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Abstract Traumatic brain injury (TBI) was shown to
lead to the development of cerebral microbleeds
(CMBs), which are associated with long term cognitive
decline and gait disturbances in patients. The elderly is
one of the most vulnerable parts of the population to
suffer TBIL. Importantly, ageing is known to exacerbate
microvascular fragility and to promote the formation of
CMBs. In this overview, the effect of ageing is
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discussed on the development and characteristics of
TBI-related CMBs, with special emphasis on CMBs
associated with mild TBI. Four cases of TBI-related
CMBs are described to illustrate the concept that ageing
exacerbates the deleterious microvascular effects of TBI
and that similar brain trauma may induce more CMBs in
old patients than in young ones. Recommendations are
made for future prospective studies to establish the
mechanistic effects of ageing on the formation of CMBs
after TBI, and to determine long-term consequences of
CMBs on clinically relevant outcome measures includ-
ing cognitive performance, gait and balance function.
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Introduction

Traumatic brain injury (TBI) is a serious health problem
worldwide [1, 2]. In addition to its acute clinical signif-
icance, TBI was shown to lead to chronic neurological
dysfunction (including long-term impairment of gait
and cognition) and to promote psychiatric disorders [3,
4]. After the direct neuronal damage caused by the
impact, a divergent process is initiated resulting in sec-
ondary injury of neuroglial tissue [2, 3, 5-9]. Injury of
cerebral vessels and cerebrovascular dysfunction play a
central role in the pathological processes of secondary
injury [7, 8, 10, 11]. After mild, moderate and severe
TBI mitochondrial dysfunction, oxidative stress and
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redox-dependent activation of matrix metalloprotein-
ases (MMP) are enhanced, contributing to the damage
of the microvascular wall and to the development of
blood-brain barrier (BBB) dysfunction [2, 6, 10, 12—15].
These pathological processes contribute to the formation
of' microhaemorrhages around brain microvessels [7, 16,
17]. Cerebral microhaemorrhages, also referred as cere-
bral microbleeds (CMBs), are small hemosiderin de-
posits (less than 5 to 10 mm in diameter) resulting from
bleeding from injured small arteries, cerebral arterioles
or capillaries [9, 16, 18-20]. CMBs determine clinical
outcome of patients; they are associated with the devel-
opment of cognitive impairment indicated by attenuated
processing speed, defective attention and executive dys-
function [21-24]. They also promote psychiatric disor-
ders such as major depressive episodes [3, 4, 9, 16, 22].
Presence of CMBs is linked to dysfunction in gait
coordination and balance: shorter stride length and de-
creased general functionality [25-28].

The elderly population is prone to suffer TBI[1]. The
most frequent cause of trauma among the elderly is
unintentional fall [1, 29], usually due to orthostathic
hypotension and dehydration. The possibility of falls is
exacerbated by impaired balance due to decreased mus-
cular strength and different types of neuropathies [1,
30]. The prognosis of older patients after TBI is worse
than middle aged or young individuals [9, 29, 31] indi-
cated by increased mortality, longer hospital stay
and higher need for rehabilitation [1, 30, 31].
Rehabilitation is also less effective in the elderly
than in young patients [1, 30].

There is growing evidence that ageing is an indepen-
dent risk factor for the development of CMBs [16, 20,
32-34]. The number of CMBs increases approximately
by 20-40% in individuals aged 65 years and older [9,
16, 18, 34]. Strong evidence suggests that CMBs are
causally linked to cognitive decline and gait distur-
bances in the elderly [16, 17, 20, 23, 34]. There is also
evidence available that various age-related vascular pro-
cesses, such as oxidative stress, increased MMP activity,
modification of collagen and elastin content of the cere-
brovascular wall, and increased fragility of aged cerebral
vessels contribute to exacerbation of CMBs in the aged
brain [16, 17]. Recent data suggest that in these process-
es, age-related endocrine changes, especially decline in
circulating level of the vasoprotective hormone insulin
like growth factor 1 (IGF-1), play a central role [16,
35-37]. Importantly, the prevalence of hypertension
significantly increases with age, and hypertension and
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ageing interact to induce cerebrovascular dysfunction
and the formation of cerebral microbleeds [16, 17, 34].
Preclinical studies show that the mechanisms by which
hypertension and ageing interact to increase microvas-
cular fragility and to promote the genesis of CMBs
include increased oxidative stress, vascular
lipohyalinosis, induction of MMP activation and extra-
cellular matrix remodelling [16, 17]. As mentioned
above, most of these mechanisms are also induced in
TBI [6, 12, 13, 15, 38]. In the following, we
present 4 cases of young and aged patients with
and without mild TBI and discuss the possible
mechanistic interaction between ageing and TBI
to induce the formation of CMBs.

Cases

This study was approved by the Regional Ethic Committee
of the University of Pecs, Medical School (7270-PTE
2018). We retrospectively analysed the medical history
and susceptibility weighted (SWI) MRI (Siemens
Magnetom Prisma Fit 3T) series of images of two patients
(40-year and 60-year-old males) who suffered mild TBI
and were referred to the Department of Neurosurgery,
Medical School, University of Pecs, Hungary (Table 1,
Figs. 1 and 2). We also evaluated the MRI images of two
patients without brain trauma (31-year and 64-year-old
males) (Table 1, Fig. 3). SWI MRI was demonstrated to
be more proficient to detect CMBs compared to T2*
gradient echo (GRE) [19, 32]. This is due to post-
processing and the augmentation of the magnetic reso-
nance signal with signal pulse shift [19, 39, 40]. Demon-
strated by SWI sequences CMBs are round- or ovoid-
shaped hypointense lesions with the dimensions of 5—
10 mm, encircled by cerebral parenchyma (in whole or
in part) [20, 32, 40]. Exclusion criteria were the presence of
any of the following: epilepsy, previous stroke, transient
ischemic attack, cerebral amyloid angiopathy, chronic hy-
pertensive encephalopathy, acute haemorrhagic
leukoencephality, CADASIL, cerebral vasculitis, cerebral
metastases, intracranial infections, intracranial embolism,
posterior reversible encephalopathy syndrome, or any
types of neurodegenerative diseases [16, 19, 20, 32]. Se-
verity of TBI was defined by the initial Glasgow Coma
Scale (GCS): mild 1415, moderate 8-13 and severe <8
[30]. Two independent radiologists evaluated the number
and distribution of CMBs on SWI series of patients,
blinded to the medical history of the cases. Location was
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Table 1 Summary of the main characteristics of the presented four patients
Young TBI (YT) Aged TBI (AT) Young control (YC) Aged control (AC)
Age at trauma 40 60 N/A N/A
Age at MR 40 60 35 65
Sex Male Male Male Male
Cause of trauma Traffic accident Fall N/A N/A
GCS 15 15 N/A N/A
LOC 3 min None N/A N/A
PTA None None N/A N/A
Number of CMBs 2 9 0 1
Location of CMBs according to MARS Lobar Lobar, deep N/A Lobar
Adam’s grade Grade I Grade 111 N/A Grade 1
Comorbidity None Hypertension None None

described by the Adams Classification system and the
Microbleed Anatomical Rating Scale (MARS) system
[20, 41, 42].

Case 1

accident, temporary loss of consciousness occurred for
less than 3 min. Neurologic examination did not show
any symptoms or signs. He had no comorbidities. CT
scan showed no skull fractures or intracranial haemor-
rhage. On the patient’s MRI by MARS system, 2 CMBs

were detected in the right temporal lobe, one was locat-
ed in the cortical-subcortical border, the other one was
located in the subcortical white matter (Fig. 1). Accord-
ing to Adam’s classification, the lesions are grade I.

The 40-year-old male patient was admitted to the hos-
pital because of a head trauma he had suffered in a road
traffic accident. The initial GCS score was 15, no mem-
ory disturbances were documented, but following the

Case 2

The second patient was a 60-year-old man, who was
admitted to the hospital because of a fall. GCS score was
15 at the admittance, no neurological signs or symptoms
could be detected. Hypertension had been known for
20 years with dilative cardiomyopathy. CT scan showed
a cerebral contusion of 7 mm in diameter in the right
parietal cortex and a minor parafalcin subdural
haematoma. By MRI, multiple CMBs were detected
(Fig. 2). According to MARS system, 7 lobar lesions
were found (2 in the right frontal lobe, 1 in the left
parietal lobe, 4 in the left temporal lobe) (Fig. 2). Further
2 lesions were found in the brainstem (Fig. 2). Accord-
ing to the Adam’s classification, he has grade III lesions
(not affecting the corpus callosum).

Case 3

Fig. 1 Blue square depicts a cerebral microbleed (CMB) in the

right inferior longitudinal fasciculus of a young TBI patient (YT)
(40-year-old male, mild TBI). On the axial susceptibility-weighted
magnetic resonance image (SWI, obtained at 3 Tesla), the bleeding
appears as an ovoid, hypointense lesion [20, 32, 33]

The patient was a 35-year-old man who attended the
clinic with bilateral upper limb numbness. His medical
anamnesis is negative for any significant pathology.
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Fig. 2 Axial susceptibility-
weighted (SWI) magnetic reso-
nance images (3 T) of an elderly
patient (case 2) with mild trau-
matic brain injury (AT) (60-year-
old, male). Cerebral microbleeds
(CMBs) are highlighted by the
blue boxes: A, left corona radiate;
B, right corona radiate; C, left
parahippocampal gyrus; D, crus
cerebri, medial longitudinal
fasciculus

Laboratory test showed no alterations. The MRI did not
reveal any intracranial abnormalities, which could ex-
plain the symptoms. On the SWI images, no cerebral
microbleeds were found (Fig. 3).

Fig. 3 Axial (3 T) SWI MR images of aged and young control
patients (without trauma). a Aged control (AC) patient presented
one CMB lesion, located in right corona radiate, highlighted with
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The 65-year-old male patient was presented to the clinic
with back pain, without any traumatic brain injury in his

—
10 mm

blue square. b The young control (YC) patient had no cerebral
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history. Spondylosis was diagnosed. On the SWI im-
ages, | cerebral microbleed was found in left frontal
lobe in the subcortical white matter (Adams’ grade 1
lesion) (Fig. 3).

Cerebral microbleeds in TBI and ageing: possible
mechanisms

In the presented elderly patient with mild TBI, multiple
CMBs were found, which is representative to the imaging
findings in patients in this age group. In the young trauma
patient, the number of CMBs was markedly less, consis-
tent with findings reported in TBI patients of this age
group. It has to be noted that majority of the lesions in
the older TBI patient were located in typical brain areas for
traumatic CMBs (corona radiata, longitudinal fasciculus)
(Fig. 2); however, two lesions were detected in the
brainstem, an atypical location for traumatic microbleeds
[3, 19, 23, 25, 34, 43]. Cerebral microbleeds in deep
cerebral areas are thought to be due to cerebral angiopathy
induced by hypertension [33, 43]. The presented cases
support the hypothesis that ageing and TBI may interact
to promote the development of CMBs.

In the following section, the possible mechanisms by
which ageing promotes TBI-induced CMBs and exacer-
bates CMB-related neuronal dysfunction are discussed
(Fig. 4). Sudden accelerating and decelerating shearing
forces during head trauma likely play a central role in the
development of CMBs, which accompanies TBI-related
diffuse axonal injury [7, 9, 25, 44]. Mechanical distortion
of endothelial cells leads to disruption of the BBB and
capillary damage, provoking blood extravasation and the
formation of small haemorrhagic lesions [8, 44-46]. Trau-
matic microbleeds are characteristic in the vicinity of small
cerebral arteries, arterioles, capillaries and bridging veins
[8, 44, 46]. Collagen (mainly I and III) plays an important
role in vascular stiffness and tissue repair [16, 36, 47].
During ageing, vascular collagen is modified due to age-
related mineralisation [16, 36]. The mineralised and mod-
ified collagen is more fragile; thus, the aged vessels are
more susceptible to be injured after trauma [16, 48-50]. In
addition to the increased vascular stiffness due to age-
related enhanced collagen content of the cerebrovascular
wall, ageing promotes the structural modification of elastin
leading to impaired elasticity of the vessels [16, 36,
47-49]. These age-related changes in biomechanical prop-
erties of cerebral vessels most likely exacerbate the
abovementioned TBI-related mechanical injury.

Interestingly, in animal models, both mild and severe TBIs
were shown to lead to a decrease in cerebrovascular stift-
ness indicated by attenuated modulus of rigidity, as well as
an increase in the radius of the vessels in the affected
cerebral tissue. This potentially contributes to reactive local
hyperperfusion [S1-54]. One can hypothesise that this
hydrostatic burden may exacerbate TBI-related vascular
injury in the elderly. After cerebral vessels become leaky,
extravasated erythrocytes and plasma triggers activation of
microglia and macrophages, migration of neutrophils and
increased production of cytokines [7-9, 55]. This inflam-
matory reaction contributes to neuronal damage and dys-
function as shown by demyelination, loss of neuropil,
impaired fluid removal in perivascular spaces, impaired
neurogenesis and differentiation [7, 33, 45, 55, 56]. These
are most likely exacerbated in ageing, as the number of
activated microglia is increased in the aged brain, being
responsible for excessive and prolonged expression of
inflammatory cytokines IL-1, IL-6, IL-12 and TNF «
[56-58].

TBI induces mitochondrial dysfunction and excessive
production of mitochondria-derived free radicals (mostly
hydrogen peroxide and peroxynitrite), which are further
exacerbated by accumulation of hemosiderin, heme and
free iron in the cerebral parenchyma and in endothelial cells
[7, 45, 55, 59]. This results in further BBB disruption and
formation of vasogenic and cytotoxic oedema, leading to a
vicious cycle 7, 8, 10, 45]. The aforementioned cascade is
thought to be more critical in the elderly. For example, in
ageing, TBI-induced microglial proliferation is more pro-
nounced than in young patients because of age-related
decreased phagocytic activity, increased ROS production
and enhanced leukocyte activation [11, 60, 61]. In ageing,
cerebrovascular oxidative stress is increased compared to
younger individuals, partly due to impaired antioxidant
defence mechanisms (including dysfunction of the Nrf2-
dependent cytoprotective pathways, decreased level and
activity of antioxidant enzymes as superoxide dismutase
(SOD), catalase and the glutathione system (GSH)) as well
as up-regulation of NADPH oxidases [16, 17, 50, 58,
61-72]. One of the main sources of ROS in the
cerebrovasculature are mitochondria [17, 62, 71, 73]. Mi-
tochondrial oxidative stress has been shown to be increased
after TBI as well as in ageing [2, 6, 7, 11, 12, 58, 60, 62].
Importantly, mitochondrial DNA is more prone to damage
caused by reactive oxygen substances, which is also exag-
gerated in ageing [62, 63]. It is of note that mitochondrial
oxidative stress was shown to contribute to autoregulatory
dysfunction following TBI, which may result in
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Fig. 4 Possible mechanisms of the synergistic effect of traumatic
brain injury and ageing on the formation of cerebral microbleeds.
Please see detailed description in the text. Traumatic brain injury
(TBI) leads to mechanical distortion of cerebral vessels, which
may directly lead to injury of the vascular wall and formation of
microhemorrhages around cerebral arterioles and capillaries. This
mechanism may be enhanced by ageing via age-related changes of
the cerebrovascular wall leading to increased fragility of the ves-
sels. TBI-induced mitochondrial oxidative stress and production of
reactive oxygen species (ROS) and inflammatory mediators in
activated microglia and macrophages following TBI may be ex-
acerbated by ageing due to the age-related decreased antioxidant
cellular mechanisms. In addition to the direct damage of the

downstream injury of the cerebral microcirculation due to
pressure and volume overload [10, 12]. This hydrostatic
burden contributes to the development of both BBB dis-
ruption and formation of microhaemorrhages [7, 10, 15,
16]. This pathophysiological mechanism is likely enhanced
by ageing and should be studied in the future [35].

Matrix metalloproteinases (MMPs) play a central role in
structural microvascular damage and BBB disruption after
TBI [10, 13—-15]. Importantly, ageing results in increased
MMP activity in the brain [74]. MMPs are activated by
age-related crosslinking of vascular collagen and are in-
duced by age-related oxidative stress and by decreased
activity of protease inhibitors [16, 17, 36, 48, 49, 74].
TBI can induce MMP activity via activating transcription
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cerebrovascular wall, TBI-induced autoregulatory dysfunction
may contribute to the development of cerebral microbleeds by
placing increased hydrostatic burden on the cerebral microcircu-
lation due to lack of proximal protection against blood pressure.
Autoregulatory dysfunction may be exacerbated by age-related
deficiency of circulating insulin-like growth factor 1 (IGF-1).
These mechanisms converge on the disruption of the blood-brain
barrier (BBB) and formation of cerebral microbleeds and conse-
quent cognitive and gait dysfunction following TBI. We posit that
enhanced vascular fragility, increased cerebrovascular oxidative
stress and autoregulatory dysfunction in the elderly result in the
formation of more cerebral microbleeds and more severe impair-
ment of cognitive and gait function compared to young patients

factors such as hypoxia-inducible factor 1 alpha (HIF1«x),
NF-kB and poly(ADP-ribose) polymerase-1 (PARP-
1) [7, 11, 49, 73]. These transcription factors are
found to be induced in the elderly [17, 61]. Age-
related activation of NF-kB and HIF1 o alters
mitochondrial and cellular repair function, as well,
augmenting inflammatory mechanisms and further
potentiating TBI-induced secondary injury [61].

It is important to note that age-related endocrine
changes, specifically, the age-related decline in IGF-1
may play a central role in the development of age-
related, hypertension-induced formation of microbleeds
[35, 75, 76]. It was recently demonstrated that deficien-
cy of circulating IGF-1 after genetic knock-down of
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hepatic production of the hormone in mice exacerbates
the formation of cerebral microbleeds in response to
hypertension, mimicking the ageing phenotype [35,
76]. IGF-1 is also known to confer multifaceted neuro-
protective effects [75]. Important in this regard is that
the GH/IGF-1 axis is the most sensitive to be impaired
following TBI [77, 78]. Shearing forces acting on the
hypothalamo-hypopituitary system, TBI-related in-
creased intracranial pressure, haemorrhage and oedema
formation and consequent local circulatory deficit have
been suggested to contribute to the impairment of the
GH/IGF-1, which affects approximately 10-20% of TBI
patients [77, 79, 80]. GH/IGF-1 deficiency can last for
years following TBI and has been suggested to signifi-
cantly contribute to chronic cognitive decline, as
well as to decrease quality of life of TBI patients
[75, 77, 81, 82]. It is logical to posit that TBI-related
attenuation of IGF-1 production may be exacerbated
in aged subjects. Future studies should determine the
contribution of age-related IGF-1 deficiency to the
genesis of CMBs and/or exacerbated CMB-induced
neuronal damage in older adults.

Clinical importance
Gait dysfunction

Posture and gait necessitate coordinated operation of
cortical (motor cortex) and subcortical areas (basal gan-
glia, thalamus, cerebellum, the limbic system, midbrain,
pons, medulla and spinal locomotor network) [16, 83].
Development of CMBs results in gait dysfunction by
damaging these centres and disrupting the communicat-
ing pathways between them [27, 28, 58]. Accordingly,
CMBs in temporal and frontal lobes, in basal ganglia
and corona radiata (independent of white matter lesions)
showed a significant correlation with poor gait function
in elderly patients [20, 27]. In the elderly, gait distur-
bance manifests as impaired stride length, double sup-
port time, cadence and decreased performance on the
timed up and go tests [27, 28, 84]. Interestingly, only
one case series investigated the effect of traumatic
microbleeds on gait dysfunction [85]. This study
showed that SWI positive TBI patients developed ves-
tibular or balance abnormalities [85]. It is logical to
postulate that TBI exacerbates gait dysfunction in the
elderly, and gait disturbance of the elderly most likely is
a central factor in the increased incidence of TBI

amongst them due to increased propensity to fall. Future
clinical studies are evidently needed to clarify the pos-
sible interactions between ageing and TBI on gait func-
tion and the possible role of cerebral microbleeds.

Cognitive dysfunction

The association between the number and distribution of
CMBs of different etiologies and cognitive decline has
been widely analysed; however, the underlying mecha-
nism is not fully understood. It is proposed that in devel-
opment of cognitive decline, cumulative effects of the
lesions as well as damage in specific anatomical locations
are critical [23, 24, 33, 65]. For example, microstructural
damage of fronto-subcortical circuits linking prefrontal
areas to basal ganglia is associated with impairment in
executive function of healthy individuals in all age groups
of patients with vascular disease, whereas disarrangement
of pathways from the mentioned areas projecting to thala-
mus results in memory disturbances [23, 24, 33, 86, 87].

In non-demented healthy elderly patients, presence of
deep, subcortical CMBs was related to deterioration of
global cognitive performance, particularly affecting ex-
ecutive function, memory and information processing,
while strictly lobar CMBs resulted in executive dysfunc-
tion, decreased processing speed and gait disturbances,
as well [21, 33, 83, 88].

Despite the aforementioned association between
brain trauma and the development of microbleeds, lim-
ited information is available regarding the effect of
traumatic CMBs on cognitive outcome [3, 9, 44]. A
single case study proposed a connection between trau-
matic CMBs following mild TBI and decline in cogni-
tive performance of a previously healthy 57-year-old
male patient [5]. This was further substantiated by stud-
ies showing that in mild TBI patients’ number of trau-
matic CMBs correlated with altered neurocognitive
function, impaired short-term memory, concentration
difficulties and depression [3, 4, 44, 87]. Interestingly,
the number of lesions in the acute stage predicted the
progress of post-concussion syndrome and decline in
processing speed a year after the injury [87]. Although it
seems logical to posit that (even mild) brain trauma
results in enhanced cognitive disturbances in elderly
individuals, to our best knowledge, no studies have
tested this hypothesis. Thus, future clinical research
should investigate the synergistic effect of ageing and
TBI-related formation cerebral microbleeds on cogni-
tive decline.
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Conclusion and perspective

Traumatic brain injury in older adults is associated with the
development of multiple CMBs (Fig. 2); however, our
case report does not provide statistically relevant data to
support the synergistic effect of ageing and TBI on the
formation of cerebral microbleeds after brain trauma. Fu-
ture clinical studies should determine the predictive value
of CMBs in older TBI patients in order to estimate long-
term outcome, including detailed characterization of their
effect on gait and cognitive function.

Specific cellular and molecular mechanisms should
be identified that could be targeted pharmacologically to
prevent the development of CMBs and/or limit their
deleterious effects on neuronal survival and function in
the elderly after brain trauma. Testing the role of differ-
ent factors involved in the synergistic pathways between
ageing and TBI in formation of microbleeds could be
tested by applying brain trauma of different severity on
preclinical models of accelerated vascular ageing. For
example, the specific role of IGF-1 deficiency in the
development of traumatic microbleeds could be tested
by studying the development of cerebral
microhemorrhages after brain trauma in mice with viral
knockdown of hepatic production of IGF-1, and the
protective effect of IGF-1 supplementation could be
tested [76]. As outlined above, age-related increased
oxidative stress is a likely factor enhancing the forma-
tion of microbleeds following TBI. In this regard, age-
dependent decreased antioxidant mechanisms play a
pivotal role. Thus, it would be logical to study the
formation and characterize TBI-induced CMBs in the
previously used Nrf2-deficient mice [68]. Applying a
similar theoretical approach, TBI-induced formation of
cerebral microbleeds should also be studied in mice
overexpressing mitochondrial catalase, which was pre-
viously demonstrated to effectively attenuate cerebro-
vascular mitochondrial oxidative stress [72, 73]. Vari-
ous pharmacological interventions have been shown to
decrease cerebrovascular oxidative stress and its conse-
quences. For example, hypertension- and ageing-
induced development of microhaemorrhages was
prevented by treatment the animals with resveratrol,
and the mitochondrial antioxidant peptide SS-31 [17,
67]. The potential positive effect of these compounds
should be tested on the formation and development of
TBI-induced cerebral microbleeds in ageing. Based on
recent results showing that restoring cellular NAD™
levels in aged mice by treatment with nicotinamide
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mononucleotide (NMN), a key NAD* intermediate, res-
cues neurovascular function, increases cerebral blood
flow, and improves performance on cognitive tasks,
we posit that NMN treatment likely prevent the forma-
tion of TBI-induced formation of cerebral microbleeds
in both young and aged laboratory animals, as well [66].
Future studies should verify the preventive/protective
effects of dietary intake of the NAD" boosting com-
pounds quercetin and luteolin in patients after TBI [89].
Other possible neuroprotective pathways should be
studied, as well. For example, neurotrophins, such as
brain-derived neurotrophic factor (BDNF) acting on
tropomyosin receptor kinase B (TrK/B) receptors, have
a significant role in neuronal survival, synaptic plasticity
and neurogenesis under various pathological conditions
[90-94]. Following TBI, the level of BDNF is tempo-
rarily increased to exert neuroprotection [91-93]. Inter-
estingly, the level of BDNF significantly decrease with
age, and it is also attenuated in chronic cardiac failure
being associated with ageing, as well [90, 93-97].
Therefore, ageing presumably limits the protective in-
crease in BDNF after TBI. This hypothesis and the role
of BDNF in age- and TBI-related neuronal dysfunction
should be tested in the future.
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