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Abstract
Over the last decades, numerical modelling has gained practical importance in geotechnical engineering as a valuable 
tool for predicting geotechnical problems. An accurate prediction of ground deformation is achieved if models that 
account for the pre-failure behaviour of soil are used. In this paper, laboratory results of the consolidated drain (CD) triaxial 
compression tests and one-dimensional consolidation tests of marine clay were used to determine the hardening soil 
model (HSM) parameter for use in Plaxis 3D analyses. The parameters investigated for the HSM were stiffness, strength 
and advanced parameters. The stiffness parameters were secant stiffness in CD triaxial compression test ( Eref

50
 ), tangent 

stiffness for primary oedometer loading test (Eref
oed

) , unloading/reloading stiffness (Eref
ur

 ) and power for the stress-level 
dependency of stiffness (m). The strength parameters were effective cohesion ( c’

ref
 ), effective angle of internal friction 

( �’ ) and angle of dilatancy ( � ’ ). The advanced parameters were Poisson’s ratio for unloading–reloading (ν) and K0-value 
for normal consolidation 

(

Knc
◦

)

 . Furthermore, Plaxis 3D was used to simulate the laboratory results to verify the effective-
ness of this study. The results revealed that the stiffness parameters Eref

50
, Eref

oed
, Eref

ur
 and m are equal to 3.4 MPa, 3.6 MPa, 

12 MPa and 0.7, respectively, and that the strength parameters c’
ref

 , �’ , � ’ and Knc
◦

 are equal to 33 kPa, 17.51°, 1.6° and 0.7, 
respectively. A final comparison of the laboratory results with the numerical results revealed that they were in accord-
ance, which proved the efficacy of the study.
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1  Introduction

The application of numerical analysis in geotechnical 
engineering is becoming a popular and common practise 
in enhancing engineering projects [1]. Nevertheless, the 
quality of any calculation rests on the suitability of the 
model assumed in the study. Generally, an accurate fore-
cast of ground deformation can only be achieved when 
models that account for the pre-failure behaviour of soil 
are used [2, 3]. Modelling such behaviour with non-linear 
elasticity is characterised as a robust disparity in stiff-
ness of soil, which is influenced by the degree of strain 
levels that occurs at stages of construction. Stiffness at 

pre-failure is crucial in modelling distinctive geotechnical 
problems such as retaining walls, supporting deep excava-
tions or excavating a tunnel in a developed city.

Although linear constitutive models are commonly 
used in numerical analyses [4–8], actual soil behaviour 
is not as simple as it is represented in simple linear con-
stitutive models. Soil behaviour is complicated in nature 
because soil is a multi-phase material that exhibits not 
only elastic, plastic and non-linear deformations but also 
irreversible plastic strains [9]. Depending on the stress 
history, soil may be compressed or dilated. Elasto-plastic 
models with linear elasticity such as the Mohr–Coulomb 
model (MCM) cannot reproduce a change in stiffness, as 
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shown between points A, B and D in Fig. 1. Soil stiffness 
depends on the degree of stress-levels and deformations 
of soil are time-dependent. Indeed, soil behaviour is con-
sidered to be elastic in the small strain range; soil stiffness 
is nearly recoverable in unloading conditions. However, in 
the analysis of pre-failure non-linearities of soil behaviour, 
one may observe a substantial variation of stiffness start-
ing from very small to very large shear strain.

Engineers who are looking for reliable forecasts of engi-
neering system response and who apply linear-elastic, 
perfectly plastic models in the finite element analysis may 
underrate ground deformation. Numerical analyses in the 
MCM do not differentiate loading and unloading stiffness 
moduli, hence leading to an unrealistic lifting of the retain-
ing wall linked with the unloading of the bottom of the 
excavation [10]. Similarly, Mohr–Coulomb assumed linear-
elastic soil behaviour before failure; however, in reality, 
overconsolidated clays exhibit a reduction of stiffness at 
stress-levels below the typical expected values that cause 
failure [11]. Furthermore, the MCM assumes that stiffness 
parameters are not dependent on the stress-level. There-
fore, it cannot symbolise a change in plastic strains, whilst 
unloading the soil.

The hardening soil model (HSM) is an advanced elasto-
plastic constitutive model that is used for simulating both 
stiff and soft soil behaviours [12]. HSM also relates stiffness 
parameters to the stress-level and simulates the develop-
ment of plastic strains under compressive loading. HSM is 
an extension of the hyperbolic model established by Dun-
can and Chang [13]. It supersedes the Duncan and Chang 
[13] model by using plasticity theory instead of elasticity 

theory. It also includes the dilatancy of soil and introduces 
a yield cap. The yield surface of the HSM can expand as 
a result of plastic straining, unlike the elastic perfectly 
plastic model in which the yield surface is fixed in a prin-
cipal stress space. At very low strain levels (< 10−5) most 
soils exhibit higher stiffness than at engineering strain 
levels, and this stiffness varies non linearly with strain. 
In that case, the hardening soil model with small-strain 
(HSsmall model) is ideal for the analyses of both static and 
dynamic tasks [14]. HSsmall model is a modification of the 
HS model, which is concerned with improving soil stiffness 
in small strains.

HSM has two types of hardening: shear and compres-
sive hardening. The difference between the two is that 
shear hardening is used for modelling permanent strains 
caused by principal deviator loading, whereas compres-
sion hardening is used for modelling permanent plastic 
strains caused by primary oedometric compression and 
isotropic load [15]. Despite the mathematical intricacy 
of the HSM, its parameters can be obtained from con-
ventional soil tests due to their clear physical meaning. 
Therefore, in this paper, HSM parameters of marine clay 
(MC) were determined by using CD triaxial compression 
and oedometer test results. Furthermore, a simulation of 
the laboratory result was conducted in the Plaxis 3D soft-
ware. The laboratory test results were validated with the 
numerical results to verify the effectiveness of this study.

Information from the literature revealed that some few 
studies have been performed on determination of model 
parameters. For example, Wu and Tung [16] developed a pro-
tocol for determining HSM parameters of gravelly soils using 
result of triaxial compression test. Their findings revealed the 
model parameters determined showed very good simula-
tion of the measured data from triaxial tests and fields exper-
iments with applied loads of up to 1000 kPa. Similarly, triaxial 
behaviour of riverbed and blasted quarried rockfill materials 
was modelled by Honkanadavar and Sharma [17] with HSM 
using triaxial compression results. Their results showed that 
the analysis of the elastic and shear strength parameters of 
the simulated and experimentally determined parameters 
found that both findings were closely matched. Finite ele-
ment analysis and a parameter optimization algorithm were 
combined by Calvello and Finno [18] to effectively calibrate a 
soil model by minimising errors between experimental and 
numerical result. The obtained results indicated that the 
computed results match the experimental data. Stiffness 
parameters of residual soil at a deep excavation construc-
tion site in the Kenny Hill Formation were determined [19]. 
The result of parametric studies using HSM demonstrated 
that the horizontal deflection of the wall at each point of 
excavation was reasonably predictable with clear correla-
tions between stiffness parameters and N value of standard 
penetration test. Application of the HS model has shown 

Fig. 1   Comparison of stress–strain curves of different models for 
drained triaxial compression
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that the model is not only suitable for the study of the case 
of the Kenny Hill Formation, but can also be applied from 
a practical point of view to similar soils with these types of 
problems. The above and many more studies, such as those 
of [18, 20, 21] have led to research interest in determine HSM 
parameter of MC using results of CD triaxial compression 
test, oedometer test and particles size distribution test.

2 � Material and method

The material used for this research is a disturbed sample of 
MC collected from Batu Pahat, Malaysia. The collected MC 
sample was air-dried, pulverised and stored in plastic con-
tainers. Index tests were conducted on the MC sample to 
identify and classify the soil. The results of the index tests 
were as previously reported [22], and MC was classified as 
clay of high plasticity (CH).

2.1 � Consolidated drain (CD) triaxial compression 
test

The shear strength of the MC was measured using CD triaxial 
compression test following BS:1377-8 [23]. The cylindrical 
specimens (size of 38 mm diameter and 76 mm) were also 
prepared from remoulded MC mixed at the optimum mois-
ture content [24]. To enhance the rate of saturation and con-
solidation, a vertical drain was fixed around the sample (see 
Fig. 2a) using filter paper, then placed in the triaxial cell, as 
shown in Fig. 2b. Important devices of the triaxial machine, 
such as the load cell, linear vertical displacement transducer 
(LVDT), volume change and pressure transducers, were cali-
brated prior to the beginning of the test. The equipment was 
connected to a computer’s high-precision efficient real-time 
data acquisition function for automated recording and pro-
cessing of data.

Using the method of back-pressure saturation, the satura-
tion was achieved. Throughout the saturation stage, a 10 kPa 
backpressure difference was maintained until a Skempton 
B-check of at least 0.95 was obtained [25]. Subsequently, 
after completion of the saturation of the specimen, the next 
stage was consolidation with varying effective stresses of 
100 kPa, 200 kPa and 300 kPa [26]. Shearing was carried 
out at the end of the consolidation stage by estimating 
the shearing rate from t100 of the consolidation curve using 
Eq. (1). During the shearing, the drainage line was opened 
(back pressure valve). The triaxial test equipment used in this 
research is shown in Fig. 2c.

tf, time to failure for CD test with side drain; t100 is the 
intercept of tangent lines touching initial portion and 

(1)tf = 14 × t100

horizontal portion of volume change vs square root time 
curve of consolidation stage.

2.2 � One‑dimensional consolidation test

Test of MC consolidation characteristics was carried out as 
per of BS:1377-5 [27] using unsaturated MC. The specimen 
was prepared for soil compacted in cylindrical moulds 
with a diameter of 50 mm and a height of 20 mm. The 
test was carried out using a load sequence ranging from 
10 to 1000 kPa with twice the load increment ratio. The 
pressure was maintained constant for 24 h during each 
loading cycle. The unloading was carried out in a similar 
way at the end of the last loading cycle. The compression 
gauge readings and the corresponding time intervals were 
automatically recorded at every stage of the test using a 
data logger connected to the computer.

2.3 � Particle size distribution

Due to the higher precision, reliability of results and speed 
of the operation, the particle size distribution of the MC 
was carried out using the Laser diffraction method fol-
lowing the standard ISO:13320 (2009) procedure [28, 
29]. Approximately, 50 g of the air-dried MC sample was 
soaked for 24 h in a dispersion agent to come up with a 
solution. One litre of distiled water, 7 g of sodium carbon-
ate and 33 g of sodium hexametaphosphate were used to 
produce the dispersion agent. The soaked MC was mixed 
for 30 min using a mechanical mixer to obtain a homoge-
neous solution for particle size distribution test using a 
Laser diffraction machine model LA960V2 HORIBA.

2.4 � Numerical simulation of the laboratory results

The numerical simulation of the MC laboratory result was 
performed in a separate window in the Plaxis software. 
As shown in Fig. 3a, an input parameter was entered and 
the test was run. The deviator stress vs axial strain curve 
was selected (Fig. 3b), and the data were imported to excel 
where the curves of both numerical and experimental 
results were plotted.

3 � Results and discussions

The following sub-section provides the discussion of both 
the experimental and numerical results.

3.1 � Strength parameters

The strength parameters were obtained using the results 
of the CD triaxial compression test. The parameters 
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obtained were c’
ref

 (kN/m2), �′ (degree), and � ′ (degree). 
Three confining pressures were adopted in CD triaxial 
compression tests: 100 kPa, 200 kPa and 300 kPa, respec-
tively. The summary of the effective major and minor 
principal stresses at the failure of the three specimens 
are presented in Table 1. Figure 4 shows the Mohr circles 
of effective stresses, which specifies the conditions at 
the failure of the CD triaxial compression test. From the 
results, the strength parameters, c’

ref
 and �′ were found to 

be 33.58 kPa and 17.51◦ , respectively.
The dilatancy angle, ψ′ was obtained from the gradi-

ent of the axial strain-volumetric strain curve, as shown in 

Fig. 5. Based on the curve, only 100 kPa confining pressure 
showed some or little dilatancy. When the confining pres-
sure exceeds 100 kPa, the dilatancy disappears [30, 31]. From 
Fig. 5, for the 100 kPa confining pressure curve, using 0.0564 
as the value for d, the dilatancy angle computed using Eq. (2) 
was 1.6 degrees. 

(2)� = − sin
−1

(

d

2 − d

)

Fig. 2   Triaxial apparatus set 
up for the CD triaxial tests: a 
shows triaxial cell, b shows 
vertical drain in the triaxial 
sample and c complete triaxial 
machine
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Fig. 3   Simulation of marine clay properties in Plaxis 3D a inputting the model parameters and b collecting the simulated results
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3.2 � Stiffness parameter

The stiffness parameters were obtained using the results 
of the CD triaxial compression test and oedometer test. 
The parameters obtained were Eref

50
 (kN/m2) in the CD tri-

axial compression test, Eref
oed

 (kN/m2) for primary oedometer 
loading test, Eref

ur
 (kN/m2), and power for the stress-level 

dependency of stiffness, m.
The values for Eref

50
 and m that were obtained by plotting 

the deviator stresses against the axial strains for each con-
fining pressures are shown in Fig. 6. In addition, the moduli 
E50 , corresponding to each of them, were determined as 
3159 kPa, 4296 kPa and 5428 kPa, respectively.

The value for stiffness stress dependency parameter m 
was obtained using the trend line based on Eq. 3. The val-
ues for the y variables were assigned as ln E50 and x varia-

bles as ln
(

�
�

3
+c

�

cot�
�

100+c
�
cot�

�

)

 [32], as shown in Fig. 7. The slope 

of the trend line was the value for the stiffness stress 
dependency parameter m and was found to be equal to 
0.7.

The secant stiffness of the CD triaxial compression test 
( Eref

50
 ) was computed using Eq.  (4) for each of the three 

respective effective stress, �
′

3
 , using the corresponding 

moduli E50 , as shown in Table 2. The values for effective c′ , �′ 
and m were already obtained as 33.51 kPa, 17.58 0 and 0.7, 

(3)y = ax + bTable 1   Summary of specimen details at failure during CD triaxial 
compression test

Specimen refer-
ence

Effective minor principal 
stress ( �

′

3
 ) (kPa)

Effective major 
principal stress ( �

′

1
 ) 

(kPa)

A 83.2 247.3
B 195.7 452.9
C 307.1 661.5

Fig. 4   Mohr circle of CD triaxial 
compression test result
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Fig. 5   Determination of dilatancy angle
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respectively. Therefore, the average value of Eref
50

 was found 
to be approximately 3.4 MPa.

Eref
50

 , secant stiffness in CD triaxial compression test (kN/
m2); E50 , moduli E50 corresponding to effective stress, �

′

3
 

(kN/m2); �
′

3
 , effective minor principal stress (kN/m2); m, 

power for stress-level dependency of stiffness (parameter 
m); c′ (kN/m2), effective cohesion; �′ , effective angle of 
internal friction (degree); � ′ , angle of dilatancy (degree).

The result of the consolidation test of MC is presented in 
Fig. 8. From the result, the compression index cc was found to 
be equal to 0.1943. The tangent modulus Eoed and Oedom-
eter tangent stiffness and Eref

oed
 post-yielding of the primary 

loading was computed using Eqs. 5 and 6. The value of the 
Eref
oed

 was computed to be equal to 3.6 MPa.

(4)E50 = Eref
50

(

�
�

3
+ c

�

cot�
�

100 + c
�

cot�
�

)m

(5)Eoed =

2.3
(

1 + eref
)

�ref

oed

cc

(6)Eoed = Eref
oed

(

�
�

3
+ c

�

cot�
�

100 + c
�

cot�
�

)m

(a) 

(b) 
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Fig. 6   Determination of E50 moduli from the curves of devia-
tor stress vs axial strain of drained triaxial compression tests at a 
100 kPa, b 200 kPa and c 300 kPa cell pressure

Fig. 7   Determination of stiffness stress dependency (m) parameter

Table 2   Determination of secant stiffness of the CD triaxial test, Eref
50

�
′

3
 (kPa) E50 (kPa) (

�
�

3
+c

�

cot�
�

100+c
�
cot�

�

)m
E
ref
50

 (kPa)

83.2 3159 0.94 3471.429
195.7 4296 1.31 3279.389
307.1 5428 1.62 3350.617
Average 3367.145
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Eoed , oedometer tangent modulus; Eref
oed

 , oedometer tan-
gent stiffness; �ref

oed
 , stress at which the marine clay under-

goes plastic straining; eref , Void ratio corresponding to 
stress �ref

oed
 at which the material undergoes plastic strain-

ing; cc , compression index.
Note that �ref

oed
 and eref are relevant to the material that 

undergoes plastic straining, that is, the stress point that 
lies on the primary loading curve. The unloading–reload-
ing modulus Eref

ur
 was estimated to have a value varying 

between 3 and 5 times the Eref
50

 Plaxis-3D [33] and Wang 
et al. [34].

3.3 � Stiffness advanced parameters

The advanced stiffness parameters were estimated based 
on the recommendation of Plaxis-3D [33]. The param-
eters for the advanced stiffness were Poisson’s ratio for 

unloading–reloading (default ν = 0.2), reference stress 
for stiffnesses (default pref = 100 kN/m2) and K0-value for 
normal consolidation (default Knc

◦
 = 1 − sin ϕ). The recom-

mended values for the stiffness advanced parameters are 
the default values [33].

3.4 � Particle sizes distribution

The result of the particle size distribution of MC is shown 
in Fig. 9. From the result, particles smaller than 2 µm, par-
ticles between 2 µm and 50 µm and particles bigger than 
50 µm were 3%, 75% and 22%, respectively. The result for 
the particle size distribution was also applied in the Plaxis 
software, whilst performing the simulation.

3.5 � Comparison of experimental and numerical 
results

Table 3 shows a summary of the HSM parameters obtained 
for all the studies. The listed parameters were inputted into 
the HSM in Plaxis 3D software, and stress–strain curves 
from the CD triaxial compression tests were obtained. Fig-
ure 10 shows the comparison of the numerical and experi-
mental results of the CD triaxial compression test of the 
MC at three different confining pressures. The comparison 
demonstrates that the HSM can simulate the stress and 
strain behaviour of the MC. The above comparison is also 
in agreement with the comparison report by Wang et al. 
[34].

3.6 � Discussion of experimental results

Discussion of the properties of MC was carried out by 
comparing the properties of MC in this research with other 
MC properties from different parts of the world published 
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in the literature. The discussion covered in this paper is 
limited to the result of shear strength and consolidation 
properties of the MC as well as result of particles size dis-
tribution and numerical simulation of the HSM of the MC. 
Index properties, geochemistry, microstructure and toxic-
ity of the MC are not cover in this paper because they were 
reported earlier in previous research [22, 35–37].

The shear strength of soil depends on the water con-
tent, mineral content and the degree of consolidation of 
the soil [38, 39]. Triaxial tests are commonly used to test 
the shear strength of the MC. In this research, the shear 
strength parameters of the MC were determined using 
consolidated drained (CD) triaxial tests. The result obtained 
showed that the effective cohesion, c′ and effective angle 

of internal friction, ϕ′ were found to be 33.58 kPa and 
17.51°, respectively.

The c′ values for the MC in this study is marginally 
higher than those reported for MC from central Iran 
and Kedda Malaysia [40, 41] whose both reported c′ of 
25 kPa. Likewise, another MC from south China sea [42], 
and Thaniland [43] had c′ of 20 and 18 kPa, respectively. 
Similarly, Pakir [44] and Sunny and Joy [45] also recorded 
much lower value of c′, 10 kPa and 9 kPa for MC collected 
from Johor Malaysia and Kerala India. On the other hand, 
the values of ϕ′ for the MC in this research is lower than 
that MC from Thailand and Johor Malaysia in which ϕ′ was 
equal to 25° and 22°, respectively [43, 44]. The value of the 
ϕ′ was higher than that reported by Ouhadi et al. [40] who 
reported ϕ′ of 15°.

Compression index (cc), swelling index (cs) and initial 
void ratio (eo) are amongst the parameters that can be 
obtained from the consolidation test. The results of this 
research showed that the value for the cc of MC are 0.194. 
Comparison of the consolidation properties of the MC 
in this research and other MC from published literatures 
showed that the cc of the MC is about similar to the MC 
from Ningbo city, China [46] and Johor Malaysia [44] in 
which the cc values were 0.18 and 0.22, respectively. The 
value of the cc is lower than the other MC from Singapore 
[47, 48] in which the value ranges between 0.6 and 1.5. 
Other MC from Kedah Malaysia and Pathumthani Thai-
land were also reported to have relatively higher cc value 
between 0.57 and 1.67 [41, 49].

The value cs of the MC was 0.014, is slightly lower than 
that of MC from Perak Malaysia, Ningbo city China and 
Johor Malaysia in which their cs values were 0.02, 0.035, 
and 0.04, respectively [44, 46, 50]. Singapore MC had cs 

Table 3   Summary of 
experimental results

Parameters Unit Values

Secant stiffness in CD triaxial compression test ( Eref
50

) kN/m2 3400

Tangent stiffness for primary oedometer loading test (Eref
oed

) kN/m2 3600

Unloading/reloading stiffness (Eref
ur
)) kN/m2 12,000

Stress-level of stiffness, m – 0.7
Effective cohion, c′ (kPa) kN/m2 33.58
Effective friction angle, ϕ′ degree 17.51
Dilatancy angle, �′ degree 1.6
Poisson’s ratio, � – 0.2

Reference stress for stiffnesses pref kN/m2 100

K0-value for normal consolidation, Knc – 0.7
Compression index, Cc – 0.1943
Initial void ratio – 1.0282
Saturated unit weight �sat kN/m3 22
Particles sizes ≤ 2 µm % 3
Particles sizes 2–50 µm % 75
Particles sizes ≥ 50 µm % 22
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between 0.06 and 0.16 [47, 48]; similarly, Thailand MC 
has cs values of 0.14 [49]. The value of eo of the MC under 
review was 1.03, and it was slightly higher than the MC 
from Johor which has eo equal to 0.85. The eo value is 
slightly lower than the MC from Ningbo City China and 
Port Harcourt Nigeria which have eo value 1.22 and 0.83 
to 1.5, respectively [46, 51]. Other MC from Thailand, Perak 
Malaysia, Changi Singapore and South China Sea had 
higher eo values that ranges between 1.8 and 3.3 [42, 47, 
49, 50]. The variation in the consolidation properties of the 
various MC is linked to the water content, permeability, 
structural arrangement and porosity of the soil particles 
[52].

The results for the particle size distribution revealed 
that the proportion of fine particles below 63 µm (clay and 
silt) in the MC is about 88%. Ouhadi et al. [40] and Otoko 
and Simon [51] reported that MC from cental Iran and Port 
Harcourt Nigeria had 78% and 91% fine particles. Similarly, 
other MC from China and Thailand had proportion of fine 
particles between 94% and 96% [49, 53, 54]. Pakbaz and 
Alipour [55] and Sunny and Joy [45] both reported 97% 
as the proportion of fine particles in the MC from port of 
Imam Khomeini in southwest of Iran and Thopumpady, 
Ernakulam, Kerala India. The high composition of fine par-
ticles and the presence of swelling mineral like monmoril-
lonite and illite in the MC are some of the reason that make 
MC problematic soil for construction purpose [56, 57].

3.7 � Comparison of the model parameter 
with existing research

Table 4 presents a comparison of the HSM parameters 
with some other models’ parameters reported in current 
studies. Generally, the majority of the models’ parameters 
reported showed that the researchers used MCM. The 
model of shear strength parameters shows that cohe-
sion ranges between 1 kPa and 54 kPa. Granular soil, sand 
and very soft clay are reported to have a lower value of 
cohesion.

The friction angle ranges between 0 and 40 degrees. 
Clay tested under undrained conditions has zero friction 
angle, whilst sand and granular soils have a higher fric-
tion angle. The result also shows that clay soils have zero 
dilatancies, whilst sand has a dilatancy angle that ranges 
between 1 and 10 degrees. By comparing the result of this 
paper and that of previous studies, it can be said that the 
values of the shear strength parameters fall within the 
range of the results reported by many researchers. Simi-
larly, considering the result of stiffness parameters, the val-
ues for E50 and Eoed range between 2 and 50 MPa. Values 
for Eur range between 10 and 150 MPa. Similarly, values 

for parameter m range below 0.5 for sand and between 
0.5 and 1 for clay soil. The said stiffness parameter for the 
current paper also falls within the range reported in prior 
research.

4 � Conclusion

From the results obtained by CD triaxial compression 
test and one-dimensional consolidation tests, the shear 
strength and stiffness parameters of HSM of MC were 
determined. The findings could provide a useful refer-
ence for conducting numerical analyses on similar soil. 
The key results are as follows:

1.	 The values of shear strength parameters obtained are 
c’
ref
, ϕ′ and ψ′, which are equal to 33.58 kPa, 17.51° and 

1.6°, respectively. The stiffness parameters obtained 
are Eref

50
, Eref

oed
, Eref

ur
 and m, which are equal to 3.4 MPa, 

3.6 MPa, 12 MPa and 0.7, respectively.
2.	 A simulation of the laboratory result was conducted 

in the Plaxis 3D software. Comparison of curves for 
deviator stress versus the axial strain of the laboratory 
test results were and numerical results showed good 
fit and that verify the effectiveness of this study.
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