Supplementary material for Strahler et al. Obsessive healthy eating and orthorexic eating tendencies in sport contexts: A systematic review and meta-analysis

S3 Procedure for calculating, converting and combining the effect sizes

Conversion from bivariate r to z :
$z=0.5 \cdot \ln \left(\frac{1+r}{1-r}\right)$
Calculation variance of $z V_{z}$:
$v_{z}=\frac{1}{n-3}$
Calculation of standard error $S E_{z}$:
$S E_{z}=\sqrt{v_{z}}$
Conversion from z to r.
$r=\frac{e^{2 z}-1}{e^{2 z}+1}$
If there are 2 groups: From arithmetic mean comparison to bivariate r
(1) Calculation of Hedges' g :
$g=\frac{M_{1}-M_{2}}{S D_{\text {pooled }}}$
using the pooled and weighted standard deviation (according to Cohen):
$S D_{\text {pooled }}=\sqrt{\frac{\left(n_{1}-1\right) S D_{1}^{2}+\left(n_{2}-1\right) S D_{2}^{2}}{n_{1}+n_{2}-2}}$
(2) Conversion to bivariate r :
$r_{p b}=\frac{M_{1}-M_{2}}{S D_{\text {pooled }}} \sqrt{\frac{n_{1} n_{2}}{n(n-1)}}=g \cdot \sqrt{\frac{n_{1} n_{2}}{n(n-1)}}$
If there are two comparison/control groups: From multiple arithmetic mean comparisons to bivariate r
(1) Combine arithmetic means of multiple groups (here: multiple control groups)
$M_{\text {merged }}=\frac{\left(M_{1} \cdot n_{1}\right)+\left(M_{2} \cdot n_{2}\right)}{\left(n_{1}+n_{2}\right)}$
(2) Combine standard deviation of multiple groups (here: multiple control groups)
$S D_{\text {merged }}=\frac{\left(S D_{1} \cdot n_{1}\right)+\left(S D_{2} \cdot n_{2}\right)}{\left(n_{1}+n_{2}\right)}$
(3) Calculation of Hedges' g :
$g=\frac{M_{\text {merged }}-M_{3}}{S D_{\text {pooled }}}$
using the pooled and weighted standard deviation (according to Cohen):
$S D_{\text {pooled }}=\sqrt{\frac{\left(n_{\text {merged }}-1\right) S D_{\text {merged }}^{2}+\left(n_{3}-1\right) S D_{3}^{2}}{n_{\text {merged }}+n_{3}-2}}$

Supplementary material for Strahler et al. Obsessive healthy eating and orthorexic eating tendencies in sport contexts: A systematic review and meta-analysis
(4) Conversion to bivariate r :
$r_{p b}=\frac{M_{\text {merged }}-M_{3}}{S D_{\text {pooled }}} \sqrt{\frac{n_{\text {merged }} n_{3}}{n(n-1)}}=g \cdot \sqrt{\frac{n_{\text {merged }} n_{3}}{n(n-1)}}$
If there are 3 and more groups in ascending order (A, B, C, D, E): From multiple arithmetic mean comparisons to bivariate r
All pairwise comparisons
-3 groups (i.e. ABC): 3 comparisons AB, BC, AC.
-4 groups (i.e. $A B C D$): 6 comparisons $A B, A C, A D, B C, B D, C D$.
-5 groups (i.e. $A B C D E): 10$ comparisons $A B, A C, A D, A E, B C, B D, B E, C D, C E, D E$.
(1) For each comparison:
$r_{p b}=\frac{M_{1}-M_{2}}{S D_{\text {pooled }}} \sqrt{\frac{n_{1} n_{2}}{n(n-1)}}=g \cdot \sqrt{\frac{n_{1} n_{2}}{n(n-1)}}$
With $S D_{\text {pooled }}=\sqrt{\frac{\left(n_{1}-1\right) S D_{1}^{2}+\left(n_{2}-1\right) S D_{2}^{2}}{n_{1}+n_{2}-2}}$
(2) z-transformation of each individual r :
$z=0.5 \cdot \ln \left(\frac{1+r}{1-r}\right)$
(3) Averaging of all z scores:
$z_{\text {merged }}=\frac{z_{1}, z_{2}, \ldots z_{5}}{1,2, \ldots, 5}$
(4) Conversion to merged bivariate r :
$r_{\text {merged }}=\frac{e^{2 z}-1}{e^{2 z}+1}$
From frequencies (A, B, C, D) to bivariate r

- If 2 groups (i.e. AB): one 2×2 Contingency Table
- If 3 groups (i.e. $A B C$): two 2×2 Contingency Tables $A B$ and $B C$
- If 4 groups (i.e. $A B C D$): three 2×2 Contingency Tables AB, BC and CD
(1) Calculation of the Odds Ratio (for each 2×2 Contingency Table):
$O R=\left(\frac{A}{A+B}\right) /\left(\frac{C}{C+D}\right)$
With

	Outcome yes	Outcome no
Predictor yes	A	B
Predictor no	C	D

(2) Calculation of Cohen's d (for each 2×2 Contingency Table):
$d=\frac{\ln (O R) \sqrt{3}}{\pi}$
(3) Calculation of bivariate r (for each 2×2 Contingency Table):
$r=\frac{d}{\sqrt{d^{2}+a}}$
With $a=\frac{\left(n_{1}+n_{2}\right)^{2}}{n_{1} \cdot n_{2}}$

Supplementary material for Strahler et al. Obsessive healthy eating and orthorexic eating tendencies in sport contexts: A systematic review and meta-analysis
(4) z-transformation of each individual bivariate r :
$z=0.5 \cdot \ln \left(\frac{1+r}{1-r}\right)$
(5) Averaging of all z scores:
$z_{\text {merged }}=\frac{z_{1}, z_{2}, \ldots z_{5}}{1,2, \ldots, 5}$
(6) Conversion to merged bivariate r :
$r_{\text {merged }}=\frac{e^{2 z}-1}{e^{2 z}+1}$
Combine multiple bivariate correlations to $r_{\text {merged }}$
(1) z-transformation of each individual bivariate r : $z=0.5 \cdot \ln \left(\frac{1+r}{1-r}\right)$
(2) Averaging of all z scores:
$z_{\text {merged }}=\frac{z_{1}, z_{2}, \ldots z_{5}}{1,2, \ldots, 5}$
(3) Conversion to merged bivariate r :
$r_{\text {merged }}=\frac{e^{2 z}-1}{e^{2 z}+1}$

