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1 INTRODUCTION

According to modern retirement planners, “as investors age, they should start cutting back on
riskier investments” (Malkiel, 1999, p. 361). According tomodern portfolio theory, they should not.
Instead—the theory prescribes—investors’ portfolios should be insensitive to their investment
horizons (Markowitz, 1952; Merton, 1969).
This tension between theory andpractice hinges on implicit assumptions on the statistical prop-

erties of stock returns. While theoretical results supporting fixed portfolio weights assume that
stock prices have independent, identically distributed returns, financial planning advice posits
mean-reversion: as Siegel (1998) puts it, “the actual risk of average stock returns declines far faster
than predicted by the random walk hypothesis because of the mean reversion of equity returns.”
Malkiel (1999) chimes in that “A substantial amount (but not all) of the risk of common-stock
investment can be eliminated by adopting a program of long-term ownership”.
Although mean-reverting returns (and stochastic investment opportunities in general) yield

portfolio weights that jointly depend on investors’ horizons and a market’s states, they also typi-
cally imply that, as the horizon increases, weights converge to a fixed limit known as the turnpike.1
As a result, portfolio weights change mainly in the late stages of the investment period, but oth-
erwise remain close to constant.
This paper offers a rather different result, focusing on an asset with mean-reverting fluctua-

tions and on an investor with exponential utility, which represents the high risk-aversion limit of
isoelastic utilities (Nutz, 2012, Theorem 3.2). In this setting, our main result (Theorems 2.1 and
2.3) demonstrates that: (i) the portfolio weight declines over time with a power of the remaining
horizon; (ii) at the leading order, the trading strategy does not depend on the average asset return
or mean-reversion speed, but only on mean-reversion curvature; and (iii) the resulting certainty
equivalent is also proportional to a power of the horizon that depends only onmean-reversion cur-
vature. These observations motivate the paper’s title: although our investors are timid (i.e., highly
risk-averse), it is optimal for them to take significant risk while young, because mean-reversion
entails that early shocks subside over time.
The significance of this result is fourfold. First, it reveals the central role of mean-reversion

curvature for highly risk-averse investors, both in trading strategies and their performance. This
quantity has eluded so far the attention of researchers, possibly because it is absent from pop-
ular models based on the Ornstein-Uhlenbeck and Feller diffusions, in which mean-reversion
is linear for the sake of tractability. By contrast, we consider a class of models with nonlinear
mean-reversion that nests linearity as a special case, and find that the curvature parameter alone
identifies both the asymptotically optimal strategy and its performance.
Second, as the trading strategy grows with the horizon without bounds, it is clear that no turn-

pike exists in the model, and that no time-homogeneous strategy can be asymptotically opti-
mal. Put differently, although the asset price dynamics is described by a time-homogeneous
and ergodic Markov process, ergodicity fails for the optimal strategy, which does not recover
time-homogeneity even in the long-horizon limit. In fact, the certainty-equivalent of any time-
homogeneous strategy could only be a finite, fixed annuity, while the certainty-equivalent of
the optimal (and time-inhomogeneous) strategy is an annuity payment that grows with a power
of time.
Third, we identify two separate regimes with different characteristics. The nonstationary

regime corresponds to assets whose prices have nonzero average growth rate, such as stocks
and bonds, which have a consistent historical record of exceeding inflation. (Also cash, which
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consistently underperforms inflation, falls into this case.) By contrast, the stationary regime cor-
responds to an asset, such as gold, whose price tends to grow at the inflation rate without exceed-
ing it (Siegel, 1998, Figure 5.4). Such assets, which have considerable short term fluctuations,
but no significant long-term trend in real terms, are long-term safe assets. In the nonstationary
case, the certainty-equivalent corresponds to an annuity that grows with time raised to twice the
curvature of mean-reversion. By contrast, in the stationary case of a long-term safe asset, the
equivalent annuity grows with time at the power of the curvature of mean-reversion (i.e., not
twice). In other words, though average growth does not enter the optimal investment strategy or
its performance explicitly, it does affect both of them, insofar as the asset’s growth rate is zero
or not.
Fourth, this paper also offers a novel methodological approach to portfolio choice problems

that do not admit an explicit solution, such as the nonlinear mean-reversion class considered
here. Indeed, these models lead to Hamilton-Jacobi-Bellman equations that are impervious to
typical techniques: On one hand, the finite-horizon problems cannot be tackled with a quadratic
guess due to the nonlinear term. On the other hand, one cannot sidestep time-dependence
by focusing on the ergodic limit—because ergodicity fails. Nevertheless, combining duality
estimates with educated guesses, we are able to identify asymptotically optimal strategies in
closed form.
The voluminous literature on continuous-time portfolio choice with stochastic investment

opportunities begins with the work of Merton (1973) on multiple fund separation. Subsequent
research has sought to bring tractability to stochastic investment opportunities, either through
convex duality (Cox & Huang, 1989; He & Pearson, 1991; Karatzas et al., 1987, 1991), or stochastic
control (Duffie et al., 1997; Kim&Omberg, 1996; Liu, 2007;Wachter, 2002; Zariphoupoulou, 2001).
Long-horizon asymptotics, first considered in the risk-sensitive control literature (Bielecki &

Pliska, 2000; Fleming & McEneaney, 1995; Fleming & Sheu, 2002; Hata & Sekine, 2005; Kuroda
& Nagai, 2002; Kaise & Sheu, 2006; Nagai & Peng, 2002; Nagai, 2003) are a powerful approach to
bring tractability to problems with stochastic investment opportunities, as their focus on ergodic
Hamilton-Jacobi-Bellman equations yields long-horizon limits of optimal portfolios even when
finite-horizon solutions are unavailable.
Yet, the conditions underwhich optimal portfolios converge in the long horizon can be delicate.

Guasoni et al. (2012) identify joint restrictions onmarket and preference parameters under which
convergence holds. In amodel of commodity futureswith linearmean-reversion andpower utility,
Guasoni et al. (2019) obtain convergence only for sufficiently low relative risk aversion, raising the
question of whether high risk aversion may subvert the result.
This paper shows that, in the presence of mean-reversion, high-risk aversion investors, as

described by exponential utility, exhibit a qualitatively different sensitivity to the investment hori-
zon, in comparison to power utility. Far from converging, optimal portfolios actually diverge, and
do so at a speed that is determined by the curvature of mean reversion. Thus, for a given horizon
the riskiness of an optimal portfolio tends to decline over time. Altogether, the results suggest
that financial planners’ recommendations for gradual risk reduction are most relevant for highly
risk-averse investors.
The rest of the paper is organized as follows. Section 2 contains the main results, and its

discussion, which is further developed in Section 3, where the special case of the Ornstein-
Uhlenbeck process is solved explicitly. Section 4 offers a limit argument from discrete-time mod-
els that motivates the results in the paper. Concluding remarks are in Section 5. Proofs are in
the Appendix.
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2 A NONLINEARMEAN-REVERSIONMODEL

The market includes a safe asset earning zero interest rate and a risky asset with price 𝑆𝑡 that
follows the diffusion

𝑑𝑆𝑡 =𝜇 𝑑𝑡 + 𝑑𝑋𝑡, 𝑆0 = 0, (1)

𝑑𝑋𝑡 = − 𝛼 sgn(𝑋𝑡)|𝑋𝑡|𝛽𝑑𝑡 + 𝑑𝐵𝑡, 𝑋0 = 0. (2)

where𝛽 ≥ 1,𝛼 > 0,𝜇 ∈ ℝ, while (𝐵𝑡)𝑡≥0 is a standard, one-dimensional Brownianmotion defined
on a probability space (Ω, , 𝑃) and endowed with the augmented natural filtration (𝑡)𝑡≥0. The
stochastic differential equation (2) has a unique strong solution (see, e.g., Krylov (1999, Theorem
1.2)). Note that the model assumes, for economy of notation, that the asset has unit volatility.
The general case of a volatility 𝜎 is reduced to the present one by replacing the average growth
rate 𝜇 with 𝜇∕𝜎 (cf. Section 3 below). Diffusion parameters are typically estimated either through
the generalized method of moments (Hansen, 1982) or approximate maximum likelihood (Aït-
Sahalia, 2002).
The case 𝛽 = 1 recovers the familiar, linear mean-reversion of the Ornstein-Uhlenbeck pro-

cess. Higher values of 𝛽 generate nonlinear mean-reversion, in that the mean-reverting drift
is not proportional to the current distance from the mean, but a power thereof. Likewise,
the case 𝛼 = 0 recovers the familiar Bachelier model of a linear Brownian motion with con-
stant drift, in which all shocks to the asset price are permanent, that is, they accumulate
over time.
As this paper focuses on 𝛼 > 0, 𝛽 > 1, the central idea of the model is that mean-reversion

is imperceptible when deviations from average long-term growth are minimal (𝑋𝑡 ≪ 1, hence|𝑋𝑡|𝛽 ≈ 0), so that price dynamics resembles a random walk. By contrast, when deviations are
large (𝑋𝑡 ≫ 1), price shocks strongly revert to the mean, and departures from random-walk
dynamics become apparent.
The deviation process 𝑋𝑡 has a stationary distribution with density

𝑒
−

𝛼

𝛽+1
|𝑥|𝛽+1

2(
𝛼

𝛽+1
)
−

1

1+𝛽 Γ(
2+𝛽

1+𝛽
)

where Γ denotes the usual Gamma function Γ(𝑥) = ∫ ∞

0
𝑡𝑥−1𝑒−𝑡𝑑𝑡.2 Such a distribution is qualita-

tively similar to a normal (𝛽 = 1), but is flatter near the mean and has thinner tails, consistently
with the observation that small deviations are virtually ignored but large deviations elicit a swift
mean-reverting response.
Also, note that the asset price is itself stationary only if 𝜇 = 0, whence 𝑆𝑡 = 𝑋𝑡. In general,

𝑆𝑡 = 𝑋𝑡 + 𝜇𝑡, whichmeans that the price is the sum of a linear trend and a stationary process, but
is not itself stationary. (For example, the linear mean-reversion case 𝛽 = 1 leads to the trending
Ornstein-Uhlenbeck process in Grundy (1991) and Lo &Wang (1995).)
Finally, observe that the model in (1) assumes an arithmetic drift, but it could be equivalently

formulated in terms of a geometric drift, that is, as 𝑑𝑆𝑡∕𝑆𝑡 = 𝜇 𝑑𝑡 + 𝑑𝑋𝑡. Indeed, both formula-
tions lead to the same set of attainable payoffs, as the corresponding replicating strategies are
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in a one-to-one correspondence (that is, ∫ 𝑇

0
𝐻𝑡𝑑𝑆𝑡 = ∫ 𝑇

0
𝐻̃𝑡𝑑𝑆𝑡∕𝑆𝑡 for 𝐻̃𝑡 = 𝐻𝑡𝑆𝑡). In particular,

although prices may become negative in the arithmetic setting (1), they remain strictly positive in

the equivalent geometric setting, as 𝑆𝑡 = 𝑆0𝑒
(𝜇−

1

2
)𝑇+𝑋𝑇 .

If an investor holds𝐻𝑡 shares of the risky asset at time 𝑡, the overall gain (or loss) at time 𝑇 ≥ 0

is described by the stochastic integral (𝐻 ⋅ 𝑆)𝑇 , defined for all 𝑆-integrable processes𝐻𝑡, 𝑡 ∈ [0, 𝑇].
For a fixed horizon 𝑇, the investor seeks to maximize the exponential utility

𝐸
[
−𝑒−(𝐻⋅𝑆)𝑇

]
→ max . (3)

(For economy of notation, the discussion focuses on unit risk aversion. An arbitrary risk aver-
sion reduces the certainty-equivalent proportionally, cf. Section 3.) Here𝐻 varies among the class
of admissible strategies, defined as the set 𝑇 of 𝑆-integrable processes 𝐻𝑡, 𝑡 ∈ [0, 𝑇] such that
(𝐻 ⋅ 𝑆)𝑡, 𝑡 ∈ [0, 𝑇] is a 𝑄𝑇-martingale, where 𝑄𝑇 denotes the unique risk-neutral measure, whose
existence and explicit expression is in PropositionA.1 below. (𝑇 is a natural choice for the domain
of the optimization in (3), cf. Delbaen et al. (2002); Kabanov & Stricker (2002).)
Thus, the value function of the portfolio optimization problem on [0, 𝑇] is

𝑢𝑇 ∶= sup
𝐻∈𝑇

𝐸
[
−𝑒−(𝐻⋅𝑆)𝑇

]
,

for all 𝑇 > 0. The corresponding certainty-equivalent, 𝑐𝑇 ∶= − ln(−𝑢𝑇), represents the investor’s
opportunity cost of trading, that is, the amount of money the investor would accept as compensa-
tion for not being able to trade in the interval [0, 𝑇].3
For a family of strategies ℌ ∶= (𝐻(𝑇))𝑇>0 with 𝐻(𝑇) ∈ 𝑇 , 𝑇 > 0, define the order of the

certainty-equivalent as

(ℌ) ∶= sup

{
𝜃 ∶ lim inf

𝑇→∞

− ln(𝐸
[
𝑒−(𝐻(𝑇)⋅𝑆)𝑇

]
)

𝑇𝜃
> 0

}
.

For example, with a nonzero average return (𝜇 ≠ 0) but in the absence of mean reversion (𝛼 = 0),
the certainty-equivalent 𝑐𝑇 is proportional to𝑇, whichmeans that its order is one, and the investor
is indifferent between trading optimally and receiving a constant annuity (as the annuity is the
rate of change of the certainty-equivalent, its order equals the order of the certainty-equivalent,
minus one).
The first part of the main result asserts that, when 𝜇 ≠ 0 and 𝛼 > 0, the optimal certainty-

equivalent 𝑐𝑇 grows at rate 𝑇2𝛽+1 as 𝑇 → ∞ and the intuitive strategies defined in (4) below attain
such performance.

Theorem 2.1. If 𝛼 > 0 and 𝜇 ≠ 0, then 𝑐𝑇 ≤ 𝐶𝛽,𝜇,𝛼𝑇
2𝛽+1 for some constant 𝐶𝛽,𝜇,𝛼 > 0, and each

family of strategies ℌ satisfies (ℌ) ≤ 2𝛽 + 1. The family of strategies ℌ𝛽 = (𝐻(𝛽, 𝑇))𝑇>0 defined
by

𝐻𝑡(𝛽, 𝑇) ∶= (𝛽 + 1)(𝑇 − 𝑡)𝛽 sgn(𝑆𝑡)|𝑆𝑡|𝛽, 𝑡 ∈ [0, 𝑇] (4)

satisfies (ℌ𝛽) = 2𝛽 + 1.



GUASONI et al. 1337

This result highlights a few unusual features: First, as the order of the certainty-equivalent is
greater than one, no fixed annuity is sufficient to compensate for the loss of the trading opportu-
nity over an arbitrarily long amount of time. Instead, an acceptable annuity would have to grow
with the horizon with the power of 2𝛽.
Second, and contrary to what intuition may suggest, asymptotic optimality is not achieved by

time-homogeneous strategies that buy the asset when it lies below its long-term trend and sell
it otherwise. Instead, it is sufficient for the asymptotically optimal strategy to time the market
around its starting point, that is, zero, thereby neglecting the drift. The success of such an osten-
sibly myopic approach is explained by the sheer size of early bets compared to later ones. Because
early bets are so large, and the initial value of 𝑆𝑡 is zero, it turns out that it is sufficient to cali-
brate the trading strategy around its initial target to capture optimality at the leading order. Put
differently, the increasing importance of the drift in the long run is offset by the concentration of
risk of the trading strategy on the early stage of the trading interval.
Importantly, the mean-reversion curvature 𝛽 controls both the trading response to the asset

price and its time-dependentmagnification. The higher the curvature, themore sensitive the strat-
egy to price changes and the higher its concentration in the early part of the trading period. Higher
curvature also leads to higher performance, equivalent to a variable annuity proportional to 𝑡2𝛽 at
time 𝑡, which accumulates to an overall certainty-equivalent of order 𝑇2𝛽+1.

Remark 2.2. The question arises whether the strategy (4) may be optimal for some other utility
function𝑈. Indeed, under certain conditions, an investor’s utility function can be recovered from
the optimal strategy (Cox et al., 2014). In the present setting, in general there is no utility 𝑈 for
which the strategy (4) is exactly optimal. This fact is proved in the appendix in the linear case of
𝛽 = 1.

The next result shows that the stationary case 𝜇 = 0 is substantially different:

Theorem 2.3. If 𝛼 > 0 and 𝜇 = 0, then 𝑐𝑇 = 𝐶𝛽𝑇
1+𝛽 for some constant 𝐶𝛽 > 0, and each family of

strategies ℌ satisfies (ℌ) ≤ 1 + 𝛽. If 𝛽 > 1, then for each 1 < 𝛾 < 𝛽, the family of strategies ℌ𝛾 =

(𝐻(𝛾, 𝑇))𝑇>0 defined by

𝐻𝑡(𝛾, 𝑇) ∶= −2(𝑇 − 𝑡)𝛾𝑆𝑡, 𝑡 ∈ [0, 𝑇] (5)

satisfies (ℌ𝛾) ≥ 1 + 𝛾. If 𝛽 = 1 then (ℌ1) = 2 = 1 + 𝛽.

In the case 𝜇 = 0, which identifies long-term safe assets, the certainty-equivalent 𝑐𝑇 is of order
𝑇1+𝛽 , hence the mean-reversion curvature adds only once, rather than twice, to the order of the
certainty-equivalent. Counterintuitive at first, this result is best understood in the context of the
Ornstein-Uhlenbeck process, solved in closed form in the next section. In that setting, it becomes
clear that the term of order 𝑇1+2𝛽 results from the interaction between average growth andmean-
reversion, hence is lost when either of them vanishes. By contrast, the term of order 𝑇1+𝛽 results
from mean-reversion alone, and persists even in the absence of average growth. In other words,
𝑇1+𝛽 is the highest order that can be achieved purely through market-timing.
Note also that the statement of Theorem 2.3 is slightly weaker than that of Theorem 2.1 because

the strategies defined in (5) below achieve the performance 𝑇1+𝛽 asymptotically as 𝛾 → 𝛽. This
family of strategies entails the same decline in risk-taking over time as in the case of 𝜇 ≠ 0. How-
ever, the absence of drift implies that the overall certainty-equivalent has a smaller order.
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3 THE ORNSTEIN-UHLENBECKMODEL IN CLOSED FORM

This section derives in closed form the value function and the optimal strategy in the case of
linear mean reversion, that is, 𝛽 = 1. In this case, the value function is an exponential quadratic
function of the state variable𝑋𝑡 with time-varying coefficients, which are determined by a system
of differential equations. Here is reported the derivation of the solution and the discussion of its
implications. The corresponding verification theorem follows from similar arguments as in Kraft
(2005). This section also includes the two additional parameters 𝜎, for the volatility of the asset
price, and 𝛾 for the investor’s risk aversion.
Let the asset price 𝑆𝑡 satisfy the dynamics

𝑑𝑆𝑡 =𝜇 𝑑𝑡 + 𝑑𝑋𝑡 (6)

𝑑𝑋𝑡 = − 𝛼𝑋𝑡𝑑𝑡 + 𝜎𝑑𝐵𝑡 (7)

where 𝑋𝑡 is an Ornstein-Uhlenbeck process. The investor maximizes exponential utility of termi-
nal wealth, that is,

max
𝐻

𝐸

[
𝑒−𝛾(𝐻⋅𝑆)𝑇

−𝛾

]
(8)

where 𝛾 > 0 is the absolute risk aversion and𝐻 varies in the set of admissible strategies. Denoting
the investor’s wealth by𝑊𝑡 = (𝐻 ⋅ 𝑆)𝑡, the optimization problem’s value function is 𝑉(𝑡, 𝑤, 𝑥) =
sup𝐻 𝐸[

𝑒−𝛾𝑊𝑇

−𝛾
|𝑋𝑡 = 𝑥,𝑊𝑡 = 𝑤], and follows the dynamics (henceforth omitting the arguments of

𝑉)

𝑑𝑉(𝑡,𝑊𝑡, 𝑋𝑡) =

(
𝑉𝑡 + (𝜇 − 𝛼𝑋𝑡)𝐻𝑡𝑉𝑤 − 𝛼𝑋𝑡𝑉𝑥 +

𝜎2

2
𝐻2

𝑡 𝑉𝑤𝑤 + 𝜎2𝐻𝑡𝑉𝑤𝑥 +
𝜎2

2
𝑉𝑥𝑥

)
𝑑𝑡

+ 𝑉𝑤𝜎𝐻𝑡𝑑𝐵𝑡 + 𝑉𝑥𝜎𝑑𝐵𝑡.

The martingale principle of optimal control of Davis & Varaiya (1973) posits the value function
to be a supermartingale for all admissible strategies and a martingale for the optimal strategy,
thereby requiring that its maximal drift over all strategies is zero, and leading to the Hamilton-
Jacobi-Bellman (HJB) equation

𝑉𝑡 +
𝜎2

2
𝑉𝑥𝑥 − 𝛼𝑥𝑉𝑥 + sup

ℎ

(
(𝜇 − 𝛼𝑥)ℎ𝑉𝑤 +

𝜎2

2
ℎ2𝑉𝑤𝑤 + 𝜎2ℎ𝑉𝑤𝑥

)
= 0. (9)

The first-order condition for the drift leads to the candidate optimal strategy

ℎ̂ = −
(𝜇 − 𝛼𝑥)𝑉𝑤

𝜎2𝑉𝑤𝑤
−

𝑉𝑤𝑥

𝑉𝑤𝑤
, (10)

and replacing this expression in the drift, the HJB equation reduces to:

𝑉𝑡 +
𝜎2

2
𝑉𝑥𝑥 − 𝛼𝑥𝑉𝑥 −

(
(𝜇 − 𝛼𝑥)𝑉𝑤 + 𝜎2𝑉𝑤𝑥

)2
2𝜎2𝑉𝑤𝑤

= 0. (11)
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To solve this equation, guess a solution of exponential-quadratic form

𝑉(𝑡, 𝑤, 𝑥) =
𝑒
−𝛾
(
𝑤+

𝑎(𝑡)

2
𝑥2+𝑏(𝑡)𝑥+𝑐(𝑡)

)
−𝛾

, (12)

which eliminates the variable 𝑤 from the HJB equation, reducing it to(
−

𝛼2

2𝜎2
−

𝛾

2
𝑎′(𝑡)

)
𝑥2 +

(𝛼𝜇
𝜎2

+ 𝛾𝜇𝑎(𝑡) − 𝛾𝑏′(𝑡)
)
𝑥 +

(
−

𝜇2

2𝜎2
−

𝜎2

2
𝛾𝑎(𝑡) + 𝛾𝜇𝑏(𝑡) − 𝛾𝑐′(𝑡)

)
= 0.

(13)

Because the equation must hold for all 𝑡, 𝑥, each of the coefficients of 𝑥2, 𝑥, and 1, must be zero,
hence the system of differential equations holds:

𝛼2

𝜎2
+ 𝛾𝑎′(𝑡) = 0, (14)

𝛼𝜇

𝜎2
+ 𝛾𝜇𝑎(𝑡) − 𝛾𝑏′(𝑡) = 0, (15)

𝜇2

2𝜎2
+

𝜎2

2
𝛾𝑎(𝑡) − 𝛾𝜇𝑏(𝑡) + 𝛾𝑐′(𝑡) = 0. (16)

Solving these equations from the top down, it follows that

𝑎(𝑡) =
𝛼2

𝛾𝜎2
(𝑇 − 𝑡), (17)

𝑏(𝑡) = − (𝑇 − 𝑡)
𝛼𝜇

𝛾𝜎2
− (𝑇 − 𝑡)2

𝛼2𝜇

2𝛾𝜎2
, (18)

𝑐(𝑡) =
𝜇2

2𝛾𝜎2
(𝑇 − 𝑡) +

𝛼
(
2𝜇2 + 𝛼𝜎2

)
2𝛾𝜎2

(𝑇 − 𝑡)2 +
𝛼2𝜇2

6𝛾𝜎2
(𝑇 − 𝑡)3, (19)

whence the expression for the optimal strategy is

𝐻𝑡 =
𝜇 − 𝛼𝑋𝑡

𝛾𝜎2
+

𝜇 − 𝛼𝑋𝑡

𝛾𝜎2
𝛼(𝑇 − 𝑡) +

𝜇𝛼2

2𝛾𝜎2
(𝑇 − 𝑡)2 (20)

and the certainty-equivalent, that is, 𝐶(𝑡, 𝑤, 𝑥) = log(−𝛾𝑉(𝑡,𝑤,𝑥))

−𝛾
is

𝐶(𝑡, 𝑤, 𝑥) = 𝑤 +
(𝜇 − 𝛼𝑥)2

2𝛾𝜎2
(𝑇 − 𝑡) +

(
𝛼𝜇(𝜇 − 𝛼𝑥)

2𝛾𝜎2
+

𝛼2

4𝛾

)
(𝑇 − 𝑡)2 +

𝜇2𝛼2

6𝛾𝜎2
(𝑇 − 𝑡)3. (21)

In particular, the leading order of the certainty-equivalent is

(i) (𝑇 − 𝑡)3 if 𝛼, 𝜇 ≠ 0;
(ii) (𝑇 − 𝑡)2 if 𝜇 = 0 but 𝛼 ≠ 0;
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(iii) (𝑇 − 𝑡)1 if 𝜇 ≠ 0 but 𝛼 = 0;
(iv) (𝑇 − 𝑡)0 if 𝛼 = 𝜇 = 0. (In this case the certainty-equivalent is merely 𝑤.)

These observations help understand the significance of themain results in Theorem 2.1 and 2.3.
Recall that, because in this setting 𝛽 = 1, it follows that 1 + 2𝛽 = 3 and 1 + 𝛽 = 2, which identifies
the relevant terms in the formula for the certainty-equivalent in (21).
First, the term of order (𝑇 − 𝑡)3 originates from the interaction between the average return 𝜇

and the mean-reversion 𝛼, and such interaction would thus suggest that any strategy capable to
generate cubic growth must be based on the knowledge of both 𝜇 and 𝛼. However, Theorem 2.1
demonstrates that it does not: in fact, a strategy that at time 𝑡 depends only on 𝑡, 𝑇, 𝛽, and the
observed price 𝑆𝑡, is sufficient to generate cubic growth without the need to know the values of
𝛼 and 𝜇 (provided that 𝜇 ≠ 0, 𝛼 > 0). This fact is of practical relevance because it implies that,
without estimating the exact parameter values of 𝛼 and 𝜇, it is possible to capture the leading
order of the certainty-equivalent with a strategy that responds appropriately to price changes and
the passing of time.
Second, the exact finite-horizon optimal strategy in (20) does depend on all model parameters,

but Theorems 2.1 and 2.3 show that not all terms are equally important in determining the order of
the certainty-equivalent. In particular, the first term 𝜇−𝛼𝑋𝑡

𝛾𝜎2
is negligible, as it depends only on the

state variable 𝑋𝑡 but not on time, and only generates a certainty-equivalent of order one. The last
term 𝜇𝛼2

2𝛾𝜎2
(𝑇 − 𝑡)2 and the first part of the second term 𝜇

𝛾𝜎2
𝛼(𝑇 − 𝑡) are also negligible because they

do not involve the state variable 𝑋𝑡. As the theorems show, the dominant term is −𝛼2𝑋𝑡

𝛾𝜎2
(𝑇 − 𝑡),

which combines sensitivity to both time and state to generate the dominant order in the certainty-
equivalent.
Third, all terms except the initial capital in the certainty-equivalent in (21) are inversely propor-

tional to the risk-aversion 𝛾, as expected for exponential utility, and justifying the paper’s focus
in the previous section on 𝛾 = 1. By contrast, all terms in the certainty-equivalent are inverse in
the variance, with the exception of 𝛼2

4𝛾
(𝑇 − 𝑡)2, which captures the effects of mean-reversion in

the absence of an average return 𝜇. This term is insensitive to 𝜎2 because a higher variance gener-
atesmore frequent deviations, thereby creating trading opportunities, but also increases the risk of
strategies that attempt to exploit such opportunities, and the two effects offset each other. Instead,
an increase in the mean-reversion curvature 𝛽, which changes the shape (rather than the scale)
of the stationary density of 𝑋𝑡, always results in an increase of the certainty-equivalent.

4 DISCRETE-TIME LIMIT

First consider the discrete-time analogue of (2) when 𝛽 = 1 and 𝜇 = 0, that is, in the case of the
Ornstein-Uhlenbeck process satisfying

𝑑𝑆𝑡 = −𝛼𝑆𝑡 𝑑𝑡 + 𝑑𝐵𝑡.

Let 𝜂𝑘, 𝑘 ∈ ℕ be an i.i.d. sequence of standard Gaussian random variables. Recursively define
an autoregressive process 𝑅𝑘, 𝑘 ∈ ℕ with mean reversion parameter 𝜈0 ∈ (−1, 1) as follows:

𝑅0 ∶= 0, 𝑅𝑘 ∶= 𝜈0𝑅𝑘−1 + 𝜂𝑘, 𝑘 ≥ 1.
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Now rewrite the above, using the parameter 𝜈 ∶= 𝜈0 − 1, as

𝑅𝑘 − 𝑅𝑘−1 = 𝜈𝑅𝑘−1 + 𝜂𝑘, 𝑘 ≥ 1, (22)

and interpret 𝑅𝑘 as the discounted price of a risky asset at time 𝑘.
Define the filtration𝑘 ∶= 𝜎(𝑅0, … , 𝑅𝑘), 𝑘 ∈ ℕ. Portfolio strategies are identifiedwith processes

𝜙𝑘, 𝑘 ≥ 1 where 𝜙𝑘 is the number of shares of the risky asset in the portfolio, assumed 𝑘−1-
measurable. Fix a time horizon 𝑁 ≥ 1. The investor aims at maximizing 𝐸[−𝑒−𝐿

𝜙
𝑁 ], where

𝐿
𝜙
𝑁 ∶=

𝑁∑
𝑗=1

𝜙𝑗(𝑅𝑗 − 𝑅𝑗−1) (23)

denotes wealth at time 𝑁 (assuming, without loss of generality, a zero initial position). In this
setting, laborious calculations lead to the the following result:

Theorem 4.1 (Deák & Rásonyi (2015), Theorem 2.1). For each𝑁 ≥ 1, the optimal strategy for time
horizon𝑁 is

𝜙̄𝑘(𝑁) ∶= 𝑔𝑁
𝑘
(𝑅𝑘−1), 1 ≤ 𝑘 ≤ 𝑁,

where

𝑔𝑁
𝑘
(𝑧) = 𝜈𝑧[1 − (𝑁 − 𝑘)𝜈] for all 1 ≤ 𝑘 ≤ 𝑁 and 𝑧 ∈ ℝ. (24)

These strategies yield the maximal expected utilities

𝑟(𝑁; 𝜈) ∶= sup
𝜙

𝔼
[
−𝑒−𝐿

𝜙
𝑁

]
= 𝔼

[
−𝑒−𝐿

𝜙̄(𝑁)
𝑁

]
= − 𝛾̄(𝑁; 𝜈)

−
1

2 , (25)

where 𝛾̄(𝑁; 𝜈) ∶= 𝜈2𝑁Γ(1∕𝜈2 + 𝑁)Γ(1∕𝜈2)−1 and Γ is the Gamma function. □

This result highlights some striking features: First, it is easy to check (see Remark 2.3 of Deák &
Rásonyi (2015)) that the certainty-equivalent − ln(−𝑟(𝑁, 𝜈)) is of the order𝑁 ln(𝑁) as𝑁 → ∞. In
the case of a randomwalk, where 𝑅𝑘 − 𝑅𝑘−1 = 𝜇 + 𝜂𝑘 with some constant 𝜇 ≠ 0, the correspond-
ing certainty-equivalent grows only at a rate𝑁, which is hence outperformed in the autoregressive
case by a factor tending to infinity. This phenomenon already suggests that mean-reverting mod-
els behave rather differently from martingale-like models.
Second, as 𝑅𝑘 tends to a stationary law for 𝑘 → ∞, it is heuristically clear (assuming that an

appropriate upper large deviation estimate holds) that homogeneous Markov strategies (where
𝜙𝑘 = 𝑔(𝑅𝑘−1) with some fixed measurable 𝑔) can provide a certainty-equivalent rate of 𝑁 only.
Hence the temporal structure of the optimal strategy is decisive.
Third, the optimal strategy has an intuitive form: mean-reversion is maximally exploited at

the beginning (when 𝑘 is small) and then to a lesser and lesser degree as the factor (𝑁 − 𝑘)𝜈 in
(24) decreases.
Turning now the attention to the continuous-time model (2) in the case 𝛽 = 1, where 𝑆𝑡 = 𝑋𝑡

is the Ornstein-Uhlenbeck process withmean-reversion parameter 𝛼, consider the corresponding
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Euler approximations, (𝑅̄𝑘)𝑁𝑘=1, up to the fixed time horizon 𝑇, with a grid of resolution 𝑁,
that is,

𝑅̄
(𝑁)
𝑘

= 𝑅̄
(𝑁)
𝑘−1

− 𝛼
𝑇

𝑁
𝑅̄
(𝑁)
𝑘−1

+ 𝜂𝑘, (26)

where 𝑅̄𝑁
0 = 0 and (𝜂)𝑁

𝑘=1
is a standard Gaussian white noise. In this approximation, for every𝑁,

𝑅̄(𝑁) is an autoregressive process. Rewrite (26) as

𝑅̄
(𝑁)
𝑘

− 𝑅̄
(𝑁)
𝑘−1

= −𝛼
𝑇

𝑁
𝑅̄
(𝑁)
𝑘−1

+ 𝜂𝑘. (27)

Thus, matching the parameter 𝜈 in (22) and the asymptotics in (25), in the limit as 𝑁 → ∞, the
mapping

𝑇 → 𝑟

(
𝑁;−

𝛼𝑇

𝑁

)
(28)

provides a heuristic for the growth rate of the certainty-equivalent for the limiting process, namely
for 𝑆𝑡, 𝑡 ∈ ℝ+ when 𝛽 = 1.
Consider ln 𝛾̄(𝑁; 𝜈). The estimate ln(𝑛!) ≈ 𝑛 ln(𝑛) − 𝑛 yields

ln 𝛾̄(𝑁; 𝜈) ≈ − 𝑁 ln(1∕𝜈2) + (1∕𝜈2 + 𝑁) ln(1∕𝜈2 + 𝑁)

− (1∕𝜈2 + 𝑁) − (1∕𝜈2) ln(1∕𝜈2) + 1∕𝜈2

=(1∕𝜈2 + 𝑁)
(
ln(1∕𝜈2 + 𝑁) − ln(1∕𝜈2)

)
−𝑁

=(1∕𝜈2 + 𝑁)
(
ln(1 + 𝜈2𝑁)

)
−𝑁.

Substituting 𝜈 = −
𝛼𝑇

𝑁
, algebraic manipulation and Taylor’s expansion yield

ln𝛾̄

(
𝑁;−

𝛼𝑇

𝑁

)
≈

(
𝑁2

𝛼2𝑇2
+ 𝑁

)
ln

(
1 +

𝛼2𝑇2

𝑁

)
−𝑁

= 𝑁

(
𝑁

𝛼2𝑇2
ln

(
1 +

𝛼2𝑇2

𝑁

)
− 1

)
+ ln

(
1 +

𝛼2𝑇2

𝑁

)𝑁

= 𝑁

(
𝑁

𝛼2𝑇2

(
𝛼2𝑇2

𝑁
−

𝛼4𝑇4

2𝑁2
+ (𝑁−3)

)
− 1

)
+ ln

(
1 +

𝛼2𝑇2

𝑁

)𝑁

= (𝑁−1) −
𝛼2𝑇2

2
+ ln

(
1 +

𝛼2𝑇2

𝑁

)𝑁

.

Taking limit as 𝑁 → ∞, the expected utility in continuous-time on the trading interval [0, 𝑇]
is estimated to be −𝑒−𝛼

2𝑇2∕4. We thus arrive at the surprising conjecture that the optimal
growth rate of the certainty-equivalent of an investor in the Ornstein-Uhlenbeck case is of the
order 𝑇2.
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The main result in the paper rigorously verifies this conjecture and its generalization to non-
linear mean reversion with 𝛽 > 1, proposing similarly intuitive, asymptotically optimal strategies
as in Theorem 4.1 above.

5 CONCLUSION

This paper solves a portfolio choicemodel with temporary price fluctuations and nonlinearmean-
reversion for an investor with constant absolute risk aversion. Although investment opportuni-
ties are stationary, as the horizon increases the optimal portfolio does not stabilize to a turnpike.
Instead, it diverges with a power of the horizon that depends on the curvature of mean reversion.
Accordingly, for a fixed horizon portfolio risk declines over time, reproducing the conventional
wisdom of financial planners.
Overall, the paper emphasizes the joint role of sensitivity to time and price changes in obtaining

portfolios that are optimal at the leading order, as neither time-dependence nor price-dependence
alone are sufficient for this purpose. When combined, they can succeed even with strategies that
depend on the single parameter describing mean-reversion curvature.
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APPENDIX A: PROOFS

A.1 Preliminary calculations and estimates
Proposition A.1. The process

𝜉∗𝑡 = exp

{
−∫

𝑡

0

(
𝜇 − 𝛼 sgn(𝑋𝑢)|𝑋𝑢|𝛽)𝑑𝐵𝑢 − 1

2 ∫
𝑡

0

(
𝜇 − 𝛼 sgn(𝑋𝑢)|𝑋𝑢|𝛽)2𝑑𝑢}, 𝑡 ∈ ℝ+ (A1)

is a 𝑃-martingale and 𝑑𝑄𝑇∕𝑑𝑃 ∶= 𝜉∗𝑇 defines a probability 𝑄𝑇 ∼ 𝑃 on 𝑇 such that 𝑆𝑡 , 𝑡 ∈ [0, 𝑇] is
a 𝑄𝑇-martingale (actually, a 𝑄𝑇-Brownian motion) and 𝑄𝑇 is the only such equivalent probability.

Proof. By Girsanov’s theorem, it suffices to establish that the process 𝜉∗ is a true martingale.
Apply Theorem 2.1 of Mijatović & Urusov (2012) with the choice 𝐽 = ℝ, 𝑌𝑡 = 𝑋𝑡, 𝑏(𝑥) ∶= 𝜇 −

𝛼 sgn(𝑥)|𝑥|𝛽 , 𝑥 ∈ ℝ. According to the notation of that paper, 𝜌̃(𝑥) = 1 for all 𝑥 ∈ ℝ, as eas-
ily checked. Then the quantity 𝑣(𝑥) defined there equals 𝑥2∕2 for all 𝑥 ∈ ℝ and this satisfies
𝑣(±∞) = ∞ hence the claim follows from the mentioned theorem. An alternative proof could
be obtained from the abstract results in Cheridito et al. (2005) for general jump-diffusions. □

Recall that 𝑄𝑇 (defined in Proposition A.1 above) is the unique martingale measure for the
process𝑋. Hence, by the duality theory of optimal investment (see Delbaen et al. (2002); Kabanov
& Stricker (2002)), it follows that

𝑢𝑇 = −𝑒−𝐽

https://doi.org/10.2307/1926560
https://doi.org/10.1111/mafi.12329
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where

𝐽 ∶= 𝐸

[
𝑑𝑄𝑇

𝑑𝑃
ln

(
𝑑𝑄𝑇

𝑑𝑃

)]
= 𝐸[𝜉∗𝑇 ln(𝜉

∗
𝑇)] = 𝐸𝑄𝑇

[ln(𝜉∗𝑇)] (A2)

(provided that the latter quantity exists and is finite). Here 𝐸𝑄𝑇
denotes the expectation under the

probability 𝑄𝑇 .
>From (2) and reordering (A1), it follows that

ln(𝜉𝑇
∗
) =

1

2 ∫
𝑇

0

(
𝜇 − 𝛼 sgn(𝑋𝑢)|𝑋𝑢|𝛽)2𝑑𝑢 − ∫

𝑇

0

(
𝜇 − 𝛼 sgn(𝑋𝑢)|𝑋𝑢|𝛽)𝑑𝑆𝑢.

Because, under themeasure𝑄𝑇 , the process 𝑆 is a standard Brownianmotion on [0, 𝑇], the second
term in the above expression is a 𝑄𝑇-martingale and

𝐽 = 𝐸𝑄𝑇

[
𝜇2

2
𝑇 +

𝛼2

2 ∫
𝑇

0

|𝑋𝑢|2𝛽𝑑𝑢 − 𝛼𝜇 ∫
𝑇

0

sgn(𝑋𝑢)|𝑋𝑢|𝛽𝑑𝑢]

≤ 𝐸𝑄𝑇

[
𝜇2

2
𝑇 +

𝛼2

2 ∫
𝑇

0

|𝑋𝑢|2𝛽𝑑𝑢 + 𝛼|𝜇|∫ 𝑇

0

|𝑋𝑢|𝛽𝑑𝑢]

=
𝜇2

2
𝑇 +

𝛼2

2 ∫
𝑇

0

𝐸𝑄𝑇
|𝑋𝑢|2𝛽𝑑𝑢 + 𝛼|𝜇|∫ 𝑇

0

𝐸𝑄𝑇
|𝑋𝑢|𝛽𝑑𝑢.

Note that under the measure 𝑄𝑇 , the process 𝑋𝑡 = 𝑆𝑡 − 𝜇𝑡 is a standard Brownian motion with a
constant drift on [0, 𝑇]. Thus, in view of the convexity of the mappings 𝑥 → |𝑥|𝛽 and 𝑥 → |𝑥|2𝛽 ,
𝐽 ≤ 𝜇2

2
𝑇 +

𝛼2

2 ∫
𝑇

0

𝐸𝑄𝑇
|𝑆𝑢 − 𝜇𝑢|2𝛽𝑑𝑢 + 𝛼|𝜇|∫ 𝑇

0

𝐸𝑄𝑇
|𝑆𝑢 − 𝜇𝑢|𝛽𝑑𝑢

≤ 𝜇2

2
𝑇 +

𝛼2

2 ∫
𝑇

0

(
22𝛽−1𝑢𝛽𝑀2𝛽 + 22𝛽−1|𝜇|2𝛽𝑢2𝛽)𝑑𝑢 + 𝛼|𝜇|∫ 𝑇

0

(
2𝛽−1𝑢𝛽∕2𝑀𝛽 + 2𝛽−1|𝜇|𝛽𝑢𝛽)𝑑𝑢

=
𝜇2

2
𝑇 + 𝛼222𝛽−2

𝑀2𝛽𝑇
𝛽+1

𝛽 + 1
+ 𝛼222𝛽−2|𝜇|2𝛽 𝑇2𝛽+1

2𝛽 + 1

+ 𝛼|𝜇|2𝛽−1𝑀𝛽𝑇
𝛽∕2+1

𝛽∕2 + 1
+ 𝛼|𝜇|𝛽+12𝛽−1 𝑇𝛽+1

𝛽 + 1
,

where𝑀𝜅 is the 𝜅th moment of a standard Gaussian variable. This shows that 𝑐𝑇 ≤ 𝐶𝛽,𝜇,𝛼𝑇
2𝛽+1

where 𝐶𝛽,𝜇,𝛼 can be explicitly given and the first statement of Theorem 2.1 is proved.
Now we turn to some estimates familiar in the theory of Markov processes. We have been

inspired by Kontoyiannis et al. (2005) in particular. Let 𝐶2(ℝ) denote the family of twice con-
tinuously differentiable functions on ℝ. Define the operator by

𝑓 ∶= −𝛼 sgn(𝑥)|𝑥|𝛽𝜕𝑥𝑓 +
1

2
𝜕𝑥𝑥𝑓, 𝑓 ∈ 𝐶2(ℝ), (A3)



GUASONI et al. 1347

which coincides with the infinitesimal generator associated to the process 𝑋 on its domain of
definition. Define also the operator (the “nonlinear generator”, see Kontoyiannis et al. (2005))
as

𝑓 ∶= 𝑒−𝑓𝑒𝑓, 𝑓 ∈ 𝐶2(ℝ).

Now we introduce a condition related to.

ConditionA.2. There is a compact𝐶 ⊂ ℝ, there are 𝛿, 𝑏 > 0 and functions𝑉,𝑊 ∶ ℝ → ℝ+ with
𝑊 measurable and 𝑉 ∈ 𝐶2(ℝ) such that, for all 𝑥 ∈ ℝ,

𝑉(𝑥) ≤ −𝛿𝑊(𝑥) + 𝑏𝟙𝐶(𝑥). (A4)

For a given 𝛿, 𝑏 > 0, define the process𝑀𝑡 by

𝑀𝑡 ∶= exp

{
𝑉(𝑋𝑡) + ∫

𝑡

0

(
𝛿𝑊(𝑋𝑢) − 𝑏𝟙{𝑋𝑢∈𝐶}

)
𝑑𝑢

}
, 𝑡 ∈ ℝ+. (A5)

Lemma A.3. If Condition A.2 holds then the process𝑀 is a supermartingale.

Proof. Setting 𝑌𝑡 = exp{𝑉(𝑋𝑡)} and 𝑍𝑡 = exp{∫ 𝑡

0
(𝛿𝑊(𝑋𝑢) − 𝑏𝟙{𝑋𝑢∈𝐶})𝑑𝑢}, it follows that 𝑀𝑡 =

𝑌𝑡𝑍𝑡. Now Ito’s formula yields

𝑑𝑌𝑡 = 𝑑𝑒𝑉(𝑋𝑡) = 𝑒𝑉(𝑋𝑡)𝑑𝑡 + 𝜕𝑥𝑒
𝑉(𝑋𝑡)𝑑𝐵𝑡

= 𝑒𝑉(𝑋𝑡)𝑑𝑡 + (𝑒𝑉𝜕𝑥𝑉)(𝑋𝑡) 𝑑𝐵𝑡

and

𝑑𝑍𝑡 = 𝑍𝑡
(
𝛿𝑊(𝑋𝑡) − 𝑏𝟙{𝑋𝑡∈𝐶}

)
𝑑𝑡.

By the product rule of Ito calculus, using that [𝑌, 𝑍]𝑡 ≡ 0,

𝑑𝑀𝑡 = 𝑌𝑡𝑑𝑍𝑡 + 𝑍𝑡𝑑𝑌𝑡

= 𝑌𝑡𝑍𝑡
(
𝛿𝑊(𝑋𝑡) − 𝑏𝟙{𝑋𝑡∈𝐶}

)
𝑑𝑡 + 𝑍𝑡𝑒

𝑉(𝑋𝑡)𝑉(𝑋𝑡)𝑑𝑡 + 𝑍𝑡(𝑒
𝑉𝜕𝑥𝑉)(𝑋𝑡) 𝑑𝐵𝑡,

= 𝑍𝑡𝑒
𝑉(𝑋𝑡)

(
𝛿𝑊(𝑋𝑡) − 𝑏𝟙{𝑋𝑡∈𝐶} +𝑉(𝑋𝑡)

)
𝑑𝑡 + 𝑍𝑡(𝑒

𝑉𝜕𝑥𝑉)(𝑋𝑡) 𝑑𝐵𝑡.

Here the last term is a local martingale, the first term is non-increasing by Condition A.2, hence
𝑀 is a local supermartingale. As𝑀 is positive, Fatou’s lemma guarantees that it is, in fact, a true
supermartingale. □

Corollary A.4. With Condition A.2 in force for 𝑇 > 0 it follows that

𝐸

[
exp

{
∫

𝑇

0

𝛿𝑊(𝑋𝑢)𝑑𝑢

}]
≤ 𝑒𝑉(0)+𝑏𝑇.
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Proof. By the supermartingale property of 𝑀, 𝐸[𝑀𝑇] ≤ 𝑀0 = 1. Since 𝑏𝟙𝐶 ≤ 𝑏, the statement
follows. □

Define the functions

𝑉̄(𝑥) ∶=
𝛼

1 + 𝛽
|𝑥|1+𝛽 and 𝑊̄(𝑥) ∶= 𝛼2|𝑥|2𝛽, 𝑥 ∈ ℝ.

Proposition A.5. For each 0 < 𝛿̄ < 1∕2, there is an appropriate constant 𝑏̄ > 0 and a compact set
𝐶̄ such that Condition A.2 is fulfilled with 𝑉 = 𝑉̄,𝑊 = 𝑊̄, 𝑏 = 𝑏̄, 𝛿 = 𝛿̄ and 𝐶 = 𝐶̄.

Proof. The claim would follow from Proposition 1.3 of Kontoyiannis et al. (2005) but we pro-
vide a direct proof. Note that 𝜕𝑥𝑒𝑉(𝑥) = 𝑒𝑉(𝑥)𝜕𝑥𝑉(𝑥), 𝜕𝑥𝑥𝑒𝑉(𝑥) = 𝑒𝑉(𝑥)(𝜕𝑥𝑉(𝑥))

2 + 𝑒𝑉(𝑥)𝜕𝑥𝑥𝑉(𝑥),
𝜕𝑥𝑉(𝑥) = 𝛼 sgn(𝑥)|𝑥|𝛽 , and 𝜕𝑥𝑥𝑉(𝑥) = 𝛼𝛽|𝑥|𝛽−1. Thus, (A3) yields

𝑒−𝑉𝑒𝑉(𝑥) = −
𝛼2

2
|𝑥|2𝛽 + 𝛼𝛽

2
|𝑥|𝛽−1. (A6)

The criterion in (A4) then becomes equivalent to

𝛼𝛽

2
|𝑥|𝛽−1 ≤ (

1

2
− 𝛿̄

)
𝛼2|𝑥|2𝛽 + 𝑏𝟙𝐶(𝑥)

which clearly shows that the set 𝐶 and the constant 𝑏 can be chosen in such a way that Condition
A.2 is fulfilled, provided that 𝛿̄ < 1∕2. □

Lemma A.6. There exist constants 𝛿0, 𝑐0, 𝐶0 > 0 such that

𝐸

[
exp

{
𝛿0 ∫

𝑇

0

|𝑋𝑡|2𝛽𝑑𝑡}]
≤ 𝑐0𝑒

𝐶0𝑇.

Proof. Corollary A.4, Proposition A.5 and the definitions of 𝑉̄, 𝑊̄ immediately yield the upper
bound with 𝛿0 ∶= 𝛼2𝛿̄. In fact, 𝑐0 = 1 can be chosen as 𝑉̄(0) = 0. □

A.2 Asymptotic optimality in the case 𝜇 ≠ 0

Consider the process 𝑈𝑡 ∶= (𝑇 − 𝑡)𝛽|𝑆𝑡|𝛽+1, 𝑡 ∈ [0, 𝑇]. As 𝑈0 = 0, Ito’s lemma implies that

0 = 𝑈𝑇 =

𝑇

∫
0

(𝛽 + 1)(𝑇 − 𝑡)𝛽 sgn(𝑆𝑡)|𝑆𝑡|𝛽𝑑𝑆𝑡 + 𝑇

∫
0

𝛽(𝛽 + 1)

2
(𝑇 − 𝑡)𝛽|𝑆𝑡|𝛽−1𝑑𝑡

−

𝑇

∫
0

𝛽(𝑇 − 𝑡)𝛽−1|𝑆𝑡|𝛽+1𝑑𝑡,
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which is equivalent to

∫
𝑇

0

(𝛽 + 1)(𝑇 − 𝑡)𝛽 sgn(𝑆𝑡)|𝑆𝑡|𝛽𝑑𝑆𝑡 = −∫
𝑇

0

𝛽(𝛽 + 1)

2
(𝑇 − 𝑡)𝛽|𝑆𝑡|𝛽−1𝑑𝑡

+∫
𝑇

0

𝛽(𝑇 − 𝑡)𝛽−1|𝑆𝑡|𝛽+1𝑑𝑡.
Note that the above expression is the value of the investor’s portfolio utilizing the strat-

egy 𝐻𝑡(𝛽, 𝑇) = (𝛽 + 1)(𝑇 − 𝑡)𝛽 sgn(𝑆𝑡)|𝑆𝑡|𝛽 , 𝑡 ∈ [0, 𝑇]. Since 𝑆 is a 𝑄𝑇-Brownian motion, clearly
𝐻(𝛽, 𝑇) ∈ 𝑇 .
First, consider the case 𝛽 > 1 and denote 𝐼1(𝑇) ∶= ∫ 𝑇

0
𝛽(𝑇 − 𝑡)𝛽−1|𝑆𝑡|𝛽+1𝑑𝑡, and 𝐼2(𝑇) ∶=

∫ 𝑇

0

𝛽(𝛽+1)

2
(𝑇 − 𝑡)𝛽|𝑆𝑡|𝛽−1𝑑𝑡. Thus,

𝐸
[
−𝑒−(𝐻⋅𝑆)𝑇

]
= 𝐸

[
−𝑒−𝐼1(𝑇)+𝐼2(𝑇)

]
. (A7)

Now, define the event 𝐴(𝑇) as

Ω ⊃ 𝐴(𝑇) ∶=

{|||||∫
𝑇∕2

0

𝑋𝑡𝑑𝑡
||||| ≤ 𝜇𝑇2

16

}

and denote its set-theoretic complement as 𝐴̄(𝑇). To obtain a deterministic bound for 𝐼1(𝑇) on the
event 𝐴(𝑇), first note that

𝐼1(𝑇) = ∫
𝑇

0

𝛽(𝑇 − 𝑡)𝛽−1|𝑆𝑡|𝛽+1𝑑𝑡 ≥ 𝛽

(
𝑇

2

)𝛽−1

∫
𝑇∕2

0

|𝑆𝑡|𝛽+1𝑑𝑡, (A8)

and by Jensen’s inequality,

(
1

𝑇∕2 ∫
𝑇∕2

0

|𝑆𝑡|𝛽+1𝑑𝑡)1∕(𝛽+1)

≥ 1

𝑇∕2

|||||∫
𝑇∕2

0

𝑆𝑡𝑑𝑡
||||| = 1

𝑇∕2

|||||𝜇𝑇
2

8
+ ∫

𝑇∕2

0

𝑋𝑡𝑑𝑡
|||||. (A9)

On the event 𝐴(𝑇) these yield

∫
𝑇∕2

0

|𝑆𝑡|𝛽+1𝑑𝑡 ≥ 2−3(𝛽+1)−1𝜇𝛽+1𝑇𝛽+2. (A10)

and in return using (A9) and (A10), it follows that, on the event 𝐴(𝑇)

𝐼1(𝑇) ≥ 𝛽2−3(𝛽+1)−𝛽𝜇𝛽+1𝑇2𝛽+1 =∶ 𝐶𝛽,𝜇𝑇
2𝛽+1. (A11)

Now the expectation in (A7) is estimated by splitting it along the event 𝐴(𝑇). First, (A11) implies
that

𝐸
[
−𝑒−𝐼1(𝑇)+𝐼2(𝑇)𝟙𝐴

] ≥ −𝑒−𝐶𝛽,𝜇𝑇
2𝛽+1

𝐸
[
𝑒𝐼2(𝑇)

] ≥ −𝑒−𝐶𝛽,𝜇𝑇
2𝛽+1(

𝐸
[
𝑒2𝐼2(𝑇)

])1∕2
. (A12)
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On the other hand, by the Cauchy-Schwartz inequality and recalling that −𝑒−𝑥 ≥ −1 for 𝑥 ≥ 0,

𝐸[−𝑒−𝐼1(𝑇)𝑒𝐼2(𝑇)𝟙𝐴̄] ≥ −
(
𝐸
[
𝑒2𝐼2(𝑇)

])1∕2(
𝑃
(
𝐴̄
))1∕2

. (A13)

Now, to estimate the quantities 𝑃(𝐴̄(𝑇)) and 𝐸[𝑒2𝐼2(𝑇)], consider a corollary to Lemma A.6 that
handles 𝑃(𝐴̄(𝑇)) and a Lemma bounding 𝐸[𝑒2𝐼2(𝑇)] which is also a consequence of Lemma A.6.

Corollary A.7. There exist positive constants 𝑐1, 𝐶1 such that

𝑃(𝐴̄(𝑇)) ≤ 𝑐1𝑒
−𝐶1𝑇

2𝛽+1
.

Lemma A.8. There exist positive constants 𝑐2, 𝐶2 and 𝑞 > 0 such that

𝐸[𝑒2𝐼2(𝑇)] ≤ 𝑐2𝑒
𝐶2𝑇

2𝛽+1−𝑞
.

Corollary A.7 and Lemma A.8 will be proved shortly.
Proceeding with these results and using (A7), (A12) and (A13), Corollary A.7 and Lemma A.8 it

follows that

𝐸
[
−𝑒−(𝐻⋅𝑆)𝑇

] ≥ −𝑒−𝐶𝛽,𝜇𝑇
2𝛽+1(

𝐸
[
𝑒2𝐼2(𝑇)

])1∕2
−
(
𝐸
[
𝑒2𝐼2(𝑇)

])1∕2(
𝑃
(
𝐴̄
))1∕2

≥ −𝑒−𝐶𝛽,𝜇𝑇
2𝛽+1

(
𝑐2𝑒

𝐶2𝑇
2𝛽+1−𝑞

)1∕2
−
(
𝑐2𝑒

𝐶2𝑇
2𝛽+1−𝑞

)1∕2(
𝑐1𝑒

−𝐶1𝑇
2𝛽+1

)1∕2
= −𝑐

1∕2
2 𝑒

−𝐶𝛽,𝜇𝑇
2𝛽+1+

𝐶2
2
𝑇2𝛽+1−𝑞

− 𝑐
1∕2
1 𝑐

1∕2
2 𝑒

𝐶2
2
𝑇2𝛽+1−𝑞−

𝐶1
2
𝑇2𝛽+1

.

This completes the proof of Theorem 2.1 when 𝛽 > 1. The same calculations can be done when
𝛽 = 1: Corollary A.7 holds with 𝛽 = 1 as written. The term 𝐼2, being deterministic and of order 𝑇2,
shows that the conclusion of LemmaA.8 also remains valid, completing the proof of Theorem 2.1.
It remains to prove Corollary A.7 and Lemma A.8.

Proof of Corollary A.7. By Jensen’s inequality,

||||| 1𝑇 ∫
𝑇

0

𝑋𝑡𝑑𝑡
|||||
2𝛽

≤ 1

𝑇 ∫
𝑇

0

|𝑋𝑡|2𝛽𝑑𝑡. (A14)

Lemma A.6 and Markov’s inequality lead to

𝑃

(|||||∫
𝑇

0

𝑋𝑡𝑑𝑡
||||| ≥ 𝜇𝑇2

16

)
≤ 𝑃

(
∫

𝑇

0

|𝑋𝑡|2𝛽𝑑𝑡 ≥ 𝜇2𝛽2−8𝛽𝑇2𝛽+1

)
(A15)

= 𝑃

(
exp

{
𝛿0 ∫

𝑇

0

|𝑋𝑡|2𝛽𝑑𝑡} ≥ 𝑒𝛿0𝜇
2𝛽2−8𝛽𝑇2𝛽+1

)
(A16)

≤ 𝑐0𝑒
−𝛿0𝜇

2𝛽2−8𝛽𝑇2𝛽+1+𝐶0𝑇. (A17)

□
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Proof of Lemma A.8. First, note that there exist positive constants 𝑐𝛽 and 𝑐𝛽,𝜇 such that

𝐸[𝑒2𝐼2(𝑇)] ≤ 𝐸

[
exp

{
𝛽(𝛽 + 1)𝑇𝛽 ∫

𝑇

0

|𝑆𝑡|𝛽−1𝑑𝑡}]

≤ 𝐸

[
exp

{
𝛽(𝛽 + 1)𝑇𝛽 ∫

𝑇

0

(
𝑐𝛽|𝑋𝑡|𝛽−1 + 𝑐𝛽,𝜇𝑡

𝛽−1
)
𝑑𝑡

}]

= 𝑒(𝛽+1)𝑐𝛽,𝜇𝑇
2𝛽
𝐸

[
exp

{
𝛽(𝛽 + 1)𝑐𝛽𝑇

𝛽 ∫
𝑇

0

|𝑋𝑡|𝛽−1𝑑𝑡}]
.

(A18)

By Jensen’s inequality,

∫
𝑇

0

|𝑋𝑡|𝛽−1𝑑𝑡 ≤ 𝑇
1−

𝛽−1

2𝛽

(
∫

𝑇

0

|𝑋𝑡|2𝛽𝑑𝑡)
𝛽−1

2𝛽

.

Denoting Ξ𝑇 ∶= ∫ 𝑇

0
|𝑋𝑡|2𝛽𝑑𝑡 and defining ℎ(𝑥) = ℎ𝛽,𝑇(𝑥) ∶= exp{𝛽(𝛽 + 1)𝑐𝛽𝑇

𝛽+1−
𝛽−1

2𝛽 𝑥
𝛽−1

2𝛽 }, 𝑥 >

0 the following estimate holds:

𝐸[𝑒2𝐼2(𝑇)] ≤ 𝑒(𝛽+1)𝑐𝛽,𝜇𝑇
2𝛽
𝐸

⎡⎢⎢⎢⎣exp
⎧⎪⎨⎪⎩𝛽(𝛽 + 1)𝑐𝛽𝑇

𝛽+1−
𝛽−1

2𝛽

(
∫

𝑇

0

|𝑋𝑡|2𝛽𝑑𝑡)
𝛽−1

2𝛽
⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦

= 𝑒(𝛽+1)𝑐𝛽,𝜇𝑇
2𝛽
𝐸ℎ(Ξ𝑇).

(A19)

The estimate in Lemma A.6, along with Markov’s inequality, implies that, for all 𝑥 > 0,

𝑃(Ξ𝑇 > 𝑥) ≤ 𝑐0 exp{𝐶0𝑇 − 𝛿0𝑥}, (A20)

and also observe that

𝐸[ℎ(Ξ𝑇)] = ∫
∞

0

ℎ′(𝑥)𝑃(Ξ𝑇 > 𝑥)𝑑𝑥. (A21)

Sinceℎ′(𝑥) = (𝛽+1)𝛽(𝛽−1)

2𝛽
𝑐𝛽𝑇

𝛽+1−
𝛽−1

2𝛽 𝑥
𝛽−1

2𝛽
−1

exp{𝑐𝛽(𝛽 + 1)𝛽𝑇
𝛽+1−

𝛽−1

2𝛽 𝑥
𝛽−1

2𝛽 }, 𝑥 > 0, (A20) and (A21)
yield

𝐸[ℎ(Ξ𝑇)] ≤
∞

∫
0

(𝛽 + 1)𝛽(𝛽 − 1)𝑐𝛽𝑐0

2𝛽
𝑇
𝛽+1−

𝛽−1

2𝛽 𝑥
𝛽−1

2𝛽
−1

exp{𝑐𝛽(𝛽 + 1)𝛽𝑇
𝛽+1−

𝛽−1

2𝛽 𝑥
𝛽−1

2𝛽 − 𝛿0𝑥 + 𝐶0𝑇}𝑑𝑥

=
(𝛽 + 1)𝛽(𝛽 − 1)𝑐𝛽𝑐0

2𝛽
𝑇
𝛽+1−

𝛽−1

2𝛽 ∫
∞

0

𝑥
𝛽−1

2𝛽
−1

exp{𝑐𝛽(𝛽 + 1)𝛽𝑇
𝛽+1−

𝛽−1

2𝛽 𝑥
𝛽−1

2𝛽 − 𝛿0𝑥 + 𝐶0𝑇}𝑑𝑥
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≤ (𝛽 + 1)𝛽(𝛽 − 1)𝑐𝛽𝑐0

2𝛽
𝑇
𝛽+1−

𝛽−1

2𝛽 ×

×

(
𝑒𝑐𝛽(𝛽+1)𝛽𝑇

𝛽+1−
𝛽−1
2𝛽 +𝐶0𝑇 ∫

1

0

𝑥
𝛽−1

2𝛽
−1
𝑑𝑥 + ∫

∞

1

𝑒𝑐𝛽(𝛽+1)𝛽𝑇
𝛽+1−

𝛽−1
2𝛽 𝑥

𝛽−1
2𝛽 −𝛿0𝑥+𝐶0𝑇𝑑𝑥

)

= 𝑐1𝑇
𝛽+1−

𝛽−1

2𝛽 𝑒
𝑐𝛽(𝛽+1)𝛽

2
𝑇
𝛽+1−

𝛽−1
2𝛽 +𝐶0𝑇

+
(𝛽 + 1)𝛽(𝛽 − 1)𝑐𝛽𝑐0

2𝛽
𝑇
𝛽+1−

𝛽−1

2𝛽 𝑒𝐶0𝑇 ∫
∞

1

𝑒𝑐𝛽(𝛽+1)𝛽𝑇
𝛽+1−

𝛽−1
2𝛽 𝑥

𝛽−1
2𝛽 −𝛿0𝑥𝑑𝑥, (A22)

where 𝑐1 =
(𝛽+1)𝛽(𝛽−1)𝑐𝛽𝑐0

2𝛽
∫ 1

0
𝑥

𝛽−1

2𝛽
−1

𝑑𝑥. To estimate the integral ∫ ∞

1
𝑒𝑐𝛽(𝛽+1)𝛽𝑇

𝛽+1−
𝛽−1
2𝛽 𝑥

𝛽−1
2𝛽 −𝛿0𝑥𝑑𝑥,

first define

𝐶̃(𝑇) ∶=

(
2(𝛽 + 1)𝛽𝑐𝛽

𝛿0

) 2𝛽

𝛽+1

𝑇
2𝛽2+𝛽+1

𝛽+1 =∶ 𝑐2𝑇
2𝛽2+𝛽+1

𝛽+1 .

Note that 𝑐𝛽(𝛽 + 1)𝛽𝑇
𝛽+1−

𝛽−1

2𝛽 𝑥
𝛽−1

2𝛽 = 𝑐𝛽(𝛽 + 1)𝛽𝑇
2𝛽2+𝛽+1

2𝛽 𝑥
𝛽−1

2𝛽 ≤ 𝛿0

2
𝑥 for 𝑥 > 𝐶̃(𝑇), whence

∫
∞

𝐶̃(𝑇)

exp{𝑐𝛽(𝛽 + 1)𝛽𝑇
𝛽+1−

𝛽−1

2𝛽 𝑥
𝛽−1

2𝛽 − 𝛿0𝑥}𝑑𝑥 ≤ ∫
∞

𝐶̃(𝑇)

𝑒
−

𝛿0
2
𝑥
𝑑𝑥

=
2

𝛿0
𝑒
−

𝛿0
2
𝐶̃(𝑇)

=
2

𝛿0
exp

{
−
𝛿0
2
𝑐2𝑇

2𝛽2+𝛽+1

𝛽+1

}
≤ 2

𝛿0
exp

{
−
𝛿0
2
𝑐2𝑇

2

}
, (A23)

where the last step follows from 2𝛽2+𝛽+1

𝛽+1
> 2. Next, observing that

𝜕

𝜕𝑥

(
𝑐𝛽(𝛽 + 1)𝛽𝑇

𝛽+1−
𝛽−1

2𝛽 𝑥
𝛽−1

2𝛽 − 𝛿0𝑥

)
=

𝑐𝛽(𝛽 + 1)𝛽(𝛽 − 1)

2𝛽
𝑇

2𝛽2+𝛽+1

2𝛽 𝑥
−

𝛽+1

2𝛽 − 𝛿0,

the integrand 𝑥 → 𝑒𝑐𝛽(𝛽+1)𝛽𝑇
𝛽+1−

𝛽−1
2𝛽 𝑥

𝛽−1
2𝛽 −𝛿0𝑥 reaches its maximum at

𝑥 = 𝑥0 ∶=

(
2𝛽𝛿0

𝑐𝛽(𝛽 + 1)𝛽(𝛽 − 1)

)−
2𝛽

𝛽+1

𝑇
2𝛽2+𝛽+1

𝛽+1 =∶ 𝑐3𝑇
2𝛽2+𝛽+1

𝛽+1 ,
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and the value of such maximum is

exp

{
𝑐𝛽(𝛽 + 1)𝛽𝑇

𝛽+1−
𝛽−1

2𝛽 𝑥

𝛽−1

2𝛽

0 − 𝛿0𝑥0

}

= exp

⎧⎪⎨⎪⎩𝑐𝛽(𝛽 + 1)𝛽𝑇
𝛽+1−

𝛽−1

2𝛽

(
𝑐3𝑇

2𝛽2+𝛽+1

𝛽+1

) 𝛽−1

2𝛽

− 𝛿0𝑐3𝑇
2𝛽2+𝛽+1

𝛽+1

⎫⎪⎬⎪⎭
= exp

{
𝑐𝛽(𝛽 + 1)𝛽𝑐

𝛽−1

2𝛽

3 𝑇
2𝛽2+𝛽+1

𝛽+1 − 𝛿0𝑐3𝑇
2𝛽2+𝛽+1

𝛽+1

}
(A24)

Because 2𝛽2+𝛽+1

𝛽+1
< 2𝛽 + 1, there exists 𝑞 > 0 such that

∫
𝐶̃(𝑇)

1

exp{𝑐𝛽(𝛽 + 1)𝛽𝑇
𝛽+1−

𝛽−1

2𝛽 𝑥
𝛽−1

2𝛽 − 𝛿0𝑥}𝑑𝑥 ≤ (
𝐶̃(𝑇) − 1

)
exp{𝑐𝛽(𝛽 + 1)𝛽𝑐

𝛽−1

2𝛽

3 𝑇2𝛽+1−𝑞}.

(A25)

Using (A19), (A22), (A23) and (A25), the proof is complete. □

Proof of Remark 2.2. Recall that optimality requires the marginal utility of the optimal payoff to
be proportional to the state-price density, that is, for some constant 𝑦 > 0

𝑈′((𝐻 ⋅ 𝑆)𝑇) = 𝑦
𝑑𝑄𝑇

𝑑𝑃
(A26)

As 𝛽 = 1, observe that 𝑆𝑡 = 𝑋𝑡 and𝐻𝑡(𝛽, 𝑇) = 2(𝑇 − 𝑡)𝑋𝑡. Note that

∫
𝑇

0

𝑋𝑡𝑑𝑋𝑡 = ∫
𝑇

0

𝑑

(
𝑋2
𝑡

2
−

1

2
𝑡

)
=

𝑋2
𝑇

2
−

𝑇

2
(A27)

∫
𝑇

0

𝑡𝑋𝑡𝑑𝑋𝑡 = ∫
𝑇

0

(
𝑑

(
𝑡
𝑋2
𝑡

2

)
−

1

2
𝑡𝑑𝑡 −

𝑋2
𝑡

2
𝑑𝑡

)
= 𝑇

𝑋2
𝑇

2
−

𝑇2

4
−

1

2 ∫
𝑇

0

𝑋2
𝑡 𝑑𝑡 (A28)

and therefore

2∫
𝑇

0

(𝑇 − 𝑡)𝑋𝑡𝑑𝑋𝑡 = −
𝑇2

2
+ ∫

𝑇

0

𝑋2
𝑡 𝑑𝑡 (A29)

Now, in view of the expression for 𝑑𝑄𝑇

𝑑𝑃
in (A1), the first-order condition (A26) is

𝑈′

(
−
𝑇2

2
+ ∫

𝑇

0

𝑋2
𝑡 𝑑𝑡

)
=𝑦 exp

(
−∫

𝑇

0

(𝜇 − 𝛼𝑋𝑡)𝑑𝐵𝑡 −
1

2 ∫
𝑇

0

(𝜇 − 𝛼𝑋𝑡)
2𝑑𝑡

)
(A30)
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=𝑦 exp

(
−𝜇𝑋𝑇 −

𝑇

2
(𝛼 + 𝜇2) +

𝛼

2
𝑋2
𝑇 +

𝛼2

2 ∫
𝑇

0

𝑋2
𝑡 𝑑𝑡

)
. (A31)

Now, such a relation would imply that the right-hand side is a deterministic function of the ran-
dom variable ∫ 𝑇

0
𝑋2
𝑡 𝑑𝑡, hence that −𝜇𝑋𝑇 +

𝛼

2
𝑋2
𝑇 is also a function of ∫ 𝑇

0
𝑋2
𝑡 𝑑𝑡. But this implica-

tion is false because the pair (𝑋𝑇, ∫ 𝑇

0
𝑋2
𝑡 𝑑𝑡) has a joint density (Borodin & Salminen, 2012, 1.9.8,

p. 526). □

A.3 The case 𝜇 = 0

Proceeding as in the case 𝜇 ≠ 0,

ln(𝜉∗𝑇) =
𝛼2

2 ∫
𝑇

0

|𝑋𝑢|2𝛽𝑑𝑢 + 𝛼 ∫
𝑇

0

sgn(𝑋𝑢)|𝑋𝑢|𝛽𝑑𝑋𝑢.

As the process𝑋 is a standard Brownian motion on [0, 𝑇] under the measure𝑄𝑇 , the second term
in the above expression is a 𝑄𝑇-martingale so

𝐽 =
𝛼2

2 ∫
𝑇

0

𝐸𝑄|𝑋𝑢|2𝛽𝑑𝑢 =
𝛼2

2(1 + 𝛽)
𝑇1+𝛽𝑀2𝛽,

showing that 𝑐𝑇 = 𝐶𝛽𝑇
1+𝛽 with𝐶𝛽 =

𝛼2𝑀2𝛽

2(1+𝛽)
, which proves the first statement of Theorem2.1. Note

that for 𝛽 = 1 this result confirms the heuristics in Section 4.
Assume 𝛽 > 1 until further notice. Consider the process𝑈𝑡 ∶= (𝑇 − 𝑡)𝛾𝑋2

𝑡 , 𝑡 ∈ [0, 𝑇]with some
1 < 𝛾 < 𝛽. Since 𝑈0 = 0, Ito’s lemma implies that

0 = 𝑈𝑇 = ∫
𝑇

0

2(𝑇 − 𝑡)𝛾𝑋𝑡𝑑𝑋𝑡 + ∫
𝑇

0

(𝑇 − 𝑡)𝛾𝑑𝑡 − ∫
𝑇

0

𝛾(𝑇 − 𝑡)𝛾−1𝑋2
𝑡 𝑑𝑡,

which is equivalent to

∫
𝑇

0

−2(𝑇 − 𝑡)𝛾𝑋𝑡𝑑𝑋𝑡 =
1

𝛾 + 1
𝑇𝛾+1 − ∫

𝑇

0

𝛾(𝑇 − 𝑡)𝛾−1𝑋2
𝑡 𝑑𝑡.

Note that the above expression is the value of the investor’s portfolio using the strategy
𝐻𝑡(𝛾, 𝑇) = −2(𝑇 − 𝑡)𝛾𝑋𝑡, 𝑡 ∈ [0, 𝑇] hence

𝐸
[
−𝑒−(𝐻⋅𝑆)𝑇

]
= −𝑒

−
1

𝛾+1
𝑇𝛾+1

𝐸

[
exp

{
∫

𝑇

0

𝛾(𝑇 − 𝑡)𝛾−1𝑋2
𝑡 𝑑𝑡

}]
. (A32)

Since 𝑋 is a 𝑄𝑇-Brownian motion, clearly𝐻(𝛾, 𝑇) ∈ 𝑇 . Denoting

𝐺(𝑇) ∶= 𝐸

[
exp

{
∫

𝑇

0

𝛾(𝑇 − 𝑡)𝛾−1𝑋2
𝑡 𝑑𝑡

}]
,

the next lemma states that 𝐺(𝑇) is negligible in comparison with 𝑒𝑇
𝛾+1 , in the following sense:
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Lemma A.9. There exist positive constants 𝑐1, 𝐶1 and 0 < 𝑞 < 1 such that

𝐺(𝑇) ≤ 𝑐1𝑒
𝐶1𝑇

𝛾+𝑞
.

Now, LemmaA.9 and (A32) implies Theorem 2.3 in the case 𝛽 > 1. For the case 𝛽 = 1, following
an analogous method as above, consider the process 𝑈̄𝑡 ∶= 𝛿0(𝑇 − 𝑡)𝑋2

𝑡 . Similar calculations to
the ones that yield (A32) lead to a strategy

𝐻̄𝑡 = −2𝛿0(𝑇 − 𝑡)𝑋𝑡,

and a portfolio value

𝐸
[
−𝑒−(𝐻̄⋅𝑆)𝑇

]
= −𝑒

−
1

2
𝑇2
𝐸

[
exp

{
∫

𝑇

0

𝛿0𝑋
2
𝑡 𝑑𝑡

}]
.

Lemma A.6 with 𝛽 = 1 immediately yields

𝐸
[
−𝑒−(𝐻̄⋅𝑆)𝑇

] ≥ −𝑒
−

1

2
𝑇2+𝐶0𝑇,

proving the claim for 𝛽 = 1.

Proof of Lemma A.9. First note that, by Jensen’s inequality,

∫
𝑇

0

𝑋2
𝑡 𝑑𝑡 ≤ 𝑇1−1∕𝛽

(
∫

𝑇

0

|𝑋𝑡|2𝛽𝑑𝑡)1∕𝛽

.

DenotingΞ𝑇 ∶= ∫ 𝑇

0
|𝑋𝑡|2𝛽𝑑𝑡 and definingℎ(𝑥) = ℎ𝛾,𝛽,𝑇(𝑥) ∶= exp{𝛾𝑇𝛾−1∕𝛽𝑥1∕𝛽}, 𝑥 > 0 yields the

estimate

𝐺(𝑇) ≤ 𝐸

⎡⎢⎢⎢⎣exp
⎧⎪⎨⎪⎩𝛾𝑇

𝛾−1∕𝛽

(
∫

𝑇

0

|𝑋𝑡|2𝛽𝑑𝑡)1∕𝛽⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦ = 𝐸ℎ(Ξ𝑇). (A33)

The estimate in Lemma A.6 along with Markov’s inequality, implies that, for all 𝑥 > 0,

𝑃(Ξ𝑇 > 𝑥) ≤ 𝑐0 exp{𝐶0𝑇 − 𝛿0𝑥}, (A34)

and also observe that

𝐸[ℎ(Ξ𝑇)] = ∫
∞

0

ℎ′(𝑥)𝑃(Ξ𝑇 > 𝑥)𝑑𝑥. (A35)

Since ℎ′(𝑥) = 𝛾

𝛽
𝑇𝛾−1∕𝛽𝑥1∕𝛽−1𝑒𝛾𝑇

𝛾−1∕𝛽𝑥1∕𝛽 , 𝑥 > 0, (A34) and (A35) yield

𝐸[ℎ(Ξ𝑇)] ≤ ∫
∞

0

𝑐0𝛾

𝛽
𝑇𝛾−1∕𝛽𝑥1∕𝛽−1𝑒𝛾𝑇

𝛾−1∕𝛽𝑥1∕𝛽−𝛿0𝑥+𝐶0𝑇𝑑𝑥 (A36)
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≤ 𝑐0𝛾

𝛽
𝑇𝛾−1∕𝛽𝑒𝛾𝑇

𝛾−1∕𝛽+𝐶0𝑇 ∫
1

0

𝑥1∕𝛽−1𝑑𝑥 + ∫
∞

1

𝑐0𝛾

𝛽
𝑇𝛾−1∕𝛽𝑒𝛾𝑇

𝛾−1∕𝛽𝑥1∕𝛽−𝛿0𝑥+𝐶0𝑇𝑑𝑥 (A37)

= 𝑐𝑇𝛾−1∕𝛽𝑒𝛾𝑇
𝛾−1∕𝛽+𝐶0𝑇 +

𝑐0𝛾

𝛽
𝑇𝛾−1∕𝛽𝑒𝐶0𝑇 ∫

∞

1

𝑒𝛾𝑇
𝛾−1∕𝛽𝑥1∕𝛽−𝛿0𝑥𝑑𝑥, (A38)

where 𝑐 = 𝑐𝛽,𝛾 = 𝑐0
𝛾

𝛽
∫ 1

0
𝑥1∕𝛽−1 𝑑𝑥. To estimate the integral ∫ ∞

1
exp{𝛾𝑇𝛾−1∕𝛽𝑥1∕𝛽 − 𝛿0𝑥}𝑑𝑥, first

define

𝐶̃(𝑇) ∶=

(
2𝛾

𝛿0

) 𝛽

𝛽−1

𝑇
𝛾𝛽−1

𝛽−1 .

First note that 𝛾𝑇𝛾−1∕𝛽𝑥1∕𝛽 ≤ 𝛿0

2
𝑥 for 𝑥 > 𝐶̃(𝑇), whence

∫
∞

𝐶̃(𝑇)

exp
{
𝛾𝑇𝛾−1∕𝛽𝑥1∕𝛽 − 𝛿0𝑥

}
𝑑𝑥 ≤ ∫

∞

𝐶̃(𝑇)

𝑒
−

𝛿0
2
𝑥
𝑑𝑥 =

2

𝛿0
𝑒
−

𝛿0
2
𝐶̃(𝑇)

=
2

𝛿0
exp

⎧⎪⎨⎪⎩−
𝛿0
2

(
2𝛾

𝛿0

) 𝛽

𝛽−1

𝑇
𝛾𝛽−1

𝛽−1

⎫⎪⎬⎪⎭ ≤ 2

𝛿0
exp

⎧⎪⎨⎪⎩−
𝛿0
2

(
2𝛾

𝛿0

) 𝛽

𝛽−1

𝑇

⎫⎪⎬⎪⎭,
(A39)

where the last step follows from 𝛾𝛽−1

𝛽−1
> 1. Second, the integrand 𝑥 → exp{𝛾𝑇𝛾−1∕𝛽𝑥1∕𝛽 − 𝛿0𝑥}

reaches its maximum at 𝑥 = 𝑥0 ∶= (
𝛿0𝛽

𝛾
)

𝛽

1−𝛽 𝑇
𝛾𝛽−1

𝛽−1 , and the value of such maximum is

exp
{
𝛾𝑇𝛾−1∕𝛽𝑥

1∕𝛽
0 − 𝛿0𝑥0

}
= exp

⎧⎪⎨⎪⎩𝛾𝑇
𝛾−1∕𝛽

(
𝛿0𝛽

𝛾

) 1

1−𝛽

𝑇
𝛾−1∕𝛽

𝛽−1 − 𝛿0

(
𝛿0𝛽

𝛾

) 𝛽

1−𝛽

𝑇
𝛽𝛾−1

𝛽−1

⎫⎪⎬⎪⎭. (A40)

Noting that 0 < −1∕𝛽 +
𝛾−1∕𝛽

𝛽−1
=

𝛾−1

𝛽−1
< 1, there exists 𝑞 < 1 such that 𝛾 − 1∕𝛽 +

𝛾−1∕𝛽

𝛽−1
= 𝛾 +

𝛾−1

𝛽−1
< 𝛾 + 𝑞 which, along with (A40) implies

∫
𝐶̃(𝑇)

1

exp{𝛾𝑇𝛾−1∕𝛽𝑥1∕𝛽 − 𝛿0𝑥}𝑑𝑥 ≤ (
𝐶̃(𝑇) − 1

)
exp{𝛾

(
𝛿0𝛽

𝛾

) 1

1−𝛽

𝑇𝛾+𝑞}. (A41)

From (A33), (A36), (A39) and (A41) it follows that

𝐸[ℎ(Ξ𝑇)] ≤ 𝑐1𝑒
𝐶1𝑇

𝛾+𝑞

for suitable constants 𝑐1 and 𝐶1, and the proof is complete. □
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