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ABSTRACT

Guignardia bidwellii, indigenous to North America, is a significant pathogen of grapes long known in
Hungary, infecting only the growing green parts of the vine (leaves, petioles, shoots, and bunches). In the
absence of adequate plant protection and extreme weather conditions such as a predominantly humid,
warm year, black rot of grapes can be expected. The pathogen can cause high yield losses due to grape rot
and reduce wine quality if the infection is severe.

The evolution of certain biogenic amine compounds were investigated under the influence of grape
black rot. The results obtained showed that they were present in low concentrations from an oenological
point of view. Polyphenol composition was consistent with the literature, blackening affected mainly the
concentration of catechin. Black rot fungus does not produce b-glucosidase enzyme. In terms of resveratrol
content, black rot has no particular effect. However, like Botrytis cinerea, it produces glycerol and, pro-
portionally, gluconic acid in lower concentrations.

It can be concluded that black rot of grapes does not cause health problems when introduced into wine
processing.
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1. INTRODUCTION

Economically the most significant pathogens of grape are downy mildew (Plasmopara
viticola), powdery mildew (Erysiphe necator), grey rot (Botrytis cinerea), black rot
(Guignardia bidwellii), and other local or temporarily occurring pathogens (Fischer and
Kassemeyer, 2003). Black rot and downy mildew are the two major diseases of cultivated
grape (Vitis vinifera) worldwide. Black rot is caused by G. bidwellii, a fungus originating
from North America, responsible for one of the highest financial losses regarding Eurasian
grape. The main V. vinifera varieties in production are either moderately or highly sus-
ceptible to the disease, depending on the production area and phenological phase (Jabco
et al., 1985).

This study aimed to identify the changes caused by black rot in the composition of the
berry. The most important parameters of the berries of grapes affected by black rot were
investigated. Polyphenols, as one of the most important groups of compounds from the
oenological aspect, were examined, as well as organic acids, sugars, resveratrol, and hista-
mine.

Polyphenols have an essential role in plant development and reproduction, protecting
against biotic and abiotic stresses, such as the effect of pests and diseases, UV radiation,
and damage to the plant (Winkel-Shirley, 2002). Polyphenols have antioxidant (Landrault
et al., 2001) and anti-inflammatory (Castilla et al., 2006) effects; they are beneficial for
the heart (Zern and Fernandez, 2005) and the nervous system (Shukitt-Hale et al., 2006),
and can be used in cancer prevention (Castillo-Pichardo et al., 2009). Phenolic com-
pounds are responsible for the bitter taste, contracting mouthfeel, and browning of wines.
Flavonoids have reducing and antioxidant properties and are often polymerised (Nagy
et al., 2017).

Biogenic amines in food are derived from decarboxylation of amino acids through the
activity of exogenous enzymes released by various microorganisms (Erdag et al., 2018).
Biogenic amines are low molecular weight aliphatic, alicyclic, or heterocyclic nitrogen-
containing compounds, and they are essential in human body. They are natural components
of different foods and play a role in shaping the flavour of food. They can be found in grape
must but can also be formed during alcoholic and malolactic fermentation and wine ageing
(Guo et al., 2015).

2. MATERIALS AND METHODS

2.1. Samples

Six different grape varieties were tested for their black-rotten berries. The analysis was based on
the current practice of visual inspection of berries that were considered to affect by black rot.
Samples were resistant white grape varieties Bácska, Danubius, Hibernál, Palatina, and Panonija
collected from Borota and Kékfrankos varieties collected from Villány. After representative hand
sampling, only fully black-rotten, mummified berries from infected bunches were sorted and
used for sample preparation.

Acta Alimentaria 51 (2022) 1, 126–133 127



2.2. Methods

2.2.1. Spectrophotometric methods. Determination of sugar, glycerol, gluconic acid, malic acid,
lactic acid, citric acid, and tartaric acid was performed by a Thermo Scientific Gallery desktop
discrete photometric analyser.

Sugar, glycerol, gluconic acid, malic acid, lactic acid, and citric acid were examined by
enzymatic reaction and tartaric acid was determined by a colour reaction.

Galacturonic acid was analysed by Megazyme Ltd. D-Glucuronic/D-Galacturonic Acid Assay
Kit. It is a simple, reliable, and accurate method based on an enzymatic reaction with a limit of
detection (LOD) of 15.5mg L�1. The wavelength of the spectrophotometric measurement is
340 nm.

Spectrophotometric procedure was performed with a MOM Spektromom 195 device. Total
polyphenol was determined with Folin-Ciocalteu-phenol reagent expressed as gallic acid
equivalent (Kállay et al., 1999). The amount of leukoanthocyanin was determined with spec-
trophotometer after heating with a 40:60 mixture of hydrochloric acid-butanol containing
iron(II) sulphate according to the modified method of Flanzy et al. (1970). Its concentration is
expressed in malvidin-3,5-diglucoside equivalents. Catechin was analysed in alcohol-diluted
wine using vanillin sulphuric acid at 500 nm by spectrophotometry (Rebelein, 1965).

2.2.2. High-Performance Liquid Chromatography (HPLC) methods. Determination of grape
berry extracts was performed by Shimadzu LC-20 HPLC. The system consisted of a dual-pump
module LC-20AD, a DGU-20A5R mobile phase degasser, an autosampler SIL-20AHT, a CTO-
20A column oven with an FCV-12AH high-pressure six-port switching valve, and a fluorescence
detector RF-20AXS and a diode array detector SPD-M20A. The HPLC system was controlled by
a CBM-20A communication module. Lab-Solution software (Shimadzu Corporation) was used
for the data acquisition and evaluation.

Grape berries were extracted for HPLC analysis as follows: 20 g sample was added into a
blender jar, 7.2mL methanol and 52.8mL water were added (providing 60mL of 12 v/v%
methanol). The blender jar was covered and the sample was blended at high speed for 1min.
After 30min, the sample was centrifuged for 2min. The supernatant was extracted with
23 50mL chloroform. After evaporation, the residue was dissolved in 2mL HPLC eluent. These
berry extracts were injected into the chromatograph.

Organic acids (shikimic acid, succinic acid, and fumaric acid) were separated and simulta-
neously determined by high-performance liquid chromatography (HPLC) with a method by the
International Organisation of Vine and Wine (OIV, 2004).

For the determination of caftaric acid, catechin, and epicatechin a method of Larrauri et al.
(2017) was used.

For liquid chromatographic determination of resveratrol, the method of Kállay and Török
(1997) was used. The separation column was RP-C18 (1003 4.6mm, 5 mm). The mobile phase
was a mixture of acetonitrile: methanol: water (5 : 5 : 90, v/v/v) at a flow rate of 2mLmin�1 in
isocratic elution. The temperature of the column was set at 30 8C, and the detection was at a
wavelength of 306 nm.

Determination of biogenic amines (BAs) by HPLC was performed on an HP 1050 chro-
matograph with an HP 1046A fluorescence detector. Mobile phase was 0.08M acetic acid (A)
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and acetonitrile (B) at a flow rate of 1mLmin�1 in gradient elution (Table 1) (Kállay and
Nyitrai-Sárdy, 2003; Nyitrai-Sárdy et al., 2017; Oláhné Horváth et al., 2020; Nagy et al., 2021).

Grape musts were filtered with a 0.45mm filter before the analysis.

2.3. Statistical analysis

The assessment was performed using one-way ANOVA in Microsoft Excel 2016 to determine
the significant difference between samples (Freedman, 2005). Results were obtained at the 95%
significance level.

3. RESULTS AND DISCUSSION

To study the effect of G. bidwellii on the berry composition of black rot affected grapes, berries
were thoroughly analysed.

Table 2 shows sugar, glycerol, gluconic acid, and galacturonic acid contents of the berries.
Black rot caused an increase in sugar concentration. Just like in the case of B. cinerea

infestation, glycerol is produced in the berries, as well as gluconic acid, although in a lower
concentration. The galacturonic acid level suggests pectinase enzyme activity. Table 3 shows the
organic acid contents of the samples.

Table 2. Sugar, glycerol, gluconic acid, and galacturonic acid contents of black rot affected berries

Grape
variety

Sugar
(g kg�1)

Glycerol
(g kg�1)

Gluconic acid
(g kg�1)

Galacturonic acid
(mg kg�1)

Palatina 660.4 14.8 1.6 600
Panonija 586.8 15.2 1.4 1,368
Hibernál 534.5 11.2 1.5 600
Danubiusz 631.0 9.6 1.4 550
Bácska 620.6 14.4 1.2 1,080
Kékfrankos 616.0 33.2 1.3 600
Control 615.3 n.d. n.d. n.d.

n.d.: not detected.

Table 1. Elution gradient

Time (min) A% B%

3.5 70 30
10 35 65
21 28 72
22 20 80
25 20 80
30 70 30

A: 0.08M acetic acid; B: acetonitrile.
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Table 3. Organic acid contents of black rot affected grape berries

Grape
variety

Tartaric acid
(g kg�1)

Malic acid
(g kg�1)

Shikimic acid
(mg kg�1)

(þ)-Lactic acid
(g kg�1)

Citric acid
(mg kg�1)

Succinic acid
(g kg�1)

Fumaric acid
(mg kg�1)

Caftaric acid
(mg kg�1)

Palatina 8.2 n.d. n.d. 0.056 n.d. 6.5 125.4 80.0
Panonija 12.4 n.d. n.d. 0.063 n.d. 3.4 369.1 108.1
Hibernál 11.2 n.d. n.d. 0.064 n.d. 6.7 110.8 111.9
Danubiusz 15.9 n.d. n.d. 0.066 n.d. 6.4 161.2 108.3
Bácska 15.6 n.d. n.d. 0.100 n.d. 6.6 104.8 120.5
Kékfrankos 14.3 n.d. n.d. 0.076 n.d. 9.2 78.0 80.6
Control 10.3 7.2 n.d. 0.003 0.02 n.d. n.d. 90.2

n.d.: not detected.
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Malic acid was non-detectable, while (þ)- lactic acid was found in berries. Furthermore,
shikimic and citric acids were absent in the samples, while a considerate amounts of succinic and
fumaric acids were measured.

Table 4 shows the polyphenol content of samples. The average total polyphenol content of
white wines is 170–300mg L�1, and 4,000mg L�1 of red wines (Bene and Kállay, 2019). Samples
were characterised by the ratio of catechin and epicatechin. Normally a higher epicatechin level
is typical during ripening, then 1:1 ratio develops at the fully ripened stage. Increased catechin
concentrations were found in black rot infected berries.

Table 5 shows the resveratrol levels of the samples. As expected, only resveratrol glucosides
were detected in the samples. The black rot-causing fungus does not produce any b-glucosidase
enzyme, unlike in the case of B. cinerea. cis-Resveratrol was measured in Kékfrankos (Blue
frank) that is an atypical result. According to our findings, black rot does not affect the
resveratrol levels in berries.

In this study we have measured amines that can be characterised with a proven health effect.
From the wine production point of view the amine concentrations were low. Table 6 shows the
biogenic amine concentration of samples. A significant amount of histamine was detected in the
samples. Lower histamine levels and a steady amount of melatonin, tyramine, and serotonin were
measured in the shrivelled berries, while these values were higher in the black rot infected berries.

The investigation and separation of the microbial composition of berries affected by black rot
were not the aim of the study. No further studies have been carried out in this context.

Table 4. Polyphenol contents of black rot affected grape berries

Grape
variety

Total
(mg kg�1)

(þ)-Catechin
(g kg�1)

(�)-Epicatechin
(g kg�1)

Leucoanthocyanins
(procyanidins) (mg kg�1)

TAC
(mmol kg�1)

Palatina 5,932 3,763 924 3,276 112.4
Panonija 5,936 3,640 448 3,476 112.4
Hibernál 6,176 3,452 1,156 3,372 117.2
Danubiusz 5,328 4,332 176 3,992 100.8
Bácska 6,480 4,744 100 3,864 122.8
Kékfrankos 6,364 5,796 120 5,180 120.8
Control 5,899 3,826 256 3,825 111.8

TAC: Total Antioxidant Capacity.

Table 5. Resveratrol levels of black rot affected grape berries

Grape
variety

cis-Piceid
(mg kg�1)

trans-Piceid
(mg kg�1)

cis-Resveratrol
(mg kg�1)

trans-Resveratrol
(mg kg�1)

Palatina n.d. 0.28 n.d. n.d.
Panonija n.d. 0.38 n.d. n.d.
Hibernál n.d. 0.93 n.d. n.d.
Danubiusz 0.46 0.33 n.d. n.d.
Bácska n.d. 0.31 n.d. n.d.
Kékfrankos n.d. 3.28 0.91 n.d.
Control n.d. n.d. n.d. n.d.

n.d.: not detected.
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4. CONCLUSIONS

This study aimed to identify the changes caused by black rot in the chemical composition of
grape berry.

The changes caused by black rot are negligible in terms of the grape’s nutritional values and
undesirable compounds such as histamine. Although melatonin, tyramine, and serotonin are
produced in the berry, their levels are negligible.

According to the chemical composition data obtained from black rot affected grapes, the
chemical composition of wine will not be altered in terms of polyphenols, biogenic amines, and
resveratrol. Botrytis produces less histamine than black rot. Wine treatment processes such as
bentonitic maceration or filtration reduce the histamine concentration, thus there is no risk of
histamine contamination of wine.
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