Supporting Information

α/β -Peptides as nanomolar triggers of lipid raftmediated endocytosis through GM1 ganglioside recognition

Anasztázia Hetényi ^{1,5}, Enikő Szabó ^{2,5}, Norbert Imre ¹, Kaushik Nath Bhaumik ¹, Attila Tököli ¹, Tamás Füzesi ¹, Réka Hollandi ³, Peter Horvath ³, Ágnes Czibula ^{2,*}, Éva Monostori ², Mária A. Deli ⁴ and Tamás A. Martinek ^{1,*}

- ¹ Department of Medical Chemistry, University of Szeged, Dóm tér 8., 6720 Szeged, Hungary
- ² Institute of Genetics, Biological Research Centre, Temesvári krt. 62., 6726 Szeged, Hungary
- ³ Institute of Biophysics, Biological Research Centre, Temesvári krt. 62., 6726 Szeged, Hungary
- ⁴ Synthetic and Systems Biology Unit, Biological Research Centre, Temesvári krt. 62., 6726 Szeged, Hungary
- ⁵ These authors contributed equally to this work
- * Correspondence: martinek.tamas@med.u-szeged.hu, czibula.agnes@brc.hu

Table of contents

Figure S1. ITC detection of interactions of GM1 with Ala-derivatives.	S2
Figure S2. ITC detection of interactions of GM1 with <i>d</i> -derivatives	S2
Figure S3 . ITC detection of interactions of GM1 with β -derivatives	S2
Figure S4. CD spectrum of peptides	S3
Figure S5. ITC detection of interactions of GM1 with carrier-NA conjugates	S3
Figure S6. ITC enthalpograms of WYKYW-GM1 interaction with pure GM1 and GM1:DPC	S3
Table S1. Half-lives of compounds in protease assay with chymotrypsin	S4
Table S2. Statistical Analysis	S4
Peptide characterization data	S5

Figure S1. ITC detection of interactions of GM1 with *Ala* derivatives (a) AYKYW, (b) WAKYW, (c) WYAYW, (d) WYKAW and (e) WYKYA. Titrations were carried out with GM1:DPC 1:5 bicelles.

Figure S2. ITC detection of interactions of GM1 with *d* derivatives (a) wYKYW, (b) WyKYW, (c) WYKYW, (d) WYKyW and (e) WYKYW. Titrations were carried out with GM1:DPC 1:5 bicelles.

Figure S3. ITC detection of interactions of GM1 with β -derivatives (a) W β YKYW, (b) WY β KYW, (c) WYK β YW, (d) WYKY β W and (e) WYKYW β . Titrations were carried out with GM1:DPC 1:5 bicelles.

Figure S4. CD spectrum of peptides WYKYW (black), WAKAW (long dashed), and AYKYA (short dashed) (200 μ M) at 303 K.

Figure S5. ITC detection of interactions of GM1 with carrier-NA conjugates. Enthalpograms of NA(biotinyl-Penetratin-WYK^{β}YW)₄ (n=1, K_D= 79 nM). Titrations were carried out with GM1:DPC 1:5 bicelles.

Figure S6. ITC enthalpogram obtained for WYKYW with pure GM1 micelles (a) and with GM1:DPC 1:5 bicelles (b).

Table S1. Half-lives of compounds in protease assay with chymotrypsin. In most cases, the peak belonging to the sequence was not detected at the first sampling (2 minutes), hence the half-life is < 24s with a 3% detection limit. * No degradation was detected during the experiment.

Sequence	Half-life (s)		
-	Chymotrypsin	Trypsin	
WYKYW	< 24	< 24	
W^βYKYW	< 24	110	
WY^βKYW	75	900	
WYK^βYW	650	>> 24 h*	
WYKY^βW	< 24	410	
WYKYW ^β	< 24	< 24	

Statistical Analysis: Statistical analysis included one-way analysis of variance (ANOVA) with post hoc Tukey honestly significant difference test (*p < 0.1; ***p < 0.01; ****p < 0.001; ****p < 0.0001). The results of the statistical test are included in Table S2. **Table S2**

1 hour	Summary	Adjusted P Value
WYKYW vs. W ^β YKYW	****	<0,0001
WYKYW vs. WY ^β KYW	****	<0,0001
WYKYW vs. WYK ^β YW	*	0,0448
WYKYW vs. WYKY ^β W	****	<0,0001
WYKYW vs. WYKYW ^β	**	0,0099
W ^β YKYW vs. WY ^β KYW	ns	0,1567
W ^β YKYW vs. WYK ^β YW	***	0,0001
W ^β YKYW vs. WYKY ^β W	ns	>0,9999
W ^β YKYW vs. WYKYW ^β	***	0,0008
WY ^β KYW vs. WYK ^β YW	ns	0,5618
WY ^β KYW vs. WYKY ^β W	*	0,0141
WY ^β KYW vs. WYKYW ^β	ns	0,8793
WYK ^β YW vs. WYKY ^β W	****	<0,0001
WYK ^β YW vs. WYKYW ^β	ns	>0,9999
WYKY ^{β} W vs. WYKYW ^{β}	****	<0,0001

4 hours	Summary	Adjusted P Value
₩ΥΚΥ₩ vs. ₩ ^β ΥΚΥ₩	****	<0,0001
WYKYW vs. WY ^β KYW	ns	0,1364
WYKYW vs. WYK ^β YW	****	<0,0001
WYKYW vs. WYKY ^β W	****	<0,0001
WYKYW vs. WYKYW ^β	****	<0,0001
W ^β YKYW vs. WY ^β KYW	****	<0,0001
W ^β YKYW vs. WYK ^β YW	ns	0,0734
W ^β YKYW vs. WYKY ^β W	ns	>0,9999
W ^β YKYW vs. WYKYW ^β	**	0,0082
WY ^β KYW vs. WYK ^β YW	ns	0,1742
WY ^β KYW vs. WYKY ^β W	****	<0,0001
WY ^β KYW vs. WYKYW ^β	****	<0,0001
WYK ^β YW vs. WYKY ^β W	*	0,0248
WYK ^β YW vs. WYKYW ^β	****	<0,0001
WYKY $^{\beta}$ W vs. WYKYW $^{\beta}$	ns	0,0891

Peptide characterization data

HPLC chromatograms and MS spectra for each sequence are shown below.

WYKYW (WYKYW-NH₂)

Biotin-Penetratin-GG-W^βYKYW (K(Biotin)-RQIKIWFQNRRMKWKKGGW^βYKYW-NH₂)

Biotin-Penetratin-GG-WY^BKYW (K(Biotin)-RQIKIWFQNRRMKWKKGGWY^BKYW-NH₂)

Biotin-Penetratin-GG-WYK^βYW (K(Biotin)-RQIKIWFQNRRMKWKKGGWYK^βYW-NH₂)

Biotin-Penetratin-GG-WYKY^βW (K(Biotin)-RQIKIWFQNRRMKWKKGGWYKY^βW-NH₂)

Biotin-Penetratin-GG-WYKYW^β (K(Biotin)-RQIKIWFQNRRMKWKKGGWYKYW^β-NH₂)

Biotin-Penetratin-GG-WYKYW (K(Biotin)-RQIKIWFQNRRMKWKKGGWYKYW-NH₂)