
Acta Acad. Paed. Agriensis, Sectio Mathematicae 28 (2001) 21–26

APPROXIMATION BY QUOTIENTS OF TERMS OF

SECOND ORDER LINEAR RECURSIVE SEQUENCES OF INTEGERS

Sándor H.-Molnár (Budapest, Hungary)

Abstract. In the paper real quadratic algebraic numbers are approximated by the

quotients of terms of appropriate second order recurrences of integers.
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1. Introduction

Let G = G(A, B, G0, G1) = {Gn}∞n=0 be a second order linear recursive
sequence of rational integers defined by recursion

Gn = AGn−1 + BGn−2 (n > 1)

where A, B and the initial terms G0, G1 are fixed integers with restrictions AB 6= 0,
D = A2 + 4B 6= 0 and not both G0 and G1 are zero. It is well-known that the
terms of G can be written in form

(1) Gn = aαn − bβn,

where α and β are the roots of the characteristic polynomial x2 − Ax − B of the

sequence G and a = G1−G0β
α−β , b = G1−G0α

α−β (see e. g. [7], p. 91).

Throughout this paper we assume |α| ≥ |β| and the sequence is non-
degenerate, i. e. α/β is not a root of unity and ab 6= 0. We may also suppose
that Gn 6= 0 for n > 0 since in [1] it was proved that a non-degenerate sequence G
has at most one zero term and after a movement of indices this condition can be
fulfilled.

In the case D = A2 + 4B > 0 the roots of the characteristic polynomial are

real, |α| > |β|, (β/α)n → 0 as n → ∞ and so by (1) lim
n→∞

Gn+1

Gn

= α follows [6].

In [2] and [3] the quality of the approximation of α by quotients Gn+1/Gn was
considered. In [3] it was proved that if G is a non-degenerate second order linear
recurrence with D > 0, and c and k are positive real numbers, then
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holds for infinitely many integer n if and only if

(i) k < k0 and c is arbitrary,

(ii) or k = k0 and c < c0,

(iii) or k = k0, c = c0 and B > 0,

(iv) or k = k0, c = c0, B < 0 and b/a > 0,

where k0 = 2 − log |B|
log |α| and c0 =

√
D

k0−3

|a|k0−1|b| .

If D < 0 then α and β are non real complex numbers with |α| = |β| and by

(1) we have Gn+1

Gn

= 1−(b/a)(β/α)n+1

1−(b/a)(β/α)n . But |β/α| = 1, thus lim
n→∞

Gn+1

Gn

does not even

exist. The approximation of |α| by rationals of the form |Gn+1/Gn| was considered
e.g. in [3], [4] and [5]. In [3] it was proved that if G is a non-degenerate second order
linear recurrence with D < 0 and initial values G0 = 0, G1 = 1, then there exists a

constant c1 > 0, depending only on the sequence G, such that
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for infinitely many n.

In this paper the root α of the characteristic polynom of the sequence G will
not be approximated by the quotients Gn+1/Gn, but by Gn+1/Hn, where H is an
appropriately chosen second order linear recursive sequence. We can always give
a better approximation for |α| if D < 0, and for α in the most cases if D > 0 as
it was given by the authors in [3]. This can be achieved by the approximation of
the numbers of the quadratic number field Q(α) when D > 0. The theorems in [3]
can only approximate quadratic algebraic integers. Since at least one real quadratic
algebraic integer α can be found for any real quadratic algebraic number γ, such
that γ ∈ Q(α), our theorem can adequately approximate any irrational quadratic
algebraic number, independently whether it is an algebraic integer or not. We are
going to illustrate the above statement and its applicability to non-real complex
quadratic algebraic numbers.

2. Result

We prove the following theorem:

Theorem. Let A and B be rational integers with the restrictions AB 6= 0 and
D = A2 + 4B > 0 is not a perfect square. Denote by α and β the roots of equation
x2−Ax−B = 0, where |α| > |β|. Let t = r

s+ p
q α ∈ Q(α) with integers s, q > 0, p 6= 0

and r. Define the numbers k0 and c0 by

k0 = 2 − log |B|
log |α| and c0 =
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and let k and c be positive real numbers. Then with linear recurrences G(A, B, qr,
psB) and H(A, B, 0, qsB) the inequality
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holds for infinitely many integer n if and only if

(i) k < k0 and c is arbitrary,

(ii) or k = k0 and c ≤ c0.

(Note that k0 > 0 since |B| = |αβ| < α2.)

Corollary. Since t = r
s + p

q α is an irrational number, then
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holds with some c > 0 for infinitely many n if and only if |B| = 1.

3. Examples

1st Example. t = α is a real quadratic algebraic integer. Let G(4, 19, G0, G1),
where G0, G1 ∈ Z not both G0 and G1 are zero. The characteristic equation is

x2 − 4x − 19 = 0 and α = (4 +
√

92)/2. If approximation is done according to [3],

the quality of approximation k0 = 2 − log 19
log α = 0.4634845713 . . .

The equation 92 = A2 + 4B can be written in an infinite variety forms:

. . . , 22 + 4 · 22, 42 + 4 · 19, 62 + 4 · 14, 82 + 4 · 7, 102 − 4 · 2, 122 − 4 · 13, . . . .

Using |B| of minimum value α1 = 10+
√

100−8
2 ⇒ A = 10, B = −2, α ∈

Q(α1), α = α1−3. G(10,−2,−3,−2), H(10,−2, 0,−2) and thus k0 = 2− log |−2|
log |α1| =

1, 696248791 . . . .

2nd Example. t is a real quadratic non-algebraic integer. Let t be the root of larger
absolute value of the equation 36x2 − 894x + 1399 = 0. The roots of x2 − 894x +
36 ·1399 = x2 −894x+50364 = 0 are α1 and β1. Since t = 1

36α1, i.e. t ∈ Q(α1), we

can approximate t. k0 = 2 − log |B|
log |α1| = 0, 3902074312 . . . , c0 = 0, 002251014 . . . .

Since D = 8942−4·36·1399 = 22·34·(432−4),
√

D = 2·32·
√

(432 − 4), it follows

that t ∈ Q(α) is also true for the root α of x2 − 43x + 1 = 0. Indeed, t = 5
3 + 1

2α
and thus G(43,−1, 10,−3), H(43,−1, 0,−6). If we approximate α by the quotients

Gn+1/Hn, we get k0 = 2, c0 = 2, 386303511 . . ., and thus
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holds for infinitely many n.
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3rd Example. t′ is a non-real quadratic algebraic integer.

Let t′ = α1, where α1 is the root of x2 + 3x + 10 = 0, i. e.|α1| =
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√
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2 − 3 ⇒ |α1| ∈ Q(α), where α is a root of

x2 − 6x − 1 = 0 and |α1| = α − 3. Calculating with the sequences G(6, 1,−3, 1)

and H(6, 1, 0, 1), k0 = 2 and c0 =
√

40 and thus
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. This

approximation is the best.

4th Example. α is a complex, non-algebraic quadratic integer. 4x2 + 5x + 6 =

0, |α1| =
∣

∣
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−5−
√

25−96
8
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∣
, |α1| =

√
24
4 = 1

2
4+

√
42+4·2
2 − 1 = 1

2α − 1, where α is root

of the equation x2 − 4x − 2 = 0. A = 4, B = 2, G(4, 2,−2, 2) and H(4, 2, 0, 4),

k0 = 2 − log |2|
log |α| = 1, 535669821 . . . , c0 = 0, 5573569115 . . . . Calculating with the

sequences G⋆(4, 2,−1, 1) and H⋆(4, 2, 0, 2), k⋆
0 = k0, c

⋆
0 = 2k0 ·c0 = 1, 615905915 . . . .

Proof of Theorem. By (1) we can write Gn+1 = a1α
n+1 − b1β

n+1 and Hn =
aαn − bβn for any n ≥ 0, where

a1 =
G1 − G0β

α − β
=

psB − qrβ

α − β
, b1 =

psB − qrα

α − β
,

a =
qsB − 0β

α − β
=

qsB

α − β
, b =

qsB

α − β
.

Suppose that for an integer n > 0 and the positive real numbers c and k we
have

(2)
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Substituting the explicit values of the terms of the sequences and using the equality

(3) at − a1α =
qsB

α − β

(

r

s
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p

q
α

)

− psB − qrβ

α − β
= 0,
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Therefore using the equality a = b, inequality (2) can be written in the form

(4) 1 > c |Hn|k ·
∣
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(
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Since
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< 1 and α · β = −B, this inequality holds for infinitely many n only if

|β||α|k−1 = |B||α|k−2 < 1, that is if k ≤ 2 − log |B|
log |α| = k0 and in the case k = k0 we

need

c ≤ 1

|a|k0−1|bt − b1β|
.

By (3) and by a = b it follows that |bt − b1β| =
∣

∣ba1α
a − b1β

∣

∣ = |a1α − b1β| =

|G1| = |psB|.
Therefore using the fact that α − β =
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D
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Thus by (4) we obtain that (2) holds for infinitely many n if k < k0 or k = k0

and c ≤ c0. (If β
α > 0 then for any sufficiently large n, else for any sufficiently large

even n.)
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