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ABSTRACT 94 

Motivation: We compiled a global database of long-term riverine fish surveys from 46 regional 95 

and national monitoring programs as well as individual academic research efforts upon which 96 

numerous basic and applied questions in ecology and global change research can be explored. 97 

Such spatially- and temporally-extensive datasets have been lacking for freshwater systems 98 

compared to terrestrial ones. 99 

Main types of variables contained: The database includes 11,386 time-series of riverine fish 100 

community catch data, including 646,270 species-specific abundance records together with 101 

metadata related to geographic location and sampling methodology of each time-series. 102 

Spatial location and grain: The database contains 11,072 unique sampling locations (stream 103 

reach), spanning 19 countries, 5 biogeographic realms, and 402 hydrographic basins worldwide. 104 

Time period and grain: The database encompasses the period 1951–2019. Each time-series is 105 

composed of a minimum of two yearly surveys (mean = 8 years) and represents a minimum time 106 

span of 10 years (mean = 19 years). 107 

Major taxa and level of measurement: The database includes 944 species of ray-finned fishes 108 

(Class Actinopterygii). 109 

Software format: .csv 110 

Main conclusion: Our collective effort provides the most comprehensive long-term community 111 

database of riverine fishes to date. This unique database should interest ecologists who seek to 112 

understand the impacts of human activities on riverine fish biodiversity, and model and predict 113 
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how fish communities will respond to future environmental change. Together, we hope it will 114 

promote advances in macroecological research in the freshwater realm. 115 

KEYWORDS: species abundance; biodiversity; conservation; freshwater streams and rivers; 116 

Actinopterygii; temporal trends; worldwide   117 
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1| INTRODUCTION 118 

Increasing awareness of the ongoing biodiversity crisis has motivated global initiatives to 119 

compile large-scale datasets of population and community abundance records that have been 120 

consistently sampled through recent times (Pereira & Cooper, 2006). Included among these are 121 

the Global Population Dynamics Database (Inchausti & Halley, 2001), the Living Planet Index 122 

database (Loh et al., 2005), and more recently, the BioTIME database (Dornelas et al., 2018). 123 

These databases have proven extremely useful and allowed major advancements in ecological 124 

research (e.g. Kendall et al., 1998; Sibly et al., 2005; Butchart et al., 2010; Dornelas et al., 125 

2014); however, they remain highly biased towards terrestrial and marine assemblages (e.g. only 126 

0.50% of the records concern riverine fishes in BioTIME, the most recent of these initiatives). 127 

This is unfortunate as effective strategic plans for conserving water resources that support human 128 

well-being and ecosystem integrity rely on access to comprehensive, pertinent, quantitative 129 

information regarding the status and trends of riverine biodiversity over regional to continental 130 

scales (Tickner et al., 2020). 131 

Long-term studies of riverine species are limited because they require highly specialized 132 

and time-consuming sampling methods. Furthermore, rivers in remote areas are often difficult to 133 

access (Olden et al., 2010; Radinger et al., 2019). Nevertheless, over the past few decades, large-134 

scale policies have been enacted in response to the rapid degradation of freshwater resources, 135 

such as the Water Framework Directive in the EU (Hering et al., 2004) and the Clean Water Act 136 

in the USA (Paulsen et al., 2008), which require countries to monitor and evaluate the biological 137 

integrity of surface waters through time to adopt quality standards that restore and maintain 138 

ecological integrity (Kuehne et al., 2017). Beyond these official national and regional monitoring 139 

programs, the temporal dynamics of riverine systems and their fish communities have also been 140 
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assessed through various independent, though often local in extent, academic research programs 141 

(e.g. Gido, 2017; Matthews & Matthews, 2017). All of these institutional and academic 142 

monitoring efforts have produced considerable freshwater fish temporal data that remain largely 143 

inaccessible to the broader scientific community due to the inherent difficulty in gathering and 144 

harmonizing field data from disparate institutions and sampling protocols (Buss et al., 2015). 145 

To fill this important gap, we here present RivFishTIME, a compiled and curated 146 

database of long-term (≥ 10 years) surveys of riverine fish communities at a fine spatial (stream 147 

reach) and taxonomic (species) resolution, using data mining approaches to harmonize existing 148 

but currently fragmented biomonitoring data sets. Riverine fish are extremely diverse in spite of 149 

the small surface they inhabit on Earth: they represent about 40% of all known fish species while 150 

occupying <1% of available aquatic habitat (“the freshwater fish paradox” sensu Lévêque et al., 151 

2008 and Tedesco et al., 2017). However, they are also among the most threatened taxonomic 152 

groups on Earth because of the convergence between the high concentration of biodiversity and 153 

the many pressures resulting from human uses of freshwater resources and habitat change (Reid 154 

et al., 2019; Tickner et al., 2020). The RivFishTIME database provides a unique opportunity to 155 

understand the rate, magnitude, and geography of biodiversity trends, and to identify 156 

opportunities to mitigate human impacts on riverine systems (Pereira & Cooper, 2006; Anderson, 157 

2018). Due to the paucity of spatially- and temporally-extensive datasets in freshwater compared 158 

to terrestrial systems (Heino, 2011), RivFishTIME should also help ecologists close the gap 159 

between these two systems and to address a wider range of taxa in unraveling large-scale spatio-160 

temporal biodiversity patterns. 161 

 162 

2| METHODS 163 
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2.1| Data acquisition 164 

We gathered time-series of fish community abundance data for riverine (lotic) ecosystems, 165 

broadly defined as freshwater bodies that are continually or intermittently flowing. We tried to 166 

the extent possible to exclude wetlands and brackish habitats (salinity > 0.5 ‰). Note, however, 167 

that due to the complex nature of the datasets, we do not guarantee that sites are located on free-168 

flowing river segments (i.e. natural condition without impoundment, diversion, or other 169 

modification of the waterway). We used the following criteria for data inclusion: (1) the location 170 

of the sampling sites is known and consistent through time, (2) the sampling protocol is known 171 

and consistent through time, (3) the sampling survey sought to quantify all species in the fish 172 

community according to well-established protocols, (4) species-specific abundances are available 173 

for each survey, (5) surveys at a given site were conducted over a period of at least 10 years, and 174 

(6) at least two yearly surveys with non-null abundance are available. We considered abundance 175 

measures derived from direct fish counts, catch-effort indexes such as relative abundances (%) 176 

and catch per unit effort (CPUE), abundance classes, as well as statistically estimated 177 

abundances (e.g. Leslie method; Ricker, 1975). 178 

 To identify potential datasets, we used Google Search, Google Scholar and Dataset 179 

Search with different combinations of the keywords “time series”, “fish”, “abundance”, 180 

“stream”, “river”, “freshwater”, “community”, “temporal”, and “monitoring” or “monitoring 181 

program”. We screened the scientific as well as the grey literature to identify studies involving 182 

temporal datasets of fish communities and conducted similar searches in data repositories such as 183 

Dryad (https://datadryad.org/stash) and FigShare (https://figshare.com/). We also conducted 184 

targeted searches for national and regional monitoring programs by adding country names to the 185 
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previous keywords. For the European Union, we further used the EuMon database as a reference 186 

to identify fish monitoring databases (available at http://eumon.ckff.si/about_daeumon.php).  187 

We contacted all the authors and monitoring program coordinators to request and obtain 188 

permission to publish the data and/or ensure that the license under which the data were publicly 189 

released allowed their inclusion in our global effort (e.g. Open Government License, CC0 1.0 190 

Universal). We excluded the datasets for which we did not receive permission, unless the 191 

reusability of data was clearly stated on the online repositories where the data were released.  192 

  193 

2.2| Quality control 194 

Taxonomy. We validated species scientific names using the online database Fishbase (Froese & 195 

Pauly, 2019). We used the R package rfishbase (as of December 2019; Boettiger et al., 2012) 196 

and confirmed names with no match manually using the Catalog of Fishes (Fricke et al., 2018). 197 

We then selected only records involving ray-finned fishes (Class Actinopterygii), excluding rays 198 

and lampreys, and unidentified species.  199 

Coordinates. We harmonized the coordinate system by projecting (if necessary) the 200 

coordinates of the individual datasets using the World Geodetic System (WGS84) as reference 201 

geographic coordinate system. We visually inspected the spatial distribution of the sites with 202 

respect to their respective country, region, or state borders as given in the original data sources 203 

and discarded sites with dubious coordinates (e.g. sites located in the ocean). We also removed 204 

sites whose coordinates were located outside of any hydrographic basin using the global major 205 

river basin GIS layer in HydroSHEDS (Lehner et al., 2008). 206 
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 207 

Consistent sampling methods. We excluded surveys lacking information on sampling 208 

methods and selected only time-series collected using a consistent sampling protocol through 209 

time. The latter evaluation was dataset-specific as dictated by the complexity of the monitoring 210 

scheme and the available metadata. For instance, surveys were deemed consistent if they did not 211 

experience any major deviation in sampling protocol, and disregarded minor variations (e.g. 212 

number of anodes or traps, area sampled) due to survey-specific constraints (e.g. water depth, 213 

habitat complexity). By contrast, several monitoring programs implemented alternate sampling 214 

protocols to compare the efficiency of different gears (e.g. seining versus electrofishing) or 215 

sampling methods (e.g. continuous versus point electrofishing); these time-series conducted at 216 

the same sites but using different sampling protocols were kept separate in the database.  217 

 218 

Duplicates. We removed duplicates within individual datasets based on the coordinates of the 219 

sites, date of the survey, and species collected (e.g. due to different name attribution for the same 220 

site). We also identified potential duplicates among datasets (e.g. overlap between state-level and 221 

national databases) based on the coordinates of the sites rounded to three digits to account for 222 

different post-processing of the individual datasets.  223 

 224 

2.3| Database formatting 225 

Each entry (species abundance record) was assigned a unique (1) site, (2) survey, and (3) time-226 

series identifier. The site ID corresponds to a given pair of coordinates, the survey ID to a 227 

sampling campaign, and the time-series ID to a combination of site × sampling protocol. We 228 
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extracted the names of the sampled water bodies (e.g. creek, stream, river) from the available 229 

metadata associated with each individual dataset, that we cross-referenced against several 230 

continental and national geospatial river networks in GIS (e.g. Australian Hydrological 231 

Geospatial Fabric, Ordnance Survey Open Rivers). Additionally, each site ID was assigned to a 232 

biogeographic realm following Olson et al. (2001), hydrographic basin following HydroSheds 233 

(Lehner et al., 2008), and administrative units (country, region and province) based on its 234 

coordinates. For each sampling ID, we aggregated abundance records if they were given 235 

separately for individuals, size classes or sub-species for each validated species name or if 236 

different sampling passes, hauls, or sub-sampling areas were considered. We also converted 237 

time-series species abundances to densities or CPUE whenever possible. The different surveys 238 

were kept independent when conducted on different occasions within the same calendar year. We 239 

provided the year together with the quarter of the survey (1: January-March; 2: April-June; 3: 240 

July-September, 4: October-December). We also provided the associated unit (abundance class, 241 

count, CPUE, individuals/100m2, Leslie index, relative abundance) for each species abundance 242 

record. Finally, we extracted basic information regarding the sampling protocol, including details 243 

on electrofishing (backpack, shore-based or boat mounted electrofishers), netting (dip nets, gill 244 

nets, beach or pelagic seines), trapping (minnow traps, fyke nets or hoop nets), and trawling 245 

techniques. Many survey protocols involve a combination of sampling approaches, rendering 246 

challenging the inclusion of detailed information about the sampling effort in a standardized 247 

way. We therefore encourage the data user to refer to each data source for more information on 248 

the sampling methods. 249 

 The database is organized in three tables (.csv format): the time-series table, the survey 250 

table, and the information source table. The tables can be linked using the unique dataset source 251 
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ID and time-series ID. The time-series table contains: (1) source ID, (2) site ID, (3) time-series 252 

ID, (4) sampling method, (5) latitude (WGS 84), (6) longitude (WGS 84), (7) biogeographic 253 

realm, (8) hydrographic basin, (9) country (ISO code), (10) region, (11) province, and (12) water 254 

body. The survey table contains: (1) time-series ID, (2) survey ID, (3) sampling year, (4) 255 

sampling quarter, (5) species scientific name, (6) abundance, and (7) abundance unit. The 256 

information source table contains the full citation(s), online link to the raw data when publicly 257 

available, as well as the name(s) and contact of the data responsible(s) for each individual 258 

dataset. Data curation was performed in the R (3.6.0) programming environment (R Core Team, 259 

2019). 260 

A list of the data sources is found in Appendix 1; for further information consult the 261 

metadata. We provide a static version of the database with this article (1951-2019), but we aim to 262 

continue interacting with data contributors to update and add new time-series datasets to be 263 

released through the iDiv portal (https://idata.idiv.de/idiv/Content/Databases) and the more 264 

specialized Freshwater Biodiversity Data Portal (https://data.freshwaterbiodiversity.eu/). 265 

 266 

3| RESULTS 267 

Our database includes 11,386 time-series of riverine fish compiled from 46 individual source 268 

datasets, representing a total of 106,785 surveys and 646,270 individual species abundance 269 

records at 11,072 unique sites. Survey-specific species richness across all time-series ranges 270 

from 1 to 50 species, and covers 944 ray-finned fish species. The surveyed sites display a wide 271 

distribution along longitudinal and latitudinal gradients, spanning 19 countries, 402 hydrographic 272 

basins, and 5 biogeographic realms (Fig. 1a). Despite broad geographical coverage, we note a 273 
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clear spatial bias towards the Palearctic (European Union) and, to a lesser extent, Nearctic (North 274 

America) and Australasia realms. The abundance time-series are largely represented by 275 

individual counts, followed by densities (individuals/100m2) and CPUE (Fig. 1b). Abundance 276 

classes, Leslie index and relative abundance represent < 1% of the time-series. Electrofishing is 277 

by far the main sampling technique used to record the time-series, although variations are 278 

noticeable among biogeographic realms (Fig. 1c). For instance, dipnetting sampling techniques 279 

are only represented in the Neotropics, whereas gillnetting is the most common gear in the 280 

Afrotropics. 281 

 The time-series cover a time period from 1951 to 2019 and are mainly concentrated over 282 

the last two decades (average first year = 1996; Fig. 2a). Surveys have been conducted primarily 283 

in the 3rd (July-September) and 4th (October-December) quarters of the year, especially in the 284 

Palearctic and Nearctic realms (corresponding to periods of low flows), but all quarters are 285 

represented in the different biogeographic realms (Fig. 2b). The mean time span of the time-286 

series is of 19 years and ranges from 10 to 68 years, with the longest time-series located in the 287 

Palearctic (Fig. 2c). The sites were sampled from (non-necessarily consecutive) 2 to 52 years, 288 

with an average number of yearly surveys of 8 years (Fig 2d). Again, the highest number of 289 

yearly surveys was found in the Palearctic. The completeness of the time-series (i.e. ratio of 290 

number of yearly surveys to the overall time span) ranges from 4 to 100%, with a mean value of 291 

45% (Figure 2e). Importantly, the degree of completeness is largely uncorrelated to the time span 292 

of the time-series (r = 0.05). 293 

 294 

4| CONCLUSIONS 295 
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Our collective effort provides the most comprehensive long-term community database of riverine 296 

fishes to date, spanning large biogeographic, climatic and hydrographic gradients. Almost all 297 

biogeographic realms are represented but it is important to note that our database is not exempt 298 

from spatial bias. For instance, less than 1% of the time-series belong to the Afrotropic or 299 

Neotropic realms, whereas 84% belong to the Palearctic realm. These spatial gaps often present 300 

in biodiversity-rich regions (tropical areas, southeast Asia) are likely to mirror the current 301 

networks of freshwater monitoring programs (Buss et al., 2015; Radinger et al., 2019) as well as 302 

biodiversity research efforts (Martin et al., 2012), and hence will be prioritized in future updates 303 

of RivFishTIME. We also warn data users that species abundance may not be directly 304 

comparable across sites without a full understanding of the specifics of sampling approach and 305 

effort, with respect to their selectivity and efficiency (Goffaux et al., 2005; Portt et al., 2006; 306 

Oliveira et al., 2014; Benejam et al., 2012), and refer to the original data sources for more 307 

information about the sampling protocols.  308 

Despite these unavoidable limitations associated with secondary datasets collected for 309 

multiple purposes, we are confident that RivFishTIME will stimulate new research in the fields 310 

of global change ecology and macroecology. First and foremost, it will provide the needed 311 

baseline information for conservation and restoration efforts to bend the curve of freshwater 312 

biodiversity loss (Tickner et al., 2020). For instance, the fish abundance time-series could be 313 

used to assess population or community trends in different rivers of the world, broadening the 314 

taxonomic and spatial representation of existing indicators of the status of global biodiversity 315 

(e.g. Living Planet Index). Coupled with high-resolution environmental time-series, this unique 316 

database could also help to decipher the underlying drivers of biodiversity changes in riverine 317 

systems, including (but not limited to) habitat fragmentation and destruction, invasive species, 318 
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pollution, hydrologic alteration and climate change (e.g. Chen & Olden, 2020, Erős et al., 2020). 319 

In turn, this knowledge could be integrated into ecological models used to forecast how fish 320 

communities will respond to future environmental change, paving the way to mitigate those 321 

impacts. RivFishTIME could also offer new macroecological insights into the implications of 322 

river network complexity on community structure and assembly processes across extensive 323 

environmental gradients (e.g. community composition, population persistence, spatial synchrony 324 

in community dynamics) – questions that have long fascinated ecologists but have been so far 325 

primarily explored through theoretical approaches.  326 

  327 
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Data Storage and Documentation 428 

We provide a temporary link to the database at https://figshare.com/s/97c447c4f16d92baf254 429 
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(confidential; for review purposes only). The database and associated DOI will be made publicly 430 

available through the iDiv portal (https://idata.idiv.de/idiv/Content/Databases) upon publication. 431 
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FIGURES 503 

 504 

Figure 1. (a) Map showing the distribution of the time-series where each time-series is 505 
represented by a dot with colors indicating the biogeographic realm and size representing fish 506 
species richness (averaged across surveys). Inset histograms display the distribution of the time-507 
series according to latitude and longitude. Barplots show the distribution of the time-series with 508 
respect to the (b) type of abundance, and (c) primary sampling method. Note the log10(x+1) y-509 
axes in (b)-(c). 510 
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 511 

Figure 2. (a) Temporal distribution of the yearly surveys relative to the period covered by the 512 
database (1951-2019). Each time-series appears in rows where the background colors correspond 513 
to the biogeographical realms and white indicates sampled years. (b) Temporal distribution of the 514 
surveys with respect to the quarter of the year. Temporal characteristics of the time-series with 515 
respect to the (c) overall time span, (d) number of yearly surveys, and (e) completeness defined 516 
as the ratio between the number of yearly surveys and the overall time span (expressed in %). 517 
Note the log10(x+1) y-axes in (b)-(e). 518 
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Appendix 1 - Data sources 

 

SourceID Citations URLaccess 

1 Agència Catalana de l’Aigua (2003); Agència 
Catalana de l’Aigua (2010); Agència Catalana de 
l’Aigua (2018) 

http://aca.gencat.cat/ 

2 Zeni et al. (2017); Casatti et al. (2009) −  

3 Universidad de Antioquia-Empresas Publicas de 
Medellin (2019) 

−  

4 Erős et al. (2014) −  

5 Gammon (2013) −  

6 Ecosystem Health Monitoring Program 
Queensland (2019) 

https://hlw.org.au/report-card/ 

7 Finnish electrofishing register Hertta (2019) https://wwwp2.ymparisto.fi/koekalastus_sahko
/yhteinen/Login.aspx?ReturnUrl=%2fkoekalas
tus_sahko 

8 Sigouin (2017) https://open.canada.ca/data/en/dataset/fe2441a6
-8ae4-4884-b181-cd7ec53bd842 

9 Whitney et al. (2016) −  

10 Gido et al. (2013); Gido et al. (2019) −  

11 Kesner and Marsh (2010) https://www.rosemonteis.us/documents/kesner-
marsh-2010 

12 Griffith (2017); Griffith et al. (2018) https://doi.org/10.23719/1376690 

13 Occhi, V. T. & Vitule, J. R. S. (Unpublished 
data) 

−  
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14 Terui et al. (2018) −  

15 Iowa DNR (2013) https://data.iowa.gov/Environment/BioNet/e7yf
-f5fs 

16 Milardi et al. (2020) −  

17 Levêque et al. (2003) −  

18 Pyron et al. (1998) −  

19 Gido (2017) https://doi.org/10.6073/pasta/150e218b069074
a8ecede85a7406d43f 

20 McLarney et al. (2013) http://coweeta.uga.edu/dbpublic/personnel_bio
s.asp?id=wmclarney 

21 Long Term Resource Monitoring Program (2016) https://www.umesc.usgs.gov/data_library/fishe
ries/fish1_query.shtml 

22 Matthews and Marsh-Matthews (2017) https://doi.org/10.5061/dryad.2435k 

23 Murray-Darling Basin Authority (2018) https://data.gov.au/data/dataset/murray-darling-
basin-fish-and-macroinvertebrate-survey 

24 Minnesota Pollution Control Agency (2018) https://cf.pca.state.mn.us/water/watershedweb/
wdip/search_more.cfm?datatype=assessments 

25 Montana, Fish, Wildlife & Parks (2019) http://gis-
mtfwp.opendata.arcgis.com/items/8192e75218
c6460ba97ba3dd0a2fb3a5 

26 U.S. Geological Survey (2019) https://aquatic.biodata.usgs.gov/clearCriteria.ac
tion 

27 U.K. Environmental Agency (2019) https://data.gov.uk/dataset/d129b21c-9e59-
4913-91d2-82faef1862dd/nfpd-freshwater-fish-
survey-relational-datasets 
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28 North Carolina Department of Environmental 
Quality (2018) 

https://deq.nc.gov/about/divisions/water-
resources/water-resources-data/water-sciences-
home-page/ecosystems-branch/fish-stream-
assessment-program 

29 Fagundes et al. (2015) −  

30 Winston et al. (1991); Taylor (2010) https://onlinelibrary.wiley.com/doi/full/10.1111
/fwb.13211 

31 Mosie and Makati (2018) https://www.gbif.org/dataset/77929c0a-7506-
4b2d-a49d-10fc3312d50d 

32 Office Francais de la Biodiversite (2019) http://www.naiades.eaufrance.fr/acces-
donnees#/hydrobiologie 

33 Oklahoma Water Resources Board (2019) http://home-
owrb.opendata.arcgis.com/search?tags=fish 

34 Agencia Vasca del Agua (2019) http://www.uragentzia.euskadi.eus/informazioa
/ubegi/u81-0003341/eu/ 

35 Ortega et al. (2015) −  

36 Davenport, S.R. (Unpublished data) −  

37 Dala-Corte et al. (2017) −  

38 Bêche et al. (2009); The Resh Lab (2019) https://nature.berkeley.edu/reshlab/ 

39 Toronto and Region Conservation Authority 
(2018) 

https://data.trca.ca/dataset/2018-watershed-
fish-community 

40 U.S. Fish and Wildlife Service (2017) −  

41 Stefferud, J. A. (Unpublished data) −  
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42 Sers (2013) https://www.slu.se/en/departments/aquatic-
resources1/databases1/database-for-testfishing-
in-streams/ 

43 Benejam et al. (2010); Merciai et al. (2017) −  

44 Miyazono and Taylor (2015) https://bioone.org/journals/The-Southwestern-
Naturalist/volume-60/issue-1/MP-02.1/Long-
term-changes-in-seasonal-fish-assemblage-
dynamics-in-an/10.1894/MP-02.1.short 

45 Rinne & Miller (2006) −  

46 Van Thuyne et al. (2013); Brosens et al. (2015) https://ipt.inbo.be/resource?r=vis-inland-
occurrences 
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