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A B S T R A C T   

Due to the continued evolution of the SARS-CoV-2 pandemic, researchers worldwide are working to mitigate, 
suppress its spread, and better understand it by deploying digital signal processing (DSP) and machine learning 
approaches. This study presents an alignment-free approach to classify the SARS-CoV-2 using complementary 
DNA, which is DNA synthesized from the single-stranded RNA virus. Herein, a total of 1582 samples, with 
different lengths of genome sequences from different regions, were collected from various data sources and 
divided into a SARS-CoV-2 and a non-SARS-CoV-2 group. We extracted eight biomarkers based on three-base 
periodicity, using DSP techniques, and ranked those based on a filter-based feature selection. The ranked bio
markers were fed into k-nearest neighbor, support vector machines, decision trees, and random forest classifiers 
for the classification of SARS-CoV-2 from other coronaviruses. The training dataset was used to test the per
formance of the classifiers based on accuracy and F-measure via 10-fold cross-validation. Kappa-scores were 
estimated to check the influence of unbalanced data. Further, 10 × 10 cross-validation paired t-test was utilized 
to test the best model with unseen data. Random forest was elected as the best model, differentiating the SARS- 
CoV-2 coronavirus from other coronaviruses and a control a group with an accuracy of 97.4 %, sensitivity of 96.2 
%, and specificity of 98.2 %, when tested with unseen samples. Moreover, the proposed algorithm was 
computationally efficient, taking only 0.31 s to compute the genome biomarkers, outperforming previous studies.   

1. Background 

Coronavirus is an RNA virus comprising of single-stranded positive- 
sense RNA, of approximately 32 kb in length [1,2]. Coronavirus is part of 
the Coronaviridae family, which consists of alpha, beta, delta, and 
gamma coronaviruses [3]. As the name signifies, the spherical external 
protein exhibits a characteristic crown shape when it is under an elec
tron microscope [4]. A wide range of mammalian hosts, including 
humans, can be infected by it. Infected human hosts display asymp
tomatic to severe symptoms in their genitalia, digestive, respiratory, 
enteric nervous, cardiovascular, and endocrine systems [3]. Humans are 
known to be infected by six coronaviruses. Of these, OC43, NL63, 229E, 

and HKU1 usually produce mild cold-like symptoms, whereas, in 2003, 
the Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV), and 
in 2012, the Middle East Respiratory Syndrome-Coronavirus (MER
S-CoV), caused severe respiratory illnesses [5]. 

SARS-CoV-2/COVID19 was originated from a local market in Wuhan, 
China in late 2019 [6]. From there, it has extensively spread worldwide, 
with infections and deaths of 186.06 and 4.02 million, respectively (July 
8, 2021 [7]). Fig. 1 depicts the full-length genomic RNA of the highly 
pathogenic human coronaviruses that cause SARS-CoV-2. It comprises 
29,903 nucleotides, which functions as an mRNA, where the open 
reading frames ORF1a, and ORF1b are translated into proteins. In 
addition, nine major sub-genomic RNAs are produced, see Fig. 1, which 
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are translated into accessories proteins of SARS-CoV-2. 
Symptoms of COVID19 identified to date include fever, cough, 

myalgia, headache, shortness of breath, chills, sore throat, runny nose, 
chest pain, rash, nausea, vomiting, diarrhea, and fatigue. Since many of 
the symptoms resemble those of the common cold and influenza, an 
accurate molecular result is critical for a final diagnosis. The real-time 
polymerase chain reaction is a well-known molecular method [8] but 
has suffered from a high false-negative rate and (30–50 %) detection rate 
[6,9]. Due to the variation of viral RNA sequences within virial species 
(see Fig. 1), and the viral load in various anatomic sites [10]. In addition, 
COVID19 assays can result in low sensitivity if not aligned properly with 
the virus template, as the virus is strongly related to other coronavirus 
species. Moreover, SARS-CoV-2 may present with other lung infections 
that makes it even more challenging to identify [11]. 

Thus, researchers worldwide applied various digital signal process
ing (DSP) methods such as discrete Fourier transform (DFT) [12], digital 
filter [13], time-domain periodogram (TDP) [14], modified average 
magnitude difference function (AMDF) [15], singular value decompo
sition (SVD) [16] and modified SVD [17], which include 
forward-backward filtering to detect three-base periodicity (or period-3 
property) for the prediction of exon locations in the DNA sequence [12]. 
These methods could be potentially useful in suppressing the SAR
S-CoV-2 spread by discrimination other coronaviruses. 

Three-base periodicity is an intrinsic property of protein-coding re
gions (known as exons) of DNA [12], It can be used to distinguish 
protein-coding sequences from non-coding sequences (known as in
trons) that do not show the same periodicity. Fig. 2 shows that the 
Fourier spectrum of DNA sequences (SARS-CoV-2 isolate Wuhan-Hu-1) 
exhibit a strong spectral component at frequency 1/3 Hz (Fig. 2a) 
compared with a control sample (Fig. 2b). 

Numerous studies report the distinction of the virus using various 
classification approaches such as support vector machine (SVM) [18], 
decision trees (DT) [19], Gaussian radial basis function neural network 
[20], random forest (RF) [21], gapped Markov Chain with SVM [22], 
k-nearest neighbor (k-NN) [23], and convolutional neural network [24]. 
Besides, k-mers (oligomers of length k) based SVM, ML-DSP, and MLDSP 
have been utilized effectively in virology, including HIV-1 genomes, 
influenza, dengue and COVID19 classification [25–27]. However, k-mers 
do not work well with short length sequences, and the use of higher 
k-mer, exponentially increases the number of features, which poses a 
significant computational challenge. Further, there can be less tolerance 
when proteins contain errors or mutations as k-mers must be contiguous. 
Lopez-Rincon et al. [28] proposed a deep learning approach for the 
classification of SARS-CoV-2, with specificity 99.39 % and sensitivity 
100 %. However, disadvantages of all deep learning methods are the 
lack of interpretability and being computation expensive and prone to 

overfitting. 
We employed the electron-ion interaction potential (EIIP) [20] 

scheme for the numerical representation of complementary (cDNA), as a 
simple way of enumerating the four different cDNA bases, hereafter 
referred as DNA, three-base periodicity property to extract the genome 
biomarkers, and ML models to classify SARS-CoV-2. This work illustrates 
how DSP, biomarker selection, and ML give a computationally rapid 
alignment-free classification of novel coronavirus. Herein, the converted 
DNA sequence into genomic signal was used for the computation of the 
magnitude spectrum and its average by applying DFT, in addition to the 
peak-to-average ratio of the magnitude spectrum as biomarkers. 

Further, AMDF, SVD, and TDP were utilized as biomarkers with zero- 
phase filtering, in contrast to traditional filters [13–16] and without 
filtering. Filter-based Pearson correlation coefficient (PCC) via ANOVA 
tests, and correlation-based feature section (CFS) were employed to 
identify the most significant biomarkers for the classification of SAR
S-CoV-2. Filter techniques can easily scale to large datasets, are 
computationally simple, fast, and independent from the classifier. 
Following this, the ranked biomarkers were fed into the k-NN, DT, RF, 
and SVM classifiers. The proposed method is efficient, computationally 
inexpensive, and able to correctly distinguish the SARS-CoV-2 from 
non-SARS-CoV-2, which includes the rest of coronavirus and a control 
group without a priori biological knowledge. 

2. Methodology 

The proposed method for the distinction of SAR-CoV-2 comprises five 
steps: (1) Data collection: a total of 1582 samples, including 615 SARS- 
CoV-2 and 967 non-SARS-CoV-2 samples, (2) Conversion of the DNA 
“characters” into numeric values for rapid and more efficient processing, 
(3) Three-base periodicity property detection for the extraction of 
genome biomarkers using DSP, (4) Biomarkers selection, and (5) ML 
implementation. Eight biomarkers were derived using the three-base 
periodicity property and selected based on PCC [29], and CFS [30], as 
some of the biomarkers may contain irrelevant and/or redundant in
formation that may reduce the performance of the classifier if not 
removed [21]. The selected biomarkers were fed into the classifiers. 

2.1. Database sources 

COVID19 Wuhan-Hu-1 whole reference genome of 29903bps was 
downloaded from the National Center for Biotechnology Information 
(NCBI), along with the genome sequences in the FASTA format with the 
queries: SARS-CoV-2, Sequence Data (Nucleotides), Select Records (down
load all records), and FASTA definition line (use default) from the NCBI 
(https://www.ncbi.nlm.nih.gov/labs/virus) and Global Initiative on 

Fig. 1. SARS-CoV-2 genome organization [1] and ordering/location of the various encoded proteins.  
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Sharing All Influenza Database (GISAID, https://www.gisaid.org/) [27]. 
COVID19 data comprises the complete genome, the complete coding 
sequence (CDS), and partial CDS, which length varies from 64 to 
29945bps. Besides, other human, mammals, and birds’ coronaviruses 
[31], were incorporated into the non-SARS-CoV-2 group to assess the 
robustness and effectiveness of the proposed algorithms. We also 
downloaded a control sample from the Epitranscriptomics and RNA 
Dynamics Lab (Novoa Lab) and the Bioinformatics Core Facility (Bio
Core) at the Center for Genome Regulation [32]. Table 1 depicts infor
mation on coronavirus species, sample size, and designated label for 
both SARS-CoV-2 and non-SARS-CoV-2 groups. The description of DNA 
numerical mapping is presented in Supplementary. Methodology for the 
extraction of genome biomarkers using the three-base periodicity 
property is elucidated in the following sections. 

2.2. Genome biomarkers extraction using the three-base periodicity 
property 

Herein, a robust DSP algorithm is developed to investigate the 
strength of the three-base periodicity to extract the significant genome. 
We selected eight biomarkers using various DSP-based methods, namely 
average magnitude spectrum, peak-to-average ratio of the magnitude 
spectrum, SVD, SVD with filtering, AMDF, AMDF with filtering, TDP, 
and TDP with filtering. DSP techniques are implemented in MATLAB 
(R2015a) on an Intel® Core™ i7, 2.5 GHz with 16 GB RAM. 

2.2.1. Three-base periodicity detection using discrete fourier transform 
Fig. 3 exhibits the procedure for the computation of three-base 

periodicity detection using discrete Fourier transform. Herein, 
frequency-domain representation (spectrum) refers to breaking down a 
signal into its constituent sinusoids. That is, the spectrum of a signal is a 
representation of its frequency content [33]. Considering a zero-mean 
genomic signal ‘y(n)’, of length ‘N’, as in Eqs. (1) and (2). 

y(n)= x(n) − μx 0 ≤ n ≤ N − 1 (1)  

where μx is the mean of the signal ‘x(n)’, calculated as follows, 

μx =
1
N

∑N− 1

n=0
x(n) (2) 

The purpose of subtracting the mean is to suppress the zero- 
frequency component [34], since direct current component is not sig
nificant in the context of detecting the three-base periodicity. The 
magnitude spectrum of ‘y(n)’ is computed using the DFT as depicted in 
Eq. (3) – (5). 

Y(k)=

⃒
⃒
⃒
⃒
⃒

∑N− 1

n=0
y(n)e

− j2πnk/N

⃒
⃒
⃒
⃒
⃒

0≤ k≤N − 1 (3)  

where ‘k’ is the frequency ‘f’ and the sampling frequency ‘fs’ of the 
signal. 

k=
Nf
fs

(4) 

When dealing with DNA sequences, the value ‘fs’ uses one sample per 
second [35] and thereby, 

f =
k
N

(5) 

The magnitude spectrum is, then, normalized as follows in Eq. (6). 

Ynormalized(k) =
Y(k)

max[Y(k)]
0≤ k≤N − 1 (6) 

This normalization examines the strength of the 1/3 frequency 
component relative to the whole magnitude spectrum. Thus, the average 
of the normalized magnitude spectrum is estimated using Eq. (7): 

Yaverage =
1
N

∑N− 1

n=0
Ynormalized(k) (7) 

Subsequently, the magnitude of the 1/3 spectral component (f = 1/3 
Hz) is calculated by setting ‘k’ to N/3 as performed in Ref. [35]. Then, 
computing the ratio between the magnitude of this 1/3 spectral 
component and its average is performed using Eq. (8): 

Fig. 2. Normalized Fourier spectrum analysis (a) of SARS-CoV-2, and (b) a control sample.  

Table 1 
Lists the name of the coronavirus species, number of samples, and designated 
labels.  

Coronavirus species Number of samples Label 

SARS-CoV-2 615 1 
Control sample 27 0 
Anatid alphaherpesvirus 1 13 0 
HCoV-OC4 170 0 
Bos Taurus Polyomavirus 4 0 
Chiropteran bocaparvovirus 1 2 0 
Galliform aveparvovirus 1 4 0 
Human coronavirus 229E 60 0 
Human coronavirus HKU1 39 0 
Human Coronavirus NL63 66 0 
MERS-CoV 520 0 
SARS-CoV 7 0 
PREDICT_CoV-35 [31] 4 0 
PREDICT_CoV-47 [31] 2 0 
PREDICT_CoV-82 [31] 3 0 
PREDICT_CoV-92 [31] 36 0 
PREDICT_CoV-93 [31] 3 0 
PREDICT_CoV-96 [31] 5 0 
bat-SL-CoVZC45 1 0 
bat-SL-CoVZXC21 1 0  
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Y1/3− to− average =
Ynormalized(N/3)

Yaverage
(8) 

This feature is expected to be relatively higher if the DNA is a protein- 
coding sequence (e.g. viral genome), as the nucleotides exhibit three- 
base periodicity. 

2.2.2. Enhanced approach for three-base periodicity detection using 
filtering 

Fig. 4 illustrates the steps to estimate the AMDF, SVD, and TDP. 
Herein, the genomic signal x(n) is filtered to emphases the three-base 
periodicity and point out the protein-coding region in the DNA 
sequence employing conventional filtering methods [12,33], see Fig. 5. 
However, we employed zero-phase filtering, instead of traditional 
filtering, to overcome the non-linear phase distortion. In addition, we 
investigated the impact of AMDF, SVD, and TDP approaches without 
filtering, which may enhance the computational efficiency of the pro
posed algorithms. See the supplementary material for the illustration of 
anti-notch filter and the mathematical description of AMDF, SVD, and 
TDP. 

3. Biomarker selection 

Our main aim is to employ the minimum number of best biomarkers 
to maximize the performance of each classifier for the problem in 
consideration. Herein, filter-based biomarker selection is employed, 
instead of wrapper approaches since they compute the relevance of 

biomarkers by their correlation with the dependent class. On the other 
hand, wrapper techniques measure the effectiveness of a subset of bio
markers by training a classifier via cross-validation (CV) [36], limiting 
the use of more than one classifier at a time. Moreover, filter-based 
techniques reduce the risk of overfitting, the computation cost, and 
the selection is independent of any classifier [37,38]. Herein, two filter 
techniques were deployed: PCC and CFS [39]. The explanations about 
the PCC and CFS are included in the Supplementary. Further, the 
probability density functions (PDFs) are computed using the kernel 
density estimation method for the best biomarker to provide a qualita
tive assessment between the SARS-CoV-2 and non-SARS-CoV-2 groups 
[40]. 

4. Machine learning classifiers 

Herein, k-NN, DT, RF, and SVM were used for the classification of 
SARS-CoV-2 and non-SARS-CoV-2. ML techniques have proven to be 
powerful tools for addressing such tasks [25–28]. ML refers to a series of 
algorithms driving their functionality learning from unlabeled or 
labeled data, rather than using predefined sets of functions and rules 
[41]. This property is ideal to predict histopathological characteristics, 
clinical outcomes, molecular biomarkers, or treatment responses [41]. 
To augment generalizability, and limit overfitting, ML includes training, 
validation, and external testing in separate datasets [41]. CV uses the 
training and validation datasets to fit the classifier, evaluate its perfor
mance, and optimize its hyper parameters [41] based on arbitrary 
sub-separation and iterative cycles of training and validation [42]. The 

Fig. 3. Flowchart of the DFT-based features.  

O.P. Singh et al.                                                                                                                                                                                                                                 



Computers in Biology and Medicine 136 (2021) 104650

5

testing dataset is kept completely independent from development and is 
utilized to assess the final model and verify its performance and 
generalizability. Short descriptions about k-NN, DT, RF, and SVM are 
included in the following paragraphs. 

k-NN has widely been used due to its simple implementation and 
high efficiency [26]. It is a very versatile algorithm since it can be 
applied to classification, regression, and missing value imputation 
problems. The key idea of the standard k-NN is to search for all the K 
nearest neighbors for a given test sample. The two main elements that 
affect its performance is the selection of a proper K value and selecting 
the best distance function for identifying the K classes. 

DT is one of the most well-known machine learning methods for data 
classification. It is a tree-based technique in which the model is repre
sented as a set of nodes and hierarchical connections that represents 
relationships. The connections form a path that starts from a root node, 

and it is described by a sequence where data is recursively separated 
until reaching a Boolean outcome in a leaf node. DTs are considered a 
powerful method in terms of accuracy, simple analysis, predictive 
power, and fast convergence [27]. 

RF [25] is based on the idea that aggregating multiple decision trees 
cause a decrease of variance in the outcome compared to a single model. 
RF has received significant attention, and several benchmarking studies 
demonstrated that currently, this method is one of the most robust and 
flexible machine learning techniques in solving both classification and 
regression problems. 

SVM [27,38] a supervised learning technique for classification and 
regression, based on the structural risk minimization principle and sta
tistical learning theory. SVM maps the original observations into a 
higher-dimensional space to find an optimum separating hyperplane. 
This factor makes the algorithm particularly powerful over other 
traditional machine learning approaches. 

In this study, the total number of samples (1582 samples) was 
divided into two sets via resampling. The first set consists of 70 % (1107 
samples) from both classes SARS-CoV-2 (424 samples) and non-SARS- 
CoV-2 (683 samples), which were used to train the model via ten-fold 
CV. The second set contained 30 % (475 samples) from both classes 
SARS-CoV-2 (189 samples) and non-SARS-CoV-2 (286 samples) and was 
used as a testing dataset with the trained model. The classifiers were 
validated via ten-fold CV, and the best model was selected based on the 
F-measure [43], which balances the recall and precision of the model. In 
addition, the efficacy of the model was evaluated on the accuracy matrix 
via the corrected 10 × 10 fold CV paired t-test [44]. This method com
pares the means of two groups of compatible data, determining which 
one is lower or whether they are equivalent, prior to apply the test 
dataset in the trained model. Moreover, Kappa-score was utilized to 
verify the influence of imbalance data between the two classes as one 
class (non-SARS-CoV-2) comprises 61.15 % compared with the SAR
S-CoV-2 class 38.85 %. 

In this study, the DT, and RF are deployed with default parameters, 
while k-NN uses K = 3, and SVM uses radial basis function (RBF) kernel 
that was implemented by the C++ LIBSVM library [45]. The hyper 
parameters of RBF (penalty constant, C, kernel width, γ) were optimized 

Fig. 4. Flowchart of the AMDF, SVD and TDP-based features.  

Fig. 5. Magnitude and phase responses of the IIR anti-notch filter.  
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by a grid-search to achieve the maximum result. All four ML experiments 
provided in this study were conducted using WEKA [44]. 

The performance of the trained model on the testing dataset was 
evaluated using confusion matrices (refer Supplementary) in terms of 
sensitivity, specificity, and accuracy [46]. Herein, sensitivity assesses if 
the SARS-CoV-2 data is correctly recognized by the classifier, whereas 
specificity reveals how well the non-SARS-CoV-2 data was identified. 
The accuracy assesses the total amount of samples that were well 
classified. 

5. Results 

We employed a DSP-ML-based algorithm for the classification of 
SARS-CoV-2 and non-SARS-CoV-2. A total of eight biomarkers were 
extracted based on the three-base periodicity property. Supplement 
Figure 1 provides the results of three-base periodicity property using 
DFT in terms of frequency and magnitude spectrum for one sample of 
each class, that shows the variation in magnitude spectrum to the cor
responding frequency at 1/3 Hz. The algorithms source code is in Sup
plementary. Supplementary Table 1 lists the investigated genome 
biomarkers with the respective sequence length statistics, mean, and 
standard deviation (SD) for SARS-CoV-2 and non-SARS-CoV-2. The de
viation of each biomarker from their mean is very low (Supplementary 
Table 1), which shows the consistency of the proposed biomarkers and 
provide kind of surety that these biomarkers will perform similarly even 
with a greater number of samples. Table 2 depicts the result of the 
genome biomarkers selection. The biomarker (GB5) had an “r” value of 
0.32, followed by GB3, GB2, GB1, and GB4 with “r” values 0.18, 0.12, 
0.13, 0.12, respectively, which illustrates the weak positive correlation 
compared with the rest of biomarkers, which had no relation (r < 0.1). 
Further, ANOVA test was performed, confirming that GB1 to GB5 are 
significantly better (p < 0.0001) than GB6, GB7, and GB8, which is 
consistent with the F-value listed in Table 3. Hence, we used for the 
classification a set of five biomarkers, removing those biomarkers, with 
no relation (r < 0.1). CFS method utilized the subsets of biomarkers that 
are highly linked with the class, while having low intercorrelation. 
Table 2 shows that biomarkers GB4 and GB5 possess higher discrimi
nation capabilities with a merit of 0.67. Thus, both were used as input 
biomarker vectors. Besides, PDF of GB5 and scatter plot of GB4 and GB5 

for 100 samples from both classes are presented in Supplementary 
Figs. 2 and 3. 

Herein, the SVM-RBF classifier was optimized via Grid search and 
evaluated using ten-fold CV on the training dataset. The performance of 
the classifier was assessed based on the accuracy. Table 4 shows, for CFS 
and correlation, the values of the optimized parameters-penalty con
stant (C) and width (γ), were 100, 0.001 and 1000, 0.001. Further, the 
optimized parameters and same training dataset were used for com
parison with other classifiers, while assessing the performance of the 
SVM. 

Table 4 presents the results of the classifiers via ten-fold CV in terms 
of the mean and SD, which utilized the CFS and correlation-based ranked 
biomarkers. The latter performed better than CFS, achieving slightly 
higher accuracy. The RF shows slightly greater F-measure (mean, 98 % 
and SD, 2 %) compared with other classifiers. This means that RF will 
possibly sustain acceptable precision and recall. In addition, Kappa- 
scores (>0.9) elucidates that the employed classifiers can well balance 
the disproportionate amount of data of both groups. However, the F- 
measure of SVM-RBF, DT, and RF stands close to the k-NN, see Table 4. 
Hence, prior to apply the model on unseen data, a corrected 10 × 10 fold 
CV paired t-test was performed to assess the model performance based 
on accuracy. 

Table 5 depicts the results of the corrected 10 × 10 fold CV paired t- 
test. It can be seen that the RF holds victory (v), whereas k-NN, DT and 
RF neither contains asterisk (*) nor ‘v’, which shows that they could be 
statistically significant but unable to conclude via t-test. Therefore, RF 
was selected and deployed for further testing on the unseen data. 

The selected RF model was trained and deployed for testing using the 
30 % unseen samples. Table 6 illustrates that the elected model can 
correctly classify the SARS-CoV-2 (sensitivity, 96.29 %) and non-SARS- 
CoV-2 (specificity, 98.25 %) with accuracy of 97.47 %. Fig. 6 illustrates a 
confusion matrix for the classification results of RF on unseen dataset. 
Besides, the total execution time (biomarkers extraction and RF model 
build time) is approximate 0.31 s, that tells the proposed algorithm is 
computationally inexpensive and efficient to be implemented in a real- 
time scenario. 

6. Discussion 

Based on the history of SARS-CoV-2, previous studies suggest an 
origin from bats earlier to zoonotic transmission [47]. So far, the early 
SARS-CoV-2 virus genomes, which are sequenced and uploaded are 
more than 99 % similar, advocating these viruses result from a recent 
cross-species event [48]. These earlier examinations are based on 
alignment-based techniques to recognize relationships between the 
SARS-CoV-2 and other coronaviruses with amino acid sequence and 
nucleotide resemblances. When examining the reserve replicase do
mains of ORF1ab for coronavirus species categorization, almost 94 % of 
amino acid residues were similar to SARS-CoV, reaching 70 %, on the 
whole genome resemblance, which confirms that the SARS-CoV-2 virus 
was genetically distinct [49]. Within the RNA-dependent RNA poly
merase (RdRp) zone, it was discovered that the bat coronavirus, 
RaTG13, formed via a different lineage from other bat SARS-similar 
coronaviruses [48], was the nearest relation to the SARS-CoV-2. A group 
of researchers found that two bat SARS-similar coronaviruses, bat-SL-
CoVZXC21 and bat-SL-CoVZC45, were also very similar to SARS-CoV-2 
[47]. Yet, whether the SARS-CoV-2 virus started from a recombination 
event is still unknown [48]. 

We included distinct types of SARS-CoV-2 data including complete 
genome, partial genome, partial and complete CDS, from different re
gions such as RdRP, 3′′-to-5′′ exonuclease, non-structural protein 3. The 
length of data, that varies from 64bps to 29945bps compared with 2000- 
50000bps from earlier studies [27,28], were included in this study, 
which shows the robustness of the proposed approach. Further, we 
proposed a new biomarker based on the three-base periodicity property 
for the prediction of SARS-CoV-2 virus. 

Table 2 
Genome biomarkers correlation values.  

Genome 
Biomarkers 

Genome 
biomarker 
index 

Pearson ‘r’ cross-correlation 
coefficient (Correlation 
ranking filter) 

Correlation 
Based Feature 
Selection 

‘r’ 
value 

Ranked 
biomarkers based 
on ‘r’ value 

Average 
magnitude 

GB1 0.13 GB5 GB4 

Peak-to- 
average 
ratio 

GB2 0.14 GB3 GB5 

SVD GB3 0.18 GB2  
SVD with 

filtering 
GB4 0.12 GB1  

AMDF GB5 0.32 GB4  
AMDF with 

filtering 
GB6 0.08   

TDP GB7 0.08   
TDP with 

filtering 
GB8 0.09   

SVD-singular value decomposition, SVD with filtering – SVD with anti-notch IIR 
filtering, AMDF-average magnitude difference function, AMDF with filtering- 
average magnitude difference function with anti-notch IIR filtering, TDP- 
time-domain periodogram, TDP with filtering-time-domain periodogram with 
anti-notch IIR filtering, GB1-genome biomarkers and 1 represents the index 
number. 
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In this work, eight biomarkers, GB1-GB8, were extracted based on 
the three-base periodicity properties, by applying various DSP tech
niques. Descriptive statistical analysis was performed to know the dis
tribution of data, that helps to detect typos and outliers and allows us to 
identify associations among biomarkers. It can be seen (Supplementary 
Table 1) that there were minor deviations in the biomarker from their 
mean value, which were found to be distinct for both the SARS-CoV-2 
and non-SARS-CoV-2 groups. Thus, the biomarker selection methods, 
PCC and CFS were deployed to enhance the efficiency of ML (Table 2). It 
can be observed that the results achieved by GB5 (AMDF) possess higher 
discrimination abilities for the classification with 32 % of correlation 
coefficient. The outcome agrees with an earlier study [50], wherein a 
correlation coefficient r ≥ 0.3 is suggested to be significant for medical 

diagnosis. Therefore, even the sequences collected from distinct zones 
with varied compositions can be simply compared quantitatively by 
employing the propose biomarker (AMDF), with uniformly meaningful 
results as when comparing SARS-CoV-2 sequences. Further, ANOVA test 
was applied to the biomarkers. Correlation coefficients <0.3, and 
p-values <0.05 were assumed statistically significant [51] and were 
included as the most significant biomarkers. Table 3 shows that GB1 to 
GB8 had p-values <0.05. However, GB1 to GB6 reported lower p-values 
compared with GB7 and GB8. Hence, GB1-GB6 were taken as features 
for the classification. On the other hand, CFS based method revealed 
GB4 and GB5 as the most notable biomarkers compared with other 
biomarkers (Table 3). The three-base periodicity DSP approach is simple 
and effective, which took an average 0.4 μseconds/nucleotide compared 
with k-mers, suggested in Ref. [27]. Further, the selected biomarkers 
from both methods were fed into the classifiers and assessed based on 
their accuracy. 

Table 4 illustrates that PCC and CFS were comparable as biomarker 
selection techniques. However, PCC outperformed CFS as the accuracy 
was comparatively higher for all the classifiers. Further, Kappa test was 
performed to confirm the influence of the imbalanced data between the 
different groups. It is shown (Table 4) that all the classifiers achieved >
0.9 Kappa-score, which means that the results were not affected. 
Thereafter, the F-measure shows values closed to each other. Hence, 10- 
times 10-fold CV paired t-test was performed using the accuracy to 
identify the best model to test afterwards on unseen samples. It can be 
observed from Table 5 that the accuracy and F-measure achieved by k- 
NN, SVM-RBF, DT, and RF exhibited very close scores. However, paired 
t-test revealed that RF had the best replicability. Therefore, RF was 
chosen to be tested with the unseen data, achieving 96.29 % sensitivity, 
98.25 % specificity with an accuracy of 97.47 % (Table 7), which are 
very near to the findings of the previous employed algorithms. Besides, 
it can be seen that the studies on SARS-CoV-2 based on k-mers and deep 
neural network (DNN) conducted by Randhawa et al. [27] and 
Lopez-Rincon et al. [28] achieved 100 % and 98.73 % accuracy, 
respectively which seems to be slightly higher than the proposed 
approach, but the computation time of our work is comparatively lower. 
However, some concern arises from these studies as Randhawa et al. 
performed the training on the data without reporting any hyper
parameter values for the classifiers, which restricts the reproducibility of 
their experiments. Also, they used a small number of samples from the 
SARS-CoV-2 group and did not perform any overfitting 

Table 3 
ANOVA analysis for proposed features.  

Parameters GB1 GB2 GB3 GB4 GB5 GB6 GB7 GB8 

F-value 26.20 33.06 55.34 25.02 182.81 11.78 12.23 13.16 
p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.001 0.000 0.000  

Table 4 
Classification of SARS-CoV-2 and non-SARS-CoV-2 via ten-fold CV on the 
training data.  

Classifiers Genome 
biomarkers 
selection 
methods 

Accuracy 
(%) (mean 
± SD) 

F- 
measure 
(mean ±
SD) 

Kappa- 
score 
(mean 
± SD) 

Model 
built time 
(second) 

k-NN CFS 96.47 ±
0.89 

0.96 ±
0.01 

0.92 ±
0.02 

0.002 

Correlation 97.56 ±
1.35 

0.97 ±
0.02 

0.95 ±
0.03 

0.01 

SVM-RBF CFS (C-100, 
gamma- 
0.001) 

97.29 ±
1.96 

0.96 ±
0.03 

0.94 ±
0.04 

0.2 

Correlation 
(C-1000, 
gamma- 
0.001) 

97.73 ±
1.43 

0.96 ±
0.02 

0.96 ±
0.03 

0.29 

DT CFS 96.47 ±
1.74 

0.95 ±
0.02 

0.93 ±
0.04 

0.14 

Correlation 97.46 ±
1.41 

0.96 ±
0.02 

0.94 ±
0.03 

0.04 

RF CFS 97.92 ±
1.66 

0.97 ±
0.02 

0.96 ±
0.03 

0.22 

Correlation 98.78 ±
1.09 

0.98 ±
0.02 

0.98 ±
0.02 

0.27 

k-NN – k-nearest neighbors; SVM-RBF: Support vector machine-radial basis 
function; DT-Decision tree; RF-Random forest, CFS-correlation-based feature 
selection, Correlation-Pearson correlation coefficient. 

Table 5 
Paired t-test analysis for model selection via 10 × 10 fold CV.  

Test Model evaluation 
parameters 

k-NN SVM- 
RBF 

DT RF 

Paired t-test 
analysis 

Accuracy 97.37 97.80 97.83 98.98 
v 

(v//*) reflects as follows: v-victory, * - poorly statistically significant, blank – 
unable to say. 

Table 6 
Classification results using RF on unseen testing dataset.   

Sensitivity (%) Specificity (%) Accuracy (%) 

RF 96.29 98.25 97.47 

SARS-CoV-2 – severe acute respiratory syndrome coronavirus 2; non-SARS-CoV- 
2-non severe acute respiratory syndrome coronavirus 2; RF- Random forest. 

Fig. 6. Confusion matrix for the classification results of random forest on un
seen dataset. 
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countermeasures. The study revealed 100 % accuracies for their six 
classifiers over three different tests. This may be due to overfitting, 
which means that the finding may not be generalize over unseen data. 
On the other hand, Lopez-Rincon et al., used a significant imbalanced 
dataset, where SARS-CoV-2 represents only the 11.93 % of samples. 
Additionally, they utilized DNN, which requires a huge amount of data, 
is computationally extremely expensive, and features are unknown. 
Further, proposed approaches can only distinguish SARS-CoV-2 from 
other coronaviruses without including the control group. Hence, these 
works are not capable of knowing whether someone is infected with 
these types of virus or not. In contrast, the proposed DSP-ML based 
approach depicts comparatively acceptable classification results for the 
discrimination of SARS-CoV-2 and non-SARS-CoV-2, by employing 
newly proposed biomarkers, which only required genome sequence as 
input. DSP-ML is an alignment-free approach, ultrafast as it can be seen 
by the time-performance of ML via 10-fold CV for training datasets 
presented in Table 7. 

DSP-ML took only 0.31 s to compute the genome biomarkers 
(including conversion of DNA sequences into numeric form, estimating 
the magnitude spectrum, average magnitude, peak-to-average ratio 
using DFT, SVD, SVD with filtering, AMDF, AMDF with filtering, TDP, 
TDP with filtering based on the characteristics of three-base periodicity 
property and classification of SARS-CoV-2 and non-SARS-CoV-2 groups. 
The robust validation approach is fast and can cope with low length of 
DNA sequences. Hence, it can be deployed in more efficient ways for the 
prediction SARS-CoV-2 condition by using raw cDNA sequences as input. 
However, the study is restricted by the limited number of samples and 
will be required further investigation with larger data to confirm the 
efficacy of the proposed approach. The genome sequence data consists of 
partial CDS that has short length of sequence, which may perhaps 
enhance and/or degrade the results. The conventional mapping scheme 
could be replaced with the Pseudo-EIIP DNA symbolic-to-numeric 
mapping scheme, which may possibly reduce the computational over
head. We also use the raw data without any pre-processing. That may 
possibly influence the outcomes. 

7. Conclusion 

This study explores the significance of three-base periodicity for the 
prediction of SARS-CoV-2 virus. We derived eight biomarkers based on 
the three-base periodicity properties, using DSP techniques, and ranked 
those based on a filter-based biomarker selection method, which reduces 
the computation time and enhances the efficiency of the classifiers. The 
ranked biomarkers were fed to distinct classifiers for the prediction of 
SARS-CoV-2 coronavirus from other coronaviruses and a control group 
via 10-fold CV. In addition, a 10 × 10 CV paired t-test was performed to 
select the best model to test with the unseen data. The combination of 
ranked biomarkers (GB1 to GB5), and best supervised model (RF), is 
capable of differentiating the SARS-CoV-2 coronavirus with an accuracy 
of 97.47 % and computation time of 0.31 s, which outperforms previous 
studies. Our work includes various types SARS-CoV-2 data like complete 
genome, partial genome, partial and complete CDS, from the different 
regions that varies in length from 64bps to 29945bps, which shows the 
robustness and effectiveness of proposed approach and also ensures that 
our results are not affected by the imbalance dataset. Further, we plan to 
convert the proposed procedure into a computer-aided system that will 
allow the timely and efficiently differentiation of SARS-CoV-2 viruses 
from other viruses as early screening of novel viral outbreaks, which can 

lead to avoid the community transmission and decrease the mortality 
rate. Additionally, we plan to test the feasibility of proposed features for 
the classifications of different mutant of SARS-CoV-2 by deploying a 
multi-class classifier. 
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