
The role of atlases and multi-atlases in brain tissue segmentation based
on multispectral magnetic resonance image data
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Abstract— Atlas assisted image segmentation has been quite
popular in medical imaging during the last two decades. The
atlas is able to provide prior information on the imaged organ’s
shape, appearance, and local texture or intensity distribution.
In case of segmenting images via pixelwise classification, the
final segmentation result is obtained through a fusion of the
classification outcome with the local atlas information. In other
words, the atlas guides the classifier towards the shape of
local structures normally situated at the given location. This
paper proposes to demonstrate the advantages a multi-atlas can
bring in a segmentation process of the main tissues in infant
brain based on multi-spectral MRI records. Three supervised
machine learning methods are deployed to segment brain
tissues, with and without the use of the atlas. Differences are
evaluated using statistical accuracy indicators. Atlases improved
the overall segmentation accuracy by 2.5-3.5%, depending on
the deployed classifier method.

Index Terms— magnetic resonance imaging, brain tissue
segmentation, atlas-based segmentation, infant brain.

I. INTRODUCTION

Atlases and multi-atlases are usually involved in medical
image segmentation to provide additional information on the
investigated object (organ), thus contributing to the quality
of segmentation. Without using shape models or atlases,
the segmentation process can only rely on local features
of pixels, like texture and intensity distributions. Atlases
may provide information on what is usually found in the

This work was partially supported by a grant of the Romanian Ministry
of Education and Research, CNCS - UEFISCDI, project number PN-III-P4-
ID-PCE-2020-2360, within PNCDI III.

This work was supported in part by the Sapientia Institute for Research
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B. Surányi is also with Doctoral School of Applied Mathematics and Ap-
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1034 Budapest, Hungary (phone/fax: +36-1-666-5585; e-mail: {kovacs,
szilagyi.laszlo} at uni-obuda.hu).

same location in other similar images, or what intensity
distributions characterize certain locations in other normal
records.

Atlases have many recent applications in medical image
segmentation, involving organs like: lung [1], pancreas [2],
prostate [3], bones [4], cartilage [5], brain tissues and le-
sions [6], [7], [8], [9], cardiac structures (e.g. myocardium)
[10], [11], and multiple abdominal organs [12]. Atlases are
involved in the processing of image data collected through
various imaging modalities, including magnetic resonance
imaging (MRI) [3], [6], [7], computed tomography (CT)
[1], [4], CT angiography [10], positron emission tomography
(PET) [11], X-ray [13] and mammography [14]. For further
information on atlas-based image segmentation techniques,
there are available systematic review papers (e.g. [15], [16]).

This paper proposes to demonstrate the advantages a
multi-atlas can bring in a segmentation process of the main
tissues in infant brain based on multi-spectral MRI records.
The difficulty of the problem consists in the very similar
intensity of the white matter and grey matter at the age of
6 months [17]. Under such circumstances, shape priors are
likely to provide valuable information into the segmentation
process and to assist the improvement of segmentation qual-
ity.

The rest of this paper is structured as follows. Section II
presents the data, the segmentation framework, and the multi-
atlas involved in the comparative study. Section III relates
on and discusses the segmentation results achieved with and
without the use of the atlas, while section IV concludes the
study.

II. MATERIALS AND METHODS
A. Data

This study uses ten infant brain records that served as
training data in the iSeg-2017 challenge [17]. Each volume
may contain up to 256 slices of 144 × 192 pixels, but only
100-110 slices contain brain pixels. Pixels are isovolumetric,
they represent one cubic millimeter of brain tissues. All
records are multispectral, they contain T1 and T2-weighted
observed values collected by the MRI equipment. The two
observed volumes were registered to each other using an
automated algorithm. Each pixel has a label (ground truth)
produced by human experts, indicating the tissue type where
it belongs. Three tissue types are distinguished in the ground
truth: cerebro-spinal fluid (CSF), grey matter (GM), and
white matter (WM). The skull and any other non-brain
tissues were removed from all volumes. The segmentation
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of these volumes has an inherent difficulty consisting in the
fact that patients are six-month old, which is the age when
the WM and GM tissues have very similar intensity values
in the T1 data channel.

B. Preprocessing

The records of the iSeg-2017 challenge consists of rel-
atively good-quality MRI data, which contain no relevant
amount of high frequency noise. The presence of intensity
inhomogeneity [18], [19] was not investigated. The main
preprocessing step in this study consists in the normalization
(standardization) of histograms, which is a mandatory step in
magnetic resonance imaging, because the absolute numerical
intensity values provided by the MRI equipment can only be
interpreted together with their context. To accomplish the
histogram normalization, the method of Nyúl et al [20] was
deployed, which registers together the histograms of a batch
of MRI records based on some predefined milestones. Our
application used five milestones for histogram registration,
namely, the 0.5, 25, 50, 75, and 99.5 percentiles. Another
preprocessing step consists in handling the very few missing
data. Missing intensity values were filled with averaged
values extracted from the neighborhood of the pixels in
question.

The final preprocessing step consists in feature generation.
The two observed features of the pixels, the normalized T1
and T2 intensity values, cannot support a fine segmentation
by themselves. Further information of the pixels can be found
in their immediate neighborhood, mainly because the auto-
mated registration of data channels T1 and T2, performed
by the experts of the iSeg-2017 database, is not perfect.
Therefore, it is likely to achieve better segmentation if we
extract some additional features from the planar and spatial
neighborhood of each pixel. Average T1 and T2 values were
extracted from planar 3×3, 5×5, . . . , 11×11 neighborhoods
(10 features), and minimum, maximum, and average of T1
and T2 from 3 × 3 × 3 spatial neighborhood (6 features).
Together with the two observed features, the feature vectors
sums up to 18 features. Pixel localization features can be
involved in the study by adding normalized x, y and z
coordinates to the feature vector.

C. Atlas creation

Involving an atlas in the segmentation process allows
us to provide additional information regarding the spatial
position of the pixels, and the tissue composition that is
likely to be at that position. The initial step of an atlas
creation is registering together all MRI volumes from the
training data set. Our study relies on rigid registration that
uses normalized relative coordinates. First the gravity center
O(x0, y0, z0), and the standard deviation of x, y, and z
coordinates (σx, σy, σz) are extracted from each volume.
The relative coordinates of a pixel situated at (x, y, z) in
a given volume are (x−x0

σx
, y−y0

σy
, z−z0σz

). All pixels of the
training volumes are mapped onto a discrete mesh of relative
coordinates. The distribution of the three labels (CSF, GM,
WM) of pixels mapped onto each discrete mesh point of

Fig. 1. The atlas obtained for a certain slice: probability maps of CSF
(left), white matter (middle) and grey matter (right).

relative coordinates is computed. This way we obtain a
spatial map of probabilities for each tissue type. One slice
of these three maps are exhibited in Fig. 1. Selecting the
maximum probability at each mesh point, it is possible to
obtain an average segmentation accuracy of 67-68% for the
testing volumes not included in the atlas. This segmentation
accuracy is achieved by the use of pixel coordinates, without
using the pixel intensities.

D. Classification

Machine learning techniques were used to perform the
classification of pixels into three classes that correspond to
the three main tissue types from the brain: CSF, GM, and
WM. As the number of multispectral MRI records in the
iSeg-2017 dataset is very low, the leave-one-out technique
was adopted: one record is selected for testing at a time, and
all other nine records were involved in the training of the
classifier. Of course, the ten records took turns in serving as
testing data, so all ten records were segmented during the
evaluation process.

Three machine learning methods were involved in this
study: random forest (RF) [21], [22], [23], k-nearest neigh-
bors (kNN), and discrete AdaBoost (ADA) [24].

1) Random Forests: Random forests [21] classify data by
via bagging [25], i.e. by building a large collection of trees
on samples drawn with replacement from the training data
and averaging them by a voting mechanism.

Thus, if the number of trees is B, in order to build each
random-forest tree Tb, b = 1, . . . , B a bootstrap sample Z∗

of size N is drawn from the training data and Tb is grown
on Z∗ in the following recursive manner: for each terminal
node in the tree, m out of the p variables are selected, the
best split-point among the m is picked and the node is split
in two. These steps are repeated until a minimum node size
is reached.

The main intuition behind random-forests is to reduce
variance by reducing the correlation between trees. This is
achieved by randomly selecting the m variables from the
bootstrapped dataset for splitting. Typical values for m are√
p or even 1 [26].
The output of the algorithm consists of the ensemble

of trees {Tb}b=1,B . The random-forests prediction is typi-
cally computed using majority voting, but other aggregation
methods can be used. The scikit-learn [27] implementation
averages the probabilistic predictions of the trees. On many
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problems the performance of forests is similar to that of
boosting.

2) kNN: k - Nearest Neighbor (kNN) is a classification
method that assigns a class to a test instance based on the
classes of its k neighbors by using a voting mechanism [28].
If a simple majority is used then:

C(x) = arg max
c∈C

∑
(xi,ci)∈Nx

I(c = ci), (1)

where Nx is the neighborhood of x, having k instances
defined based on some similarity measure, C is the set of
class labels, ci is the class label of the i-th neighbor xi, and
I is the indicator function (returns 1 if condition is true, oth-
erwise 0). For real-valued data, Euclidean distance is mostly
used. A weighted voting mechanism can be used instead of
eq. (1). The efficiency of kNN is obviously affected by the
choice of k, the choice of voting mechanism and that of
the similarity measure used to defined the neighbors of an
instance. Another drawback consists in the fact that while
the model consists in storing the training data for reference,
classifying unknown instances can become expensive for
large training sets.

3) Discrete AdaBoost: AdaBoost, first proposed as Ad-
aBoost.M1 in [29], is a learning method that efficiently
combines the results of many runs of a weak classifier to
produce a strong output. AdaBoost repeatedly applies the
classifier on weighted training data, adjusting the weights
during each iteration in a manner that emphasizes miss-
classified observations in each iteration. A weak classifier
is a classification method with an error rate slightly better
than random guessing. The final output is constructed as a
linear combination of the classifiers fitted each iteration.

Based on the original AdaBoost, SAMME - Stagewise Ad-
ditive Modeling using a Multi-class Exponential loss function
[30] was adjusted for multi-class problems by tweaking the
way weights are updated to take into account the random
guessing error of these problems. For a multi-class problem
with K classes the error rate for random guessing is (K −
1)/K.

Given the training data X ⊂ Rn×p with response variable
C ⊂ N, with ci ∈ {1, . . . ,K} and a weak classifier
T (·), SAMME will apply T on weighted values of X for
M iterations successively by using each iteration different
weights wi. Initial weights wi are taken equal to 1/n. Each
iteration m, T (m)(X) is fitted to observations xi ∈ X
weighted by wi and the corresponding weighted error rate
err(m) is computed. Coefficients α(m) that are used to
update weights for the next iteration and for the final output
of the algorithm are computed as:

α(m) = log
1− err(m)

err(m)
+ log (K − 1) . (2)

Weights wi are updated as wi ← wi expα(m) for all
instances i miss-classified by T (m); after that they are re-
normalized. The output

C(x) = arg max
k

M∑
m=1

α(m)I(T (m)(x) = k) (3)

combines the outputs of the M classifiers weighted by α(m).
The only difference between SAMME and AdaBoost.M1 is
in eq. (2) where the term logK − 1 is added in SAMME
in order to ensure that α(m) is always positive. Just like
AdaBoost is equivalent to a forward stagewise additive model
with an exponential loss function [31], it is shown that adding
the term log (K − 1) makes SAMME equivalent to fitting a
stagewise additive model with a multi-class exponential loss
function [30].

All three classifiers were tested on various sizes of the
training data set, ranging from 1k to 200k randomly selected
pixels from each train record. More exactly, RF was tested
up to 200k, AdaBoost up to 100k, while kNN up to 50k
pixels per training record. This difference is due to the
computational burden of each algorithm. Nevertheless, the
main goal is not to compare the accuracy of the classifiers in
the segmentation problem, but to show the beneficial effect
of the atlas. Further parameters of the deployed classifier
methods are listed below:
• kNN was used with k = 11;
• Random forest using maximum 150 trees with maxi-

mum depth growing together with the training data size
in the range between 12 and 29;

• Discrete AdaBoost used maximum tree depth growing
together with the training data size in the range between
12 and 26.

kNN and RF performed directly the classification of pixels
into three classes (CSF, GM, WM), while AdaBoost worked
in two stages: first it separated CSF from the other two, and
then it separated GM from WM.

E. Label fusion

The processing step, called label fusion has the main
goal to create a unique decision for each pixels based on
two inputs, namely, the estimations given by the classifier
and the atlas. Both inputs are probabilistic and non-binary.
On the other hand, the output of the label fusion gives
each pixel a crisp label with respect to the three classes.
Pixels must belong to a single class, either CSF, or GM or
WM. Our solution employs the so-called simultaneous truth
and performance level estimation (STAPLE) method [32] to
perform the label fusion.

F. Evaluation criteria

The segmentation results are evaluated via comparing
the decisions made by the classification algorithm with the
ground truth. Let us denote the set of labels by Ω: Ω =
{CSF,GM,WM}. Further on, for any i ∈ Ω, let Γi stand
for the set of pixels from a volume that belong to class i
by ground truth, and Λi the set of pixels assigned to class i
by the classifier. Let Ψ be the set of all pixels of a volume.
Obviously Ψ = ΓCSF∪ΓGM∪ΓWM = ΛCSF∪ΛGM∪ΛWM.
The main accuracy indicators involved in this study are:
• Sensitivity (or recall or true positive rate) with respect

to class i ∈ Ω, defined as TPRi = |Γi∩Λi|
|Γi| , which

represents the rate of correct decisions regarding pixels
that belong to class i by ground truth;
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Fig. 2. Average global accuracy achieved by three machine learning methods, without and with the use of the atlas, plotted against the size of the training
data set.

TABLE I
AVERAGE VALUES OF THE MAIN ACCURACY INDICATORS (EXPRESSED IN %) OBTAINED BY THE CLASSIFIER ALGORITHMS, USING 50K PIXELS PER

TRAINING RECORD

Classifier Atlas CSF GM WM Overall
algorithm status DSC TPR TNR PPV DSC TPR TNR PPV DSC TPR TNR PPV accuracy
Discrete without 87.02 84.36 97.41 89.95 81.19 84.55 78.88 78.18 76.58 73.82 91.84 79.82 81.13
AdaBoost with 89.19 87.42 97.66 91.14 84.54 87.57 82.63 81.84 81.31 78.52 93.79 84.67 84.63
Random without 86.99 84.78 97.24 89.42 81.31 85.04 78.52 77.99 76.37 72.82 92.32 80.58 81.14
forest with 88.43 86.60 97.48 90.43 83.65 87.74 80.44 80.04 79.44 75.14 94.02 84.62 83.50
K-nearest without 85.80 82.45 97.34 89.52 79.62 82.22 78.39 77.30 75.34 74.13 90.23 76.86 79.70
neighbors with 87.54 84.43 97.69 90.99 83.02 85.60 81.72 80.71 80.13 78.87 92.32 81.78 83.16

Fig. 3. Improvement of global accuracy caused by the use of atlas, for
various machine learning methods and training data sizes.

Fig. 4. Accuracy obtained for individual patients by the three machine
learning methods, with and without using the atlas.

• Positive predictive value (or precision) with respect
to class i ∈ Ω, defined as PPVi = |Γi∩Λi|

|Λi| , which
represents the rate of correct decisions regarding pixels
that were assigned to class i by the classifier;

• Specificity (or true negative rate) with respect to class
i ∈ Ω, defined as TNRi = |Ψ\(Γi∪Λi)|

|Ψ\Γi| ;
• Dice similarity coefficient (or Dice score) of class i ∈

Ω, defined as DSCi = 2×|Γi∩Λi|
|Γi|+|Λi| ;

• and overall accuracy defined as ACC =
∑

i∈Ω |Γi∩Λi|
|Ψ| .

In all above presented formulas, |X| stands for the cardinality
of set X . All these accuracy indicators can have positive
values up to 1, higher values reflect finer accuracy. In this
study we express the accuracy indicators in percentages.
The accuracy indicator values are first established for each
individual record separately, and then the average value is
computed to characterize global accuracy.

III. RESULTS AND DISCUSSION

Three classifier algorithms were deployed to evaluate the
segmentation accuracy of brain tumor tissues, with and
without using the atlas. For each classifier, a range of training
data sizes were tested, keeping the within reasonable bounds.
Each test was run multiple times (five to fifteen) using
different, randomly sampled training data. Averaged values
of accuracy indicators are reported for each test in the
following paragraphs.

Figure 2 presents the evolution of the main accuracy indi-
cator, namely the global rate of correct decisions, obtained by
the three tested classifier algorithms at various training data
sizes, with and without using the atlas. A common property
of all three classifiers is the fact that the accuracy improves
if larger training data sets are involved. Further on, the use of
the atlas is beneficial in all cases, and the difference caused
by the use of atlas also grows together with the training
data size. The best accuracy was achieved by the discrete
AdaBoost classifier, having average accuracy of 85% with
the use of atlas, at 100k feature vectors per training record.

Figure 3 shows the improvement of average accuracy
caused by the use of atlas, in case of various training data
sizes. Also here it is visible that the larger the training
data set, the better the improvement brought by the atlas.
Accuracy differences in case of the random forest classifier

Authorized licensed use limited to: University of Obuda. Downloaded on April 22,2022 at 13:45:49 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5. Scatter plots of various accuracy indicators, with atlas values plotted against without atlas values. Red crosses (×), blue squares (�), and green
circles (◦) represent segmentation results produced on individual MRI records by the discrete AdaBoost, kNN, and random forest classifiers, respectively.

Fig. 6. Nine slices of the brain of Patient no. 8, the normalized input data in channels T1 and T2, the ground truth, and the segmentation result obtained
by the AdaBoost classifier at 50k pixels per training volume, without (ACC=82.7%) and with atlas (ACC=86.3%).

exceed 2.5%, while in case of kNN and discrete AdaBoost
they are even higher, with values up to 3.5%

Figure 4 shows the rate of correct decision obtained for
individual MRI records by the three classifier algorithm,
when using their largest tested training data size. For each
graph, records were sorted in increasing order of the achieved
accuracy. Dotted lines show the results obtained without the
use of atlas, while continuous lines the accuracy of atlas
based segmentation. These plots clearly show that AdaBoost
achieved the best performance, followed by random forest
and kNN. Figure 5 presents twelve scatter plots indicating
various accuracy indicators obtained for individual MRI

records, plotted as values obtained with atlas vs. values ob-
tained without atlas. In each panel, indicators that improved
by the presence of the atlas are situated above the diagonal.
Dice scores, sensitivity values, specificity values, and preci-
sion values are presented in the first, second, third, and fourth
column, respectively. Accuracy indicators obtained for CSF,
GM, and WM tissues are exhibited in the first, second, and
third row, respectively. Only the graphs c) and d) contain a
small number of marks below the diagonal, suggesting that
the use of atlas improved the very large majority of accuracy
indicators. The advantages brought by the use of atlas surely
outweigh the disadvantages.
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Table I exhibits the average values of the main accuracy
indicators, obtained by the three classification algorithms
with and without the use of the atlas. These values were
obtained by each algorithm using the same number of
training data, 50k vectors from each training volume. This
table shows that all accuracy indicators values improve with
the use of the atlas. It also suggests that out of the three
tested classifier methods the discrete AdaBoost provides the
best segmentation accuracy.

Figure 6 presents nine selected slices from the brain
volume of patient number 8, the normalized input data of
channels T1 and T2, the ground truth, and the segmentation
result obtained by the AdaBoost classifier without and with
using atlas. This result was achieved by the AdaBoost
classifier that was using 50k feature vectors per training
volume to learn, and the maximum depth of trees was set
to 24. The segmentation outcome is better when the atlas
is used, the difference is not only measurable by accuracy
indicators, but also observable visually.

IV. CONCLUSIONS

This paper proposed to investigate the advantages brought
by the inclusion of a multi-atlas into a spatial segmentation
problem performed on multi-spectral MRI data. Experiments
proved that the accuracy of pixelwise segmentation improves
by 2.5-3.5%, depending on the chosen classifier method and
parameter adjustment. In future work, we would also wish
to study the classification problem within a game theoretic
framework [33].
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compensation using fuzzy c-means clustering models”, Comput. Meth.
Progr. Biomed, vol. 108, no. 1, pp. 80–89, 2012.
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