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Dedicated to the memory of Professor Péter Kiss

Abstract. By means of Buchberger’s algorithm for computing Groebner bases of ideals

some theorems from elementary geometry are proved. Besides the well-known formula of Heron for

the calculation of the area of a triangle analogical formulas and relations for planar quadrangles

are derived. It is shown that with the help of a common software (Maple, Mathematica) formulas

from elementary geometry can be proved and even discovered.
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1. Introduction

It is likely known that after the year 1960 Buchberger and Hironaka discovered
a new algorithm for solving a system of algebraic equations. A great interest
in this area of mathematics and a general using computers and mathematical
software, which makes possible not only numerical computation but computations
with symbols, caused big changes in commutative algebra and algebraic geometry.
Nowadays is so called Buchberger’s algorithm for computing of a Groebner basis
of an ideal implemented even in some calculators (models TI 89 or TI 92).
Example. Solve the system of equations

(1)

x2 + y2 + z2 = 6,

x3 + y3 + z3 − xyz = −4,

xy + xz + yz = −3.

Solution. First we shall “prove” that even calculators mentioned above are able to
solve such a quite difficult system of equations. Calculators mentioned above are
equipped with the command 4: solve(and,(x,y)) for solving system of equations.
We write
solve(x^2 + y^2 + z^2 = 6 and x^3 + y^3 + z^3− xyz = −4 and

xy + xz+ yz = −3, {x, y, z})

This research is partially supported by the Grant Project MSM 124100006.



68 J. Hora, P. Pech

and in a while the result appears on the screen. On the screen we see only a part
of the result, but a display is rolling and by means of arrows we can shift it. We
can read
x=1 and y=1 and z=-2 or x=1 and y=-2 and z=1 or x = -2 and y =1 and

z=1

i.e., the solution P of the given system (1) is

P = {[1, 1,−2], [1,−2, 1], [−2, 1, 1]}.

In manuals of calculators there is explained, that in the case of solving a system of
algebraic equations the Buchberger’s algorithm for computing Groebner bases of
an ideal by so called lexicographic order of variables is used. If the user wants
to know more it is suitable to take advantage of some commercial programs
of a computer algebra (Maple, Mathematica) or free to download programs
from Internet (Singular, CoCoA). In Mathematica /version 4/ we can write
poly = {x^2 + y^2 + z^2 == 6, x^3 + y^3 + z^3− x ∗ y ∗ z == −4,

x ∗ y + x ∗ z + y ∗ z == −3}

and after that we put GroebnerBasis[poly, {x, y, z}] and obtain
−12z+9z2+4z3−6z4+z6+4, 49y2+12yz5−16yz4−18yz3+72yz2−37yz+36y−
16z5+54z4+24z3−145z2+180z−195, 49x+49y+12z5−16z4−18z3+72z2−37z+36.

To comment the situation better denote the above polynomials by

g1(z) = −12z + 9z2 + 4z3 − 6z4 + z6 + 4,

g2(y, z) = 49y2 + 12yz5 − 16yz4 − 18yz3 + 72yz2 − 37yz + 36y − 16z5

+ 54z4 + 24z3 − 145z2 + 180z − 195,

g3(x, y, z) = 49x + 49y + 12z5 − 16z4 − 18z3 + 72z2 − 37z + 36.

Solutions of the system (1) are certain ordered triples of real (or complex) numbers
[x, y, z]. How to find them? It is obvious that instead of the system (1) it is better
to solve the equivalent system

(2) g1(z) = 0, g2(y, z) = 0, g3(x, y, z) = 0,

where the polynomials g1(z), g2(y, z), g3(x, y, z) form a Groebner basis of the ideal
I = 〈f1, f2, f3〉 by the lexicographic order <L, where z <L y <L x. To find the
solution of (2) the simplest way is first to solve the equation g1(z) = 0, which
contains only one unknown z. Although the polynomial g1(z) doesn’t look simple,
we can use the function Factor[expr], which decomposes a given expression expr.
In this case we have g1(z) = (z−1)4(z+2)2 and see that the equation g1(z) = 0 has
two real (and multiple) roots z1 = 1, z2 = −2. Setting e.g. the value z1 = 1 into
the equation g2(y, z) = 0 we obtain g2(y, 1) = 49y2 + 49y − 98 = 0, with the roots
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y1 = 1, y2 = −2. If we substitute all these values into the last equation g3(x, y, z) =
0, we arrive at the solution P of (2), which is the same as the solution of (1)
P = {[1, 1,−2], [1,−2, 1], [−2, 1, 1]}. Behind the result which the calculator yielded
not only new technology is hidden but also a big progress, which commutative
algebra and algebraic geometry achieved in the last third of the last century. The
extent of this paper doesn’t allow us to write more about these issues, we prefer
rather non formal, intuitive approach. For detailed information see the books [4],
[2], or [6] on Internet or [3], [9], [7].
We could notice that in the course of solving the system of equations (1) by the
lexicographic order <L, where z <L y <L x the variable x is first eliminated
and then y. In the end in the Groebner basis of the ideal I = 〈f1, f2, f3〉, where
fi, i = 1, 2, 3 denote the polynomials which form the system (1) the polynomial g1

occurs, which is a function only of one variable z. The equation g1(z) = 0 is not a
problem to solve.

The elimination of variables, which is realized in programs of computer algebra
using Groebner bases can also bring the method of proving and discovering
theorems. In the next part of this paper we would want to give non traditional
proofs of some theorems from elementary geometry. In these proofs we shall take
advantage of the elimination of variables. To do this first we have to look at the
elimination closely.

Definition. Let I = 〈f1, f2, . . . , fs〉 ⊂ k[x1, x2, . . . , xn] be an ideal. The rth

elimination ideal Ir is the ideal of the domain of integrity k[x1, x2, . . . , xn] which
fulfils

Ir = I ∩ k[xr+1, xr+2, . . . , xn].

In general the following theorem about elimination holds, see [4].

Theorem. Let I ⊂ k[x1, x2, . . . , xn] be an ideal and G the Groebner basis of the

ideal I with respect to lexicographic order, where x1 >L x2 >L · · · >L xn. Then

for every r, 0 ≤ r ≤ n, the set Gr = G ∩ k[xr+1, xr+2, . . . , xn] is a Groebner basis

of the rth elimination ideal Ir.

Example 1. Find the formula of Heron for the area F of a triangle ABC with
sides a, b, c. Give “a computer proof”.

Solution. Choose the coordinate system so that coordinates of the vertices of a
triangle ABC are A = [0, 0], B = [c, 0], C = [x, y] and |AB| = c, |BC| = a, |AC| =
b. Let us construct the ideal I = 〈a2−(c−x)2−y2, b2−x2−y2, F − 1

2
cy〉 in the ring

R[a, b, c, x, y, F ]. We try to obtain a formula, which describes a relation between
the lengths of sides a, b, c of a triangle ABC and its area F . Such a polynom
should belong into the elimination ideal I ∩R[a, b, c, F ]. In this example the whole
computation can be performed not only with the software specialized on ideals but
even with such a common software like Mathematica /version 4/. We write
Eliminate[{(c− x)^2 + y^2 == a^2, x^2 + y^2 == b^2, F == 1/2c ∗ y}, {x, y}]
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and obtain
16F 2 == −a4 + 2a2b2 − b4 + 2a2c2 + 2b2c2 − c4

the result. The next command
Factor[−a^4 + 2a^2b^2− b^4 + 2a^2c^2 + 2b^2c^2− c^4]

gives

−(a − b − c)(a + b − c)(a − b + c)(a + b + c).

It is easy to see that the last relation is the same as

F =
√

s(s − a)(s − b)(s − c),

where s = 1

2
(a + b + c). We get the formula of Heron.

Now we will investigate the area of a quadrangle in a plane.
Example 2. Let ABCD be a planar quadrangle with sides a, b, c, d and diagonals
e, f . Find the formula of the area F of a quadrangle ABCD. Give a “computer
proof”.
Solution. Let the coordinates of the vertices of a quadrangle ABCD be A =
[a, 0], B = [x, y], C = [z, v], D = [0, 0] and a = |DA|, b = |AB|, c = |BC|, d =
|CD|, e = |BD|, f = |AC|. It is easy to see that for the area of a quadrangle
F = 1

2
(xv − zy + ay) holds. By means of Mathematica we write

Eliminate[{(x− a)^2 + y^2 == b^2, (x− z)^2 + (y − v)^2 == c^2, z^2 + v^2 =

= d^2, x^2 + y^2 == e^2, (z− a)^2 + v^2 == f^2, 2F == x ∗ v− z ∗ y + a ∗ y},

{x, y, z, v}]

which gives

(3)

e4f2 + e2(a2b2 − a2c2 − b2d2 + c2d2 − a2f2 − b2f2 − c2f2 − d2f2 + f4) ==

− a4c2 + a2b2c2 − a2c4 + a2b2d2 − b4d2 + a2c2d2 + b2c2d2 − b2d4 + a2c2f2

− b2c2f2 − a2d2f2 + b2d2f2&&16F 2 == −a4 + 2a2b2 − b−2a2c2 + 2b2c24

− c4 + 2a2d2 − 2b2d2 + 2c2d2 − d4 + 4e2f2.

It seems that the second equality is the relation we are looking for. We can simplify
it by
FullSimplify[16F 2̂ == −a^4 + 2a^2b^2− b^4− 2a^2c^2 + 2b^2c^2− c^4+

2a^2d^2− 2b^2d^2 + 2c^2d^2− d^4 + 4e^2f^2]

and get
(a2 − b2 + c2 − d2)2 + 16F 2 == 4e2f2,

which is a desired result.
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Remark. This formula by means of which we can express the area of a quadrangle
by the all six distances between the four vertices has often been given in the form

(4) 16F 2 = 4e2f2 − (a2 − b2 + c2 − d2)2.

The formula (4) was published by Staudt [11]. Notice that if we set e.g. d = 0 into
(3) we obtain the formula of Heron.
The first equality in (3) is related to the so called Euler’s four points relation,
see [5], which expresses the dependence of six distances a, b, c, d, e, f between four
vertices of a quadrangle. Euler’s four points relation follows from the Cayley–
Menger determinant for the volume V of a tetrahedron with edges of lengths
a, b, c, d, e, f

(5) 288V 2 =
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∣

∣
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if we put V = 0. We will compare the equation V = 0 from (5) with the first
equality in (3). Denote by m the determinant above
m = {{0, 1, 1, 1, 1}, {1, 0, b^2, f^2, a^2}, {1, b^2, 0, c^2, e^2}, {1, f^2, c^2, 0, d^2},

{1, a^2, e^2, d^2, 0}}.

Then the command
Det[m]

gives −2a4c2 + 2a2b2c2 − 2a2c4 + 2a2b2d2 − 2b4d2 + 2a2c2d2 + 2b2c2d2 − 2b2d4 −
2a2b2e2 + 2a2c2e2 + 2b2d2e2 − 2c2d2e2 + 2a2c2f2 − 2b2c2f2 − 2a2d2f2 + 2b2d2f2 +
2a2e2f2 + 2b2e2f2 + 2c2e2f2 + 2d2e2f2 − 2e4f2 − 2e2f4.
We see that the condition V = 0 is the same as the first condition in (3).

Now we will investigate the case of a cyclic quadrangle, i.e., a quadrangle which
is inscribed into the circle. Suppose we are given a cyclic quadrangle A, B, C, D
with the sides a = |AB|, b = |BC|, c = |CD|, d = |DA| and the radius r of the
circumscribed circle. The well-known formula of Brahmagupta for the evaluation
of the area F of a cyclic convex quadrangle with the sides a, b, c, d is as follows:

(6) F =

√

(−a + b + c + d)

2

(a − b + c + d)

2

(a + b − c + d)

2

(a + b + c − d)

2
.

Example 3. Find the formula of Brahmagupta. Give “a computer proof”.
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Solution. Choose the Cartesian coordinate system so that A = [r, 0], B =
[x, y], C = [u, v], D = [z, w] and place the origin into the center of the circum-
scribed circle with radius r. To express the area F of a quadrangle A, B, C, D we
use the following formula for evaluating the oriented area of a n-gon A1, A2, . . . , An

with coordinates Ai = [xi, yi]. Then

(7) F =
1

2

n
∑

i=1

∣

∣

∣

∣

xi yi

xi+1 yi+1

∣

∣

∣

∣

holds. Using Mathematica we enter
Eliminate[{x^2 + y^2 == r^2, u^2 + v^2 == r^2, z^2 + w^2 == r^2, (x− r)^2+

y^2 == a^2, (u− x)^2 + (v− y)^2 == b^2, (z− u)^2 + (w − v)̂ 2 == ĉ 2,

(r− z)^2 + w^2 == d^2, 2F == y ∗ r− u ∗ y + x ∗ v− z ∗ v + u ∗ w− r ∗ w},

{x, y, u, v, z, w, r}]

and get
(32a4−64a2b2+32b4−64a2c2−64b2c2+32c4−64a2d2−64b2d2−64c2d2+32d4)F 2+
256F 4 == −a8 + 4a6b2 − 6a4b4 + 4a2b6 − b8 + 4a6c2 − 4a4b2c2 − 4a2b4c2 + 4b6c2 −
6a4c4 − 4a2b2c4 − 6b4c4 + 4a2c6 + 4b2c6 − c8 + 4a6d2 − 4a4b2d2 − 4a2b4d2 + 4b6d2 −
4a4c2d2 + 40a2b2c2d2 − 4b4c2d2 − 4a2c4d2 − 4b2c4d2 + 4c6d2 − 6a4d4 − 4a2b2d4 −
6b4d4 − 4a2c2d4 − 4b2c2d4 − 6c4d4 + 4a2d6 + 4b2d6 + 4c2d6 − d8.

After the command
FullSimplify[%]

we obtain

(8)
((a − b − c − d)(a + b + c − d)(a + b − c + d)(a − b + c + d) + 16F 2)

((a + b − c − d)(a − b + c − d)(a − b − c + d)(a + b + c + d) + 16F 2) == 0.

From (8) we get two relations. The first one

16F 2 = (−a + b + c + d)(a + b + c − d)(a + b − c + d)(a − b + c + d)

gives the Brahmagupta’s relation (6).

Remark. The second relation wchich follows from (8) is

(9) 16F 2 = (−a − b + c + d)(a − b + c − d)(a − b − c + d)(a + b + c + d).

It is easy to show that F from (9) is the (oriented) area of a non convex
quadrangle with the sides a, b, c, d which is inscribed into the circle, whereas the
Brahmagupta’s formula (6) holds for cyclic convex quadrangles. We could arrive at
it from the Brahmagupta’s formula writing −b instead of b.

In the last example we will deal with the well-known Ptolemy’s formula. We won’t
be able to do “a computer discovery” but we will be successful in proving it.
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Example 4. Let A, B, C, D be a quadrangle with lengths of sides |AB| = a, |BC| =
b, |CD| = c, |DA| = d, |BD| = e, |AC| = f . The necessary and sufficient
condition for the points A, B, C, D to be on a circle is, see [8]

(10)
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= 0.

Give “a computer proof” of (10).
Solution. Let us evaluate the determinant in the equation (10).
By the command
Det[{0, a^2, f^2, d^2}, {a^2, 0, b^2, e^2}, {f^2, b^2, 0, c^2}, {d^2, e^2, c^2, 0}]

== 0

we get

a4c4 − 2a2b2c2d2 + b4d4 − 2a2c2e2f2 − 2b2d2e2f2 + e4f4 == 0,

and after
Factor[a^4c^4− 2a^2b^2c^2d^2 + b^4d^4− 2a^2c^2e^2f^2− 2b^

2d^2e^2f^2 + e^4f^4]

we obtain

(11) (ac − bd − ef)(ac + bd − ef)(ac − bd + ef)(ac + bd + ef) = 0.

From (11) we could derive various types of Ptolemy’s formula in accordance
with the order of the vertices A, B, C, D of a quadrangle on the circle. First we will
try “to discover” (11) in a similar way we did it in previous examples. Suppose we
have chosen the same coordinate system as in the Example 3. We put
Eliminate[{x^2 + y^2 == r^2, u^2 + v^2 == r^2, z^2 + w^2 == r^2, (x− r)^2+

y^2 == a^2, (u− x)^2 + (v− y)^2 == b^2, (z− u)^2 + (w− v)^2 == c^2, (r− z)

^2 + w^2 == d^2, (x− z)^2 + (y − w)^2 == e^2, (u− r)^2 + v^2 == f^2}, {x, y,

u, v, z, w, r}]

and get
a4b2c2+a2(−b4d2−c4d2−2b2c2e2+2b2d2e2+2c2d2e2−d2e4) == b2c2(−d4+2d2e2−
e4)&&e2(b2 + c2 − e2)f2 == −a2b2c2 + a2c4 + b4d2 − b2c2d2 − a2c2e2 + 2b2c2e2 −
b2d2e2&&e2(a2 +d2− e2)f2 == a4c2−a2b2d2−a2c2d2 + b2d4−a2c2e2 +2a2d2e2−
b2d2e2&&(a2b2 − c2d2 + c2e2 + d2e2 − e4)f2 == a2c4 − a2c2d2 − b2c2d2 + b2d4 −
a2c2e2+b2c2e2+a2d2e2−b2d2e2&&(−a2c2−b2d2+2c2d2−c2e2−d2e2)f2+e2f4 ==
−a2c4 + a2c2d2 + b2c2d2 − b2d4.
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We obtained a Groebner basis of the elimination ideal I ∩ R[a, b, c, d, e, f ] but the
relation (11) is not involved in it. To prove (11) we will try to find out whether
the polynomial given by (11) belongs to the ideal I ∩ R[a, b, c, d, e, f ]. It suffices
to prove that the remainder on division of the polynom from (11) by the elements
of a Groebner basis of I ∩ R[a, b, c, d, e, f ] is zero, see [4]. The remainder is often
called normal form. Since the command normalf for evaluating of the remainder is
not present in Mathematica (but is available in Maple) we will use the command
PolynomialReduce instead. The syntax of this command is as follows:
In[1]:=PolynomialReduce[f,polylist,varlist,options]

This command computes the quotients and remainder of f on division by the
polynomials in polylist using monomial order specified by varlist and Mono-

mialOrder in option. If we do not type this option, Mathematica will use default
order, which is Lexicographic. The output is a list of two entries: the first is the
list of quotients and the second the remainder. We type
PolynomialReduce[a^4c^4− 2a^2b^2c^2d^2 + b^4d^4 − 2a^2c^2e^2f^2− 2b^2

d^2e^2f^2 + e^4f^4, a^4b^2c^2 + a^2(−b^4d^2 − c^4d^2 − 2b^2c^2e^2 + 2b^2

d^2e^2 + 2c^2d^2e^2− d^2e^4) − (b^2c^2(−d^4 + 2d^2e^2− e^4)), e^2(b^2 + c

^2− e^2)f^2− (−a^2b^ 2c^2 + a^2c ^ 4 + b^4d^2− b^2c^2d^2− a^2c^2e^2+

2b^2c^2e^2− b^2d^2e^2), e^2(a^2 + d^2− e^2)f^2− (a^4c^2− a^2b^2d^2− a^

2c^2d^2 + b^2d^4− a^2c^2e^2 + 2a^2d^2e^2− b^2d^2e^2), (a^2b^2− c^2d^2+

c^2e^2 + d^2e^2− e^4)f^2− (a^2c^4 − a^2c^2d^2− b^2c^2d^2 + b^2d^4− a^

2c^2e^2 + b ^2c^2e^2 + a^2d^2e^2− b^2d^2e^2), (−a^2c^2− b^2d^2 + 2c^2d^

2− c^2e^2− d^2e^2)f^ 2 + e^2f^4− (−a^2c^4 + a^2c^2d^2 + b^2c^2d^2− b^

2d^4)}, {a, b, c, d, e, f}]

and the result
{{0,−d2,−c2, 0, e2}, 0}

immediately appears. It means that the remainder is zero and (11) holds. In
addition we know that the polynomials needed for multipying of the elements of a
Groebner basis above to arrive at the Ptolemy’s formula (11) are 0,−d2,−c2, 0, e2.

Remark. Using the same method to investigate properties of planar n-gons for
n > 4 fails for the present. To improve the process of elimination perhaps it could
be helpful to use special monomial orders of r-elimination type [1].
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