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Abstract: Fuzzy topological topographic mapping (FTTM) is a mathematical model which consists
of a set of homeomorphic topological spaces designed to solve the neuro magnetic inverse problem.
A sequence of FTTM, FTTMn, is an extension of FTTM that is arranged in a symmetrical form.
The special characteristic of FTTM, namely the homeomorphisms between its components, allows
the generation of new FTTM. The generated FTTMs can be represented as pseudo graphs. A
graph of pseudo degree zero is a special type of graph where each of the FTTM components differs
from the one adjacent to it. Previous researchers have investigated and conjectured the number of
generated FTTM pseudo degree zero with respect to n number of components and k number of
versions. In this paper, the conjecture is proven analytically for the first time using a newly developed
grid-based method. Some definitions and properties of the novel grid-based method are introduced
and developed along the way. The developed definitions and properties of the method are then
assembled to prove the conjecture. The grid-based technique is simple yet offers some visualization
features of the conjecture.

Keywords: FTTM; graph; pseudo degree; sequence

1. Introduction

Fuzzy topographic topological mapping (FTTM) [1] was introduced to solve the neuro
magnetic inverse problem, particularly with regards to the sources of electroencephalogra-
phy (EEG) signals recorded from epileptic patients. Originally, the model was a 4-tuple
of topological spaces and mappings. The topological spaces are the magnetic plane (MC),
base magnetic plane (BM), fuzzy magnetic field (FM) and topographic magnetic field (TM).
The third component of FTTM, FM, is a set of three tuples with the membership function of
its potential reading obtained from a recorded EEG. FTTM is defined formally as follows
(see Figure 1).
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1. Introduction 
Fuzzy topographic topological mapping (FTTM) [1] was introduced to solve the 

neuro magnetic inverse problem, particularly with regards to the sources of electroen-
cephalography (EEG) signals recorded from epileptic patients. Originally, the model was 
a 4-tuple of topological spaces and mappings. The topological spaces are the magnetic 
plane (MC), base magnetic plane (BM), fuzzy magnetic field (FM) and topographic mag-
netic field (TM). The third component of FTTM, FM, is a set of three tuples with the mem-
bership function of its potential reading obtained from a recorded EEG. FTTM is defined 
formally as follows (see Figure 1). 

Definition 1. Ref. [1] Let 𝐹𝑇𝑇𝑀 = (𝑀𝐶 , 𝐵𝑀 , 𝐹𝑀 , 𝑇𝑀 ) such that 𝑀𝐶 , 𝐵𝑀 , 𝐹𝑀 , 𝑇𝑀  are 
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Figure 1. The FTTM. 
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Definition 1. Ref. [1] Let FTTMi = (MCi, BMi, FMi, TMi) such that MCi, BMi, FMi, TMi
are topological spaces with MCi

∼= BMi
∼= FMi

∼= TMi. Set of FTTMi is denoted by
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FTTM = {FTTMi : i = 1, 2, 3, . . . , n}. Sequence of nFTTMi of FTTM is FTTM1, FTTM2,
FTTM3,FTTM4, . . . , FTTMn such that MCi

∼= MCi+1, BMi
∼= BMi+1, FMi

∼= FMi+1 and
TMi

∼= TMi+1.

Furthermore, a sequence of FTTM, FTTMn, is an extension of FTTM and illustrated
in Figure 2. It is arranged in a symmetrical form, since the model can accommodate
magnetoencephalography (MEG) signals as well as image data due to its homeomorphism.
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2. Generalized FTTM

Generally, the FTTM structure can also be expanded for any n number of components.

Definition 2. Ref. [2] A FTTM is defined as

FTTMn = {{A1, A2, . . . , An} : A1
∼= A2 ∼= . . . ∼= An} (1)

such that A1, A2, . . . , An are the components of FTTMn

The same generalization can be applied to any k number of FTTM versions as
well, denoted as FTTMk

n. Without the loss of generality, the collection of the k ver-
sion of FTTM, in short FTTMk

n, is now simply called as a sequence of FTTM unless
otherwise stated.

Definition 3. Ref. [2] A sequence of k versions of FTTMn denoted by ∗ FTTMk
n such that

∗ FTTMk
n =

{
FTTM1

n , FTTM2
n, . . . , FTTMk

n

}
(2)

where FTTM1
n is the first version of FTTMn, the FTTM2

n is the second version of FTTMn and
so forth.

Obviously, a new FTTM can be generated from a combination of components from
different versions of FTTM due to their homeomorphisms.

Definition 4. Ref. [2] A new FTTM generated from ∗ FTTMk
n is defined as

F =
{

Am1
1 , Am2

2 , . . . , Amn
n
}
∈ FTTM (3)

where 0 ≤ m1, m2, . . . , mn ≤ k and mi 6= mj for at least one i, j.
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A set of elements generated by ∗ FTTMk
n is denoted by G

(
∗ FTTMk

n

)
. Mukaram

et al. [2] showed that the number of FTTM can be determined from ∗ FTTMk
4 using the

geometrical features of its graph representation.

Theorem 1. Ref. [2] The number of generated FTTM that can be created from ∗ FTTMk
4 is∣∣∣G(∗ FTTMk

4

)∣∣∣ = k4 − k. (4)

Theorem 1 is then extended to include n number of FTTM components.

Theorem 2. Ref. [2] The number of generated FTTM that can be created from ∗ FTTMk
n is∣∣∣G(∗ FTTMk

n

)∣∣∣ = kn − k. (5)

The following example is presented to illustrate Theorem 2.

Example 1. Consider ∗ FTTM2
3, with FTTM1

3 =
{

A1
1, A1

2, A1
3
}

and FTTM2
3 =

{
A2

1, A2
2, A2

3
}

,
then G

(
∗ FTTM2

3
)

= {
{

A1
1, A2

2, A1
3
}

,
{

A1
1, A1

2, A2
3
}

,
{

A2
1, A1

2, A1
3
}

,
{

A2
1, A2

2, A1
3
}

,{
A2

1, A1
2, A2

3
}

,
{

A1
1, A2

2, A2
3
}
} that is

∣∣G(∗ FTTM2
3
)∣∣ = 23–2 = 6 as given by Theorem 2.

3. Extended Generalization of FTTM

There are many studies on ordinary and fuzzy hypergraphs available in the literature
such as [3,4]. However, ∗ FTTMk

n is an extended generalization of FTTM that is represented
by a graph of a sequence of k number of polygons with n sides or vertices. The polygon
is arranged from back to front where the first polygon represents FTTM1

n, the second
polygon represents FTTM2

n and so forth. An edge is added to connect FTTM1
n to the

FTTM2
n component wisely. A similar approach is taken for FTTM2

n, FTTM3
n and the rest

(Figure 3).
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Figure 3. Graph of ∗ FTTMk
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When a new FTTM is obtained from ∗ FTTMk
n, it is then called a pseudo-graph of

the generated FTTM and plotted on the skeleton of ∗ FTTMk
n. A generated element of
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a pseudo-graph consists of vertices that signify the generated FTTM and edges which
connect the incidence components. Two samples of pseudo-graphs are illustrated in
Figure 4.
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Figure 4. Pseudo graph: (a)
{

A1
1, A1

2, A2
3
}

; (b)
{

A1
1, A2

2, A2
3
}

of ∗ FTTM2
3 .

Another concept related closely to the pseudo-graph is the pseudo degree. It is de-
fined as the sum of the pseudo degree from each component of the FTTM. The pseudo
degree of a component is the number of other components that are adjacent to that
particular component.

Definition 5. Ref. [2] The degp : FTTM→ Z defines the pseudo degree of the FTTM component.

It maps a component of F ∈ G
(
∗ FTTMk

n

)
to an integer

degp

(
A

mj
j

)
=


0; mj−1 6= mj 6= mj+1
1; mj−1 = mj or mj = mj+1,
2; mj−1 = mj = mj+1

(6)

for A
mj
j ∈ FTTM.

Definition 6. Ref. [2] The degpG : G
(
∗ FTTMk

n

)
→ Z defines the pseudo degree of the FTTM

graph. Let F ∈ FTTM

degpG(F) =
n

∑
i=1

degp Ami
i (7)

where F =
{

Am1
1 , Am2

2 , . . . , Amn
n
}
∈ G

(
∗ FTTMk

n

)
.

Definition 7. Ref. [2] The set of elements generated by ∗ FTTMk
n that have pseudo degree zero is

G0

(
∗ FTTMk

n

)
=
{

F ∈ G
(
∗ FTTMk

n

)∣∣∣degpG(F) = 0
}

(8)

From now on,

1. G0

(
∗ FTTMk

n

)
is simply denoted by G0

(
FTTMk

n

)
.

2. #G0

(
FTTMk

n

)
denotes the cardinality of the set G0

(
FTTMk

n

)
.
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Example 2. (See Figure 5).

FTTM3
4 = {(A1, A2, A3, A4), (B1, B2, B3, B4), (C1, C2, C3, C4)}

G0
(

FTTM3
4
)

= {(A1, B2, A3, C4), (A1, B2, C3, B4), (A1, C2, A3, B4), (A1, C2, B3, C4),
(B1, A2, B3, C4), (B1, A2, C3, A4), (B1, C2, B3, A4), (B1, C2, A3, C4),
(C1, B2, C3, A4), (C1, B2, A3, B4), (C1, A2, C3, B4), (C1, A2, B3, A4)}

G0
(

FTTM3
4
)

= 12.

(9)
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Figure 5. FTTM3
4 .

Previously, Elsafi proposed a conjecture in [5] related to the graph of pseudo degree.

Conjecture 1. Ref. [5]∣∣∣G3
0

(
FTTM3

n

)∣∣∣ = { 4
∣∣G3

0
(

FTTM3
n−2
)∣∣+ 12 , when n is even

4
∣∣G3

0
(

FTTM3
n−2
)∣∣+ 6, when n is odd

(10)

In order to observe some patterns that may appear from the proposed conjecture,
Mukaram et al. [2] have developed an algorithm to compute

∣∣ G0
(

FTTM3
n
)∣∣ in order to

prove the conjecture analytically. A flowchart on
∣∣G0
(
∗ FTTMn

3
)∣∣ is sampled in Figure 6.
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Figure 6. Flowchart for determining
∣∣G0
(
∗ FTTMn

3
)∣∣.

The researchers generated all FTTM combinations for 3 ≤ k ≤ 4, 4 ≤ n ≤ 15 and
were able to isolate graphs with pseudo degree zero, which are listed below (Table 1).

Table 1.
∣∣∣ G0

(
FTTMk

n

)∣∣∣ for 4 ≤ n ≤ 15 and k = 3, 4.

n | G0(FTTM3
n )| | G0(FTTM4

n )|

4 12 24
5 30 120
6 60 480
7 126 1680
8 252 5544
9 510 17,640
10 1020 54,960
11 2046 168,960
12 4092 515,064
13 8190 1,561,560
14 16,380 4,717,440
15 32,766 14,217,840
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The researchers then simulated
∣∣∣ G0

(
FTTMk

n

)∣∣∣ for some values of k as well [2]. The
number of graphs of pseudo degree zero for 2 ≤ k ≤ 8 and 2 ≤ n ≤ 10 are listed in
Table 2.

Table 2.
∣∣∣ G0

(
FTTMk

n

)∣∣∣ for 2 ≤ k ≤ 8 and 2 ≤ n ≤ 10.

k/n 2 3 4 5 6 7 8 9 10

2 2 0 2 0 2 0 2 0 2
3 0 6 12 30 60 126 252 510 1020
4 0 0 24 120 480 1680 5544 17,640 54,960
5 0 0 0 120 1080 6720 35,280 168,840 763,560
6 0 0 0 0 720 10,080 90,720 665,280 4,339,440
7 0 0 0 0 0 5040 100,800 1,239,840 12,096,000
8 0 0 0 0 0 0 40,320 1,088,640 17,539,200

4. Grid of FTTM

An alternative presentation of a sequence of FTTM, called an FTTM grid, is briefly
overviewed. It provides a different perspective of the structure of FTTM. Instead of a
polygon representation for each version of FTTM, a straight line is now used. The compo-
nents of FTTMn are arranged on a horizontal line of vertices and the lines represent the
homeomorphisms between the components of FTTMn. The only exception is the home-
omorphism between the first and last components of FTTMn, A1 and An, respectively.
Two open segments on the left of A1 and on the right of An are used to represent the
homeomorphism between them. A vertical line is added to represent a homeomorphism
between two components of different versions; hence, a grid is created (see Figure 7).
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Figure 7. A graph representation of ∗ FTTMk
n as a grid.

There are four advantages when FTTM is represented as a grid instead of a sequence
of polygon.

• It is represented in two dimensions; therefore, it reduces the complexity of the structure.
• The process of adding a new component is easier than in a sequence of polygon.
• It can take any number of components by adding the number of vertices at the end of

the grid.
• The homeomorphism between two components of the same version is presented as

a horizontal edge, whereas the homeomorphism between two components of two
different versions is represented by a diagonal edge (see Figure 8). These arrangements
are necessary to produce the graph of pseudo degree zero.
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Figure 8. Generated element
{

A1
1, A1

2, A2
3
}

on ∗ FTTM2
3 grid.

Furthermore, Zilullah et al. [2] introduced some operations and properties with respect
to the FTTM grid. They are recalled, summarized and listed below for convenience. Then,
we will move on to the next main section of the paper wherein Conjecture 1 is finally
proven as a theorem.

Definition 8. Let F ∈ G
(
∗ FTTMk

n

)
and F =

{
Am1

1 , Am2
2 , . . . , Amn

n
}

. A block B , where B ⊆ F
is defined as

B =
{

Ami
i , Ami+1

i+1 , Ami+2
i+2 , . . . , A

mi+j
i+j

}
, 1 ≤ i < n, 0 < j ≤ n− 1 (11)

B
(

G
(
∗ FTTMk

n

))
is the set of FTTM blocks that can be generated from G

(
∗ FTTMk

n

)
.

Definition 9. The function Cj
i is defined as C : G

(
∗ FTTMk

n

)
→ B

(
G
(
∗ FTTMk

n

))
for F ∈

G
(
∗ FTTMk

n

)
,

B =
{

Ami
i , Ami+1

i+1 , Ami+2
i+2 , . . . , A

mi+j
i+j

}
, 1 ≤ i < n, 0 < j ≤ n− 1 (12)

for 1 < i < j < n, where F =
{

Am1
1 , Am2

2 , Am3
3 , . . . , Amn

n
}

.

Definition 10. The operation ⊕ is a mapping ⊕ : B
(

G
(
∗ FTTMk

n

))
×B
(

G
(
∗ FTTMk

n

))
→

B
(

G
(
∗ FTTMk

n

))
such that{

Ami
i , Ami+1

i+1 , . . . , Amk
k

}
⊕
{

A
mp
p , A

mp+1
p+1 , . . . , A

mj
j

}
=
{

Ami
i , Ami+1

i+1 , . . . , A
mj
j

}
(13)

when k = p and mk = mp, then B3 = B1 ⊕ B2 =
{

Ami
i , Ami+1

i+1 , . . . , A
mj
j

}
.

Definition 11. An indexed FTTM G
j=i

(
∗ FTTMk

n

)
is defined as

G
mj=i

(
∗ FTTMk

n

)
=
{

F ∈ G
(
∗ FTTMk

n

)∣∣∣ A
mj
j ∈ F, mj = i

}
(14)
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A generated FTTM is then divided into blocks of three components. A set of blocks is
defined as follows.

Definition 12. A set of blocks Bijk is defined as

Bijk =
{

B ∈ G
(
∗ FTTMk

n

)∣∣∣ B =
{

A
mp
p , A

mp+1
p+1 , A

mp+2
p+2

}
, mp = i, mp+1 = j, mp+2 = k

}
(15)

Since this study is concerned with graphs of pseudo degree zero, the sets that need to
be taken into consideration are the ones with diagonal paths, namely, B121, B121, B123, B131,
B132, B212, B213, B232, B231, B321, B312, B323 and B313.

Lemma 1. Let F ∈ ∗ FTTMk
n and F =

{
Am1

1 , Am2
2 , . . . , Amn

n
}

. For any A
mj
j ∈ F, 1 < j < n,

then degp

(
A

mj
j

)
= 0 if A

mj
j is connected to A

mj−1
j−1 and A

mj+1
j+1 by a diagonal path.

Theorem 3. If F ∈ Gd
(
∗ FTTM3

n
)
, where Gd

(
∗ FTTM3

n
)

is the set of generated FTTMs with a
diagonal path, then degpG(F) = 2 or 0.

Corollary 1. The element of G0

(
FTTMk

n

)
has a FTTM path with the following properties:

1. All the edges connecting the path are diagonal.
2. The starting and the end points of the path belong to different versions of FTTM.

Theorem 4. If x ∈ B
(

G0

(
∗ FTTMk

n

))
, then all the paths for x are diagonals.

Proposition 1. If F ∈ G
(
∗ FTTMk

n

)
, then Cn−2

1 (F) ∈ G
(
∗ FTTMk

n−2

)
.

Lemma 2. If F ∈ G
(
∗ FTTMk

n

)
, then ∃x, y such that x ∈ G

(
∗ FTTMk

n−2

)
,

y ∈ Cn
n−2

(
G
(
∗ FTTMk

n

))
and F = x⊕ y.

Lemma 3. If F ∈ G
(
∗ FTTMk

n

)
, then ∃ unique tuple (x, y) such that x ∈ G

(
∗ FTTMk

n−2

)
,

y ∈ Cn
n−2

(
G
(
∗ FTTMk

n

))
and F = x⊕ y.

Theorem 5. If H ⊆ G
(
∗ FTTMk

n

)
and K = {(x, y)|x ⊕ y ∈ H, x ∈ G

(
∗ FTTM3

n−2
)
,

y ∈ Cn
n−2
(
G
(
∗ FTTM3

n
))
} , then |K| = |C|.

Lemma 4.(
∗ FTTM3

n

)
= G

mn−2=1

(
∗ FTTM3

n

)
∪ G

mn−2=2

(
∗ FTTM3

n

)
∪ G

mn−2=3

(
∗ FTTM3

n

)
. (16)

Lemma 5.
G

mn−2=a

(
∗ FTTM3

n

)
∩ G

mn−2=b

(
∗ FTTM3

n

)
= ∅ (17)

for any a, b ∈ Z and a 6= b.

Theorem 6.∣∣∣G(∗ FTTM3
n

)∣∣∣ = ∣∣∣∣ G
mn−2=1

(
∗ FTTM3

n

)∣∣∣∣+ ∣∣∣∣ G
mn−2=2

(
∗ FTTM3

n

)∣∣∣∣+ ∣∣∣∣ G
mn−2=3

(
∗ FTTM3

n

)∣∣∣∣ (18)
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5. The Theorem

All the materials laid down in previous sections are assembled to produce the analyti-
cal proof of Conjecture 1. The first step is to find

∣∣Gd
(
∗ FTTM3

n
)∣∣ since G0

(
∗ FTTM3

n
)

is a
subset of Gd

(
∗ FTTM3

n
)

by Theorem 2.

Theorem 7. ∣∣∣Gd

(
∗ FTTM3

n

)∣∣∣ = { 12 . 4
n−3

2 , n is odd, n ≥ 3
6 . 4

n−2
2 , n is even , n ≥ 4.

(19)

Proof of Theorem 7. (By mathematical induction)

Let

P(m) =
∣∣∣Gd

(
∗ FTTM3

n

)∣∣∣ = { 12 . 4
n−3

2 , n is odd, n ≥ 3
6 . 4

n−2
2 , n is even , n ≥ 4

(20)

For odd numbers, P(3) : n = 3,

P(3) =
∣∣∣Gd

(
∗ FTTM3

3

)∣∣∣ = 12 . 4
3−3

2 = 12. (21)

There are exactly 12 combinations, namely{
A1

1, A2
2, A3

3
}

,
{

A1
1, A2

2, A1
3
}

,
{

A1
1, A3

2, A2
3
}

,
{

A1
1, A3

2, A1
3
}

,
{

A2
1, A1

2, A3
3
}

,
{

A2
1, A3

2, A1
3
}

,{
A2

1, A1
2, A2

3
}

,
{

A2
1, A3

2, A1
3
}

,
{

A3
1, A2

2, A3
3
}

,
{

A3
1, A2

2, A1
3
}

,
{

A3
1, A1

2, A3
3
}

,
{

A3
1, A1

2, A2
3
}

Now assume P(m = 2k + 1) : n = 2k + 1 is true with

P(m) =
∣∣∣Gd

(
∗ FTTM3

2k+1

)∣∣∣ = 12 . 4
2k+1−3

2 = 12 . 4k−1 (22)

for P
(

m + 2 = 2k + 1 + 2
2k + 3

)
.

By using Theorem 4, P(m + 1) =
∣∣∣G0

(
∗ FTTM3

2k+3

)∣∣∣ = |K| such that

K =
{
(x, y)

∣∣∣x⊕ y ∈ H, x ∈ G
(
∗ FTTM3

2k+1

)
, y ∈ Cn

n−2

(
G
(
∗ FTTM3

2k+3

))}
. (23)

By using Theorem 5,

|P(m + 1)| =
∣∣∣Gd

(
∗ FTTM3

2k+3

)∣∣∣
=

∣∣∣∣∣ Gd
mn−2=1

(
∗ FTTM3

2k+3

)∣∣∣∣∣+
∣∣∣∣∣ Gd
mn−2=2

(
∗ FTTM3

2k+3

)∣∣∣∣∣+
∣∣∣∣∣ Gd
mn−2=3

(
∗ FTTM3

2k+3

)∣∣∣∣∣ (24)

The set Gd
mn−2=1

(
∗ FTTM3

2k+3

)
can be constructed from (x, y) where

x ∈ Gd
mn−2=1

(
∗ FTTM3

2k+1

)
and y ∈ Cn

n−2

(
Gd

(
∗ FTTM3

2k+3

))
. There are four options

for y, namely B121, B123, B131, and B132. Hence,∣∣∣∣∣ Gd
mn−2=1

(
∗ FTTM3

2k+3

)∣∣∣∣∣ = 4

∣∣∣∣∣ Gd
mn−2=1

(
∗ FTTM3

2k+1

)∣∣∣∣∣. (25)

The same process can be applied to

∣∣∣∣∣ Gd
mn−2=2

(
∗ FTTM3

2k+3

)∣∣∣∣∣ and

∣∣∣∣∣ Gd
mn−2=3

(
∗ FTTM3

2k+3

)∣∣∣∣∣.
Thus,
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|P(m + 1)|
=
∣∣∣Gd

(
∗ FTTM3

2k+3

)∣∣∣
= 4

∣∣∣∣∣ Gd
mn−2=1

(
∗ FTTM3

2k+1

)∣∣∣∣∣+ 4

∣∣∣∣∣ Gd
mn−2=2

(
∗ FTTM3

2k+1

)∣∣∣∣∣+ 4

∣∣∣∣∣ Gd
mn−2=3

(
∗ FTTM3

2k+1

)∣∣∣∣∣
= 4

(∣∣∣∣∣ Gd
mn−2=1

(
∗ FTTM3

2k+1

)∣∣∣∣∣+
∣∣∣∣∣ Gd
mn−2=2

(
∗ FTTM3

2k+1

)∣∣∣∣∣+
∣∣∣∣∣ Gd
mn−2=3

(
∗ FTTM3

2k+1

)∣∣∣∣∣
)

= 4
∣∣∣Gd

(
∗ FTTM3

2k+1

)∣∣∣ = 4 . 12 . 4k−1 = 12 . 4k .

(26)

Similarly, the same induction process can be used as proof for even parts. �

The set Gd
(
∗ FTTM3

n
)

has only two possible subsets, namely G0
(
∗ FTTM3

n
)

and

Hn =
{

x ∈ Gd
(
∗ FTTM3

n
)∣∣∣degpx = 2

}
. To find G0

(
∗ FTTM3

n
)
, the relation between

G0
(
∗ FTTM3

n
)
, Gd

(
∗ FTTM3

n
)

and Hn must be investigated.

Lemma 6. If Hn =
{

x ∈ Gd
(
∗ FTTM3

n
)∣∣∣degpx = 2

}
, then |Hn| =

∣∣Gd
(
∗ FTTM3

n
)∣∣ −∣∣G0

(
∗ FTTM3

n
)∣∣.

Proof of Lemma 6. Let x ∈ Gd
(
∗ FTTM3

n
)
, then degp(x) = 0 or degp(x) = 2 by Theorem 5.

Thus, x ∈ G0
(
∗ FTTM3

n
)

or x ∈ Hn, i.e.,
∣∣Gd
(
∗ FTTM3

n
)∣∣ = ∣∣G0

(
∗ FTTM3

n
)∣∣ + |Hn| or

|Hn| =
∣∣Gd
(
∗ FTTM3

n
)∣∣− ∣∣G0

(
∗ FTTM3

n
)∣∣. �

Finally,

∣∣∣∣∣ G0
mn−2=i

(
∗ FTTM3

n
)∣∣∣∣∣ is determined using Lemma 6 and Theorem 5.

Theorem 8. ∣∣∣∣∣ G0
mn−2=i

(
∗ FTTM3

n

)∣∣∣∣∣ = 3

∣∣∣∣∣ G0
mn−2=i

(
∗ FTTM3

n−2

)∣∣∣∣∣+ 2|Hn−2|, n > 4 (27)

Proof of Theorem 8. By Theorem 5,

∣∣∣∣∣ G0
mn−2=i

(
∗ FTTM3

n
)∣∣∣∣∣ can be determined by the combina-

tion of (x, y) where x ⊕ y ∈ G0
mn−2=i

(
∗ FTTM3

n
)
, x ∈ G

mn−2=i

(
∗ FTTM3

n−2
)
,

y ∈ Cn
n−2

(
G

mn−2=i

(
∗ FTTM3

n−2
))

. By Theorem 4, all x edges must be diagonal; hence,

x ∈ Gd
mn−2=i

(
∗ FTTM3

n−2
)
. There are two possibilities for the value of x, namely x ∈

G0
mn−2=i

(
∗ FTTM3

n−2
)

or x ∈ |Hn−2|, where Hn−2 =
{

x ∈ Gd
(
∗ FTTM3

n−2
)∣∣∣ degp x = 2

}
from Theorem 3. Case i = 1: if x ∈ G0

mn−2=1

(
∗ FTTM3

n−2
)
, then Am1

1 ∈ x , m1 6= 1 which

implies m1 = 2 or m1 = 3 by Corollary 1.

Let X2 =

{
x ∈ G0

mn−2=1

(
∗ FTTM3

n−2
)∣∣∣∣∣m1 = 2

}
, X3 =

{
x ∈ G0

mn−2=1

(
∗ FTTM3

n−2
)∣∣∣∣∣m1 = 3

}
, then for

any x ∈ X2, then y ∈ B121, B123, B131 and also for any x ∈ X3, then y ∈ B121, B132, B131 by Corollary 1.

Thus, for ∈ G0
mn−2=1

(
∗ FTTM3

n−2
)
, there are 3

∣∣∣∣∣ G0
mn−2=1

(
∗ FTTM3

n−2
)∣∣∣∣∣ combinations of tuple (x, y).

If x ∈ Hn−2, then Am1
1 ∈ x , m1 = 1 when x ∈ Hn−2 and y ∈ B123, B132 by Corollary

1. Thus, there are 3|Hn−2| combinations of tuple (x, y) Hence,

∣∣∣∣∣ G0
mn−2=1

(
∗ FTTM3

n
)∣∣∣∣∣ =
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3

∣∣∣∣∣ G0
mn−2=1

(
∗ FTTM3

n−2
)∣∣∣∣∣+ 2|Hn−2|, n > 4. Using the same procedure as for i = 1, the same

result can be obtained for i = 2, 3. �

Theorem 9.∣∣∣G0

(
∗ FTTM3

n

)∣∣∣ = { ∣∣G0
(
∗ FTTM3

n−2
)∣∣+ 3. 2n−2, n is odd, n > 3∣∣G0

(
∗ FTTM3

n−2
)∣∣+ 3. 2n, n is even, n > 4

(28)

where
∣∣G0
(
∗ FTTM3

3
)∣∣ = 6,

∣∣G0
(
∗ FTTM3

4
)∣∣ = 12.

Proof of Theorem 9. Using Theorem 6,
∣∣G0
(
∗ FTTM3

n
)∣∣ =

∣∣∣∣∣ G0
mn−2=1

(
∗ FTTM3

n
)∣∣∣∣∣

+

∣∣∣∣∣ G0
mn−2=2

(
∗ FTTM3

n
)∣∣∣∣∣+

∣∣∣∣∣ G0
mn−2=3

(
∗ FTTM3

n
)∣∣∣∣∣. From Theorem 8 and Lemma 6,

∣∣G0
(
∗ FTTM3

n
)∣∣

=

∣∣∣∣∣ G0
mn−2=1

(
∗ FTTM3

n−2
)∣∣∣∣∣+ 2

∣∣∣∣∣ Gd
mn−2=1

(
∗ FTTM3

n−2
)∣∣∣∣∣+

∣∣∣∣∣ G0
mn−2=2

(
∗ FTTM3

n−2
)∣∣∣∣∣+ 2

∣∣∣∣∣ Gd
mn−2=2

(
∗ FTTM3

n−2
)∣∣∣∣∣+

∣∣∣∣∣ G0
mn−2=3

(
∗ FTTM3

n−2
)∣∣∣∣∣+ 2

∣∣∣∣∣ Gd
mn−2=3

(
∗ FTTM3

n−2
)∣∣∣∣∣

=

(∣∣∣∣∣ G0
mn−2=1

(
∗ FTTM3

n−2
)∣∣∣∣∣+

∣∣∣∣∣ G0
mn−2=2

(
∗ FTTM3

n−2
)∣∣∣∣∣+

∣∣∣∣∣ G0
mn−2=3

(
∗ FTTM3

n−2
)∣∣∣∣∣
)
+ 2

(∣∣∣∣∣ Gd
mn−2=3

(
∗ FTTM3

n−2
)∣∣∣∣∣+

∣∣∣∣∣ Gd
mn−2=1

(
∗ FTTM3

n−2
)∣∣∣∣∣+

∣∣∣∣∣ Gd
mn−2=2

(
∗ FTTM3

n−2
)∣∣∣∣∣
)

=
∣∣G0
(
∗ FTTM3

n−2
)∣∣+ 2 ∗

∣∣Gd
(
∗ FTTM3

n
)∣∣. (29)

Hence by Theorem 7,∣∣∣G0

(
∗ FTTM3

n

)∣∣∣ = { ∣∣G0
(
∗ FTTM3

n−2
)∣∣+ 3 . 2n−2, n is odd, n > 3∣∣G0

(
∗ FTTM3

n−2
)∣∣+ 3 . 2n, n is even , n > 4

(30)

such that
∣∣G0
(
∗ FTTM3

3
)∣∣ = 6,

∣∣G0
(
∗ FTTM3

4
)∣∣ = 12. �

Theorem 9 is another version of the earlier conjecture. A simple algebraic manipulation
is needed to show their equivalence. We formally state and prove this as the final theorem.

Theorem 10.∣∣G3
0
(

FTTM3
n
)∣∣ =

{
4
∣∣G3

0
(

FTTM3
n−2
)∣∣+ 12 , where n is even

4
∣∣G3

0
(

FTTM3
n−2
)∣∣+ 6, where n is odd

=

{ ∣∣G0
(
∗ FTTM3

n−2
)∣∣+ 3 . 2n−2, n is odd, n > 3∣∣G0

(
∗ FTTM3

n−2
)∣∣+ 3 . 2n, n is even , n > 4

(31)

where ,
∣∣∣G0

(
∗ FTTM3

3

)∣∣∣ = 6,
∣∣G0
(
∗ FTTM3

4
)∣∣ = 12.

Proof of Theorem 10. By Theorem 9,∣∣∣G0

(
FTTM3

n

)∣∣∣ = { 4
∣∣G0
(

FTTM3
n−2
)∣∣+ 12 , where n is even

4
∣∣G0
(

FTTM3
n−2
)∣∣+ 6, where n is odd

(32)

and
∣∣∣G0

(
FTTM3

3

)∣∣∣ = 6,
∣∣∣G0

(
FTTM3

4

)∣∣∣ = 12.



Symmetry 2021, 13, 2203 13 of 15

However, when n is odd,∣∣G0
(

FTTM3
5
)∣∣ = 4 . 6 + 6

= 41 . 6 + 40 . 6∣∣G0
(

FTTM3
7
)∣∣ = 4(4 . 6 + 6) + 6

= 42 . 6 + 41 . 6 + 40 . 6∣∣G0
(

FTTM3
9
)∣∣ = 4(4(4 . 6 + 6) + 6) + 6

= 43 . 6 + 42 . 6 + 41 . 6 + 40 . 6∣∣G0
(

FTTM3
11
)∣∣ = 4(4(4(4 . 6 + 6) + 6) + 6) + 6

= 44 . 6 + 43 . 6 + 42 . 6 + 41 . 6 + 40 . 6

(33)

Thus,
∣∣G0
(

FTTM3
n
)∣∣ = ∑

n−3
2

k=0 4k . 6.
Notice that

∣∣G0
(

FTTM3
n
)∣∣ =

n−3
2
∑

k=0
4k . 6

= 4
n−3

2 . 6 +
n−5

2
∑

k=0
4k . 6

= 2n−3 . 6 +
∣∣G0
(

FTTM3
n−2
)∣∣

= 2n−2 . 3 +
∣∣G0
(

FTTM3
n−2
)∣∣

(34)

When n is even,∣∣G0
(

FTTM3
6
)∣∣ = 4 . 12 + 12

= 41 . 12 + 40 . 12∣∣G0
(

FTTM3
8
)∣∣ = 4(4 . 12 + 12) + 12

= 42 . 12 + 41 . 12 + 40 . 12∣∣G0
(

FTTM3
10
)∣∣ = 4(4(4 . 12 + 12) + 12) + 12

= 43 . 12 + 42 . 12 + 41 . 12 + 40 . 12∣∣G0
(

FTTM3
12
)∣∣ = 4(4(4(4 . 12 + 12) + 12) + 12) + 12

= 44 . 12 + 43 . 12 + 42 . 12 + 41 . 12 + 40 . 12

(35)

Thus,
∣∣G0
(

FTTM3
n
)∣∣ = n−4

2
∑

k=0
4k . 12.

Notice that,

∣∣G0
(

FTTM3
n
)∣∣ =

n−4
2
∑

k=0
4k . 12

= 4
n−4

2 . 12 +
n−6

2
∑

k=0
4k . 12

= 2n−2 . 3 +
n−6

2
∑

k=0
4k . 12

= 2n−2 . 3 +
∣∣G0
(

FTTM3
n−2
)∣∣

(36)

It shows that the equation in Theorem 9 is exactly the statement of the conjecture. In
other words, the conjecture is proven by construction. �

The whole process of proving Conjecture 1 is summarized below in Figure 9.
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6. Conclusions

The developed grid-based method of proof is new; some definitions and properties
were introduced, whereas others were investigated along the way. The originality and
advantages of this method can be summarized in the point forms below.

• It provides a different perspective to the structure of FTTM. Instead of a polygon
representation for each version of FTTM, a straight line is now used. The components
of FTTMn are arranged on a horizontal line of vertices and the lines represent the
homeomorphisms between the components of FTTMn.

• A vertical line is added to represent a homeomorphism between two components of
different versions; hence, a grid is created.

• It is represented in two dimensions; therefore, it reduces the complexity of the structure.
• The process of adding a new component is easier than in a sequence of polygon.
• It can take any number of components by adding the number of vertices at the end of

the grid.
• The homeomorphism between two components of the same version is presented as

a horizontal edge, whereas the homeomorphism between two components of two
different versions is represented by a diagonal edge (see Figure 8).

• This grid-based technique offers an edge in proving the conjecture; in particular, it
enables one to visualize a given problem in a 2-dimensional space.

• Finally, the conjecture that spells the number of the generated FTTM graph of pseudo
degree zero with respect to n number of components and k number of versions is
proven analytically for the first time using this method.

However, the lengthy computing time for simulation needs to be resolved for larger
k and n, accordingly. This may be overcome by employing parallel computing, and the
grid-based technique can be very handy for such enumerative combinatorics problems in
the near future.
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Abbreviations
The following abbreviations are used in this manuscript.
BM Base magnetic plane
EEG Electroencephalography
FM Fuzzy magnetic field
FTTM Fuzzy topological topographic mapping
FTTMn Sequence of FTTM
MC Magnetic plane
MEG Magnetoencephalography
TM Topographic magnetic field
∗ FTTMk

n Sequence of k versions of FTTMn

G0

(
∗ FTTMk

n

)
Set of elements generated by ∗ FTTMk

n that have pseudo degree zero

G0

(
FTTMk

n

)
Set of elements generated by ∗ FTTMk

n. that have pseudo degree zero
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