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A generated n-sequence of fuzzy topographic topological mapping, FTTMn, is a combination of n number of FTTM’s graphs. An
assembly graph is a graph whereby its vertices have valency of one or four. A Hamiltonian path is a path that visits every vertex of
the graph exactly once. In this paper, we prove that assembly graphs exist in FTTMn and establish their relations to the
Hamiltonian polygonal paths. Finally, the relation between the Hamiltonian polygonal paths induced from FTTMn to the k-
Fibonacci sequence is established and their upper and lower bounds’ number of paths is determined.

1. Introduction

+e fuzzy topographic topological mapping (FTTM) model
is built to solve the neuromagnetic inverse problem pro-
posed in 1999 [1]. It consists of four topological spaces,
namely, magnetic contour plane (MC), base magnetic plane
(BM), fuzzy magnetic field (FM), and topographic magnetic
field (TM). +e FTTM is developed to determine the lo-
cation of a simulated neuromagnetic current source [2] as
shown in Figure 1.

Later, Ahmad et al. [3] proved that the components of
FTTM, namely, MC, BM, FM, and TM, were homeomor-
phic. +e FTTM’s structures and proofs of their homeo-
morphisms were outlined in [4].

Furthermore, FTTM can also be viewed as a sequence.
+e idea is possible when FTTM version 2 was suc-
cessfully constructed by Rahman et al. [5] as shown in
Figure 2. It was specially designed to solve the multiple
current sources.

In 2006, Yun and Ahmad [4] noticed that if there are two
elements of FTTM (see Figure 2), they will generate
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􏼠 􏼡􏼢 􏼣 − 2 � 14 new elements of FTTM.

(1)

+ese 14 elements of FTTM are (MC, BM, FM, TMI),
(MC, BM, FMI, TM), (MC, BMI, FM, TM), (MI, BM, FM,
TM), (MC, BM, FMI, TMI), (MC, BMI, FMI, TM), (MI,
BMI, FM, TM), (MI, BM, FM, TMI), (MI, BM, FMI, TM),
(MC, BMI, FM, TMI), (MC, BMI, FMI, TMI), (MI, BM,
FMI, TMI), (MI, BMI, FM, TMI), and (MI, BMI, FMI, TM).

Further, Yun [6] conjectured the following.

Conjecture 1. If there exist n elements of FTTM that are
homeomorphic to each other componentwise, the number of
new elements of FTTM that can be generated from these n
elements is
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In order to prove the conjecture, Jamaian et al. [7] in-
troduced the concept of sequence of FTTM as stated below.

Definition 1 (see [7]). Let FTTMi � (MCi,BMi, FMi,TMi)

such that MCi,BMi, FMi,TMi are topological spaces with
MCi � BMi � FMi � TMi. Set of FTTMi is denoted by
FTTM � FTTMi: i � 1, 2, 3, . . . , n􏼈 􏼉. Sequence of nFTTMi of
FTTM is FTTM1, FTTM2, FTTM3, FTTM4, . . . , FTTMn

such that MCi � MCi+1,BMi � BMi+1, FMi � FMi+1 and
TMi � TMi+1.

A sequence of n FTTMi, without loss of generality, ab-
breviated as FTTMn, is illustrated in Figure 3.

Finally, the conjecture was proven [7], and surprisingly
the FTTMn is related to the Pascal triangle.

Elsafi [8] then brought the concept of sequence of FTTM
to another level. +e researcher viewed and furnished se-
quence of FTTM as a graph. +e details of the concept are
presented in the following section.

2. Graph of FTTMn

Sayed and Ahmad introduced for the first time the repre-
sentation of FTTM as a graph in [5]. Further, they defined
the notion of order with respect to sequence of FTTM as
follows.

Definition 2 (see [5]). Let FTTMn � FTTM1,􏼈 FTTM2,

FTTM3, . . . , FTTMn} be a sequence of n-FTTM (see Figure 3);
then,

(1) Ci,jFTTMn are cubes of order two that can be
produced from the combination of FTTMi and
FTTMj in FTTMn for 1≤ i, j≤ n:

i � 1, 2, 3, . . . , n − 1{ },

j � 2, 3, . . . , n{ }.
(3)

(2) |Ci,j FTTMn| 1≤i<j≤n represent the number of cubes of
order two that can be produced from the combi-
nation of FTTMi and FTTMj in FTTMn, such that
i ∈ I, j ∈ J,∀i< j≤ n.

Figure 4 shows the sequence of three terms of FTTM3
such that FTTM3 � (M1, B1, F1, T1), (M2, B2, F2, T2),􏼈

(M3, B3, F3, T3)} and

Ci,j FTTM3 � C1,2 FTTM3, C2,3 FTTM3, C1,3 FTTM3􏽮 􏽯,

Ci,j FTTM3

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1≤ i< J≤3
� 3.

(4)

Figure 5(a) shows that (M1, B1, F3, T3) is an element of
order two since its components appear in two terms of
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Figure 1: FTTM model.
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Figure 2: FTTM1 and FTTM2.
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Figure 3: +e sequence of FTTMn.
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FTTM, namely, in FTTM1 and FTTM3. By replacing B1 with
B2, then (M1, B2, F3, T3) is an element of order three since
its components appear in FTTM1, FTTM2, and FTTM3 as
presented in Figure 5(b).

Later, Ahmad et al. [9] established the relation of se-
quence of FTTMn to k-Fibonacci sequence.

Theorem 1 (see [9]). /e number of cubes produced by the
combination of any three terms in FTTMn; FTTM3/n can be
presented as

FTTM3/n � 􏽘
n

i�3

n + 3 − i

i

⎛⎝ ⎞⎠ −

n + 2 − i

i + 1
⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

�
n(n − 1)(n − 2)

3!
, for n≥ 3.

(5)

For examples, FTTM3/1 � 0 for FTTM1 (see Figure 1),
FTTM3/2 � 0 since FTTM2 is made of two terms FTTM only
and FTTM3/3 � 1 (see Figure 3). +e numbers of FTTM3/n
for n � 1, 2, 3, . . . , 10 are summarized in Table 1.

3. Assembly Graph and Hamiltonian Path

+e concept of an assembly graph was first introduced by
Angeleska et al. [10] for DNA structure through recombi-
nation process.+e formal definition of an assembly graph is
as follows.

Definition 3 (see [10]). An assembly graph is a finite con-
nected graph, where all vertices are rigid vertices of valency 1
or 4. A vertex of valency 1 is called an end point. Let Γ �

(V, E) be a finite graph with a set of vertices V and a set of
edges E. +e number of 4-valent vertices in Γ is denoted with
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M1

F2
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B3 F3

T3

Figure 4: FTTM3.
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Figure 5: Example of FTTM3 with elements of different orders: (a)(M1, B1, F3, T3); (b)(M1, B2, F3, T3).
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|Γ|. +e assembly graph is called trivial if |Γ| � 0 (see
Figure 6).

Angeleska et al. [10] also defined isomorphism between
two assembly graphs. Basically, their isomorphism is a
special case of the ordinary graph isomorphism.

Definition 4 (see [10]). Two assembly graphs Γ1 � (V1, E1)

and Γ2 � (V2, E2) are isomorphic if there is a graph iso-
morphism Φ that preserves the cyclic order of each rigid
vertex. More specifically, for a graph isomorphism
Φ � (Φv,Φe: Γ1⟶Γ2) with Φv � V1⟶ V2 and
Φe � E1⟶ E2, for every rigid vertex(v, (e1, e2, e3, e4)

cyc) in
Γ1, we have

Φv(v), Φv e1( 􏼁,Φv e2( 􏼁,Φv e3( 􏼁,Φv e4( 􏼁( 􏼁
cyc

( 􏼁

� Φv(v), E
cyc Φv(v)( 􏼁( 􏼁.

(6)

Angeleska et al. [10] then defined a composition operator
for two assembly graphs. In particular, the initial vertex of
Γ1 ∘ Γ2 is the initial vertex of Γ1 and the terminal vertex of
Γ1 ∘ Γ2 is the terminal vertex of Γ2.

Definition 5 (see [10]). A composition Γ1 ∘ Γ2 of two (di-
rected simple) assembly graphs Γ1 and Γ2 is the directed
simple assembly graph, obtained by identifying the terminal
vertex of Γ1 with the initial vertex of Γ2.

Furthermore, the following definitions yield some im-
mediate properties for graph FTTMn.

Definition 6 (see [10]). Let Γ be an assembly graph. An open
path in Γ is a homeomorphic image of the open interval (0, 1)
in Γ. An open path is also represented by a sequence:

e1\v0( 􏼁, v1, e2, v2, e3, . . . , vm−1, em, vm, em+1\vm+1( 􏼁( 􏼁, (7)

where vi
′s are vertices in Γ for i ∈ 1, 2, . . . , m{ } such that

vi ≠ vj when i≠ j and ei
′s are edges in Γ for i ∈ 1, 2, . . . , m{ }

with endpoints vi−1 and vi, respectively, such that the initial
vertex of e1 (and possibly part of e1 ) and the terminal vertex
of em+1 (and possibly part of em+1 ) are not included.

An open path is a cycle if e1 � em+1.

Definition 7 (see [10]). A set of pairwise disjoint open paths
c1, . . . , ck􏼈 􏼉 in Γ is called Hamiltonian if their union

contains all 4-valent vertices of Γ. An open path c is called
Hamiltonian if the set {c} is Hamiltonian.

Definition 8 (see [10]). Let Γ be an assembly graph. +e
assembly number of Γ, denoted by An(Γ), is defined by
An(Γ)�min {k | there exists a Hamiltonian set of polygonal
paths c1, . . . , ck􏼈 􏼉 in Γ}.

Definition 9 (see [10]). For a positive integer m, we define
the minimal realization number for m to be Rmin(m)min �

|Γ|: An(Γ) � m{ } where |Γ| is the number of 4-valent ver-
tices in Γ. A graph Γ such that Rmin(m) � |Γ| is called a
realization of Rmin(m).

A Hamiltonian cycle is a cycle which passes through all
vertices and the path ends at the initial vertex, and a
Hamiltonian path is a path that visits every vertex of the
graph exactly once.

A theorem that relates the number of Hamiltonian
polygonal paths in an assembly graph is as follows.

Theorem 2 (see [11]). If Γ is a simple assembly graph with
|Γ| � k and C is the collection of all Hamiltonian polygonal
paths of Γ, then

|C|≤F2k+1 − 1, (8)

where Fk is the kth Fibonacci number.

4. Assembly Graph of FTTMn

A graph of FTTMn as described above contains many
subgraphs including assembly graphs. A new concept called
maximal assembly graph for assembly subgraphs of FTTMn

is introduced.

Definition 10. Let G1, G2, G3, . . . , Gn be subgraphs of G
(V, E) whereby each Giis an assembly graph. A maximal
assembly subgraph of Gi is defined as|ΓGi

| �

max |ΓG1
|, |ΓG2

|, . . . , |ΓGn
|􏽮 􏽯.

Table 2 lists all assembly subgraphs for FTTM3.
Let Γ1 be the assembly subgraph as in Table 2 (5) and Γ2

be the assembly subgraph as in Table 2 (7); then
|Γ1 ∘ Γ2| � |Γ1| + |Γ2| � 2 + 2 � An(Γ1) + An(Γ2).

An FTTM4 produced 23 assembly subgraphs [12].
+en, consider Γ1 � (V1, E1) and Γ2 � (V2, E2) as as-

sembly graphs as depicted in Figures 7(a) and 7(b) whereby
V1 � B1, B2, M2, F2, B3, M3, F3, B5􏼈 􏼉, E1 � (B1, B2),􏼈 (B2,

M2), (B2, F2), (B2, B3), (B3, M3), (B3, F3), (B3, B4)} and
V2 � T1, T2, M2, F2, T3, M3, F3, T4􏼈 􏼉, E2 � (T1, T2),􏼈 (T2,

F2), (T2, M2), (T2, T3), (T3, M3), (T3, F3), (T3, T4)},
respectively.

Now, define Φ � (ΦV,ΦE: Γ1⟶Γ2) such that

Table 1: FTTM3/n for n � 1, 2, 3, . . . , 10

n FTTM3/n

n� 1 0
n� 2 0
n� 3 1
n� 4 4
n� 5 10
n� 6 20
n� 7 35
n� 8 56
n� 9 84
n� 10 120

v1 v0
v1v0

v3

v2

e2

e1

e3

e4

e5 e2

e3
e4e1

Figure 6: Examples of assembly graph [10].
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Table 2: Assembly subgraphs of FTTM3

—No. Geometrical features +e number of 4-valent vertices

1

M1

M2

T1

F1T2

T3
M3

B2

B1

B3

F2

F3

|ΓFTTM3
| � | M2􏼈 􏼉| � 1

2

M1

M2

T1

F1T2

T3
M3

B2

B1

B3

F2

F3

|ΓFTTM3
| � | B2􏼈 􏼉| � 1

3

M1

M2

T1

F1
T2

T3
M3

B2

B1

B3

F2

F3

|ΓFTTM3
| � | F2􏼈 􏼉| � 1

4

M1

M2

T1

F1T2

T3
M3

B2

B1

B3

F2

F3

|ΓFTTM3
| � | T2􏼈 􏼉| � 1
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Table 2: Continued.

—No. Geometrical features +e number of 4-valent vertices

5

M1

M2

T1

F1T2

T3
M3

B2

B1

B3

F2

F3

|ΓFTTM3
| � | M2, B2􏼈 􏼉| � 2

6

M1

M2

T1

F1T2

T3
M3

B2

B1

B3

F2

F3

|ΓFTTM3
| � | B2, F2􏼈 􏼉| � 2

7

M1

M2

T1

F1T2

T3
M3

B2

B1

B3

F2

F3

|ΓFTTM3
| � | F2, T2􏼈 􏼉| � 2

8

M1

M2

T1

F1T2

T3
M3

B2

B1

B3

F2

F3

|ΓFTTM3
| � | M2, T2􏼈 􏼉| � 2

9

M1

M2

T1

F1T2

T3
M3

B2

B1

B3

F2

F3

|ΓFTTM3
| � | M2, B2, F2, T2􏼈 􏼉| � 4
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Φv B1( 􏼁 � T1,

ΦE B1, B2( 􏼁 � T1, T2( 􏼁,

Φv B2( 􏼁 � T2,

ΦE B2, M2( 􏼁 � T2, F2( 􏼁,

Φv M2( 􏼁 � M2,

ΦE B2, F2( 􏼁 � T2, M2( 􏼁,

Φv F2( 􏼁 � F2,

ΦE B2, B3( 􏼁 � T2, T3( 􏼁,

Φv B3( 􏼁 � T3,

ΦE B3, M3( 􏼁 � T3, M3( 􏼁,

Φv M3( 􏼁 � M3,

ΦE B3, F3( 􏼁 � T3, F3( 􏼁,

Φv F3( 􏼁 � F3,

ΦE B3, B4( 􏼁 � T3, T4( 􏼁,

Φv B4( 􏼁 � T4.

(9)

Hence, Γ1 � Γ2.
Clearly, a maximal assembly subgraph for FTTMn is the

resultant graph with edges for the first and the last terms of
FTTM, in particular,FTTM1 and FTTMn are neglected. +e
formal definition of a maximal assembly graph of FTTMn is
stated.

Definition 11. +e maximal assembly graph of FTTMn is

ΓFTTMn
� FTTMn − E FTTM1( 􏼁∪E FTTMn( 􏼁􏼂 􏼃, for n≥ 3,

(10)

and |ΓFTTMn
| is the number of its 4-valent vertices.

From now on, the maximal assembly subgraph of
FTTMn is referred to as an assembly graph of FTTMn until
mentioned otherwise. Some properties on assembly graph of
FTTMn for n � 3 and 4 are summarized as follows.

Theorem 3 (see [13]). /e FTTM3 consists of an assembly
subgraph.

Theorem 4 (see [13]). /e FTTM4 consists of an assembly
subgraph.

+e previous two results can be generalized to any
FTTMn.

Theorem 5 (see [13]). Every sequence of FTTMn contains an
assembly subgraph for n≥ 3.

Furthermore, Ahmad et al. [13] proved that the number
of 4-valent vertices of themaximal assembly graph, ΓFTTMn

, is
as follows.

Theorem 6 (see [13]). |ΓFTTMn+2
| � 4 + (n − 1)4, for n ∈ N.

/e following theorems are immediate.

Theorem 7. Every sequence of FTTMn yields minimal re-
alization, Rmin(m) number, for n≥ 3.

Proof. +eorem 5 guarantees that every sequence of FTTMn

contains an assembly subgraph for n≥ 3. An assembly graph
for sequence of FTTMn is a maximal assembly graph by
Definition 10 whereby |ΓFTTMn

| is the number of its 4-valent

T1

T2

T3

T4

M1

M2

M3

M4

B1

B2

B3

B4

F1

F2

F3

F4

(a)

M1

M2

M3

M4

B1

B2

B3

B4

T1

T2

T3

T4

F1

F2

F3

F4

(b)

Figure 7: Example of FTTM4 with different 4-valent vertices. (a) |ΓFTTM4
| � | B2, B3􏼈 􏼉| � 2. (b) |ΓFTTM4

| � | T2, T3􏼈 􏼉| � 2.
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vertices. By Definition 8, every sequence of FTTMn yields
minimal realization, Rmin(m) number, for n≥ 3. □

Theorem 8. Rmin(FTTMn+2) � 4n for sequence of FTTMn

and n ∈ N.

Proof. +eorem 7 guarantees that every sequence of FTTMn

yields minimal realization, Rmin(FTTMn) number, for n≥ 3.
+eorem 6 states that |ΓFTTMn+2

| � 4 + (n − 1)4 for n ∈ N.
Hence, Rmin(FTTMn+2) � 4 + (n − 1)4 � 4 + 4n − 4 � 4n for
sequence of FTTMn and n ∈ N.

In fact, ΓFTTMn
is a realization of Rmin(FTTMn) since

Rmin(FTTMn) � |ΓFTTMn
| for n≥ 3. Consequently, the fol-

lowing theorem is deduced. □

Theorem 9. Rmin(FTTMn)<Rmin(FTTMn+1) for sequence
of FTTMn and n≥ 3.

Proof.

Rmin FTTMn( 􏼁 � 4n,By Theorem 8

< 4(n + 1)

<Rmin FTTMn+1( 􏼁 for sequence of FTTMn and n≥ 3.

(11)
□

5. Hamiltonian Paths in an Assembly
Graph of FTTMn

In previous section, we proved the existence of an assembly
graph in any sequence of FTTMn for n≥ 3. Hamiltonian
polygonal paths exist in any assembly graph FTTMn as well.

Theorem 10 (see [13]). ΓFTTM3
consists of a set of Hamil-

tonian polygonal paths.

Theorem 11 (see [13]). ΓFTTM4
consists of a set of Hamil-

tonian polygonal paths.

In fact, the existence of Hamiltonian paths in any se-
quence of FTTMn for n≥ 3 is generalized in the following
theorem.

Theorem 12 (see [13]). ΓFTTMn
consists of a set of Hamil-

tonian paths, for n≥ 3.

A coded program in [14] is modified to calculate the
number of all Hamiltonian polygonal paths in an assembly
graph of FTTMn. Table 3 summarizes the number of
Hamiltonian polygonal paths in assembly graphs of FTTMn

for n � 3, 4, 5, . . . , 10.

6. Graph of FTTMn in Association to k-
Fibonacci Sequence

+e following theorem is the highlight of this paper. It links
the work of Sayed and Ahmad [15] and Ahmad et al. [9], i.e.,
the relation of graph of FTTM and Fibonacci number (see
Figure 8).

Theorem 13 (see [12]). Let FTTMn be a sequence of n-FTTM
with |ΓFTTMn

| � k and C be the collection of all sets of
Hamiltonian polygonal paths of FTTMn; then,

|C|≤F2k+1 − 1, (12)

where Fk is the kth Fibonacci number.

Proof. Let FTTMn be a sequence of n-FTTM. By+eorem 5,
FTTMn consists of assembly graphs, namely, ΓFTTMn

. +en,
+eorem 12 guarantees that ΓFTTMn

consists of a set of
Hamiltonian polygonal paths, say C. Using +eorem 2, for
FTTMn, |C|≤F2k+1 − 1 as required whereby Fk is the kth
Fibonacci number.

+us, the connections illustrated in Figure 8 are com-
pleted. A refinement of +eorem 13 is given in the following
corollary. □

Corollary 14 (see [12]). Let FTTMn be a sequence of n-
FTTM for n≥ 3 and C be the set of all Hamiltonian polygonal
paths of FTTMn; then,

|C|≤F8n+1 − 1. (13)

Proof. Let FTTMn be a sequence of n-FTTM for n≥ 3. By
+eorem 5, FTTMn consists of assembly graphs, namely,
ΓFTTMn

. Further, +eorem 6 reveals that
|ΓFTTMn+2

| � 4 + (n − 1)4, for n ∈ N. +eorem 12 guarantees
that ΓFTTMn

consists of a set C, that is, all its Hamiltonian
polygonal paths. By replacing k � 4 + (n − 1)4, for n ∈ N, in
+eorem 13,

|C|≤F2k+1 − 1
� F2(4+(n−1)4)+1 − 1, replace k � 4 +(n − 1)4
� F2(4+4n−4)+1 − 1
� F2(4n)+1 − 1
� F8n+1 − 1.

(14)

Table 4 lists Hamiltonian polygonal paths of FTTMn in
relation to k-Fibonacci numbers for n� 3 to 10.

+e following theorem highlights the lower and upper
bounds for Hamiltonian polygonal paths of FTTMn. □

Theorem 15. Let FTTMn be a sequence of n-FTTM for n≥ 3
and C be the set of all Hamiltonian polygonal paths of
FTTMn; then,

n(n − 1)(n − 2)

3!
≤ |C|≤F8n+1 − 1. (15)

Proof. Definition 11 states that |ΓFTTMn
| is the number of 4-

valent vertices. +ese 4-valent vertices can only exist only for
(at least) three terms of FTTM, i.e., FTTM3/n. But+eorem 1
guarantees that the number of cubes produced by the
combination of any three terms in FTTMn; FTTM3/n is
(n(n − 1)(n − 2)/3!). In other words, the lower bound of
Hamiltonian polygonal paths of FTTMn, C, is obtained as
|C|≥ (n(n − 1)(n − 2)/3!). Corollary 14 states |C|≤F8n+1 − 1
for n≥ 3. Hence, (n(n − 1) (n − 2)/3!)≤ |C|≤F8n+1 − 1 as
required.
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+e following table (see Table 5) lists the lower and upper
bounds for Hamiltonian polygonal paths in FTTMn for n� 3
to 10. □

7. Conclusions

+e aim of this paper is to prove that there exists a rela-
tionship between FTTMn (sequence of n-FTTM) and k-
Fibonacci sequence. We have established the lower and
upper bounds for the established relation.
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Table 3: Hamiltonian polygonal paths in assembly graphs of FTTMn for n � 3, 4, 5, . . . , 10

FTTMn No. of vertices No. of 4-valent vertices Hamiltonian polygonal paths

FTTM3 12 4 8
FTTM4 16 8 144
FTTM5 20 12 1,168
FTTM6 24 16 8,032
FTTM7 28 20 49,312
FTTM8 32 24 281,248
FTTM9 36 28 1,523,920
FTTM10 40 32 7,953,408

Fibonacci

1997

Sayed and
Ahmad
(2013)

Ahmad et al. (2015)
FTTM

Graph Pascal
Triangle

Falcon and
Plaza

(2013)

Jamaian et al.
(2010)

Bolat and Kose
(2010)

Burns et al.
(2013)

Figure 8: +ree mathematical concepts with respect to FTTM.

Table 4: Hamiltonian polygonal paths and F2k+1 for n� 3 to 10.

|ΓFTTMn
| � k F2k+1 |C| |C|≤F2k+1 − 1

|ΓFTTM3
| � 4 F2(4)+1 � F9 � 34 8 8≤ 33

|ΓFTTM4
| � 8 F2(8)+1 � F17 � 1, 597 144 144≤1,596

|ΓFTTM5
| � 12 F2(12)+1 � F25 � 75, 025 1,168 1,168≤ 75,024

|ΓFTTM6
| � 16 F2(16)+1 � F33 � 3, 524, 578 8,032 8,032≤ 3,524,577

|ΓFTTM7
| � 20 F2(20)+1 � F41 � 156, 580, 141 49,312 49,312≤165,580,140

|ΓFTTM8
| � 24 F2(24)+1 � F49 � 7, 778, 742, 049 281,248 281,248≤ 7,778,742,048

|ΓFTTM9
| � 28 F2(28)+1 � F57 � 365, 435, 296, 162 1,523,920 1,523,920≤ 365,435,296,161

|ΓFTTM10
| � 32 F2(32)+1 � F65 � 17, 167, 680, 177, 565 7,953,408 7,953,408≤17,167,680,177,564

Table 5: Lower and upper bounds for Hamiltonian polygonal paths
of FTTMn for n� 3 to 10.

FTTMn FTTM3/n |C| F8n+1 − 1

FTTM3 1 8 33
FTTM4 4 144 1,596
FTTM5 10 1,168 75,024
FTTM6 20 8,032 3,524,577
FTTM7 35 49,312 165,580,140
FTTM8 56 281,248 7,778,742,048
FTTM9 84 1,523,920 365,435,296,161
FTTM10 120 7,953,408 17,167,680,177,564
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