz for some z ∈ V 2n+1

then

z = xaxc
⋆ = 1 + (a + a−1 + c + c−1)(1 + g + · · · + gq−1).

According to the choice of the elements of the set E we have that the
elements a, a−1, c, c−1 belong to the distinct cosets of the group Gn by the
subgroup 〈g〉. Hence from the condition z ∈ V 2n+1

it follows that a ∈ Gn+1,
ag ∈ Gn+1, which contradicts to the choice of the element g ∈ Sn \ Sn+1.

Let be now |Gn| = |Π2|. If G2 = 1 then W (KG) = V (KG) and
f0(W ) = f0(V2) = |G|. If n > 0 and Gn+1 = 1 then, by Lemma 1, fn(W ) =
fn(G). Suppose that Gn+1 6= 1. Then the group Gn has such element
v of order not equals to 2 that 〈g〉 ∩ 〈v〉 = 1. If a such representative
of the coset a〈g〉 that a2 ∈ 〈g〉 and a2 6= 1, then a2 = gi ∈ Gn+1 and,
according to the choice of the element g, the integer i is divisible by 2. In
this case in role of the representative of the coset a〈g〉 in the set Π2 we
can choose the element a1 = ag−

i
2 . Therefore, we can assume that the set

Π2 consists of the elements of second order. Since 〈g〉 ∩ 〈v〉 = 1, it follows
that from the Π2 we can choose a subset Π̃2 which elements belong to the
distinct cosets of the group Gn by the subgroup 〈g, v〉 and |Gn| = |Π̃2|. Let
ya = 1 + av(1 + g + · · · + gq−1). Then the set

M =
{
xa = yaya

⋆ = 1 + a(v + v−1)(1 + g + · · · + gq−1) : a ∈ Π̃2

}

has the need property. Indeed, the cosets xaV 2n+1

and xcV
2n+1

coincide if
and only if

xaxc = 1 + (a + c)(v + v−1)(1 + g + · · · + gq−1) ∈ V 2n+1

.
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Since the elements a and c belong to the distinct cosets of the group Gn by
the subgroup 〈g, v〉, it follows that av ∈ Gn+1 and avg ∈ Gn+1, but this
contradicts to the choice of the element g ∈ Gn \ Gn+1. So the case B) is
fully considered.

Let C) holds, that is |Gn| > |Kn| and the Sylow 2-subgroup Sn of the
group Gn is 2-divisible.

Let us fix an element g ∈ Sn[2] and choose such v ∈ Gn \ Gn+1 that 2
does not divide the order of element v. Since |Sn| = [Sn : 〈g〉] ≥ |〈v〉| and
v /∈ Sn, it follows that the cardinality of the full set of representatives of the
cosets Π = Π(Gn/〈g, v〉) of the group Gn by the subgroup 〈g, v〉 coincides
with |Gn|. Obviously the set Π decomposes to the two disjunct subsets
Π1 =

{
a ∈ Π : a2 /∈ 〈v, g〉

}
and Π2 =

{
a ∈ Π : a2 ∈ 〈v, g〉

}
.

Let | Gn |=| Π1 |, E be the set which has a unique representative in
every subset of the form

{
a, a−1

}
⊆ Π1 and ya = 1 + a(1 + v + v−1(1 + g).

Then the set M can be choosen in the following way:

M =
{
x = yaya

⋆ = 1 + (a + a−1)(1 + v + v−1)(1 + g) : a ∈ E
}

.

Indeed, from the equation xa = xcz
(
z ∈ V 2n+1

, a 6= c
)

follows that

z = 1 + (a + a−1 + c + c−1)(1 + v + v−1)(1 + g) ∈ V 2n+1

.

Hence, according to the construction of the set E, the elements a and av
belong to the subgroup Gn+1, but this contradicts to the condition v /∈
Gn+1.

Suppose now that |Gn| = |Π2|. Then v2 6= 1. If a2 = v2 for some
a ∈ Π2, then from the condition v /∈ Gn+1 it follows that i is an even number.
Let us choose in the role of the representative of the coset a〈g, v〉 the element
a1 = av−

i
2 . Hence we can assume that the set Π2 of the representatives of

the group Gn by the subgroup 〈g, v〉 consists of the elements of the group
Sn = Sn+1. The set

M =
{
xa = 1 + a(v + v−1)(1 + g) : a ∈ Π2

}

has the need property. Indeed, if xa = xcz for the distinct a, c ∈ Π2 and for
some z ∈ V pn+1

, then z = xaxc = 1+(a+c)(v+v−1)(1+g) and av ∈ Gn+1.
Hence v ∈ Gn+1 because – by the choice – Π2 ⊆ Sn+1, and so we get the
contradiction.

Therefore the case C) is fully considered and the statement is proved
for a finite ordinal λ = n.
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Let us consider the case of infinite ordinal λ.
Let λ be an arbitrary infinite ordinal R = Kλ,H = Gλ 6= Gλ+1 and

the Sylow 2-subgroup Sλ of the group Gλ is not singular. Then

W (KG)2
λ

⊆ W (RH) ⊆ V2(RH)

and by transfinite induction it is easy to prove the equation

(2) V2(KG)2
λ

= V2(RH).

As compared to the group V2(RH) we can construct the set M as in the
above shown cases A), B) and C). Since in every of this cases the set M
consist of the elements of the form x = y−1y⋆ and, by (2), y belongs to the
group V2(RH) = V2(KG)2

λ

, it follows that the elements x are the represen-
tatives of the cosets of group W 2λ

(KG)[2] by the subgroup W 2λ+1

(KG)[2].
Therefore for an arbitrary infinite ordinal λ the Ulm–Kaplansky invari-

ants of the group W (KG) can be calculated in the above shown way for the
case λ = n.
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