# Extended Graph of the Fuzzy Topographic Topological Mapping Model 

Muhammad Zillullah Mukaram, Tahir Ahmad *(©) Norma Alias, Noorsufia Abd Shukor (D) and Faridah Mustapha

Department of Mathematical Sciences, Faculty of Science, University Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; Zmmuhammad@utm.my (M.Z.M.); normaalias@utm.my (N.A.); noorsufia2@graduate.utm.my (N.A.S.); faridahmustapha@utm.my (F.M.)

* Correspondence: tahir@utm.my

Citation: Mukaram, M.Z.; Ahmad, T.; Alias, N.; Shukor, N.A.; Mustapha, F. Extended Graph of the Fuzzy Topographic Topological Mapping Model. Symmetry 2021, 13, 2203.
https: / /doi.org/10.3390/ sym13112203

Academic Editors:
Magdalena Lemańska and
Alice Miller

Received: 15 October 2021
Accepted: 11 November 2021
Published: 18 November 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:/ / creativecommons.org/licenses/by/ 4.0/).


#### Abstract

Fuzzy topological topographic mapping (FTTM) is a mathematical model which consists of a set of homeomorphic topological spaces designed to solve the neuro magnetic inverse problem. A sequence of $F T T M, F T T M_{n}$, is an extension of $F T T M$ that is arranged in a symmetrical form. The special characteristic of FTTM, namely the homeomorphisms between its components, allows the generation of new FTTM. The generated FTTMs can be represented as pseudo graphs. A graph of pseudo degree zero is a special type of graph where each of the FTTM components differs from the one adjacent to it. Previous researchers have investigated and conjectured the number of generated FTTM pseudo degree zero with respect to $n$ number of components and $k$ number of versions. In this paper, the conjecture is proven analytically for the first time using a newly developed grid-based method. Some definitions and properties of the novel grid-based method are introduced and developed along the way. The developed definitions and properties of the method are then assembled to prove the conjecture. The grid-based technique is simple yet offers some visualization features of the conjecture.


Keywords: FTTM; graph; pseudo degree; sequence

## 1. Introduction

Fuzzy topographic topological mapping (FTTM) [1] was introduced to solve the neuro magnetic inverse problem, particularly with regards to the sources of electroencephalography (EEG) signals recorded from epileptic patients. Originally, the model was a 4-tuple of topological spaces and mappings. The topological spaces are the magnetic plane (MC), base magnetic plane (BM), fuzzy magnetic field (FM) and topographic magnetic field (TM). The third component of FTTM, FM, is a set of three tuples with the membership function of its potential reading obtained from a recorded EEG. FTTM is defined formally as follows (see Figure 1).
$M C=\left\{(x, y, 0), \beta_{z} \mid x, y, \beta_{z} \in \mathbb{R}\right\}$

$$
=\left\{(x, y)_{0}, \beta_{z} \in \mathbb{R}\right\}
$$

$$
\vdots
$$

$$
\begin{aligned}
B M & =\left\{(x, y, h), \beta_{z} \mid x, y, \beta_{z} \in \mathbb{R}\right. \\
& =\left\{(x, y)_{h}, \mid x, y, \beta_{z} \in \mathbb{R}\right\}
\end{aligned}
$$

$$
F M=\left\{(x, y, h), \mu_{\beta} \mid x, y, h \in \mathbb{R}, \mu_{\beta} \in(0,1)\right\}
$$

$$
=\left\{(x, y)_{h}, \mu_{\beta} \mid x, y, h \in \mathbb{R}, \mu_{\beta} \in(0,1)\right\}
$$

Figure 1. The FTTM.

Definition 1. Ref. [1] Let $F T T M_{i}=\left(M C_{i}, B M_{i}, F M_{i}, T M_{i}\right)$ such that $M C_{i}, B M_{i}, F M_{i}, T M_{i}$ are topological spaces with $M C_{i} \cong B M_{i} \cong F M_{i} \cong T M_{i}$. Set of $F T T M_{i}$ is denoted by
$F T T M=\left\{\right.$ FTTM $\left._{i}: i=1,2,3, \ldots, n\right\}$. Sequence of $n F T T M_{i}$ of FTTM is FTTM $_{1}$, FTTM $_{2}$, $F T T M_{3}, F T T M_{4}, \ldots, F T T M_{n}$ such that $M C_{i} \cong M C_{i+1}, B M_{i} \cong B M_{i+1}, F M_{i} \cong F M_{i+1}$ and $T M_{i} \cong T M_{i+1}$.

Furthermore, a sequence of FTTM, $F T T M_{n}$, is an extension of $F T T M$ and illustrated in Figure 2. It is arranged in a symmetrical form, since the model can accommodate magnetoencephalography (MEG) signals as well as image data due to its homeomorphism.


Figure 2. The sequence of $F T T M_{n}$.

## 2. Generalized FTTM

Generally, the FTTM structure can also be expanded for any $n$ number of components.
Definition 2. Ref. [2] A FTTM is defined as

$$
\begin{equation*}
\operatorname{FTTM}_{n}=\left\{\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}: A_{1} \cong A_{2} \cong \ldots \cong A_{n}\right\} \tag{1}
\end{equation*}
$$

such that $A_{1}, A_{2}, \ldots, A_{n}$ are the components of $\mathrm{FTTM}_{n}$

The same generalization can be applied to any $k$ number of FTTM versions as well, denoted as $F T T M_{n}^{k}$. Without the loss of generality, the collection of the $k$ version of FTTM, in short FTTM $M_{n}^{k}$, is now simply called as a sequence of FTTM unless otherwise stated.

Definition 3. Ref. [2] A sequence of $k$ versions of $F T T M_{n}$ denoted by $* F T T M_{n}^{k}$ such that

$$
\begin{equation*}
* F T T M_{n}^{k}=\left\{\operatorname{FTTM}_{n}^{1}, F T T M_{n}^{2}, \ldots, F T T M_{n}^{k}\right\} \tag{2}
\end{equation*}
$$

where $F T T M_{n}^{1}$ is the first version of $F T T M_{n}$, the $F T T M_{n}^{2}$ is the second version of $F T T M_{n}$ and so forth.

Obviously, a new FTTM can be generated from a combination of components from different versions of FTTM due to their homeomorphisms.

Definition 4. Ref. [2] A new FTTM generated from $* F T T M_{n}^{k}$ is defined as

$$
\begin{equation*}
F=\left\{A_{1}^{m_{1}}, A_{2}^{m_{2}}, \ldots, A_{n}^{m_{n}}\right\} \in F T T M \tag{3}
\end{equation*}
$$

where $0 \leq m_{1}, m_{2}, \ldots, m_{n} \leq k$ and $m_{i} \neq m_{j}$ for at least one $i, j$.

A set of elements generated by $* F T T M_{n}^{k}$ is denoted by $G\left(* F T T M_{n}^{k}\right)$. Mukaram et al. [2] showed that the number of $F T T M$ can be determined from $* F T T M_{4}^{k}$ using the geometrical features of its graph representation.

Theorem 1. Ref. [2] The number of generated FTTM that can be created from $* F T T M_{4}^{k}$ is

$$
\begin{equation*}
\left|G\left(* \operatorname{FTTM}_{4}^{k}\right)\right|=k^{4}-k \tag{4}
\end{equation*}
$$

Theorem 1 is then extended to include $n$ number of $F T T M$ components.
Theorem 2. Ref. [2] The number of generated FTTM that can be created from $* F T T M_{n}^{k}$ is

$$
\begin{equation*}
\left|G\left(* \operatorname{FTTM}_{n}^{k}\right)\right|=k^{n}-k . \tag{5}
\end{equation*}
$$

The following example is presented to illustrate Theorem 2.
Example 1. Consider $* F T T M_{3}^{2}$, with $F T T M_{3}^{1}=\left\{A_{1}^{1}, A_{2}^{1}, A_{3}^{1}\right\}$ and $F T T M_{3}^{2}=\left\{A_{1}^{2}, A_{2}^{2}, A_{3}^{2}\right\}$, then $G\left(* F T T M_{3}^{2}\right)=\left\{\left\{A_{1}^{1}, A_{2}^{2}, A_{3}^{1}\right\},\left\{A_{1}^{1}, A_{2}^{1}, A_{3}^{2}\right\},\left\{A_{1}^{2}, A_{2}^{1}, A_{3}^{1}\right\},\left\{A_{1}^{2}, A_{2}^{2}, A_{3}^{1}\right\}\right.$, $\left.\left\{A_{1}^{2}, A_{2}^{1}, A_{3}^{2}\right\},\left\{A_{1}^{1}, A_{2}^{2}, A_{3}^{2}\right\}\right\}$ that is $\left|G\left(* F T T M_{3}^{2}\right)\right|=2^{3}-2=6$ as given by Theorem 2.

## 3. Extended Generalization of FTTM

There are many studies on ordinary and fuzzy hypergraphs available in the literature such as [3,4]. However, $* F T T M_{n}^{k}$ is an extended generalization of $F T T M$ that is represented by a graph of a sequence of $k$ number of polygons with $n$ sides or vertices. The polygon is arranged from back to front where the first polygon represents $F T T M_{n}^{1}$, the second polygon represents $F T T M_{n}^{2}$ and so forth. An edge is added to connect $F T T M_{n}^{1}$ to the $F T T M_{n}^{2}$ component wisely. A similar approach is taken for $F T T M_{n}^{2}, F T T M_{n}^{3}$ and the rest (Figure 3).


Figure 3. Graph of $* F T T M_{n}^{k}$.
When a new FTTM is obtained from $* F T T M_{n}^{k}$, it is then called a pseudo-graph of the generated FTTM and plotted on the skeleton of $* F T T M_{n}^{k}$. A generated element of
a pseudo-graph consists of vertices that signify the generated FTTM and edges which connect the incidence components. Two samples of pseudo-graphs are illustrated in Figure 4.


Figure 4. Pseudo graph: (a) $\left\{A_{1}^{1}, A_{2}^{1}, A_{3}^{2}\right\}$; (b) $\left\{A_{1}^{1}, A_{2}^{2}, A_{3}^{2}\right\}$ of $* F T T M_{3}^{2}$.
Another concept related closely to the pseudo-graph is the pseudo degree. It is defined as the sum of the pseudo degree from each component of the FTTM. The pseudo degree of a component is the number of other components that are adjacent to that particular component.

Definition 5. Ref. [2] The deg $:$ FTTM $\rightarrow Z$ defines the pseudo degree of the FTTM component. It maps a component of $F \in G\left(* F T T M_{n}^{k}\right)$ to an integer

$$
\operatorname{deg}_{p}\left(A_{j}^{m_{j}}\right)=\left\{\begin{array}{rr}
0 ; & m_{j-1} \neq m_{j} \neq m_{j+1}  \tag{6}\\
1 ; & m_{j-1}=m_{j} \text { or } m_{j}=m_{j+1} \\
2 ; & m_{j-1}=m_{j}=m_{j+1}
\end{array}\right.
$$

for $A_{j}^{m_{j}} \in F T T M$.
Definition 6. Ref. [2] The $\operatorname{deg}_{p} G: G\left(* F T T M_{n}^{k}\right) \rightarrow Z$ defines the pseudo degree of the FTTM graph. Let $F \in$ FTTM

$$
\begin{equation*}
\operatorname{deg}_{p} G(F)=\sum_{i=1}^{n} \operatorname{deg}_{p} A_{i}^{m_{i}} \tag{7}
\end{equation*}
$$

where $F=\left\{A_{1}^{m_{1}}, A_{2}^{m_{2}}, \ldots, A_{n}^{m_{n}}\right\} \in G\left(*\right.$ FTTM $\left._{n}^{k}\right)$.
Definition 7. Ref. [2] The set of elements generated by $* F T T M_{n}^{k}$ that have pseudo degree zero is

$$
\begin{equation*}
G_{0}\left(* F T T M_{n}^{k}\right)=\left\{F \in G\left(* F T T M_{n}^{k}\right) \mid \operatorname{deg}_{p} G(F)=0\right\} \tag{8}
\end{equation*}
$$

From now on,

1. $G_{0}\left(* F T T M_{n}^{k}\right)$ is simply denoted by $G_{0}\left(F T T M_{n}^{k}\right)$.
2. $\# G_{0}\left(F T T M_{n}^{k}\right)$ denotes the cardinality of the set $G_{0}\left(F T T M_{n}^{k}\right)$.

Example 2. (See Figure 5).

$$
\begin{align*}
F T T M_{4}^{3}= & \left\{\left(A_{1}, A_{2}, A_{3}, A_{4}\right),\left(B_{1}, B_{2}, B_{3}, B_{4}\right),\left(C_{1}, C_{2}, C_{3}, C_{4}\right)\right\} \\
G_{0}\left(F T T M_{4}^{3}\right)= & \left\{\left(A_{1}, B_{2}, A_{3}, C_{4}\right),\left(A_{1}, B_{2}, C_{3}, B_{4}\right),\left(A_{1}, C_{2}, A_{3}, B_{4}\right),\left(A_{1}, C_{2}, B_{3}, C_{4}\right),\right. \\
& \left(B_{1}, A_{2}, B_{3}, C_{4}\right),\left(B_{1}, A_{2}, C_{3}, A_{4}\right),\left(B_{1}, C_{2}, B_{3}, A_{4}\right),\left(B_{1}, C_{2}, A_{3}, C_{4}\right),  \tag{9}\\
& \left.\left(C_{1}, B_{2}, C_{3}, A_{4}\right),\left(C_{1}, B_{2}, A_{3}, B_{4}\right),\left(C_{1}, A_{2}, C_{3}, B_{4}\right),\left(C_{1}, A_{2}, B_{3}, A_{4}\right)\right\} \\
G_{0}\left(F T T M_{4}^{3}\right)= & 12 .
\end{align*}
$$



Figure 5. $F T T M_{4}^{3}$.

Previously, Elsafi proposed a conjecture in [5] related to the graph of pseudo degree.

## Conjecture 1. Ref. [5]

$$
\mid G_{0}^{3}\left(\text { FTTM}_{n}^{3}\right) \left\lvert\,=\left\{\begin{array}{l}
4\left|G_{0}^{3}\left(F T T M_{n-2}^{3}\right)\right|+12, \text { when } n \text { is even }  \tag{10}\\
4 \mid G_{0}^{3}\left(\text { FTTM }_{n-2}^{3}\right) \mid+6, \text { when } n \text { is odd }
\end{array}\right.\right.
$$

In order to observe some patterns that may appear from the proposed conjecture, Mukaram et al. [2] have developed an algorithm to compute $\left|G_{0}\left(F T T M_{n}^{3}\right)\right|$ in order to prove the conjecture analytically. A flowchart on $\left|G_{0}\left(* F T T M_{3}^{n}\right)\right|$ is sampled in Figure 6.


Figure 6. Flowchart for determining $\left|G_{0}\left(* F T T M_{3}^{n}\right)\right|$.
The researchers generated all $F T T M$ combinations for $3 \leq k \leq 4,4 \leq n \leq 15$ and were able to isolate graphs with pseudo degree zero, which are listed below (Table 1).

Table 1. $\left|G_{0}\left(F T T M_{n}^{k}\right)\right|$ for $4 \leq n \leq 15$ and $k=3,4$.

| $n$ | $\left\|\boldsymbol{G}_{0}\left(\boldsymbol{F T T M}_{n}^{3}\right)\right\|$ | $\left\|\boldsymbol{G}_{0}\left(\boldsymbol{F T T M}_{n}^{4}\right)\right\|$ |
| :---: | :---: | :---: |
| 4 | 12 | 24 |
| 5 | 30 | 120 |
| 6 | 60 | 480 |
| 7 | 126 | 1680 |
| 8 | 252 | 5544 |
| 9 | 510 | 17,640 |
| 10 | 1020 | 54,960 |
| 11 | 2046 | 168,960 |
| 12 | 4092 | 515,064 |
| 13 | 8190 | $1,561,560$ |
| 14 | 16,380 | $4,717,440$ |
| 15 | 32,766 | $14,217,840$ |

The researchers then simulated $\left|G_{0}\left(F T T M_{n}^{k}\right)\right|$ for some values of $k$ as well [2]. The number of graphs of pseudo degree zero for $2 \leq k \leq 8$ and $2 \leq n \leq 10$ are listed in Table 2.

Table 2. $\left|G_{0}\left(F T T M_{n}^{k}\right)\right|$ for $2 \leq k \leq 8$ and $2 \leq n \leq 10$.

| $\boldsymbol{k} / \boldsymbol{n}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 |
| 3 | 0 | 6 | 12 | 30 | 60 | 126 | 252 | 510 | 1020 |
| 4 | 0 | 0 | 24 | 120 | 480 | 1680 | 5544 | 17,640 | 54,960 |
| 5 | 0 | 0 | 0 | 120 | 1080 | 6720 | 35,280 | 168,840 | 763,560 |
| 6 | 0 | 0 | 0 | 0 | 720 | 10,080 | 90,720 | 665,280 | $4,339,440$ |
| 7 | 0 | 0 | 0 | 0 | 0 | 5040 | 100,800 | $1,239,840$ | $12,096,000$ |
| 8 | 0 | 0 | 0 | 0 | 0 | 0 | 40,320 | $1,088,640$ | $17,539,200$ |

## 4. Grid of FTTM

An alternative presentation of a sequence of FTTM, called an FTTM grid, is briefly overviewed. It provides a different perspective of the structure of FTTM. Instead of a polygon representation for each version of FTTM, a straight line is now used. The components of $F T T M_{n}$ are arranged on a horizontal line of vertices and the lines represent the homeomorphisms between the components of $F T T M_{n}$. The only exception is the homeomorphism between the first and last components of $F T T M_{n}, A_{1}$ and $A_{n}$, respectively. Two open segments on the left of $A_{1}$ and on the right of $A_{n}$ are used to represent the homeomorphism between them. A vertical line is added to represent a homeomorphism between two components of different versions; hence, a grid is created (see Figure 7).


Figure 7. A graph representation of $* F T T M_{n}^{k}$ as a grid.
There are four advantages when $F T T M$ is represented as a grid instead of a sequence of polygon.

- It is represented in two dimensions; therefore, it reduces the complexity of the structure.
- The process of adding a new component is easier than in a sequence of polygon.
- It can take any number of components by adding the number of vertices at the end of the grid.
- The homeomorphism between two components of the same version is presented as a horizontal edge, whereas the homeomorphism between two components of two different versions is represented by a diagonal edge (see Figure 8). These arrangements are necessary to produce the graph of pseudo degree zero.


## Horizontal Edge



Figure 8. Generated element $\left\{A_{1}^{1}, A_{2}^{1}, A_{3}^{2}\right\}$ on $* F T T M_{3}^{2}$ grid.
Furthermore, Zilullah et al. [2] introduced some operations and properties with respect to the FTTM grid. They are recalled, summarized and listed below for convenience. Then, we will move on to the next main section of the paper wherein Conjecture 1 is finally proven as a theorem.

Definition 8. Let $F \in G\left(* F T T M_{n}^{k}\right)$ and $F=\left\{A_{1}^{m_{1}}, A_{2}^{m_{2}}, \ldots, A_{n}^{m_{n}}\right\}$. A block $B$, where $B \subseteq F$ is defined as

$$
\begin{equation*}
B=\left\{A_{i}^{m_{i}}, A_{i+1}^{m_{i+1}}, A_{i+2}^{m_{i+2}}, \ldots, A_{i+j}^{m_{i+j}}\right\}, 1 \leq i<n, 0<j \leq n-1 \tag{11}
\end{equation*}
$$

$B\left(G\left(* F T T M_{n}^{k}\right)\right)$ is the set of $F T T M$ blocks that can be generated from $G\left(* F T T M_{n}^{k}\right)$.
Definition 9. The function $C_{i}^{j}$ is defined as $C: G\left(* F T T M_{n}^{k}\right) \rightarrow B\left(G\left(* F T T M_{n}^{k}\right)\right)$ for $F \in$ $G\left(* F T T M_{n}^{k}\right)$,

$$
\begin{equation*}
B=\left\{A_{i}^{m_{i}}, A_{i+1}^{m_{i+1}}, A_{i+2}^{m_{i+2}}, \ldots, A_{i+j}^{m_{i+j}}\right\}, 1 \leq i<n, 0<j \leq n-1 \tag{12}
\end{equation*}
$$

for $1<i<j<n$, where $F=\left\{A_{1}^{m_{1}}, A_{2}^{m_{2}}, A_{3}^{m_{3}}, \ldots, A_{n}^{m_{n}}\right\}$.
Definition 10. The operation $\oplus$ is a mapping $\oplus: B\left(G\left(* F T T M_{n}^{k}\right)\right) \times B\left(G\left(* F T T M_{n}^{k}\right)\right) \rightarrow$ $B\left(G\left(* F T T M_{n}^{k}\right)\right)$ such that

$$
\begin{equation*}
\left\{A_{i}^{m_{i}}, A_{i+1}^{m_{i+1}}, \ldots, A_{k}^{m_{k}}\right\} \oplus\left\{A_{p}^{m_{p}}, A_{p+1}^{m_{p+1}}, \ldots, A_{j}^{m_{j}}\right\}=\left\{A_{i}^{m_{i}}, A_{i+1}^{m_{i+1}}, \ldots, A_{j}^{m_{j}}\right\} \tag{13}
\end{equation*}
$$

when $k=p$ and $m_{k}=m_{p}$, then $B_{3}=B_{1} \oplus B_{2}=\left\{A_{i}^{m_{i}}, A_{i+1}^{m_{i+1}}, \ldots, A_{j}^{m_{j}}\right\}$.
Definition 11. An indexed FTTM $\underset{j=i}{G}\left(* F T T M_{n}^{k}\right)$ is defined as

$$
\begin{equation*}
\underset{m_{j}=i}{G}\left(* F T T M_{n}^{k}\right)=\left\{F \in G\left(* F T T M_{n}^{k}\right) \mid A_{j}^{m_{j}} \in F, m_{j}=i\right\} \tag{14}
\end{equation*}
$$

A generated FTTM is then divided into blocks of three components. A set of blocks is defined as follows.

Definition 12. A set of blocks $B_{i j k}$ is defined as

$$
\begin{equation*}
B_{i j k}=\left\{B \in G\left(* F T T M_{n}^{k}\right) \mid B=\left\{A_{p}^{m_{p}}, A_{p+1}^{m_{p+1}}, A_{p+2}^{m_{p+2}}\right\}, m_{p}=i, m_{p+1}=j, m_{p+2}=k\right\} \tag{15}
\end{equation*}
$$

Since this study is concerned with graphs of pseudo degree zero, the sets that need to be taken into consideration are the ones with diagonal paths, namely, $B_{121}, B_{121}, B_{123}, B_{131}$, $B_{132}, B_{212}, B_{213}, B_{232}, B_{231}, B_{321}, B_{312}, B_{323}$ and $B_{313}$.

Lemma 1. Let $F \in * F T T M_{n}^{k}$ and $F=\left\{A_{1}^{m_{1}}, A_{2}^{m_{2}}, \ldots, A_{n}^{m_{n}}\right\}$. For any $A_{j}^{m_{j}} \in F, 1<j<n$, then $\operatorname{deg}_{p}\left(A_{j}^{m_{j}}\right)=0$ if $A_{j}^{m_{j}}$ is connected to $A_{j-1}^{m_{j-1}}$ and $A_{j+1}^{m_{j+1}}$ by a diagonal path.

Theorem 3. If $F \in G_{d}\left(* F T T M_{n}^{3}\right)$, where $G_{d}\left(* F T T M_{n}^{3}\right)$ is the set of generated FTTMs with a diagonal path, then $\operatorname{deg}_{p} G(F)=2$ or 0 .

Corollary 1. The element of $G_{0}\left(F T T M_{n}^{k}\right)$ has a FTTM path with the following properties:

1. All the edges connecting the path are diagonal.
2. The starting and the end points of the path belong to different versions of FTTM.

Theorem 4. If $x \in B\left(G_{0}\left(* F T T M_{n}^{k}\right)\right)$, then all the paths for $x$ are diagonals.
Proposition 1. If $F \in G\left(* F T T M_{n}^{k}\right)$, then $C_{1}^{n-2}(F) \in G\left(* F T T M_{n-2}^{k}\right)$.
Lemma 2. If $F \in G\left(* F T T M_{n}^{k}\right)$, then $\exists x, y$ such that $x \in G\left(* F T T M_{n-2}^{k}\right)$, $y \in C_{n-2}^{n}\left(G\left(* F T T M_{n}^{k}\right)\right)$ and $F=x \oplus y$.

Lemma 3. If $F \in G\left(* F T T M_{n}^{k}\right)$, then $\exists$ unique tuple $(x, y)$ such that $x \in G\left(* F T T M_{n-2}^{k}\right)$, $y \in C_{n-2}^{n}\left(G\left(* F T T M_{n}^{k}\right)\right)$ and $F=x \oplus y$.

Theorem 5. If $H \subseteq G\left(* F T T M_{n}^{k}\right)$ and $K=\left\{(x, y) \mid x \oplus y \in H, x \in G\left(*\right.\right.$ FTTM $\left._{n-2}^{3}\right)$, $\left.y \in C_{n-2}^{n}\left(G\left(* F T T M_{n}^{3}\right)\right)\right\}$, then $|K|=|C|$.

## Lemma 4.

$$
\begin{equation*}
\left(* F T T M_{n}^{3}\right)=\underset{m_{n-2}=1}{G}\left(* F T T M_{n}^{3}\right) \cup \underset{m_{n-2}=2}{G}\left(* F T T M_{n}^{3}\right) \cup \underset{m_{n-2}=3}{G}\left(* F T T M_{n}^{3}\right) \tag{16}
\end{equation*}
$$

## Lemma 5.

$$
\begin{equation*}
\underset{m_{n-2}=a}{G}\left(* F T T M_{n}^{3}\right) \cap \underset{m_{n-2}=b}{G}\left(* F T T M_{n}^{3}\right)=\varnothing \tag{17}
\end{equation*}
$$

for any $a, b \in \mathbb{Z}$ and $a \neq b$.

## Theorem 6.

$$
\begin{equation*}
\left|G\left(* F T T M_{n}^{3}\right)\right|=\mid \underset{m_{n-2}=1}{G}\left(* \text { FTTM }_{n}^{3}\right)\left|+\left|\underset{m_{n-2}=2}{G}\left(* F T T M_{n}^{3}\right)\right|+\left|\underset{m_{n-2}=3}{G}\left(* F T T M_{n}^{3}\right)\right|\right. \tag{18}
\end{equation*}
$$

## 5. The Theorem

All the materials laid down in previous sections are assembled to produce the analytical proof of Conjecture 1. The first step is to find $\left|G_{d}\left(* F T T M_{n}^{3}\right)\right|$ since $G_{0}\left(* F T T M_{n}^{3}\right)$ is a subset of $G_{d}\left(* F T T M_{n}^{3}\right)$ by Theorem 2.

Theorem 7.

$$
\left|G_{d}\left(* F T T M_{n}^{3}\right)\right|=\left\{\begin{array}{l}
12 \cdot 4^{\frac{n-3}{2}}, n \text { is odd, } n \geq 3  \tag{19}\\
6.4^{\frac{n-2}{2}}, n \text { is even, } n \geq 4 .
\end{array}\right.
$$

Proof of Theorem 7. (By mathematical induction)
Let

$$
P(m)=\left|G_{d}\left(* F_{T T M}^{n} 3\right)\right|=\left\{\begin{array}{l}
12.4^{\frac{n-3}{2}}, n \text { is odd, } n \geq 3  \tag{20}\\
6.4^{\frac{n-2}{2},} n \text { is even }, n \geq 4
\end{array}\right.
$$

For odd numbers, $P(3): n=3$,

$$
\begin{equation*}
P(3)=\left|G_{d}\left(* F T T M_{3}^{3}\right)\right|=12 \cdot 4^{\frac{3-3}{2}}=12 \tag{21}
\end{equation*}
$$

There are exactly 12 combinations, namely

$$
\begin{aligned}
& \left\{A_{1}^{1}, A_{2}^{2}, A_{3}^{3}\right\},\left\{A_{1}^{1}, A_{2}^{2}, A_{3}^{1}\right\},\left\{A_{1}^{1}, A_{2}^{3}, A_{3}^{2}\right\},\left\{A_{1}^{1}, A_{2}^{3}, A_{3}^{1}\right\},\left\{A_{1}^{2}, A_{2}^{1}, A_{3}^{3}\right\},\left\{A_{1}^{2}, A_{2}^{3}, A_{3}^{1}\right\}, \\
& \left\{A_{1}^{2}, A_{2}^{1}, A_{3}^{2}\right\},\left\{A_{1}^{2}, A_{2}^{3}, A_{3}^{1}\right\},\left\{A_{1}^{3}, A_{2}^{2}, A_{3}^{3}\right\},\left\{A_{1}^{3}, A_{2}^{2}, A_{3}^{1}\right\},\left\{A_{1}^{3}, A_{2}^{1}, A_{3}^{3}\right\},\left\{A_{1}^{3}, A_{2}^{1}, A_{3}^{2}\right\}
\end{aligned}
$$

Now assume $P(m=2 k+1): n=2 k+1$ is true with

$$
\begin{equation*}
P(m)=\left|G_{d}\left(* F T T M_{2 k+1}^{3}\right)\right|=12.4^{\frac{2 k+1-3}{2}}=12.4^{k-1} \tag{22}
\end{equation*}
$$

for $P\binom{m+2=2 k+1+2}{2 k+3}$.
By using Theorem $4, P(m+1)=\left|G_{0}\left(* F T T M_{2 k+3}^{3}\right)\right|=|K|$ such that

$$
\begin{equation*}
K=\left\{(x, y) \mid x \oplus y \in H, x \in G\left(* \operatorname{FTTM}_{2 k+1}^{3}\right), y \in C_{n-2}^{n}\left(G\left(* \operatorname{FTTM}_{2 k+3}^{3}\right)\right)\right\} . \tag{23}
\end{equation*}
$$

By using Theorem 5,

$$
\begin{align*}
&|P(m+1)|=\left\lvert\, \begin{array}{c}
G_{d}\left(* F T T M_{2 k+3}^{3}\right) \mid \\
\end{array}\right.  \tag{24}\\
&\left.=\left\lvert\, \begin{array}{r}
m_{n-2}=1 \\
G_{d} \\
\left(F T T M_{2 k+3}^{3}\right)
\end{array}\right.\right)+\left|\underset{m_{n-2}=2}{G_{d}}\left(* F T T M_{2 k+3}^{3}\right)\right|+\left|\underset{m_{n-2}=3}{G_{d}}\left(* F T T M_{2 k+3}^{3}\right)\right|
\end{align*}
$$

The set $G_{m_{n-2}=1}\left(* F T T M_{2 k+3}^{3}\right)$ can be constructed from $(x, y)$ where $x \in \underset{m_{n-2}=1}{G_{d}}\left(* F T T M_{2 k+1}^{3}\right)$ and $y \in C_{n-2}^{n}\left(G_{d}\left(* F_{T T M}^{2 k+3} 33\right)\right)$. There are four options for $y$, namely $B_{121}, B_{123}, B_{131}$, and $B_{132}$. Hence,

$$
\begin{equation*}
\left|\underset{m_{n-2}=1}{G_{d}}\left(* F T T M_{2 k+3}^{3}\right)\right|=4\left|\underset{m_{n-2}=1}{G_{d}}\left(* F T T M_{2 k+1}^{3}\right)\right| . \tag{25}
\end{equation*}
$$

The same process can be applied to $\left|\underset{m_{n-2}=2}{G_{d}}\left(* F T T M_{2 k+3}^{3}\right)\right|$ and $\left|\underset{m_{n-2}=3}{G_{d}}\left(* F T T M_{2 k+3}^{3}\right)\right|$. Thus,

$$
\begin{align*}
& |P(m+1)| \\
& =\left|G_{d}\left(* F T T M_{2 k+3}^{3}\right)\right| \\
& =4\left|{ }_{m_{n-2}=1}^{G_{d}}\left(* F T T M_{2 k+1}^{3}\right)\right|+4\left|{ }_{m_{n-2}=2}^{G_{d}}\left(* F T T M_{2 k+1}^{3}\right)\right|+4| |_{m_{n-2}=3}^{G_{d}}\left(* F T T M_{2 k+1}^{3}\right) \mid  \tag{26}\\
& =4\left(| |_{m_{n-2}=1}^{G_{d}}\left(* F T T M_{2 k+1}^{3}\right)\left|+\left|{ }_{m_{n-2}=2}^{G_{d}}\left(* F T T M_{2 k+1}^{3}\right)\right|+\left|{ }_{m_{n-2}=3}^{G_{d}}\left(* F T T M_{2 k+1}^{3}\right)\right|\right)\right. \\
& =4\left|G_{d}\left(* F T T M_{2 k+1}^{3}\right)\right|=4.12 .4^{-1}=12 \cdot 4^{k} .
\end{align*}
$$

Similarly, the same induction process can be used as proof for even parts.
The set $G_{d}\left(* F T T M_{n}^{3}\right)$ has only two possible subsets, namely $G_{0}\left(* F T T M_{n}^{3}\right)$ and $H_{n}=\left\{x \in G_{d}\left(* F T T M_{n}^{3}\right) \mid \operatorname{deg}_{p} x=2\right\}$. To find $G_{0}\left(* F T T M_{n}^{3}\right)$, the relation between $G_{0}\left(* F T T M_{n}^{3}\right), G_{d}\left(* F T T M_{n}^{3}\right)$ and $H_{n}$ must be investigated.

Lemma 6. If $H_{n}=\left\{x \in G_{d}\left(* \operatorname{FTTM}_{n}^{3}\right) \mid \operatorname{deg}_{p} x=2\right\}$, then $\left|H_{n}\right|=\left|G_{d}\left(* F T T M_{n}^{3}\right)\right|-$ $\left|G_{0}\left(* \operatorname{FTTM}_{n}^{3}\right)\right|$.

Proof of Lemma 6. Let $x \in G_{d}\left(* F T T M_{n}^{3}\right)$, then $\operatorname{deg}_{p}(x)=0$ or $\operatorname{deg}_{p}(x)=2$ by Theorem 5. Thus, $x \in G_{0}\left(* F T T M_{n}^{3}\right)$ or $x \in H_{n}$, i.e., $\left|G_{d}\left(* F T T M_{n}^{3}\right)\right|=\left|G_{0}\left(* F T T M_{n}^{3}\right)\right|+\left|H_{n}\right|$ or $\left|H_{n}\right|=\mid G_{d}\left(*\right.$ FTTM $\left._{n}^{3}\right)|-| G_{0}\left(*\right.$ FTTM $\left._{n}^{3}\right) \mid$.

Finally, $\left.\right|_{m_{n-2}=i} ^{G_{0}}\left(* F T T M_{n}^{3}\right) \mid$ is determined using Lemma 6 and Theorem 5.

## Theorem 8.

$$
\begin{equation*}
\left|\underset{m_{n-2}=i}{G_{0}}\left(* F_{T T M}^{3} 3\right)\right|=3\left|{ }_{m_{n-2}=i}^{G_{0}}\left(* F_{T T M}^{n-2} 33\right)\right|+2\left|H_{n-2}\right|, n>4 \tag{27}
\end{equation*}
$$

Proof of Theorem 8. By Theorem 5, $\left|G_{m_{n-2}=i}^{G_{0}}\left(* F T T M_{n}^{3}\right)\right|$ can be determined by the combination of $(x, y)$ where $x \oplus y \in \underset{m_{n-2}=i}{G_{0}}\left(* F T T M_{n}^{3}\right), x \in \underset{m_{n-2}=i}{G}\left(* F T T M_{n-2}^{3}\right)$, $y \in C_{n-2}^{n}\left(\underset{m_{n-2}=i}{G}\left(* F T T M_{n-2}^{3}\right)\right)$. By Theorem 4, all $x$ edges must be diagonal; hence, $x \in \underset{m_{n-2}=i}{G_{d}}\left(* F T T M_{n-2}^{3}\right)$. There are two possibilities for the value of $x$, namely $x \in$ $\underset{m_{n-2}=i}{G_{0}}\left(* \operatorname{FTTM}_{n-2}^{3}\right)$ or $x \in\left|H_{n-2}\right|$, where $H_{n-2}=\left\{x \in G_{d}\left(* F T T M_{n-2}^{3}\right) \mid \operatorname{deg}_{p} x=2\right\}$ from Theorem 3. Case $i=1$ : if $x \in \underset{m_{n-2}=1}{G_{0}}\left(* F T T M_{n-2}^{3}\right)$, then $A_{1}^{m_{1}} \in x, m_{1} \neq 1$ which implies $m_{1}=2$ or $m_{1}=3$ by Corollary 1 .

Let $X_{2}=\left\{x \in \underset{m_{n-2}=1}{G_{0}}\left(* F T T M_{n-2}^{3}\right) \mid m_{1}=2\right\}, X_{3}=\left\{x \in \underset{m_{n-2}=1}{G_{0}}\left(* F T T M_{n-2}^{3}\right) \mid m_{1}=3\right\}$, then for any $x \in X_{2}$, then $y \in B_{121}, B_{123}, B_{131}$ and also for any $x \in X_{3}$, then $y \in B_{121}, B_{132}, B_{131}$ by Corollary 1 . Thus, for $\in \underset{m_{n-2}=1}{G_{0}}\left(* F T T M_{n-2}^{3}\right)$, there are $3 \mid{ }_{m_{n-2}=1}^{G_{0}}\left(*\right.$ FTTM $\left._{n-2}^{3}\right) \mid$ combinations of tuple $(x, y)$.

If $x \in H_{n-2}$, then $A_{1}^{m_{1}} \in x, m_{1}=1$ when $x \in H_{n-2}$ and $y \in B_{123}, B_{132}$ by Corollary

1. Thus, there are $3\left|H_{n-2}\right|$ combinations of tuple $(x, y)$ Hence, $\left|G_{m_{n-2}=1}^{G_{0}}\left(* F T T M_{n}^{3}\right)\right|=$
$3\left|\underset{m_{n-2}=1}{G_{0}}\left(* F T T M_{n-2}^{3}\right)\right|+2\left|H_{n-2}\right|, n>4$. Using the same procedure as for $i=1$, the same result can be obtained for $i=2,3$.

## Theorem 9.

$$
\left|G_{0}\left(* \operatorname{FTTM}_{n}^{3}\right)\right|=\left\{\begin{array}{l}
\left|G_{0}\left(* F T T M_{n-2}^{3}\right)\right|+3.2^{n-2}, \quad n \text { is odd, } n>3  \tag{28}\\
\mid G_{0}\left(* \text { FTTM }_{n-2}^{3}\right) \mid+3.2^{n}, \quad n \text { is even }, n>4
\end{array}\right.
$$

where $\left|G_{0}\left(* F T T M_{3}^{3}\right)\right|=6, \mid G_{0}\left(*\right.$ FTTM $\left._{4}^{3}\right) \mid=12$.
Proof of Theorem 9. Using Theorem 6, $\left|G_{0}\left(* F T T M_{n}^{3}\right)\right|=\left|\underset{m_{n-2}=1}{G_{0}}\left(* F T T M_{n}^{3}\right)\right|$ $+\left|{m_{n-2}=2}_{G_{0}}\left(* F T T M_{n}^{3}\right)\right|+\left|\underset{m_{n-2}=3}{G_{0}}\left(* F T T M_{n}^{3}\right)\right|$. From Theorem 8 and Lemma 6,

Hence by Theorem 7,

$$
\mid G_{0}\left(* \text { FTTM }_{n}^{3}\right) \left\lvert\,= \begin{cases}\left|G_{0}\left(* F T T M_{n-2}^{3}\right)\right|+3.2^{n-2}, & n \text { is odd }, n>3  \tag{30}\\ \left|G_{0}\left(* F T T M_{n-2}^{3}\right)\right|+3.2^{n}, & n \text { is even }, n>4\end{cases}\right.
$$

such that $\left|G_{0}\left(* F T T M_{3}^{3}\right)\right|=6,\left|G_{0}\left(* F T T M_{4}^{3}\right)\right|=12$.
Theorem 9 is another version of the earlier conjecture. A simple algebraic manipulation is needed to show their equivalence. We formally state and prove this as the final theorem.

Theorem 10.

$$
\begin{align*}
\mid G_{0}^{3}\left(\text { FTTM }_{n}^{3}\right) \mid & =\left\{\begin{array}{r}
4\left|G_{0}^{3}\left(F T T M_{n-2}^{3}\right)\right|+12, \text { where } n \text { is even } \\
4\left|G^{3}\left(F T T M_{n-2}^{3}\right)\right|+6,
\end{array}\right. \\
= & \left\{\begin{array}{l}
\left|G_{0}\left(* F T T M_{n-2}^{3}\right)\right|+3.2^{n-2}, \\
\left\lvert\, \begin{array}{l} 
\\
\\
\\
\mid G_{0}(* \text { is odd } \text { odd } n>3
\end{array}\right.
\end{array}\right. \tag{31}
\end{align*}
$$

where , $\mid G_{0}\left(*\right.$ FTTM $\left._{3}^{3}\right)\left|=6,\left|G_{0}\left(* F T T M_{4}^{3}\right)\right|=12\right.$.
Proof of Theorem 10. By Theorem 9,

$$
\left|G_{0}\left(F T T M_{n}^{3}\right)\right|=\left\{\begin{array}{c}
4\left|G_{0}\left(F T T M_{n-2}^{3}\right)\right|+12, \text { where } n \text { is even }  \tag{32}\\
4\left|G_{0}\left(F T T M_{n-2}^{3}\right)\right|+6, \text { where } n \text { is odd }
\end{array}\right.
$$

and $\left|G_{0}\left(F T T M_{3}^{3}\right)\right|=6,\left|G_{0}\left(F T T M_{4}^{3}\right)\right|=12$.

However, when $n$ is odd,

$$
\begin{align*}
\left|G_{0}\left(F T T M_{5}^{3}\right)\right| & =4 \cdot 6+6 \\
& =4^{1} \cdot 6+4^{0} \cdot 6 \\
\left|G_{0}\left(F T T M_{7}^{3}\right)\right| & =4(4 \cdot 6+6)+6 \\
& =4^{2} \cdot 6+4^{1} \cdot 6+4^{0} \cdot 6 \\
\left|G_{0}\left(F T T M_{9}^{3}\right)\right| & =4(4(4 \cdot 6+6)+6)+6  \tag{33}\\
& =4^{3} \cdot 6+4^{2} \cdot 6+4^{1} \cdot 6+4^{0} \cdot 6 \\
\mid G_{0}\left(\text { FTTM }_{11}^{3}\right) \mid & =4(4(4(4 \cdot 6+6)+6)+6)+6 \\
& =4^{4} \cdot 6+4^{3} \cdot 6+4^{2} \cdot 6+4^{1} \cdot 6+4^{0} \cdot 6
\end{align*}
$$

Thus, $\left|G_{0}\left(F T T M_{n}^{3}\right)\right|=\sum_{k=0}^{\frac{n-3}{2}} 4^{k} .6$.
Notice that

$$
\begin{align*}
\left|G_{0}\left(F T T M_{n}^{3}\right)\right| & =\sum_{k=0}^{\frac{n-3}{2}} 4^{k} \cdot 6 \\
& =4^{\frac{n-3}{2}} \cdot 6+\sum_{k=0}^{\frac{n-5}{2}} 4^{k} \cdot 6  \tag{34}\\
& =2^{n-3} \cdot 6+\mid G_{0}\left(\text { FTTM }_{n-2}^{3}\right) \mid \\
& =2^{n-2} \cdot 3+\mid G_{0}\left(\text { FTTM }_{n-2}^{3}\right) \mid
\end{align*}
$$

When $n$ is even,

$$
\begin{align*}
\left|G_{0}\left(F T T M_{6}^{3}\right)\right| & =4 \cdot 12+12 \\
& =4^{1} \cdot 12+4^{0} \cdot 12 \\
\mid G_{0}\left(\text { FTTM }_{8}^{3}\right) \mid & =4(4 \cdot 12+12)+12 \\
& =4^{2} \cdot 12+4^{1} \cdot 12+4^{0} \cdot 12 \\
\mid G_{0}\left(\text { FTTM }_{10}^{3}\right) \mid & =4(4(4 \cdot 12+12)+12)+12  \tag{35}\\
& =4^{3} \cdot 12+4^{2} \cdot 12+4^{1} \cdot 12+4^{0} \cdot 12 \\
\mid G_{0}\left(\text { FTTM }_{12}^{3}\right) \mid & =4(4(4(4 \cdot 12+12)+12)+12)+12 \\
& =4^{4} \cdot 12+4^{3} \cdot 12+4^{2} \cdot 12+4^{1} \cdot 12+4^{0} \cdot 12
\end{align*}
$$

Thus, $\left|G_{0}\left(F T T M_{n}^{3}\right)\right|=\sum_{k=0}^{\frac{n-4}{2}} 4^{k} .12$.
Notice that,

$$
\begin{align*}
\mid G_{0}\left(\text { FTTM }_{n}^{3}\right) \mid & =\sum_{k=0}^{\frac{n-4}{2}} 4^{k} \cdot 12 \\
& =4^{\frac{n-4}{2}} \cdot 12+\sum_{k=0}^{\frac{n-6}{2}} 4^{k} \cdot 12  \tag{36}\\
& =2^{n-2} \cdot 3+\sum_{k=0}^{\frac{n-6}{2}} 4^{k} \cdot 12 \\
& =2^{n-2} \cdot 3+\mid G_{0}\left(\text { FTTM }_{n-2}^{3}\right) \mid
\end{align*}
$$

It shows that the equation in Theorem 9 is exactly the statement of the conjecture. In other words, the conjecture is proven by construction.

The whole process of proving Conjecture 1 is summarized below in Figure 9.


Figure 9. Outline of proving Conjecture 1 by construction.

## 6. Conclusions

The developed grid-based method of proof is new; some definitions and properties were introduced, whereas others were investigated along the way. The originality and advantages of this method can be summarized in the point forms below.

- It provides a different perspective to the structure of FTTM. Instead of a polygon representation for each version of $F T T M$, a straight line is now used. The components of $F T T M_{n}$ are arranged on a horizontal line of vertices and the lines represent the homeomorphisms between the components of $F T T M_{n}$.
- A vertical line is added to represent a homeomorphism between two components of different versions; hence, a grid is created.
- It is represented in two dimensions; therefore, it reduces the complexity of the structure.
- The process of adding a new component is easier than in a sequence of polygon.
- It can take any number of components by adding the number of vertices at the end of the grid.
- The homeomorphism between two components of the same version is presented as a horizontal edge, whereas the homeomorphism between two components of two different versions is represented by a diagonal edge (see Figure 8).
- This grid-based technique offers an edge in proving the conjecture; in particular, it enables one to visualize a given problem in a 2-dimensional space.
- Finally, the conjecture that spells the number of the generated FTTM graph of pseudo degree zero with respect to $n$ number of components and $k$ number of versions is proven analytically for the first time using this method.
However, the lengthy computing time for simulation needs to be resolved for larger $k$ and $n$, accordingly. This may be overcome by employing parallel computing, and the grid-based technique can be very handy for such enumerative combinatorics problems in the near future.

Author Contributions: Conceptualization, M.Z.M. and T.A.; methodology, M.Z.M.; software, N.A.; formal analysis, M.Z.M. and N.A.; writing-original draft preparation, M.Z.M. and T.A.; writing -review and editing, N.A.S. and F.M.; Conceptualization, M.Z.M. and T.A.; methodology, M.Z.M.; software, N.A.; formal analysis, M.Z.M. and N.A.; writing-original draft preparation, M.Z.M. and T.A.; writing-review and editing, N.A.S. and F.M.; supervision, T.A. and N.A.; funding acquisition, T.A. and N.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research is supported by the Fundamental Research Grant Scheme (FRGS) FRGS/1 /2020/STG06/UTM/01/1 awarded by the Ministry of Higher Education, Malaysia.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: No data were used to support this study.
Acknowledgments: Authors acknowledge the support of Universiti Teknologi Malaysia (UTM) and Ministry of Higher Education Malaysia (MOHE) in this work.

Conflicts of Interest: The authors declare no conflict of interest.

| Abbreviations |  |
| :--- | :--- |
| The following abbreviations are used in this manuscript. |  |
| BM Base magnetic plane <br> EEG Electroencephalography <br> FM Fuzzy magnetic field <br> $F T T M$ Fuzzy topological topographic mapping <br> $F T T M_{n}$ Sequence of FTTM <br> MC Magnetic plane <br> MEG Magnetoencephalography <br> TM Topographic magnetic field <br> $* F T T M_{n}^{k}$ Sequence of $k$ versions of $F T T M_{n}$ <br> $G_{0}\left(* F T T M_{n}^{k}\right)$ Set of elements generated by $* F T T M_{n}^{k}$ that have pseudo degree zero <br> $G_{0}\left(F T T M_{n}^{k}\right)$ Set of elements generated by $* F T T M_{n}^{k}$. that have pseudo degree zero |  |

## References

1. Shukor, N.A.; Ahmad, T.; Idris, A.; Awang, S.R.; Fuad, A.A.A. Graph of Fuzzy Topographic Topological Mapping in Relation to k-Fibonacci Sequence. J. Math. 2021, 2021, 7519643. [CrossRef]
2. Mukaram, M.Z.; Ahmad, T.; Alias, N. Graph of Pseudo Degree Zero Generated by FTTM ${ }_{n}^{k}$. In Proceedings of the International Conference on Mathematical Sciences and Technology 2018 (Mathtech2018): Innovative Technologies for Mathematics \& Mathematics for Technological Innovation, Penang, Malaysia, 10-12 December 2018; AIP Publishing LLC: Penang, Malaysia, 2019; p. 020007. [CrossRef]
3. Debnath, P. Domination in interval-valued fuzzy graphs. Ann. Fuzzy Math. Inform. 2013, 6, 363-370.
4. Konwar, N.; Davvaz, B.; Debnath, P. Results on generalized intuitionistic fuzzy hypergroupoids. J. Intell. Fuzzy Syst. 2019, 36, 2571-2580.
5. Elsafi, M.S.A.E. Combinatorial Analysis of N-tuple Polygonal Sequence of Fuzzy Topographic Topological Mapping. Ph.D. Thesis, University Teknologi Malaysia, Skudai, Malaysia, 2014.
