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SECOND ORDER LINEAR RECURRENCES
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Abstract. In this note solutions are given to an infinite family of Pell’s equations of degree

n≥2 based on second order linear recursive sequences of integers.
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1. Introduction

Let A and B be non-zero integers. The second order linear recursive sequences
R = {Rn}∞n=0 and V = {Vn}∞n=0 are defined by the recursions

(1) Rn = ARn−1 + BRn−2 and Vn = AVn−1 + BVn−2,

for n ≥ 2, while R0 = 0, R1 = 1, V0 = 2 and V1 = A. If A = B = 1 then Rn = Fn

and Vn = Ln, where Fn and Ln denote the nth Fibonacci and Lucas numbers,
respectively.

The polynomial g(x) = x2−Ax−B is said to be the characteristic polynomial
of the sequences R and V , the complex numbers α and β are the roots of g(x) = 0.
In this note we suppose that A2 + 4B 6= 0, i.e. α 6= β. Then, by the well-known
Binet formulae, for n ≥ 0

(2) Rn =
αn − βn

α − β
and Vn = αn + βn.

The classical Pell’s equation x2 − dy2 = ±1 (d ∈ Z) can be rewritten as

det

(

x dy
y x

)

= ±1.
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To generalize this Lin Dazheng [1] investigated the quasi-cyclic matrix

(3) Cn = Cn(d; x1, x2, . . . , xn) =













x1 dxn dxn−1 . . . dx2

x2 x1 dxn . . . dx3

x3 x2 x1 . . . dx4
...

...
...

. . .
...

xn xn−1 xn−2 . . . x1













,

i.e. every entry of the upper triangular part (not including the main diagonal) of
the cyclic matrix of entries x1, x2, . . . , xn is multiplied by d. The equation

(4) det (Cn) = ±1

is called Pell’s equation of degree n ≥ 2. For example, if n = 3 then (4) has the
form

x3
1 + dx3

2 + d2x3
3 − 3dx1x2x3 = ±1.

Lin Dazheng [1] proved that det (Cn (Ln; F2n−1, F2n−2, . . . , Fn)) = 1, i.e. if
d = Ln then (x1, x2, . . . , xn) = (F2n−1, F2n−2, . . . , Fn) is a solution of (4). The
aim of this paper is to extend and generalize this result for more general sequences
defined by (1) with A2 + 4B 6= 0. In the proofs of our theorems we’ll apply the
methods and algorithms developed and presented in [1] by Lin Dazheng.

2. Results

Using (1) with A2 + 4B 6= 0 and (3), we can state our results.

Theorem 1. For n ≥ 2

det (Cn (Vn; R2n−1, R2n−2, . . . , Rn)) = Bn(n−1),

i.e. (x1, x2, . . . , xn) = (R2n−1, R2n−2, . . . , Rn) is a solution of the generalized Pell’s
equation of degree n

det (Cn (Vn; x1, x2, . . . , xn)) = Bn(n−1).

Corollary 1. For n ≥ 2

n−1
∏

k=0





n
∑

j=1

R2n−j

(

n

√

Vn

)j−1

εk(j−1)



 = Bn(n−1),

where n

√
Vn denotes a fixed nth complex root of Vn and ε = e2πi/n.
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It is known from [3] that the inverse of a quasi-cyclic matrix is quasi-cyclic. In
our case we can prove the following result, too.

Theorem 2. For n ≥ 3 the matrix Cn (Vn; R2n−1, R2n−2, . . . , Rn) is invertible and
its inverse matrix C

−1
n is as follows:

C
−1
n (Vn; R2n−1, R2n−2, . . . , Rn) = (−1)n−1B−n(BIn + AEn − E

2
n),

where In and En denotes the identity matrix of order n and the n by n matrix

(5) En =













0 0 . . . 0 Vn

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0













,

respectively.

Remark. Naturally, if |B| 6= 1 then the entries of the matrix

C
−1
n (Vn; R2n−1, R2n−2, . . . , Rn)

are not integers.

Corollary 2.

(x1, x2, . . . , xn) =











(1, A,−1, 0, . . . , 0), if n ≥ 3 odd and B = 1,
(1,−A, 1, 0, . . . , 0), if n ≥ 3 odd and B = −1,
(−1,−A, 1, 0, . . . , 0), if n ≥ 4 even and B = 1,
(1,−A, 1, 0, . . . , 0), if n ≥ 4 even and B = −1

is an other solution of the generalized Pell’s equation

(6) det (Cn (Vn; x1, x2, . . . , xn)) = 1.

3. Proofs

To prove our theorems we need the following

Lemma. Let the sequences R and V be defined by (1) and we suppose that α 6= β
in (2). Then

(7/1) Rn+1Rn−1 − R2
n = (−1)nBn−1 (n ≥ 1),
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(7/2) RnVn = R2n (n ≥ 0),

(7/3) VnRn+1 = R2n+1 + (−B)n (n ≥ 0),

(7/4) E
n
n = VnIn and E

n+1
n = VnEn (n ≥ 3),

where En is defined by (5).

Proof. The first three properties of the Lemma are known or, using (2), they can
be proven easily. For the proof of (7/4) consider the multiplication of matrices. For
example:

E
2
n = En · En =

















0 0 . . . 0 Vn 0
0 0 . . . 0 0 Vn

1 0 . . . 0 0 0
0 1 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . 1 0 0

















,

E
3
n = E

2
n · En =





















0 0 . . . 0 Vn 0 0
0 0 . . . 0 0 Vn 0
0 0 . . . 0 0 0 Vn

1 0 . . . 0 0 0 0
0 1 . . . 0 0 0 0
...

...
. . .

...
...

...
...

0 0 . . . 1 0 0 0





















, . . . ,

E
n
n =













Vn 0 . . . 0 0
0 Vn . . . 0 0
...

...
. . .

...
...

0 0 . . . Vn 0
0 0 . . . 0 Vn













= VnIn

and so E
n+1
n = E

n
n · En = (VnIn)En = VnEn.

Proof of Theorem 1. For n = 2 we get that

det (C2(V2; R3, R2)) =

∣

∣

∣

∣

A2 + B A3 + 2AB
A A2 + B

∣

∣

∣

∣

= B2.
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If n > 2, let us consider the n by n matrices

Tn =





















1 −A −B 0 . . . 0 0
0 1 −A −B . . . 0 0
0 0 1 −A . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −A −B
0 0 0 0 . . . 1 −A
0 0 0 0 . . . 0 1





















and

Cn = Cn(Vn, R2n−1, R2n−2, . . . , Rn) =









R2n−1 VnRn . . . VnR2n−2

R2n−2 R2n−1 . . . VnR2n−3

...
...

. . .
...

Rn Rn+1 . . . R2n−1









.

Then, by (1), (2) and (7/1)–(7/3), one can verify that

CnTn =

















R2n−1 BR2n−2 (−B)n 0 . . . 0
R2n−2 BR2n−3 0 (−B)n . . . 0

...
...

...
...

. . .
...

Rn+2 BRn+1 0 0 . . . (−B)n

Rn+1 BRn 0 0 . . . 0
Rn BRn−1 0 0 . . . 0

















.

Developing the det(CnTn) we get that

det(CnTn) = (−1)2n+2 det

(

Rn+1 BRn

Rn BRn−1

)

det ((−B)n
In−2)

= B(Rn+1Rn−1 − R2
n)(−B)n(n−2) = B(−1)nBn−1(−B)n(n−2)

= (−1)n(n−1)Bn(n−1) = Bn(n−1).

But, since det(Tn) = 1, det(CnTn) = det(Cn) · det(Tn) = det(Cn), therefore

det(Cn) = Bn(n−1), i.e. Theorem 1 is true.

Proof of Corollary 1. In [2] it is proven that if Cn is as in (3) then

(8) det (Cn(d, x1, x2, . . . , xn)) =

n−1
∏

k=0





n
∑

j=1

xj

(

n

√
d
)j−1

εk(j−1)



 ,

where ε = e2πi/n. Substituting in (8)

d = Vn and (x1, x2, . . . , xn) = (R2n−1, R2n−2, . . . , Rn),
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by Theorem 1, the statement of Corollary 1 immediately yields.

Proof of Theorem 2. Theorem 1 implies that C
−1
n (Vn; R2n−1, R2n−2, . . . , Rn)

exists. It is easily verifyable that

Cn (Vn; R2n−1, R2n−2, . . . , Rn) = R2n−1In + R2n−2En + · · · + RnE
n−1
n ,

therefore we have to show that

(9)
(

R2n−1In + R2n−2En + · · · + RnE
n−1
n

)

(−1)n−1B−n(BIn +AEn −E
2
n) = In.

By (1), the left hand side of (9) can be written as

(10) (−1)n−1B−n (R2n−1BIn + R2n−2BEn + R2n−1AEn + RnAE
n
n

−Rn+1E
n
n − RnE

n+1
n + On + · · · + On

)

,

where On is the zero-matrix of order n.

Thus, applying (1), (7/1)–(7/4) and (2), the form (10) is equal to

(−1)n−1B−n (R2n−1BIn + (BR2n−2 + AR2n−1)En

+ RnAVnIn − Rn+1VnIn − RnVnEn)

= (−1)n−1B−n (R2n−1BIn + (R2n − RnVn)En + Vn(ARn − Rn+1)In)

= (−1)n−1B−n (R2n−1BIn + On − VnBRn−1In)

= (−1)n−1B−n+1 (R2n−1 − VnRn−1) In

= (−1)n−1B−n+1(−B)n−1
In = (−1)2n−2B0

In = In,

which completes the proof of Theorem 2.

Proof of Corollary 2. By Theorem 2

det (Cn (Vn; R2n−1, R2n−2, . . . , Rn)) · det
(

C
−1
n (Vn; R2n−1, R2n−2, . . . , Rn)

)

= 1

thus, if |B| = 1 then, by Theorem 1,

det
(

C
−1
n (Vn; R2n−1, R2n−2, . . . , Rn)

)

= 1.

E.g. let n ≥ 3 be an odd integer and B = 1. Then, by Theorem 2,

C
−1
n (Vn; R2n−1, R2n−2, . . . , Rn) = In + AEn − E

2
n

=













1 0 0 . . . 0 −Vn AVn

A 1 0 . . . 0 0 −Vn

−1 A 1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . −1 A 1













,
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i.e. (x1, x2, . . . , xn) = (1, A,−1, 0, . . . , 0) is a solution of (6).

The proof is similar when n ≥ 3 odd and B = −1, or n ≥ 4 even and |B| = 1.
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