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ABSTRACT Electricity demand forecasting remains a challenging issue for power system scheduling
at varying stages of energy sectors. Short Term load forecasting (STLF) plays a vital part in regulated
power systems and electricity markets, which is commonly employed to predict the outcomes power
failures. This paper presents an intelligent machine learning with evolutionary algorithm based STLF
model, called (IMLEA-STLF) for power systems which involves different stages of operations such as data
decomposition, data preprocessing, feature selection, prediction, and parameter tuning. Wavelet transform
(WT) is used for the decomposition of the time series and Oppositional Artificial Fish Swarm Optimization
algorithm (OAFSA) based feature selection technique to elect an optimal set of features. In order to
improvise the convergence rate of AFSA, oppositional based learning (OBL) concept is integrated into it.
Then, the water wave optimization (WWO) with Elman neural networks (ENN) model is employed for the
predictive process. Finally, inverse WT is applied and obtained the hourly load forecasting data. To validate
the effective predictive outcome of the IMLEA-STLF model, an extensive set of simulations take place on
benchmark dataset. The resultant values ensured the promising results of the IMLEA-STLF model over the
other compared methods.

INDEX TERMS Power systems, short term load forecasting, machine learning, artificial intelligent,
evolutionary algorithms, signal decomposition.

I. INTRODUCTION
Electric power infrastructures are the major support for each
nation and is an essential feature which straightaway influ-
ences the economic status of the nation. The classical elec-
tric power grids are not growing tremendously with respect
to reliability and controllability [1]. The present century is
shifting towards the smart grid power systems which com-
bine advanced sensing, security, data transmission, and con-
trol technologies, that makes the grid highly effective and
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reliable [2]. For satisfying the increasing demand profiles and
minimal power loss in the power systems, electric load pre-
diction becomes essential for utility and power system work-
ers. Several operational choices like power plant economic
dispatches, developing power network and security network
are mainly based on load prediction. Electric load forecasting
majorly comprises 4 kinds namely very short term, short term,
medium term, and long term. Short-term load forecasting
(STLF) is commonly employed to predict load from hours
to weeks. Recent advancements are employed to monitor
the demand response profiles and combination of produc-
tion sources for power systems. Conventionally, engineering
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approaches are applied for forecasting the forthcoming
demand in a manual way using tables and charts. They
majorly considered the weather and calendar impacts [3].

Presently, the development of statistical tools, artificial
intelligence (AI), machine learning (ML), and evolutionary
algorithms (EA) have resulted in the design of accurate and
efficient STLF models [4], [5]. These technologies utilize
intelligent and adaptive components which necessitate recent
techniques for precise generation and demand prediction in
an optimal way. STLF is a major problem for the proper
functioning and dispatch of power system to eliminate the
severe consequence of power failure. It is required for the
commercial functioning of the power system and the foun-
dation of dispatching and creating startup shutdown plan
that acts as a major part in the automated controlling of the
power system [6]. Precise STLF allows the user to select
a proper energy utilization policy and decreases maximum
amount of electricity expenses. It reduces the production cost
and enhances the economic benefits with an intention of
energy saving and emission minimization. Since the power
systems become more complex and the degree of electricity
marketization is additionally improved, the way of rapidly
and precisely predicting the short-term load becomes a hot
research topic in the domain of energy load forecasting [7].

Several STLF approaches have been existed in the lit-
erature [8]. Earlier techniques include time series model,
Box Jenkins model, exponential smoothening, state-space
model, Kalman filtering, and regression. Besides AI based
models like pattern recognition, expert systems, fuzzy expert
systems, fuzzy time-series, neural network (NN), and fuzzy
NN are developed for STLF. In [9], it has been discussed that
the predictive models have enumerated an evolution, that is
affected by the rising complexity of the factors. Therefore,
the ever-increasing significance and complexity of STLF
(particularly in electricity market) require the design of accu-
rate STLF models.

This paper designs an intelligent machine learn-
ing with evolutionary algorithm based STLF model,
called (IMLEA-STLF) for power systems. The presented
IMLEA-STLF model primarily involves Wavelet trans-
form (WT) for decomposing the time series into components.
In addition, the IMLEA-STLF model utilizes oppositional
artificial fish swarm optimization algorithm (OAFSA) based
feature selection technique. The OAFSA technique is derived
in such a way that the convergence rate of the classical
AFSA can be increased by oppositional based learning (OBL)
concept. Moreover, the water wave optimization (WWO)
with Elman neural networks (ENN) model is employed for
the predictive process and the utilization of WWO algo-
rithm helps to significantly increase the predictive out-
comes. Lastly, inverse WT is applied to obtain the hourly
load forecasting data [34]. For examining the improved
predictive results of the IMLEA-STLF technique, a com-
prehensive simulation analysis is performed on a bench-
mark dataset. The key contribution of the study is listed
below.

• An intelligent hybrid STLFmodel consisting inWT fea-
ture selection, ENN, and parameter optimization is pre-
sented. To the best of our knowledge, the IMLEA-STLF
model has been never existed in the literature.

• A novel OAFSA based feature selection technique is
introduced by incorporating the concepts of OBL and
AFSA. The input to the ENN model is generally taking
place using a discretionary manner. But the OAFSA
technique considered the correlation and linear indepen-
dencies to select the input features.

• The parameter optimization of the ENN model employ-
ing WWO algorithm by cross-validation helps to boost
the predictive outcome of the IMLEA-STLF model for
unseen data.

The rest of the sections in the study is planned as given
here. Section 2 reviews the recent state of art STLF models.
Section 3 presents the IMLEA-STLF model and section 4
explains the numerical outcomes. At last, section 5 highlights
the key findings and possible future extensions.

II. PRIOR WORKS ON STLF MODELS
This section reviews the recent state of art in developing
power systems. El-Hendawi and Wang [10] proposed a full
wavelet neural network approach for STLF that incorporates
full wavelet packet transform and NNs. Then, the decom-
posed features are given to the trained NN, and the output of
NN is created as the predicted load. The presented method is
employed for STLF in the electric market of Ontario, Canada.
Yin et al. [11] proposed a deep forest regression (DFR)model
for STLF in power system. This DFRmodel consists of 2 pro-
cesses namely cascade forest and multi grained scanning.
They are efficiently trained by 2 complete random forests
(RF) with default arrangement. Later, the DFR is employed
for the STLF of power system. The forecasting efficiency of
DFR model is related to various intelligent techniques and
traditional regression methods with previous data of 7, 21,
and 40 days. The designed model is composed of 2 models
and provides average level of precision in the power system
prediction process.

Tayab et al. [12] designed a hybridization of STLF model,
integrating the stationarywavelet packet transform andHarris
hawk optimization (HHO) algorithm with feed-forward neu-
ral networks (FFNN). The HHO algorithm is employed
for FFNN as an alternate training method to optimize the
bias and weight of the neurons. The presented method is
employed for predicting load demand in Queensland. In Niu
and Dai [13], a new STLF model which utilizes a de-noising
technique for integrating Grey Relational Analysis (GRA)
and Empirical Mode Decomposition (EMD) was proposed.
This proposed model processed the actual load sequence to
forecast the processing subsequence using Modified Particle
Swarm Optimization (PSO) and least-squares Support Vector
Machine (LSSVM). Later, the ultimate predictive outcomes
are attained after recreating the forecast sequence. The pro-
posed model performs the prediction using empirical mode
decomposition process which is much complex.
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In Tian and Hao [14], a new non-linear integrated fore-
casting method comprised of 3 models (pre-processing,
evaluation, and forecasting modules) is established for
STLF. In contrast with simple data preprocessing of recent
researches, the enhanced data preprocessing model depends
upon longitudinal data selection that is effectively made
in this scheme. In addition, it develops the efficiency of
data preprocessing and later improves the ultimate predic-
tion efficiency. Moreover, the altered SVM is enhanced for
integrating different forecasters and attain ultimate predic-
tions. Raza et al. [15] emerged a new STLF method depend-
ing upon feed forward artificial neural networks (ANNs),
to forecast hour based load demand for many years. Here,
a global best PSO (GPSO) method is employed as a
novel training method to boost the ANN prediction per-
formance. The major setback of the PSO algorithms is it
can fall back to local optimum in high dimensional space
at a lower convergence rate during the process of multiple
iterations.

Liang et al. [16] proposed a hybrid method that integrates
general regression neural network (GRNN), minimal redun-
dancy maximal relevance (mRMR), and empirical mode
decomposition (EMD) with fruit fly optimization algo-
rithm (FOA) called EMD-mRMR-FOA-GRNN. Initially,
a new load sequence is disintegrated to a certain intrinsic
mode function (IMF) and remains with distinct frequencies
to weaken the volatility of sequence affected by the com-
plex features. Later, the mRMR is utilized for attaining opti-
mum feature set by the relation analyses among each IMF
and the feature includes temperature, day types, meteorology
condition, etc. At last, FOA is used for optimizing the smooth
factors in GRNN. The Fruit fly optimization algorithm expe-
riences a major drawback of providing poor solution while
solving the complex objective functions and non linear opti-
mization functions.

For simplifying the data processing method to assist the
real-world application and STLF, [17] utilizes previous load
data as features and considers the time sequence features
of load data concurrently. The multi-temporal spatial scale
technique is employed for processing load by decreasing
the noise error and improving the time sequence features.
Later, a new STLF method called multitemporal spatial scal-
ing based temporal convolutional networks is employed to
achieve forecasting load functions. The presented method
could learn the non-linear feature and time sequences features
of load data concurrently. In Zainab et al. [18], several smart
meter energy datasets are examined for performing STLF.
It uses multi-processing for enhancing the entire runtime of
the forecasting modules by presenting a concurrent task to
every available processor. It establishes the efficiency of pre-
sented technique by selecting machine learning (ML) meth-
ods, scalability, and runtime. Munkhammar et al. [19] exploit
theMarkov chain mixture (MCM) technique for STLF of res-
idential electricity consumption. This method is utilized for
forecasting further step half hour resolution suburban elec-
tricity utilization information from Australia. The outcomes

are related to Persistence Ensemble (PeEn) and Quantile
Regression (QR) as an innovative and simple standard mod-
ule. Massaoudi et al. [20] proposed an efficient calculating
architecture for STLF. The presented method handles with
random variation of the load demand by utilizing stacked gen-
eralization technique. The proposed Machine Learning based
STLF model of forecasting the power estimation solves the
complex optimization function and provides optimal solution
for the input objective functions.

FIGURE 1. Overall process of IMLEA-STLF model.

III. THE PROPOSED STLF MODEL
The proposed STFL model involves a set of different pro-
cesses, as illustrated in Fig. 1. Primarily, the load time series
data is decomposed usingWT and in parallel, every sub-series
is forecasted using a WWO-ENN model. A major problem
that exists in the design of STLF model [30], [36] is the
appropriate choice of input parameters. In case of STLF,
a collection of input parameters hold various intervals of the
load of auto regression part, and exogenous parameters like
weather related variables (e.g., humidity, rainfall, tempera-
ture, wind speed, and so on), time indicator (e.g., hourly and
daily indicator), cost data in electricity market and specific
expert details like load patterns. The presented model using
OAFSA based feature selection technique identifies the opti-
mal candidates to prevent the model from over fitting issues.
The Cross-Validation (CV) technique is applied where the
training process is handled by the validation errors rather
than the training error. Followed by, the WWO optimized
ENN model is applied for prediction process. Lastly, inverse
WT is applied to obtain the hourly load forecasting [35]
data. The detailed processes involved in every component are
given in the subsequent sections. The major advantages of
the proposed IMLEA-STLF are its high level of precision in
estimating the energy requirements for the upcoming weeks
which is made possible by incorporation of Machine Learn-
ing algorithm.
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FIGURE 2. Process of WT decomposition.

A. WT BASED DECOMPOSITION
Electric load series comprise numerous non stationary fea-
tures like trend, modifications in levels and scope, and sea-
sonality, etc. They are the essential and crucial parts of the
load signal which is needed to be considered while dealt with
non-stationary. Themulti-resolution examination byWT sep-
arates the load series to 1-low frequency and a few high
frequency sub-series in the wavelet series. They generally
exhibit improved behavior compared to the actual load series,
and thus, they can be forecasted precisely [21]. Fig. 2 illus-
trates the process of WT decomposition. The WT is majorly
separated into a pair of classes namely continuous wavelet
transform (CWT) and discrete wavelet transforms (DWT).
The CWTW(a,b) of any signal f(x) based on wavelet8(x) can
be represented as

W(a,b) =
1
√
a

∫
+∞

−∞

f (x)φ(x−b/a)dx (1)

where scaling variable a manages the distribution of the
wavelets and translation factor b computes the intermediate
location. 8(x) is otherwise known as mother wavelet. The
CWT is represented as ‘‘A’’ components while the DWT is
represented as ‘‘D’’ components in the Figure 2.

As CWT is accomplished through incessantly scaling and
transforming the mother wavelets, considerable repetitive
detail is produced. So, the mother wavelet undergoes scaling
and translation by the use of a particular scale and position
generally depending upon the power of 2. It is effective as
CWT and is called DWT, as mentioned below.

W(m,n) = 2−(
m
2 )

T−1∑
t=0

f(t)φ( t−n.2m
2m

) (2)

where T denotes the signal length. Here, a fast DWT model
using the filters is employed. The wavelet transformation
decomposition process possesses an advantage of offer-
ing instantaneous localization of samples in frequency and
time domain. The WT decomposition process enables rapid
decomposition process leading to faster computation.

B. DATA PREPROCESSING
During data preprocessing, the input data is provided directly
to the data cleaning process and the missing values are

occupied with the average values of the earlier electricity
data. At the end of pre-processing, the quality of the data is
raised to a specific extent.

C. FEATURE SELECTION USING OAFSA TECHNIQUE
Next to data preprocessing, the feature selection process
takes place using OAFSA technique to increase the predictive
performance. The OAFSA technique is primarily derived
from the concepts of OBL and AFSA.AFSA is an EA based
optimization technique that is simulated as the swarming
behavior of fishes like preying, swarming, and succeeding
with the local search of fish individuals to obtain global
optima [22]. It is a stochastic and parallel searching tech-
nique. Because of the peculiar features of AFSA, it can
be employed to resolve feature selection problem. Consider
a swarm of fishes comprising n particles that moves in a
D-dimension searching area. The AFS can be denoted by
F = {f1, f2, . . . , fn}, where fi is an artificial fish (AF). The
AF denotes a set of features like flexibility, fault tolerance,
and indifferent to the initial value are represented by a binary
vector: X = {x1,x2, . . . , xD}, xi ∈ {0, 1} , i = 1, 2, . . . ,D,
where X is the present state of AF, D indicates the feature
count with the bit values of 0 and 1 representing unselected
and selected features correspondingly. Consider Y as the food
concentration as the objective function value and the visual
scope of AF can be indicated by visual distance. The behav-
iors involved in the AFSA are discussed below.

Following Behavior. If the AF existing state is Xi, it judges
the food concentration of every neighborhood partner. Next,
it determines the state Xj in the existing neighborhood, that
includes maximum food concentration Yj. Assume nf as
neighboring fishes in the present area and n signify the total
AF count. When Yi < Yj and

nf
n < δ, it is denoted that the

state Xj has additional food and is un-crowded, it moves a step
in the direction of the stateXj. Else, it carries out the swarming
behavior.

Swarming Behavior. The AF existing state is Xi, it assem-
bled into group at the time of moving. Consider Xc as the
intermediate place in the visual scope. When Yi < Yc and
nf
n < δ, it is identified that the intermediate place owns
maximum concentration of food and is uncrowded. It shifts a
step in the direction of intermediate place. Else, it carries out
the preying behavior. The middle position Xc ofm fish can be
represented by

Xc (i) =


1,

m∑
k=1

Xk (i) ≥
m
2

0,
m∑
k=1

Xk (i) ≤
m
2

i = 1, 2, 3, . . . ,D (3)

Preying Behavior. If the AF existing state is Xi, it desires
to elect a state Yj arbitrarily in the visual scope. When
Yi < Yj, it goes forward a step. Else, it arbitrarily chooses
a state Xj over its visual distance, and decides whether
the forward criteria get fulfilled. If the AF elects to move
frontward a step, the mutation operator of genetic algorithm
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(GA) is employed. The mutation of the position is employed
for the creation of the trials. When the AF goes forward
the step in the state Xi to the state Xj, then dissimilar bit
count nb is determined. When nb > Sm, then Sm = 3,
else, Sm = nb. Arbitrarily create a digit nr denoting the
mutation count, where nr lies between 1 and Sm. Here, few
indices of the mutation places are chosen and subsequently,
the bits of the chosen places are modified from [0-1] and
vice versa.

FIGURE 3. Flowchart of AFSA.

Random Behavior. When other fish performances are
unexecuted, the AF accomplishes the arbitrary performance.
It is connected to an arbitrary motion for an improved place.
It is equivalent to the preying behavior; however, the mutation
place can hold any place of the state Xi. Fig. 3 demon-
strates the flowchart of AFSA. In AFSA, the OBL concept
is integrated to enhance the quality of the initiated population
solution by the diversification of the solutions.

TheOBLmechanism operates by searching both directions
in the searching area. They encompass original solution and
opposite solution. In the end, the OBL model considers the
fittest solution from the available solutions. Opposite num-
ber: x can be represented by a real number in the range
x ∈ [lb, ub]. The opposite number of x can be symbolized

as x̃ and to compute the value using Eq. (4):

x̃ = lb+ ub− x (4)

The above equation can be generalized to employ in a
searching area with multiple dimensions [23].

For generalization, the location of the searching agents and
the corresponding opposite points can be defined as follows:

x = [x1, x2,x3, . . .xD] (5)

x̃ =
[
x̃1, x̃2, x̃3, . . . ,x̃D

]
(6)

The values of every element in x̃ can be computed by
Eq. (7):

x̃j = lbj + ubj − xj where j = 1, 2, 3, . . . ,D (7)

Here, the FF is f (.). So, when the fitness value f (x̃) of the
opposite solution is superior to f (x) of the actual solution x,
next x = x̃; else x = x. The processes involved in the OAFSA
technique are summarized as follows.

1. Initialization of fish swarm position X as xi where
(i = 1, 2, . . . ,n) .

2. Find the opposite positions of fish population OX as x̃i
where (i = 1, 2, . . . ,n).

3. Choose the nfittest fishes from {X∪OX} and it denotes
the new initial population of AFSA.

On employing the proposed OAFSA technique in feature
selection process, the accuracy of the prediction is improved
concurrently by reducing the training duration and over fitting
of redundant data associated with the features.

D. LOAD PREDICTION USING WWO-ENN MODEL
At the load prediction stage, the ENN model optimized by
WWO algorithm is employed to predict the load in power
systems. The ENN is a dynamic recurrent network. Compared
to the classical models, the ENN model includes a specific
layer called context layer, that allows the network to hold a
capability of learning time varying pattern. Therefore, it is
highly appropriate for discrete time series problems. Without
the inclusion of the context layer, the ENN looks similar to the
classical multilayer network. The context layer is commonly
generated from the outcomes of the hidden layer [24]. Next,
the outcome of the context layer is given as input to the hidden
layer altogether with the subsequent collection of the external
input layer data. The details of the earlier time are saved and
reclaimed by this characteristic. It has a n-dimension external
input layer, the external input vector is defined by x1 (t) =[
x1,1 (t) ,x1,2 (t) , . . . ,x1,n (t)

]T , where t denotes tth input
series. For simplicity, the outcome of the final layer comprises
of n neurons, and the outcome vector of this layer can be
defined by y (t) = [y1 (t) , y2 (t) , . . . ,yn (t)]T . The neurons
that exist among the hidden and context layers correspond to
1-by-1. Therefore, the neuron count in the context layer is m,
that is equivalent to the neuron count in the hidden layer.

The input of hidden layer from the context layer
is denoted by x2 (t) = c (t − 1) = [c1(t − 1),
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c2 (t − 1) , . . . , cm (t − 1)]T . The entire input vector of the
network is represented by

x (t) =
[
xT1 (t) x

T
2 (t)

]T
=
[
x1,1 (t) ,x1,2 (t) , . . . ,x1,n (t) , c1 (t − 1)

, . . . ,cm (t − 1)]T

= [x1 (t) ,x2 (t) , . . . ,xk (t)]T ,

where k = m + n. The matrices between the 3 layers are
defined byW hi (t),W hc (t) andW oh (t) correspondingly. It is
important to recognize the matrix size. By analyzing the
dimensions of all layers, W hi (t) ∈ Rm×n,W hc (t) ∈ Rm×m

and W oh (t) ∈ Rn×m is attained.
Here, y (t) is the real outcome of this network and d (t) is

the anticipated output vector. When the activation function is
selected as the sigmoid, y (t) is determined as follows:

yi (t) = f
(
voi (t)

)
=

1

1+ exp
(
−voi (t)

) , i = 1, 2, . . . , n,

(8)

voi (t) =
m∑
j=1

W oh
ji (t)× hj (t) , i = 1, 2, . . . , n. (9)

The input of the hidden layer includes two portions namely
external and context inputs; so,W h (t) =

[
W hi (t)W hc (t)

]
∈

Rm×k . Using the entire input vector x(t) and the sigmoid
activation function, the outcome of the hidden layer is defined
by

hj (t) = f
(
vhj (t)

)
=

1

1+ exp
(
−vhj (t)

) , j = 1, 2, . . . ,m,

(10)

vhj (t) =
k∑
l=1

W h
jl (t)× xl (t) , j = 1, 2, . . . ,m. (11)

The intention of the network is the minimization of the
error as given below.

E (t) =
||e (t) ||2

2
, (12)

e (t) = d (t)− y (t) . (13)

To reduce (t), every weight matrix can be updated using
Eqs. (14)-(17):

W oh (t + 1) = W oh (t) µ
∂E (t)
∂W oh (t)

= W oh (t)+ µy′ (t) e (t) hT (t) , (14)
(14)

W h (t + 1) = W h (t)− µ
∂E (t)
∂W h (t)

= W h (t)+µh′(t)
[
W oh (t)

]T
y′ (t) e (t) xT (t) ,

(15)

here, µ is the learning rate, and

y′ (t) = diag
[
f ′
(
vo1 (t)

)
f ′
(
vo2 (t)

)
. . .f ′

(
von (t)

)]
∈ Rn×n

(16)

h′ (t) = diag
[
f ′
(
vh1 (t)

)
f ′
(
vh2 (t)

)
. . .f ′

(
vhm (t)

)]
Rm×m

(17)

For determining the learning rate of the ENN model,
the WWO algorithm is applied and thereby the predictive
results are further improved.

In WWO method is stimulated from the concept of shal-
low WW [25]. With no loss of generalization, maximization
problem F and objection function are f , the practical issue
F is related to the shallow WW module. If the population
initialization takes place, for every wave, height of the wave
h is fixed to a constant hmax and wavelength λ is commonly
fixed to 0.5. The fitness value of every WW is inversely
proportional to the vertical distance of seabed; here it could
distinguish that from seabed closer to the WW fitness value
is greater, the h is larger, and the wavelength is lesser. In the
procedure of optimization decision making, the refraction,
propagation, and breaking process of WW take place.

During propagation stage, each WW should be circulated
after every round. It is considered that the actual WW repre-
sents x, x ′ denotes novel wave generated by the propagation
operator, the dimensions of maximum value function F is D,
the propagation process is moved, and every dimensional of
actual WW x is provided as follows

x′ (d) = x (d)+ rand (−1, 1) · λL (d) , (18)

where d ∈ D, rand (−1, 1) is utilized for controlling the prop-
agation stage, and L (d) indicates length of d th dimension
of the searching area. When the length of L (d) is lengthier
compared to the length of d th dimension of the searching
area, then a novel location would be arbitrarily changed as

L (d) = lb (d)+ rand (d) ∗ (ub (d)− lb (d)) , (19)

where lb (d) and ub (d) indicates minimum and maximum
bounds of d th dimensions of the searching area and rand ()
represents arbitrary amount with the extent of zero and one .
Afterward propagating, they calculate fitness of x′; if

f
(
x′
)
> f (x), x′ rather than x in population, simultaneously

the wave height of x′ is changed to hmax; or else, x continued,
and to implement energy dissipation of wave in the procedure
of propagation, it decreases the height by 1. WWO utilizes
the method where the wavelength of every wave is upgraded
afterwards every generation as given by:

λ = λ ∗ α
−
(f (x)−fmin+ε)
(fmax−fmin+ε) , (20)

where α denotes the control variable called wavelength
reduction coefficient, fmax and fmin represents the higher and
lower fitness value amongst the present population, corre-
spondingly, and ε indicates a smaller positive constant for
avoiding division by 0.

At the breaking process, the energy of WWs is contin-
ually increased, the crest increasingly becomes steep, and
the wave breakdowns to a sequence of private waves while
crest velocity exceeding the wave celerity. Afterward prop-
agating, WWO executes breaking on the wave x that is a
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FIGURE 4. Flowchart of WWO algorithm.

novel optimum solution x∗, utilized for improving population
diversity. Fig. 4 showcases the flowchart of the WWO tech-
nique. The complete operation is given as follows. Initially,
they choose arbitrarily k dimension (Win which k denotes
arbitrary amount among one and a predetermined amount
kmax) and execute processes on every chosen dimension of
actual wave x to create every dimension of solitary wave x′ is
given by:

x′ (d) = x (d)+ N (0, 1) · βL (d) , (21)

where N (0, 1) represents Gaussian arbitrary number. The
refraction process executes on a wave their height reduces
to 0 and avoids searching stagnation that follows the phe-
nomenon in which wave ray isn’t perpendicular to the iso-
baths. By refraction, in this manner the arbitrary amount
center halfway among the actual locations and x∗ to estimate
every dimension of novel wave x′, is given by:

x′ (d) = N
(
(x∗ (d)+x (d))

2
,
|x∗(d)− x (d) |

2

)
. (22)

Following refraction, the wave height of x′ is change to
hmax; simultaneously its wavelength is upgraded by:

λ = λ
f (x)
f (x′)

. (23)

The propagation operator creates maximum fitness wave
to make use of smaller region and the lower fitness wave
exploit larger region, the breaking operator improves the
local searching between the significant optimum waves, and
refraction process assists in avoiding searching stagnation
and therefore decreases the early convergence. The proposed
WWO integrated with ENN assists in achieving the accurate

TABLE 1. Comparison of selected features using existing and proposed
algorithm on applied dataset.

prediction of power requirement and the upcoming experi-
mental validation process proves that the prediction and the
actual data are close to each other with a minimum standard
deviation. The high level of accuracy can be achieved by
the Elman Neural Networks which analyze the input waves
which was arbitrarily chosen by the Water Wave Optimiza-
tion (WWO) algorithm.

IV. EXPERIMENTAL VALIDATION
A. IMPLEMENTATION DATA
This section validates the performance analysis of the
IMLEA-STLF method against two benchmark datasets
[26], [27]. The first UKSmartMeter dataset holds several fea-
tures such as household_id, plan used (static/dynamic), date,
time, meter reading, and acorn group. The second benchmark
dataset comprises hourly load and temperature data from
a North American electricity utilization for a duration of
January 1, 1988, to October 12, 1992. In order to ensure the
better efficacy of the IMLEA-STLF method, a sequence of
simulations was performed, and a brief comparative results
analysis take place.

B. RESULTS ANALYSIS
An investigation of the feature selection results by the
OAFSA with other techniques such as cuckoo search algo-
rithm (CSA) [31], social spider optimization (SSO) [32],
and whale optimization algorithm (WOA) [33] take place
in Table 1. From the table, it is evident that the WOA model
has showcased worse feature selection outcomes by attaining
the best cost of 0.0398 and 0.0354 on the applied datasets
1 and 2 respectively. Next to that, the SSO algorithm has
depicted slightly increased results over the WOA by offering
the best cost of 0.0371 and 0.0296 on the applied datasets
1 and 2 respectively. In line with, the CSA model has por-
trayed a reasonable best cost of 0.0113 and 0.0261 respec-
tively. However, the OAFSA technique has demonstrated
superior results with the best cost of 0.0062 and 0.0165 on
the applied datasets 1 and 2 respectively.

Table 2 and Fig. 5 examine the MAPE analysis of the
proposed IMLEA-STLFmodel with the existing technique on
applied the dataset-1 [28, 29]. It is apparent that the ARIMA
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TABLE 2. Result analysis of existing with proposed IMLEA-STLF method
on dataset.

FIGURE 5. Result analysis of IMLEA-STLF model with existing methods.

model has ineffective performance with a higher result of
training, validation, and testing of 38.24%, 50.60%, and
41.14%. Followed by, the RPART model has demonstrated
a slightly better result with training, validation, and testing
of 37.08%, 38.69%, and 38.50%. Along with that, the KNN
model has accomplished even better performance by attain-
ing training, validation, and testing of 33.36%, 35.01%, and
30.27%. Likewise, the RF model has exhibited that manage-
able outcomewith training, validation, and testing of 32.48%,
32.72%, and 32.57%. At the same time, the NNETmodel has
tried to show moderate outcomes with training, validation,
and testing of 32.39%, 32.19%, and 30.28%. Concurrently,
the SVR model has depicted reasonable performance with
training, validation, and testing of 28.73%, 28.95%, and
26.78%. Eventually, the ARIMA-NN model has showcased
near optimal results with training, validation, and testing
of 27.80%, 28.12%, and 25.53%. However, the proposed
IMLEA-STLF model has outperformed the effective result to
compared other methods with minimum training, validation,
and testing of 23.91%, 24.10%, and 21.34%.

From the table 2, the KNN is the K-Nearest Neighbor
(KNN) algorithm,whichworks on the principle of identifying

solutions based on the suggestions from the neighbor power
systems. The RPART is defined as the Recursive Partition-
ing which employs the classification of trees to determine
the electrical features from the datasets. The Random For-
est (RF) model is Machine Learning based algorithm yields
better results without any necessity of hyper parameters and
involves simpler process. The NNET is the Neural Networks
based energy forecasting algorithm which prepares the pro-
cessed data to perform data classification and evaluates the
accuracy of the forecasting model. Finally the Support Vector
Regression (SVR) algorithm which relies on Machine Learn-
ing technology, which can be employed for forecasting and
determining the solutions for the objective functions. The
aforementioned algorithms were considered as the bench-
marking algorithm and the performance of the proposed
model is compared with these benchmarking algorithms to
prove its superiority. The predictive results obtained by the
presented IMLEA-STLF model with other methods on the
Winter and Summer Month data are provided in Table 3 and
Fig. 6. The obtained results portrayed that the ISO algorithm
has exhibited least performance over the other methods with
the MAPE of 2.86% and 3.55% on Winter and Summer
months data respectively. Besides, the single SVM model
has portrayed slightly enhanced outcome with the MAPE
of 2.38% and 3.03% on Winter and Summer months data
respectively.

FIGURE 6. MAPE analysis of IMLEA-STLF model in winter and summer
month.

The predictive results obtained by the presented
IMLEA-STLF model with other methods on the Winter and
Summer Month data are provided in Table 3 and Fig. 6.
The obtained results portrayed that the ISO algorithm has
exhibited least performance over the other methods with
the MAPE of 2.86% and 3.55% on Winter and Summer
months data respectively. Besides, the single SVM model
has portrayed slightly enhanced outcome with the MAPE
of 2.38% and 3.03% on Winter and Summer months data
respectively.
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TABLE 3. Results of year 2004 on winter and summer month.

Moreover, the hybrid network has managed to display
moderate results with the MAPE of 1.82% and 2.29% on
Winter and Summer months data respectively. Furthermore,
a reasonable MAPE of 1.68% and 2.02% has been accom-
plished by the WT-NEA technique. At last, the presented
IMLEA-STLF technique has resulted in the MAPE of 1.43%
and 1.98% on Winter and Summer months data respectively.

FIGURE 7. MAPE analysis of IMLEA-STLF model ON December and July
period.

A detailed MAPE analysis of the IMLEA-STLF model
on the load forecasting of December and July period
with Neural Networks for Electricity Prices Forecasting
(NN-EPF) and Wavelet Transform and Neuro-Evolutionary
Algorithm (WT-NEA) is given in Table 4 and Fig. 7. From
the obtained results, it is apparent that the IMLEA-STLF
model has proficiently predicted the load over the other com-
pared methods. For instance, with 1 hour ahead on December
(1-31), the IMLEA-STLF model has resulted in a minimal
MAPE of 0.92 whereas the NN-EPF and WT-NEA mod-
els have demonstrated maximum MAPE of 1.17 and 0.94
respectively. Similarly, with 6 hours ahead on December
(1-31), the IMLEA-STLF approach has resulted in a minimal
MAPE of 2.14 whereas the NN-EPF and WT-NEA meth-
ods have demonstrated superior MAPE of 3.48 and 2.56
correspondingly. Concurrently, with 1 hour ahead on July
(1-31), the IMLEA-STLF model has resulted in a minimal
MAPE of 0.53 whereas the NN-EPF and WT-NEA models
have exhibited higher MAPE of 0.73 and 0.61 respectively.
At last, with 6 hours ahead on July (1-31), the IMLEA-STLF
technique has resulted in a lesser MAPE of 1.32 whereas the

TABLE 4. Result analysis of MAPE values (%) of STFL model on
December and July period.

NN-EPF and WT-NEA models have demonstrated maximal
MAPE of 1.57 and 1.41 correspondingly.

FIGURE 8. Average MAPE analysis of IMLEA-STLF method.

An average MAPE analysis of the IMLEA-STLF model
with other existing methods on last two years’ data is carried
out in Table 5 and Fig. 8. From the obtained results, it is
ensured that the IMLEA-STLF model has accomplished
enhanced predictive outcomes over the other methods. For
instance, with the one hour ahead, the IMLEA-STLF model
has resulted in a lower average MAPE of 0.96 whereas
the M1, M2, M3, M4, and WT-NEA models have accom-
plished a higher average MAPE of 2.10, 1.10, 1.12, 1.99, and
0.99respectively. At the same time, with the one day ahead,
the IMLEA-STLF method has resulted in a lower average
MAPE of 2.01 whereas the M1, M2, M3, M4, and WT-NEA
models have accomplished a superior averageMAPE of 3.58,
3.41, 3.16, 2.64, and 2.04 correspondingly.

After examining the obtained tables and figures, it is evi-
dent that the IMLEA-STLF model can be employed as an
appropriate tool to predict the load in power systems. The
enhanced predictive performance of the IMLEA-STLFmodel
is obtained due to the inclusion of OAFSA based feature
selection, OBL based population initialization, and WWO
based learning rate scheduling of ENN model.
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TABLE 5. Result analysis of existing with proposed IMLEA-STLF method
on average mape (%) for the last two years data.

V. CONCLUSION
This paper has developed a novel IMLEA-STLF model
to forecast the load for power systems. The presented
IMLEA-STLF model involves different stages of operations
such as WT based data decomposition, data preprocessing,
OAFSA based feature selection, ENN based prediction, and
WWObased parameter tuning. TheOAFSA technique selects
the optimal features from the candidate set of input parame-
ters comprising distinct intervals of the load as the autoregres-
sion part, and exogenous parameters. Besides, the utilization
of WWO algorithm in the design of ENN model helps to
significantly increase the predictive outcomes. For assess-
ing the improved predictive results of the IMLEA-STLF
model, a comprehensive simulation analysis is performed
on a benchmark dataset. The resultant values ensured the
promising results of the IMLEA-STLF model over the other
compared methods. The proposed IMLEA- STLF model pre-
dicts the requirement of the power system for the upcoming
days and weeks precisely than the existing methodologies.
The high precision results are achieved by performing the
multi level decomposition method which is absent in exist-
ing methodologies. Therefore, the IMLEA-STLF model can
be employed as an appropriate tool for load forecasting in
power systems. In future, the predictive outcomes of the
IMLEA-STLF model could be increased by deep learning
and hyper parameter optimization techniques.
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