
ar
X

iv
:1

90
3.

01
00

2v
2 

 [
m

at
h.

C
O

] 
 2

2 
M

ay
 2

02
1

A note on the Turán number of a Berge odd cycle

Dániel Gerbner

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences

P.O.B. 127, Budapest H-1364, Hungary.

gerbner@renyi.hu

May 25, 2021

Abstract

In this note we obtain upper bounds on the number of hyperedges in 3-uniform hypergraphs
not containing a Berge cycle of given odd length. We improve the bound given by Füredi and
Özkahya in 2017. The result follows from a more general theorem. We also obtain some new
results for Berge cliques.
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1 Introduction

We say that a hypergraphH is a Berge copy of a graph F (in short: H is a Berge-F ) if V (F ) ⊂ V (H)
and there is a bijection f : E(F ) → E(H) such that for any e ∈ E(F ) we have e ⊂ f(e).
This definition was introduced by Gerbner and Palmer [11], extending the well-established notion
of Berge cycles and paths. Note that there are several non-uniform Berge copies of F , and a
hypergraph H is a Berge copy of several graphs. A particular copy of F defining a Berge-F is
called its core. Note that there can be multiple cores in a Berge-F .

We denote by exr(n,Berge-F ) the largest number of hyperedges in an r-uniform Berge-F -free
hypergraph on n vertices. There are several papers dealing with exr(n,Berge-Ck) (e.g. [8, 14, 15,
16]) or exr(n,Berge-F ) in general (e.g. [9, 10, 11, 12, 20]). For a short survey on this topic see
Subsection 5.2.2 in [13].

In this note we consider ex3(n,Berge-Ck). In the case k = 5, this was first studied by Bollobás
and Győri [2]. They showed ex3(n,Berge-C5) ≤

√
2n3/2 + 4.5n. This bound was improved to

(0.254 + o(1))n3/2 by Ergemlidze, Győri and Methuku [5]. For cycles of any length, Győri and
Lemons [15, 16] proved exr(n,Berge-Ck) = O(n1+1/⌊k/2⌋). The constant factors were improved by
Jiang and Ma [18], and in the case k is even by Gerbner, Methuku and Vizer [10]. In the 3-uniform
case, Füredi and Özkahya [8] obtained better constant factors (depending on k). In the case k is
even, further improvements were obtained by Gerbner, Methuku and Vizer [10] and by Gerbner,
Methuku and Palmer [9].

A closely related area is counting triangles in Ck-free graphs. More generally, let ex(n,H, F )
denote the maximum number of copies of H in an F -free graph on n vertices. After some sporadic
results, the systematic study of these problems (often called generalized Turán problems) was
initiated by Alon and Shikhelman [1]. Their connection to Berge hypergraphs was established by
Gerbner and Palmer [12], who proved

ex(n,Kr, F ) ≤ exr(n,Berge-F ) ≤ ex(n,Kr, F ) + ex(n, F )

for any r, n and F .
Counting triangles in Ck-free graphs and counting hyperedges in Berge-Ck-free 3-uniform hy-

pergraphs was handled together already by Bollobás and Győri [2] for C5, and by Füredi and
Özkahya [8], who proved ex(n,K3, C2k) ≤ 2k−3

3 ex(n,C2k) and ex3(n,Berge-C2k) ≤ 2k
3 ex(n,C2k).

Their upper bound for ex(n,K3, C2k) is still the best known bound, but their other upper bound
was improved to ex3(n,Berge-C2k) ≤ 2k−3

3 ex(n,C2k) by Gerbner, Methuku and Vizer [10] in the
case k ≥ 5 and by Gerbner, Methuku and Palmer [9] in the case k = 3, 4.
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In the case of forbidden cycles of any odd length, the number of triangles was first studied
by Győri and Li [17], who proved1 ex(n,K3, C2k+1) ≤ (2k−2)(16k−1)

3 ex(n,C2k). It was improved
independently by Füredi and Özkahya [8] and by Alon and Shikhelman [1]. The latter had the
stronger bound ex(n,K3, C2k+1) ≤ 16(k−1)

3 ex(⌈n/2⌉, C2k). In the case k = 2, the current best
bound ex(n,K3, C5) ≤ 0.231975n3/2 is due to Ergemlidze and Methuku [6].

Füredi and Özkahya [8] obtained the currently best upper bound on the Berge version by
showing

ex3(n,Berge-C2k+1) ≤ ex(n,K3, C2k+1) + 4ex(n,C2k) + 12exlin
3 (n,Berge-C2k+1), (1.1)

where exlin
r (n,Berge-F ) denotes the largest number of hyperedges in an r-uniform Berge-F -free

linear hypergraph on n vertices. Recall that a linear hypergraph is one in which any two hyperedges
share at most one vertex.

In this note we improve the bound (1.1). Recall that we have ex3(n,Berge-C2k+1) ≥ ex(n,K3, C2k+1),
thus we cannot hope for a huge improvement, especially as ex(n,K3, C2k+1) might be the largest
of the three terms. Indeed, the best upper bound currently known is O(n1+1/k) for all the three
terms, but the dependence of the known upper bound in k is the largest for ex(n,K3, C2k+1) (we
will state these bounds after Theorem 1.2).

Recall that in case of C2k, the two upper bounds obtained by Füredi and Özkahya [8] were
ex(n,K3, C2k) ≤ 2k−3

3 ex(n,C2k) and ex3(n,Berge-C2k) ≤ 2k
3 ex(n,C2k), and the Berge bound was

improved in [10, 9] to match the generalized Turán bound. Our goal would be to do the same here
and get rid of the terms 4ex(n,C2k+1)+12exlin

3 (n,Berge-C2k+1) in (1.1). We cannot achieve that,
but we decrease these additional terms. Recall that the currently best bound for the generalized
Turán problem is ex(n,K3, C2k+1) ≤ 16(k−1)

3 ex(⌈n/2⌉, C2k) by Alon and Shikhelman [1]. Our
new upper bound on ex3(n,Berge-C2k+1) is larger than that bound by exlin

3 (n,Berge-C2k+1). We
wonder if it is an example of a more general phenomenon and similar bounds could be obtained
for other graphs.

The way we use the linearity involves subdividing an edge uv, i.e. deleting it and adding uw
and vw for a new vertex w. Our method uses only the following two properties of C2k+1: it can
be obtained from C2k by subdividing an edge and deleting a vertex from C2k+1 we obtain a path.
In the next theorem we state our result in the most general form.

Theorem 1.1. Let F be a connected graph obtained from F0 by subdividing an edge and F ′ be

obtained from F by deleting a vertex. Let c = c(n) be such that ex(n,Kr−1, F
′) ≤ cn for every n.

Then we have

(i) exr(n,Berge-F ) ≤ ex(n,Kr, F ) + 2r−1ex(n, F0) + exlin
r (n,Berge-F ),

(ii) exr(n,Berge-F ) ≤ max
{

1, 2c
r

}

2r−1ex(n, F0) + exlin
r (n,Berge-F ).

In the case F = C2k+1 we have F0 = C2k and F ′ = P2k, the path on 2k vertices. A theorem
of Luo [19] shows ex(n,Kr−1, P2k) ≤ n

2k−1

(

2k−1
r−1

)

, but what we need for the 3-uniform case is the
Erdős-Gallai theorem [4] showing ex(n, P2k) ≤ (k − 1)n. Using this, (ii) of Theorem 1.1 gives
ex3(n,Berge-C2k+1) ≤ 8k−8

3 ex(n,C2k) + exlin
3 (n,Berge-C2k+1) if k > 2. We can improve this a

little bit.

Theorem 1.2. If k > 2, then ex3(n,Berge-C2k+1) ≤ 16k−16
3 ex(⌈n/2⌉, C2k)+exlin

3 (n,Berge-C2k+1)

≤
(

1280k−1280
3

√
k log k

)

⌈n/2⌉1+1/k + 2kn1+1/k + 9kn+ 16k−16
3 10k2⌈n/2⌉.

The bound in Theorem 1.2 is currently stronger than the bound given by (i) of Theorem 1.1 for
F = C2k+1 and r = 3. However, an improvement on ex(n,K3, C2k+1) would immediately improve
the bound in (i). Any significant improvement would make (i) stronger than Theorem 1.2 for
F = C2k+1.

The second inequality in Theorem 1.2 follows from known results. Füredi and Özkahya [8]
proved exlin

3 (n,Berge-C2k+1) ≤ 2kn1+1/k + 9kn, and Bukh and Jiang [3] obtained the strongest
bound on the Turán number of even cycles by showing ex(n,C2k) ≤ 80

√
k log kn1+1/k +10k2n. As

we do not have good lower bounds on ex(n,C2k), we cannot be sure that the first term is actually
the larger term. However, if exlin

3 (n,Berge-C2k+1) is the larger term, then our improvement on
the upper bound of ex3(n,Berge-C2k+1) is more significant, as we changed the constant factor of

1We note that the bound is incorrectly stated in their paper [17].
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that term from 12 to 1. Obviously we have exlin
3 (n,Berge-C2k+1) ≤ ex3(n,Berge-C2k+1), hence

further improvement is impossible here.
We prove Theorem 1.1 by combining the ideas of [8] and [1] with the methods developed in

[9, 10]. In the next section we state some lemmas needed for the proof. We give a new proof of
a lemma by Gerbner, Methuku and Palmer [9], and we strengthen the lemma a little bit. This
strengthens results on exr(n,Berge-Kk) for some values of r, k and n. In Section 3 we prove
Theorems 1.1 and 1.2.

2 Lemmas

We say that a graph G is red-blue if each of its edges is colored with one of the colors red and blue.
For a red-blue graph G, we denote by Gred the subgraph spanned by the red edges and Gblue the
subgraph spanned by the blue edges. For two graphs H and G we denote by N(H,G) the number
of subgraphs of G that are isomorphic to H . Let gr(G) = |E(Gred)|+N(Kr, Gblue).

Lemma 2.1 (Gerbner, Methuku, Palmer [9]). For any graph F and integers r and n, there is a

red-blue F -free graph G on n vertices, such that exr(n,Berge-F ) ≤ gr(G).

Note that an essentially equivalent version was obtained by Füredi, Kostochka and Luo [7].
The proof of Lemma 2.1 relies on a lemma about bipartite graphs (hidden in the proof of Lemma
2 in [9]). If M is a matching and ab is an edge in M , then with a slight abuse of notation we say
M(a) = b and M(b) = a.

Lemma 2.2. Let Γ be a finite bipartite graph with parts A and B and let M be a largest matching

in Γ. Let B′ denote the set of vertices in B that are incident to M . Then we can partition A into

A1 and A2 and partition B′ into B1 and B2 such that for a ∈ A1 we have M(a) ∈ B1, and every

neighbor of the vertices of A2 is in B2.

Here we present a proof that is built on the same principle, but is somewhat simpler than the
proof found in [9]. Before that, let us recall the well-known notion of alternating paths. Given a
bipartite graph Γ and a matching M in it, a path P in Γ is called alternating if its first edge is not
in M , and then it alternates between edges in M and edges not in M , finishing with an edge not
in M . It is well-known and easy to see that deleting the edges of P from M and replacing them
with the edges of P that were not in M , we obtain another matching, that is larger than M .

Proof. First we build a set V ′ ⊂ V (Γ) in the following way. Let V0 be the set of vertices in A that
are not incident to any edges of M . Then in the first step we add to V0 the set of vertices in B
that are neighbors of a vertex in V0, to obtain V1. In the second step we add to V1 the vertices in
A that are connected to a vertex in V1 by an edge in M , to obtain V2. Similarly, in the ith step,
if i is odd we add to Vi−1 the set of vertices in B that are neighbors of a vertex in Vi−1, while if
i is even, we add to Vi−1 the vertices in A that are connected to a vertex in Vi−1 by an edge in
M (i.e. M(b) for some b ∈ B ∩ Vi−1), to obtain Vi. After finitely many steps, Vi does not increase
anymore, let V ′ be the resulting set of vertices.

We claim that no vertex from B \ B′ can be in V ′. Indeed, such a vertex could be reached by
an alternating path from a vertex in A that is not incident to M , thus M is not a largest matching,
a contradiction.

Then let A2 = A∩V ′, A1 = A \A2, B2 = B′ ∩V ′ and B1 = B′ \B2. A vertex in A2 cannot be
connected to a vertex v not in B2, as v could be added to V ′ then. Similarly, for a vertex u ∈ A1,
M(u) has to be in B1, otherwise M(u) is in B2 and then u can be added to V ′.

Let us briefly describe how we can apply this lemma to obtain Lemma 2.1. We take a Berge-F -
free r-uniform hypergraph H on n vertices. Let A be the set of hyperedges in H and B be the set
of sub-edges of these hyperedges (by edge and sub-edge we always mean an edge of size two, i.e. a
pair of vertices). We connect a ∈ A to b ∈ B if a ⊃ b. Let Γ denote this auxiliary bipartite graph.
Let M be an arbitrary largest matching and B′ be the vertices of B incident to the edges in M .
It is easy to see that the elements of B′ form an F -free graph which we call G. Indeed, otherwise
M defines the bijection between a copy of F and hyperedges in H to form a Berge-F .

Now we apply Lemma 2.2 to Γ and M . We define a red-blue coloring of G by taking the
edges of G in B1 to be the red edges, and the edges of G in B2 to be the blue edges. We have
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|H| = |A1| + |A2| = |B1| + |A2| = |E(Gred)|+ |A2|. As hyperedges in A2 have all their neighbors
in B2, they each contain a blue Kr, which is distinct from the other blue r-cliques obtained this
way, showing |A2| ≤ N(Kr, Gblue).

Let us remark here that Lemma 2.2 also gives some information on the structure of G. If there
is a ∈ A1 that has a neighbor b ∈ B \B′, then we could obtain another matching M ′ by changing
the neighbor of a to b, i.e. M ′(a) = b and if a′ 6= a, then M ′(a′) = M(a′). Then B′ is replaced by
B′′ = B′ \ {M(a)}∪ {b}. In this case the same partition of A into A1 and A2, and the partition of
B′′ into B2 and B′′ \B2 satisfies Lemma 2.2. This means for G that we can delete the (red) edge
M(a) and replace it with the edge b, to obtain another F -free graph.

If on the other hand the vertices in A1 have all their neighbors in B′, then we could recolor the
red edges to blue. Therefore, in G we can delete an edge and add another edge so that the resulting
graph is still F -free. Let α = αF,n be the largest value of gr(G′), where G′ is an n-vertex F -free blue-
red graph. Assume that each n-vertex F -free blue-red graph G′ with gr(G

′) = α is not monoblue
and we cannot delete an edge and add another edge to G′ so that the resulting graph is still F -free.
Then by the above, G cannot be one of these graphs, thus exr(n,Berge-F ) ≤ gr(G) < α. This is
usually a negligible improvement, as we often do not even know the order of magnitude.

However, if F = Kk, Gerbner, Methuku and Palmer [9] proved that αKk,n = max{gr(TB(n, k−
1)), gr(TR(n, k−1))}, where TB(n, k−1) is the monoblue Turán graph T (n, k−1) and TR(n, k−1)
is the monored Turán graph T (n, k − 1). We mention without going into the details that their
proof also shows that for any other graphs G we have gr(G) < αKk,n. As we cannot delete an edge
from T (n, k − 1) and add another edge to obtain a Kk-free graphs, we do have an improvement.
For example, if r = 4 and k = 5, then the result in [9] determines ex4(n,Berge-Kk) for n ≥ 11. For
n = 10, T (10, 4) has 36 copies of K4 and 37 edges. Therefore, (as ex(n,Kr, F ) is a lower bound
on exr(n,Berge-F )), we have 36 ≤ ex4(n,Berge-Kk) ≤ 37. With our new observation, we know
ex4(n,Berge-Kk) = 36.

3 Proof of Theorems 1.1 and 1.2

Let H be a Berge-F -free r-graph on n vertices. We say that an edge uv with u, v ∈ V (H) is t-heavy
if u, v are contained together in exactly t hyperedges. First we will build a linear subhypergraph
H1 in a greedy way: if we can find a hyperedge H that does not share an edge with any hyperedge
in H1, we add H to H1, and then repeat this procedure. By definition, H1 is linear. Let H2 consist
of the remaining hyperedges. Note that |H| = |H1| + |H2| ≤ exlin

r (n,Berge-F ) + |H2|, and the
remainder of the proof is for proving the needed upper bound on |H2|.

We build an auxiliary bipartite graph Γ in the usual way: let A be the set of hyperedges in H2

and B be the set of sub-edges of these hyperedges. We connect a ∈ A to b ∈ B if a ⊃ b. We will let
M be a largest matching in Γ, however, we do not choose M arbitrarily. Let M0 be an arbitrary
largest matching in Γ. Let B′ be the set of vertices in B that are incident to some edge of M0 and
A0 denote the set of vertices in A that are incident to some edge of M0. Now a hyperedge a ∈ A0

contains a sub-edge M0(a), at least one sub-edge b0 shared with a hyperedge in H1, maybe some
sub-edges that are matched to some other a′ ∈ A, and maybe some other sub-edges b ∈ B \ B′.
We have the option to replace in M0 the edge between a and M0(a) with any of the edges of Γ
between a and an unused sub-edge of a, to obtain another largest matching. We will build a largest
matching M , that contains the same vertices (A0) from A as M0.

For a ∈ A0, we pick M(a) to be one of the sub-edges b ∈ B of a (potentially we let M(a) =
M0(a)) in the following way: M(a) should share exactly one vertex with b0 (where b0 is a sub-edge
that is also a sub-edge of a hyperedge in H1) if possible. We go through the hyperedges greedily;
as long as there is a hyperedge a ∈ A0 such that M0(a) can be changed in this way, we execute
the change (it is possible that M0(a) cannot be changed originally, but later a sub-edge of a that
is M0(a

′) becomes free to use, when M(a′) is chosen to be different from M0(a
′)). This process

finishes after finitely many (at most |A0|) steps, as we change M0(a) to M(a) at most once for
every a ∈ A0. After this, we rename the unchanged M0(a) to M(a).

The resulting matching M has the following property: for every a ∈ A0, a shares a sub-edge b0
with a hyperedge in H1, such that that either M(a) shares exactly one vertex with b0, or all the
sub-edges of a sharing exactly one vertex with b0 are M(a′) for some a′ ∈ A0.

Now we can apply Lemma 2.2 to Γ and M to obtain A1, A2, B1, B2. Let us call the elements
of B1 red edges and the elements of B2 blue edges. Let G be the graph consisting of all the red
and blue edges. Then G is obviously F -free.
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Let us now take a random partition of V (H) into V1 and V2. For every a ∈ A0, we look at
b = M(a). If the two vertices of b are in one part, and all the other vertices of a are in the other
part, we keep a, otherwise we delete it. Let A∗ denote the set of elements in A that are not deleted
(note that elements in A \A0 are never deleted, thus are in A∗). Let G′ be the graph consisting of
the elements of B′ that are connected by an edge in M to an element of A∗. Then G′ is obviously
F -free, as it is a subgraph of G.

Claim 3.1. G′ is F0-free, where F0 is any graph for which F can be obtained from F0 by subdividing

an edge of F0.

Proof. Let us assume we are given a copy Q of F0 in G′ such that uv is the edge that needs to be
subdivided to obtain F . Observe that there is no edge between V1 and V2 in G′, thus Q is in one
of them, say V1. Let w be a vertex of M(uv) with u 6= w 6= v, then w ∈ V2, thus w is not in Q.

We say that a hyperedge H in H is good if H contains u and w for some w ∈ M(uv) \ {u, v}
and H is not M(e) for any edge e of Q. If there is a good hyperedge, then we build a Berge-F with
the following core: we subdivide uv with w. For each edge e of this core we assign M(e) except
for uw (where we assign H) and vw (where we assign M(uv)). This way we obtain a Berge-F , a
contradiction.

M(uv) shares at least one sub-edge with a hyperedge H ∈ H1. If the sub-edge shares exactly
one vertex with uv, then H is good and we are done. Thus every sub-edge of M(uv) shared with
a hyperedge in H1 has to contain none or both of u and v. In both cases, when we tried to change
M0(M(uv)) when constructing M , we failed, because all such edges are matched to some other
hyperedges of H2. In particular, uw is M(a) for some a ∈ A0 and for some w ∈ M(u, v) \ {u, v}.
Observe that w is in V2, thus M(a) has vertices from both parts V1 and V2, hence a cannot be in
A∗ by the definition of A∗. This implies a is good, finishing the proof.

The above claim implies G′ has at most ex(n, F0) edges. For an arbitrary a ∈ A, the probability
that a is in A∗ is at least 1/2r−1. Let S be any subset of A, then we have that the expected
value of the number of hyperedges in A∗ ∩ S is at least |S|/2r−1, thus there is a partition with
|A∗ ∩ S| ≥ |S|/2r−1.

There are |B1| = |A1| red edges in G, and there is a random partition where at least |A1|/2r−1

elements of A1 are undeleted, hence there are at least |A1|/2r−1 red edges in G′. This implies
|A1|/2r−1 ≤ ex(n, F0). Hence there are at most 2r−1ex(n, F0) red edges altogether. For the total
number of edges in G we can use the same argument: there is a random partition where at least
|A0|/2r−1 hyperedges in A0 are undeleted, thus for the G′ defined by that partition, we have
|A0| = |E(G)| ≤ 2r−1|E(G′)| ≤ 2r−1ex(n, F0).

Observe that we have |H2| = |A1| + |A2| ≤ |A1| + N(Kr, Gblue) ≤ |A1| + ex(n,Kr, F ), hence
we are done with the proof of (i).

Note that G is not necessarily F0-free, but it is F -free. Let m be the number of blue edges in
G, then G has at most 2r−1ex(n, F0)−m red edges. An argument of Gerbner, Methuku and Vizer
[10] bounds the number of r-cliques in F -free graphs with the given number of vertices and edges.
For sake of completeness, we include the argument here.

Let d(v) be the degree of v in Gblue. Obviously the neighborhood of every vertex in Gblue is
F ′-free. An F ′-free graph on d(v) vertices contains at most ex(d(v),Kr−1, F

′) ≤ cd(v) copies of
Kr−1. Thus v is contained in at most cd(v) copies of Kr in Gblue. If we sum, for each vertex,
the number of Kr’s containing a vertex, then each Kr is counted r times. On the other hand
as

∑

v∈V (Gblue)
d(v) = 2|E(Gblue)| = 2m, we have

∑

v∈V (Gblue)
cd(v) = 2cm. This gives that the

number of blue Kr’s is at most 2cm/r. Thus we have

gr(G) ≤ 2r−1ex(n, F0)−m+ 2cm/r ≤ max

{

1,
2c

r

}

(2r−1ex(n, F0)−m+m) =

max

{

1,
2c

r

}

2r−1ex(n, F0).

The above inequality, together with Lemma 2.1 implies that |H2| ≤ max
{

1, 2c
r

}

2r−1ex(n, F0),
finishing the proof of (ii).

Now we show how to obtain the small improvement needed to prove Theorem 1.2. It is based
on the proof of the upper bound on ex(n,K3, C2k+1) in [1]. If n is odd, replace it by n + 1. As
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the stated upper bound is the same in both cases, obvious mononicity conditions show we can do
this. Thus we can assume n is even. When we take the random partition into V1 and V2, first we
take a random partition into n/2 sets U1, . . . , Un/2 of size 2, and then randomly put one vertex
into V1 and the other into V2. The obtained graph G′ will be C2k-free, and it is divided into two
components, hence it has at most ex(|V1|, C2k)+ ex(|V2|, C2k) edges. The way we chose V1 ensures
the above sum is 2ex(⌈n/2⌉, C2k). Then we can go through every step of the remaining part of
the proof to obtain the result we need, if for an arbitrary a ∈ A, the probability that a is in A∗ is
still at least 1/2r−1 = 1/4. We will separate into cases according to the intersection of a with the
parts Ui. In case the three vertices of a are in three different Ui’s, the probability is 1/4. In case
a contains Ui for some i, there are two cases. If M(a) = Ui, then the probability is 0, otherwise it
is 1/2. As M(a) = Ui happens with probability 1/3 (having the condition that a contains Ui), for
every i we have that the probability of a being in A∗ if a contains Ui is 2

3 · 1
2 ≥ 1/4.

This gives the first inequality of Theorem 1.2. As we have mentioned after the statement, the
second inequality follows from earlier results, stated there.
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