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Abstract: Spatial information on benthic habitats in Wangiwangi island waters, Wakatobi District,
Indonesia was very limited in recent years. However, this area is one of the marine tourism destina-
tions and one of the Indonesia’s triangle coral reef regions with a very complex coral reef ecosystem.
The drone technology that has rapidly developed in this decade, can be used to map benthic habitats
in this area. This study aimed to map shallow-water benthic habitats using drone technology in the
region of Wangiwangi island waters, Wakatobi District, Indonesia. The field data were collected
using a 50 × 50 cm squared transect of 434 observation points in March–April 2017. The DJI Phantom
3 Pro drone with a spatial resolution of 5.2 × 5.2 cm was used to acquire aerial photographs. Image
classifications were processed using object-based image analysis (OBIA) method with contextual
editing classification at level 1 (reef level) with 200 segmentation scale and several segmentation
scales at level 2 (benthic habitat). For level 2 classification, we found that the best algorithm to map
benthic habitat was the support vector machine (SVM) algorithm with a segmentation scale of 50.
Based on field observations, we produced 12 and 9 benthic habitat classes. Using the OBIA method
with a segmentation value of 50 and the SVM algorithm, we obtained the overall accuracy of 77.4%
and 81.1% for 12 and 9 object classes, respectively. This result improved overall accuracy up to 17%
in mapping benthic habitats using Sentinel-2 satellite data within the similar region, similar classes,
and similar method of classification analyses.

Keywords: drone; mapping; benthic habitat; OBIA; SVM; Wakatobi

1. Introduction

In Wangiwangi island water, research on benthic habitat maps or classification is
still very limited to non-available. Therefore, the availability of spatial data regarding
benthic habitats in this area is very important for data bases as well as for natural resources
management. The satellite and airborne-based imagery data can be used as the main
alternative in providing spatial data and information effectively and efficiently over a large
area, compared to conventional mapping with direct observations in the field.

In addition, the use of drone to map benthic habitat has never been done in this region
before. Therefore, the drone technology can be used as an alternative to obtain detailed
and fast spatial data and information. Based on this, it is necessary to conduct research in
the region related to benthic habitat mapping by using drone.

Benthic habitats are a place to live for various types of organisms composed of sea-
weed, seagrass, algae, live coral, and other organisms with substrate types such as sand,
mud, and coral fragments [1,2]. Several previous studies on benthic habitats in Wakatobi
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have been carried out, especially research on ecological conditions of coral reefs [3–11] and
the ecology of the seagrass beds [5,12].

Spatial mapping of shallow-water benthic habitats using satellite data with low and
high spatial resolution through pixels or object-based analyses have been widely per-
formed [1,2,13–24]. In some previous studies of pixel-based benthic habitat mapping
employing Maximum Likelihood (MLH) classification algorithm, the Landsat TM and
ETM+ sensors were sufficient for mapping reef, sand, and seaweed, but cannot differen-
tiate more than 6 classes of different habitats [25–28]. Using Landsat images employing
pixel-based and maximum likelihood algorithm, [28] produced coral reef benthic habitat
map with 73% overall accuracy for small class number (4 classes), however for 8 and
13 classes only produced 52% and 37% of total accuracy, respectively. In several different
locations, [26] showed that the accuracy values for coral reef benthic habitat mapping using
Landsat images were 53–56% for more than six classes of classification. Using higher reso-
lution images of IKONOS, [27] showed that the total accuracy of benthic habitat mapping
was improved up to 60% for more than six classes.

Previously, most of the classification techniques for mapping benthic habitat were
based on a pixel-based approach [29]. In order to increase its accuracy, an object-based clas-
sification was introduced, which segmented similar objects within pixels. The technique is
called an object-based image analysis (OBIA) classification, which was previously applied
for land area mapping classification with high accuracy value. For instance, [30] integrated
object-based and pixel-based classifications for mangrove mapping using IKONOS im-
ages have produced a total accuracy value of 91.4%. For coral reef benthic habitat, [18]
reported a total accuracy of 73% for seven classes using Landsat 8 OLI images in Morotai
island, North Maluku Province, Indonesia employing OBIA classification with the Support
Vector Machine (SVM) algorithm. These results increased up to 25% of the total accuracy
in comparison to pixel-based classification. Meanwhile, in the seagrass ecosystem, [13]
reported a lower total accuracy improvement of 9.60% and 3.95% employing OBIA vs.
Pixel-based classification for four classes using SPOT-7 satellite image with a resolution of
6x6 m in Gusung island waters and Pajenekang island waters, South Sulawesi, Indonesia
(overall accuracy of 87.75% for OBIA classification and 78.06% for pixel-based classifica-
tion in Gusung island waters; 69.17% for OBIA classification and 65.22% for Pixel-based
classification in Pajenekang island waters).

Currently, the use of aerial photography for mapping objects on the earth’s surface
with an unmanned aerial vehicle (UAV) platform has increased very rapidly because this
technology is relatively cheap and easy to obtain, has a small sensor so that it can be placed
on a lightweight vehicle, and is equipped with Inertial Measurement Units (IMU) and
GPS. UAVs also permit for fast and automatic data acquisition, perform flights can be
planned independently or adapted to weather conditions, can produce very high spatial
resolution data, produce digital surface models (DSM) data and digital elevation models
(DEM) which are relatively accurate, and can reduce the impact of atmospheric influences,
especially cloud cover on the data [31–43].

The use of UAV technology has been widely used in agriculture and terrestrial [44–63],
marine and coastal monitoring such as algal bloom monitoring [64], dynamical tide mon-
itoring [65], marine mammal monitoring [66], coastal sand dune monitoring [67], and
coastal environment monitoring [68–70].

The OBIA method has been shown to improve the accuracy of benthic habitat map-
ping, geomorphology and ecology of coral reef ecosystems mapping on medium to high
spatial resolution images [1,18,24], ecologically sensitive marine habitat and classified
map of Posidiniai oceanica patches [71], marine habitat mapping of true color R-G-B vs.
multispectral high-resolution of UAV imageries [72], seagrass habitat mapping [73], and
surface sedimentary facies in intertidal zone [74].

For Wakatobi waters, several studies related to spatial distribution and geomorpho-
logy of coral reefs maps had been carried out [75–77], but generally using relatively low
to medium spatial resolution satellite data. [75] showed an overall accuracy of 83.93% for
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seven classes of benthic habitat classification using high-resolution Sentinel-2A satellite
data with the water column correction (DII) model and relative water depth index (RWDI).

Based on the previous study results showing that using the drone and OBIA method
increased the total accuracy map of shallow-water benthic habitat, it is therefore necessary
to conduct research in the region related to benthic habitat mapping by applying the
OBIA method with a greater number of benthic habitat types. The purpose of this study
was to map the shallow water benthic habitat using drone imagery with the object-based
classification method (OBIA) and calculate the accuracy level of benthic habitat in the
Wangiwangi island waters, Wakatobi District, Indonesia.

2. Materials and Methods
2.1. Study Area

The study was conducted in the region of Wangiwangi island waters, Wakatobi
District, Southeast Sulawesi Province, Indonesia located along 5◦15′22.6′′–5◦16′33.3′′S and
123◦31′11.5′′–123◦31′14.9′′E (Figure 1).
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The Wangiwangi island water is a unique shallow-water area with very high benthic
habitat complexity and located in the coral triangle region or within the center of the
world’s highest coral reef biodiversity [3,78–80]. Wangiwangi island is one of the 4 major
islands in Wakatobi district (Wangiwangi, Kaledupa, Tomia, and Binongko islands) [4,5].
Within the Wakatobi region, about 25 pristine coral reef clusters were found, consisting
of 396 coral species from 599 world coral species [81], with types of coral reefs including
fringing reefs, patch reefs, barrier reefs, and ring coral (atoll) [5,6,78].

Drone image acquisition and field collection data for benthic habitat mapping were
conducted on 29 March–2 April 2017 with flying tracks perpendicular to the coastline as
shown in the upper left in Figure 1. A total of 434 field data transects with 50 × 50 cm
spatial resolution were collected in which 217 points for classification purposes (red dots in
upper left in Figure 1) and 217 points for accuracy test purposes (yellow dots in upper left
in Figure 1).

When collecting field data in each station, the transect (50 × 50 cm) was always placed
within the homogenous subtract shallow-water benthic habitat. For example, a live coral
station of shallow-water benthic habitat, then the transect was placed in the center of a
region of homogenous live coral of shallow-water benthic habitat. This was intended to
reduce error of mismatch coordinate between in situ and the drone measurement, because
we did not have access for a high precision GPS (up to ≤5 cm or mm).

2.2. Tools and Materials

Tools and materials used in this study were GPS Trimble GeoExplores 6000 series
(with accuracy of +/- 50 cm), Snorkeling tools, quadrate transects, underwater Canon
PowerShot D20 camera, underwater stationaries, and waterproof plastics.

Drone images were taken using DJI Phantom 3 Professional made in Dà-Jiāng Inno-
vations Science and Technology/DJI. The DJI Phantom 3 Professional is a DJI quadcopter
generation that has more complete components from the previous generation (Figure 2).
The DJI Phantom 3 Professional sensor was a built-in sensor from DJI or a standard
Red-Green-Blue (RGB) sensor/camera. A standard RGB camera captures the visible electro-
magnetic spectrum of red, green, and blue lights. This sensor produces an RGB image and
captures an image similar to what is seen with the human eye [82,83]. The DJI Phantom 3
Professional can fly up to 120 m with a maximum speed of 16 m/s, a maximum flying time
of 23 min, and a FOV lens of 94◦ 20 mm (Table 1). Two software applications were used
during deployment i.e., DJI GO application for basic settings and DroneDeploy application
for the aerial photo acquisition processes. DroneDeploy is a mapping application using
UAVs to make it easier for acquiring aerial photos automatically. Both applications were
run via a mobile phone or tablet device with the Android or iOS operating system.

Table 1. DJI Phantom 3 Professional specifications [84].

Aircraft

Weight 1280 g

Max. Speed 16 m/s (ATTI mode, no wind)
Max. Service Ceiling Above Sea Level 6000 m (Default altitude limit: 120 m above takeoff point)

Max. Flight time Approximately 23 minutes
GPS Mode GPS/GLONASS

Camera

Sensor Sony EXMOR 1/2.3” Effective pixels: 12.4 M (total pixels: 12.76 M), Sensor width 6.16 mm,
Sensor height 4.62 mm

Lens FOV 94◦ 20 mm (35 mm format equivalent) f/2.8 (Focal lenght 3.61 mm)
Image Max. Size (width × height) 4000 × 3000

Pixel size 1.56 × 1.56 micro meter

Supported File Formats
- Photo: JPEG, DNG
- Video: MP4, MOV
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2.3. Benthic Habitat Data Collection

Ground truth habitat (GTH) surveys were conducted to collect benthic habitat data
or information employing 50 × 50 cm transect (Figure 3) with direct visual observation
and quadrat photo transect technique. The distribution of sampling stations used stratified
random sampling method and evenly spread to obtain well-represented data from all
benthic habitat objects within the study region [21,24,85,86].
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The field object classification was based on the dominant percentage coverage of
object(s) in each transect, and the coordinate location of each transect was taken using
GPS at the center of the transect. If within a transect consisted of two major elements
of benthic habitats, then the name of the transect was called based on the two-element
starting with the more dominant element; for instance, a transect consisted of rubble
(dominant) + seagrass, then we called this transect a rubble dominant + seagrass (R + S)
transect. The threshold for the dominant element of benthic habitat was when the element
occupied (covered) more than 50% of the transect space. The coordinates were later used
as a reference for the region of interest (RoI) in the image classification process. Some of
them were used as data to test the accuracy of the image classification results.

The description or naming of benthic habitat classes was determined based on the
composition of the dominant benthic habitat cover which was entirely constructed by
one or several components of shallow water benthic habitat. The classification scheme
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in this study consisted of 2 levels i.e., classification scheme level 1 (reef level class) and
classification scheme level 2 (benthic habitat class).

2.4. Drone Image Acquisition

An aerial photo quality depends on environmental conditions such as wind, current,
wave, cloud coverage, and sun intensity. Good quality of an aerial photo will be found
during the relatively low wind speed, calm water conditions (small wave to calm water
and low current speed), clear sky, and no sun glint. The presence of sun glint can cause
unclear image or misalignment in the photogrammetric workflow. [87] revealed that in
order to avoid or minimize the presence of sun glint in the aerial photo acquisition process,
the aerial photo acquisition could be carried out in the morning at 07.00–08.00 AM. During
these hours, generally the water environment is relatively calm and windless. In addition,
the effect of sun glint can be controlled based on a combination of location conditions and
low sun angles around 20–25◦ [88,89].

In this study, the processes of acquiring aerial photos were carried out in the morning
at 07.00–08.00 AM local time to avoid sun glint with a camera angle perpendicular to the
object surface, with relatively calm water condition, clear sky, and relatively low wind
speed.

The drone was placed at an altitude of 120 m above the water surface. Drone images
(photos) were captured with 80% sidelap and frontlap settings with a maximum flight
speed of 15 m/s. The coverage area was adjusted to the research location and the drone
battery capabilities. All aerial photo acquisitions were completed on 29–30 March and 2
April 2017.

In total 1274 aerial photos were taken along the flying tracks in the study region with
80% overlap both sidelap and frontlap.

2.5. Orthophoto Digital Processes

All aerial photos acquired by the drone at the study area were combined (orthomosaic)
using Agisoft Photoscan software to produce single photo/image orthophoto or drone
image. The orthomosaic processes of all aerial photos were carried out by several processing
steps i.e., (1) add photo (to combine all photos that need to be included); (2) photo alignment
(matching identical point cloud in two or more photos and build a sparse point cloud
model); (3) optimize camera alignment (a process of optimizing the accuracy of camera
parameters and correcting any distortion in photos); (4) build dense cloud (to build and
combine the same set of point cloud on two or more in the number of thousands to millions
of dense point cloud); (5) build mesh (to connect the surface of each photo based on
the dense point cloud to build a 3D model); (6) build texture (to build texture and color
formation of objects according to photos or 3D physical models of the features in the photo
coverage area); (7) building orthomosaic (to produce orthophoto image in 2D formation)
and (8) export orthomosaic (export orthophoto images for further classification or analysis).
These processes were carried out sequentially to produce an orthophoto image or drone
image.

The resulting drone image was an image that had been equipped with geographic
information (georeferenced), considering that all the acquired aerial photos had been
equipped with geographic information in the form of coordinate points and the geographic
information was inputted in the orthomosaic process. The resulting drone image was used
in the image classification process to classify the shallow water benthic habitat map.

2.6. Geometric Correction

The image geometry must be corrected to match the map used with the selected
coordinate system, so that the image can be appropriately identified or the points observed
in the field can be found correctly in the image [90]. Usually, in geometric correction, GCP
(ground control points) were used to adjust the image position to the actual position in the
field. Furthermore, rectification was carried out to correct geometric errors in the image.
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Geometric correction for the drone image was conducted automatically during orthomosaic
processes because georeferenced or geographic information was automatically inputted
during the processes.

2.7. Image Classification

To produce benthic habitat classification, object-based image classification (OBIA)
method was used in this study. The OBIA method is a classification method developed
with object segmentation and analysis processes or an image classification process based
on its spatial, spectral and temporal characteristics, resulting in image objects or segments
which are then used for classification [30,91].

Segmentation is a concept for building objects or segments from pixels into the same
object or segment [92]. In this study, we used the multiresolution segmentation (MRS)
algorithm. This algorithm started with a single pixel and combined neighboring segments
until the heterogeneity threshold was reached. In the segmentation process using the
MRS algorithm, there were three important parameters i.e., shape, compactness, and scale.
Shape functions to regulate the spectral homogeneity and shape of the object in relation to
the digital value influenced by color. Compactness plays a role in balancing or optimizing
the compactness and smoothness of objects in defining objects between smooth boundaries
and compact edges. Scale functions to adjust the size of the object that can be adjusted
according to user needs based on the level of detail. The values used in the shape and
compactness parameters ranged from 0–1, while the scale value was an abstraction in
determining the maximum heterogeneity value to generate an object. Therefore, there
were no standard provisions regarding the standard parameter values in object-based
classification [24,93,94].

Multiscale segmentation was applied with several different scales at level 1 (reef level)
and level 2 (benthic habitat). At level 1 (reef level i.e., land, shallow water, and deeper
water map), we used the segmentation scale of 200 because this value produced the best
map for reef level (land, shallow water, and deeper water map) visually than any other
values (we used segmentation values of 1000, 900, 800, 700, 600, 500, 400, 300, 250, 200,
150 for try and errors and found the segmentation value of 200 produced the best map
at the reef level). While at level 2, we used several different values for the optimization
segmentation scale. At the segmentation stage, the shape and compactness parameter
values used fixed values i.e., 0.1 and 0.5, respectively.

Segmentation scale optimization in the OBIA method showed that the segmentation
scale could affect the accuracy of the image classification result [1]. The application of
scale parameter optimization was only applied to level 2 (benthic habitat levels) in drone
image using the MRS algorithm. The optimization values of the scale parameters used in
the drone image were MRS 25, 50, 60, 70, and 100. To produce the best image result from
the MRS optimizations, an accuracy test for the image was performed. The best accuracy
scale was the scale used to produce the highest overall accuracy value of the image using
the formula stated in the following sub-chapter. The best accuracy image was then used
for final benthic habitats classification using eCognition software and employing several
machine learning classification algorithms such as SVM, Bayes, KNN, and DT algorithms.

2.8. Benthic Habitat Classification Scheme

The classification scheme used in this study was based on one benthic habitat com-
ponent or a combination of several benthic habitat components itself. The benthic habitat
classification scheme was a structured system for determining habitat types into classes
that can be defined based on ecological characteristics. The initial stage in mapmaking was
to clearly identify the classes and describe their attributes. Classification schemes were
used to guide habitat boundaries and definitions in the map-making process. This stage
was important for map users in understanding how the classification system as a structure
defined each class [95].
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From the results of data collection on benthic habitats at the study region, 7 main
components of shallow-water benthic habitats were found i.e., live coral, dead coral,
seagrass, sand, algae, rubble, and intertidal rocks. The determination of the benthic habitat
classification scheme was based on the dominant coverage of benthic habitat components
obtained from field observations on the 50 × 50 cm transect both visually, supported by
the use of quadratic transect photographs. The benthic habitat components, contained in
each of the quadratic observation transect, were composed of a benthic habitat composition
which was dominated by one benthic habitat component or a mixture of several benthic
habitat components.

The next step was to determine the name (labeling) of each class of benthic habitat
produced. Labeling was the final stage in the process of producing a shallow-water
benthic habitat classification scheme. Based on the results of observations in the field at
434 observation stations (see Figure 1), there were 12 benthic habitat components in the
study region (Figure 4). The names and descriptions of the 12 benthic habitat components
were based on the dominant cover of benthic habitat at each observation point which was
composed of one or more benthic habitat components. A single benthic class habitat such
as algae means that in that station 100% algae were found. A mixture class of a benthic
habitat such as live coral + dead coral meant that in the respective station a mixture benthic
habitat composition of live coral and dead coral were found, where live coral do-minated
the composition. Of the 12 components of benthic habitat found in the study region, we
constructed two benthic habitat classification schemes i.e., 12 and 9 shallow-water benthic
habitat classes. The twelve classes of benthic habitats were algae, intertidal rocks, live coral,
live coral + dead coral, dead coral, seagrass, seagrass + sand, sand, sand + seagrass, sand +
rubble, rubble, and rubble + seagrass. Meanwhile, nine classes of benthic habitats consisted
of algae, intertidal rocks, live coral, dead coral, seagrass, seagrass + sand, sand, sand +
seagrass, and rubble. The names, descriptions and codes of each benthic habitat class were
presented in Table 2.
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Figure 4. The twelve classes of benthic habitat component. (A) algae dominant; (B) rock intertidal dominant RI); (C) live
coral dominant (LC); (D) live coral dominant + dead coral (LCDC); (E) dead coral dominant (DC); (F) seagrass dominant (S);
(G) seagrass dominant + sand (SSd); (H) sand dominant (Sd); (I) sand dominat + seagrass (SdS); (J) sand dominant + rubble
(SdR); (K) rubble dominant (R); (L) rubble dominant + seagrass (RS).
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Table 2. Name, description, and code of each benthic habitat classes.

Benthic Habitat Description Code

algae algae dominant A
intertidal rock intertidal rock dominant IR

live coral live coral dominant LC
live coral + dead coral * live coral dominant mix with dead coral LCDC

dead coral dead coral dominant DC
seagrass seagrass dominant S

seagrass + sand seagrass dominant mix with sand SSd
sand sand dominant Sd

sand + seagrass sand dominant mix with seagrass SdS
sand + rubble ** sand dominant mix with rubble SdR

rubble rubble dominant R
rubble + seagrass *** rubble dominant mix with seagrass RS

* Combined to be live coral class, ** combined to be sand class, *** combined to be rubble in 9 benthic habitat classes.

We reduced the number of classes from 12 to 9 to improve the classification map
accuracy since several benthic habitat class types could produce similar reflectance signal
such as sand (Sd) and sand + rubble (SdR). Therefore, these two classes were combined
within one class i.e., sand (Sd) within the 9 class types. Live coral (LC) and live coral + dead
coral (LCDC) classes, were combined to be live coral (LC) class within the 9 class types.
While rubble (R) and rubble + seagrass (RS) were combined to be rubble (R) class within the
9 class types. The resulting classification schemes 12 and 9 shallow-water benthic ha-bitat
classes were used in the drone image classification process.

The determination of the benthic habitat classification scheme has no standard pro-
visions until today so that the designation of benthic habitat classes in this study was
adjusted to the composition of the dominant benthic habitat constituents observed in the
field. Several studies on determining the classification scheme for shallow water benthic
habitats have been carried out and resulted in different classification schemes or the num-
ber of classes such as [92] developing a classification scheme from field observations at the
detailed benthic coral reefs more than 15 classes mostly dominated by classes composed of
more than one benthic component. The classification scheme has been developed hierar-
chically by [24] for mapping benthic habitats in the western Pacific on coral reef ecology
produced 12 classes of benthic habitat classification schemes constructed from 9 types
of benthic cover. [2] produced 12 benthic habitat classes, [20] produced six benthic habi-
tats, [18] produced seven benthic habitat classes and [17] produced nine benthic ha-bitat
classification schemes.

2.9. Accuracy Test

An accuracy test was carried out on all classified images to determine the accuracy
of the applied classification technique. The common accuracy test performed on remote
sensing classification results data was the confusion matrix. This was done by comparing
the classified image to the actual class or object obtained from the field observations [18].

Accuracy test using confusion matrix refers to [86] which consists of overall accuracy
(OA), producer (PA), and user accuracy (UA). The formulas to calculate the level of accuracy
for both OA, PA, and UA were presented in the following equations:

OA =
∑k

i=1 nii

n
(1)

PAj =
njj

n+j
(2)
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UAi =
nii
ni+

(3)

where, OA = overall accuracy, PA = producer accuracy, UA = user accuracy, n = number
of observations, nii = number of observations in column i and row i, and njj = number of
observations in column j and row j. n+j = the number of samples classified into category of
j, ni+ = the number of samples classified into category i.

3. Result and Disscussion
3.1. Digital Orthophoto

Overall, 1274 aerial photographs covering all study regions were observed. We later
combine all these photographs through orthomosaic process to produce one high-quality
of digital drone orthophoto.

The resulting digital orthophoto image was a georeferenced two-dimensional image.
According to [96], in general, orthophoto images only produce two-dimensional display
images that are equipped with X and Y coordinate information. The digital orthophoto
image of the orthomosaic results in this study is shown in Figure 5.
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Orthophoto image was produced through a repair process related to photo tilt, lens
distortion, and relief displacement which were then eliminated or adjusted [96], and the
process was carried out with certain stages and procedures to produce high quality image.
The orthophoto image had a very high spatial resolution of 5.2 × 5.2 cm with total area of
106 ha or 1.06 km2. The resulting orthophoto was later used as data input in the shallow
water benthic habitat classification processes.

3.2. Image Classification Level 1 (Reef Level)

After conducting orthophoto digital processing using drone images, we performed
an OBIA classification using several segmentation values. At level 1 (reef level), the best
segmentation scale used was 200 and produced 12276 objects. From these 12276 objects,
we classified into three classes i.e., land, shallow water, and deeper water (Figure 6). Based
on the classification result in level 1 (reef level), we found that the total area of drone
image was 106 Ha consisting of shallow-water class of 45.2 Ha, land class of 33.9 Ha, and
deepwater class of 26.9 Ha (Figure 6).Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 25 

 

 

 
Figure 6. Level 1 classification (reef level) of the drone image. 
Figure 6. Level 1 classification (reef level) of the drone image.
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3.3. Image Classification Level 2 (Benthic Habitat Classification)

At level 2, the shallow-water class from level 1 classification, optimization was per-
formed using MRS segmentation values of 25, 50, 60, 70, and 100 with the shape and
compactness values using default (fix) values in the software i.e., 0.1 and 0.5, respectively
(Figure 7). Results showed that the smaller the segmentation value applied, the higher the
number of objects produced and also the smaller the shape or size of the object (Figure 7).
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Figure 7. Examples of images resulted from optimization process using segmentation values of 25 (a),
50 (b), 60 (c), 70 (d), and 100 (e) indicated that size and number varied depending on segmentation
values.

For the whole shallow-water region in level 1 classification, the multi-scale segmenta-
tion processes using segmentation values (scales) of 25, 50, 60, 70, and 100 were performed.
We obtained as many as 320,788, 88,786, 73403, 49,514, and 27,632 objects, respectively.
The results of segmentation scale optimization can be seen that the parameters of the
segmentation scale greatly affected the process of forming objects in the image, both the
number and shape of the object. [18] showed that segmentation scale could affect the shape,
size, and number of objects produced. The number and size of objects formed in the image
were based on the heterogeneity or complexity of an object at the research location (the
shallow water benthic habitat). Areas that contained more heterogeneous objects in an
image produced more objects than areas that had less heterogeneous objects [1]

The resulting objects or segments were then classified by several machine learning
algorithms contained in the Cognition Developer software version 8.7 such as the support
vector machine (SVM), decision tree (DT), Bayesian, and K-Nearest Neighbor (KNN)
applying the shallow water benthic habitat classification scheme (see Table 2) as an input
thematic layer. Of the total 434 field observation points, 217 observation points were used
as input data (input thematic layer) in the classification process and the remaining 217
observation points were used as data for accuracy testing using confusion matrix. The
input features in the level 2 classification process for drone image used the spectral/layer
(RGB) values i.e., mean, standard deviation, and transformation value of Hue, Saturation,
and Intensity (HSI).

The application of segmentation scale optimization on 12 benthic habitat classes (see
Table 2) in the drone image, we obtained the highest accuracy of 77.4% on the segmentation
value of 50 applying the SVM algorithm, while the lowest accuracy of 32.7% was obtained
on the segmentation value of 100 applying DT algorithm (Figure 8).
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Figure 8. Overall accuracy on several segmentation scale optimizations applying several classification
algorithms on 12 classes of benthic habitat in the drone image.

For nine benthic habitat classes (see Table 2), the application of segmentation scale
optimization produced the highest accuracy of 81.1% on the segmentation value of 50 with
the SVM algorithm, while the lowest accuracy of 36.4% was obtained on the segmentation
value of 100 with DT algorithm (Figure 9).
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algorithms on 9 classes of benthic habitat in the drone image.

Based on the optimization results of the segmentation scale using the drone image in
the 12 and 9 benthic habitat classes with the application of several classification algorithms,
it was clear that the SVM algorithm produced the highest overall accuracy compared to
other classification algorithms. This was in accordance with the results of previous research
by [18] which mapped the benthic habitat of coral reefs using Landsat 8 OLI Satellite
imagery with OBIA method employing several classification algorithms such as the SVM,
random tree (RT), DT, Bayesian, and KNN algorithms. They found that the SVM algorithm
produced the best overall accuracy of 73% for seven benthic habitat classes. [97] mapped
benthic habitats with several classification algorithms such as MLC (maximum likelihood),
SAM (spectral angular mapper), SID (spectral information divergence), and SVM, and
they produced optimum accuracy values for the application of the SVM algorithm [98]
also stated that the SVM algorithm in remote sensing had a good ability to handle small
amounts of data and can produce better accuracy than other classification techniques. The
main factor that affects the accuracy improvement using machine learning algorithms
(SVM) was the ability to distinguish objects well from the use of data with unknown
empirical probability characteristics [99].

To study in more detail on benthic habitats in the study region, maps of 12 and 9 classes
of shallow-water benthic habitat applying the SVM algorithm with segmentation values of
50 were produced (Figure 10).
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Figure 10. Shallow water benthic habitat map employing SVM algorithm and segmentation value of 50 for 12 classes (A)
and 9 classes (B).

Based on Figure 10A, the total area of shallow-water benthic habitats within 12 classes
was 45.2 Ha. From the 12 classes of benthic habitats, the live coral class (LC) dominated the
shallow-water region with a total area of 13.1 Ha (28.98%), followed by sand + seagrass
(SdS) of 5.7 Ha (12.61%), seagrass + sand (SSd) of 5.3 Ha (11.72%), seagrass (S) and sand
(Sd) each of 4.8 Ha (10.62%). Meanwhile, the smallest area was the rubble + seagrass (RS)
class with a total area of 0.1 Ha 0.2%) (Figure 11).
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The total area for 9 classes of shallow-water benthic habitats was 45.1 Ha (Figure 10B).
From the nine classifications of benthic habitats, the live coral (LC) also dominated the
shallow-water region with a total area of 15.2 Ha (33.70%), followed by sand (Sd) of 7.1 Ha
(15.74%), sand + seagrass (SdS) of 5.7 Ha (12.64%), sand of 5.2 Ha (11.53%), and seagrass
+ sand (SSd) of 5.0 Ha (11.08%). While the smallest area was the algae class (A) with a
total area of 0.6 Ha (1.33%) (Figures 10B and 11). The increase of live coral (LC) percentage
coverage in the 9 classes map occurred because within the 9 classes map the live coral (LC)
and live coral + dead coral (LC + DC) were combined become one class i.e., live coral (LC)
class. The sand class coverage also increased within the 9 classes because the sand (Sd) and
sand + rubble (SdR) were combined become one class i.e., the sand type.

Based on the accuracy-test using an error matrix (confusion matrix), we found an
overall accuracy (OA) of 77.4% for the 12 classes of benthic habitat classification. For
producer accuracy (PA) and user accuracy (UA) values, the accuracy ranges from 20–100%
(Table 3). From these results, several benthic habitat classes can be mapped very well,
especially in the algae class (A) which produces the highest UA value of 100%. Live coral
(LC), sand (Sd), dead coral (DC), rubble (R), and intertidal rock (IR) were benthic habitat
elements that can be mapped with high user accuracy (UA) with the range of 80–93%
(Table 3). Meanwhile, other benthic habitat classes met the minimum requirement for
mapping (UA > 60%) were sand + seagrass (SdS), live coral + dead coral (LCDC), and
seagrass + sand (SSd) with UA values of 63–71%. The other two benthic habitat elements
that had not been mapped properly were the sand + rubble (Sd + R) with UA value of 56%
and rubble + seagrass (R + S) with UA value of 50%.

The low accuracy value in several benthic habitat classes was strongly influenced by
the complexity of the benthic habitat in the study region and the number of observation
points in each benthic habitat class. The dominant reflectance signal from one element
of mixture benthic habitats to another such as sand + seagrass (SdS), live coral + dead
coral (LCLD), sand + rubble (Sd + R), and rubble + seagrass (R + S) can produce low user
accuracy value. The first element of these mixture benthic habitats dominated reflectance
signal from the second element benthic habitat and therefore the reflectance signal from
the second element of benthic habitat may not be detected by satellite. In addition, the
spectral similarity between habitat classes cannot be avoided by classification algorithms,
especially in benthic habitat classes composed of two benthic habitat components. Another
factor affecting this accuracy map was the GPS accuracy used during field data collection
and satellite image spatial resolution [17]. In this study, we used GPS Trimble GeoExplores
6000 series that has an accuracy level within 50 cm. Ref. [89] stated that the minimum
overall accuracy requirement for mapping benthic habitat was 60%. Therefore, the benthic
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habitat classification of the drone image in this study was good enough for the purpose
classification mapping.

Table 3. Confusion matrix result for 12 classes benthic habitat classification on the drone image.

Field Sat. A IR LC LC
DC DC S SSd Sd SdS SdR R RS Total UA

A 7 0 0 0 0 0 0 0 0 0 0 0 7 100

IR 1 13 0 0 0 0 0 0 0 0 0 0 14 93

LC 0 0 43 4 2 1 0 0 0 0 2 2 54 80

LCDC 0 0 1 7 2 0 0 0 0 0 1 0 11 64

DC 0 0 0 1 9 0 0 1 0 0 0 0 11 82

S 0 0 1 0 1 24 0 0 0 0 1 1 28 86

SSd 0 0 0 1 0 3 12 0 1 0 0 0 17 71

Sd 0 0 0 1 1 0 0 21 1 2 0 0 26 81

SdS 0 0 0 0 2 0 2 0 12 1 2 0 19 63

SdR 0 0 1 0 1 0 0 2 0 9 2 1 16 56

R 0 0 0 0 0 0 0 1 0 1 10 0 12 83

RS 0 0 0 0 0 1 0 0 0 0 0 1 2 50

Total 8 13 46 14 18 29 14 25 14 13 18 5 217

PA 88 100 93 50 50 83 86 84 86 69 56 20 OA 77.4

Note: Sat. = Satellite, A = Algae, IR = Intertidal Rock, LC = Live Coral, LCDC = Live Coral + Dead Coral, DC = Dead Coral, S = Seagrass,
SSd = Seagrass + Sand, Sd = Sand, SdS = Sand + Seagrass, SdR = Sand + Rubble, R = Rubble, RS = Rubble + Sea-grass, PA = Producer
Accuracy, UA = User Accuracy, OA = Overall Accurcay.

Based on the low user accuracy value results in mapping live coral + dead coral
(LCDC), sand + rubble (Sd + R), and rubble + seagrass (R + S) within the 12 benthic habitat
classes, we therefore eliminated these mixture benthic habitat classes and produced a map
for nine class benthic habitats. After performing confusion matrix analyses, for the nine
classes of benthic habitat classification, we found an overall accuracy of 81.1% (increased
by 3.7% from the twelve classes of benthic habitat classification) (Table 4). This showed that
the number of object classes greatly affected the accuracy of the classification results, where
the smaller number of classes (9 classes) resulted in a higher overall accuracy compared
to the larger number of classes (12 classes). This was in accordance with the research
results of [26] who applied several numbers of classes to produce an overall accuracy that
decreased with the increase in the number of classes used i.e., an average accuracy of 77%
(4–5 classes), 71% (7–8 classes), 56% (9–11 classes), and 53% (>13 classes) in Landsat and
IKONOS imageries.

Some misclassifications within the 9 classes of benthic habitat map between field
observations and satellite detections were observed between dead coral (DC) and live coral
(LC) (4 of 18 = 22%), rubble (R) and live coral (LC) (5 of 23 = 22%), seagrass (S) and sand
+ seagrass (S + SSd) (3 of 29 = 29%), rubble (R) and sand (Sd) (3 of 23 = 13%), sand (Sd)
and rubble (R) (3 of 38 = 8%) (Table 4). The results showed that misclassification mostly
occurred within the benthic habitat with closely similar characteristics.

The mapping of shallow-water benthic habitats has been widely carried out using
the object-based classification method (OBIA). The use of the OBIA method has also
been shown to improve shallow-water benthic habitat mapping accuracy. [94] mapped 11
benthic classes using Quickbird images with fuzzy logic algorithms and contextual editing
resulting in an accuracy of 83.5%. [24] mapped 12 benthic habitat classes using Quickbird-2
imagery and produced a mapping accuracy of 52–75%. [18] conducted mapping on seven
classes of benthic habitat on coral reefs using Landsat 8 OLI with the SVM algorithm
and produced an overall accuracy of 73%. [17] mapped nine benthic habitat classes using
Worldview-2 imagery with the SVM algorithm and produced an overall accuracy of 75%.
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In this study, mapping with drone image was carried out using 12 and 9 benthic habitat
classes which produced the highest overall accuracy of 77.4% and 81.1%, respectively,
employing the SVM algorithm. [100] mapped the submerged habitat using the drone type
FPV Raptor 1.6m RxR and Canon SX 220 camera on five benthic habitat classes using the
OBIA method with the SVM algorithm and produced an overall accuracy of 87.1%. The
difference in mapping accuracy from several previous studies was due to differences in
classification algorithms, the type of image used, the number of classes or complexity
of benthic habitats, and the number of field observation points. Ref. [101] assessed the
accuracy of benthic habitat mapping using Sentinel-2 satellite data with 10 × 10 m spatial
resolution acquired on 4 April 2017 (the closest time of the satellite data available with
the drone data acquisition in this study) within the similar location, similar number and
locations of field measurements, similar number of benthic habitat classes (12 and 9 classes),
and similar method for mapping classification (OBIA method employing SVM, Random
Tree (RT), DT, Bayesian, and KNN algorithms) [101]. The result showed that based on
OBIA method and SVM algorithm with an optimum segmentation scale of 2, shallow-water
benthic habitat produced the highest overall accuracy of 60.4% and 64.1% for 12 and 9 object
classes. Therefore, compared to this study results, the overall accuracy was increase of 17%
both for 12 and 9 object classes of benthic habitat when classified with a similar method
using the drone image.

Table 4. Confusion matrix result for 9 classes benthic habitat classification for the drone
image.

Field
Sat. A IR LC DC S SSd Sd SdS R Total UA

A 7 0 0 0 0 0 0 0 0 7 100

IR 1 13 0 0 0 0 0 0 0 14 93

LC 0 0 55 4 1 0 0 0 5 65 85

DC 0 0 1 9 0 0 1 0 0 11 82

S 0 0 1 1 24 0 0 0 2 28 86

SSd 0 0 1 0 3 12 0 1 0 17 71

Sd 0 0 2 2 0 0 33 1 3 41 80

SdS 0 0 0 2 0 2 1 12 2 19 63

R 0 0 0 0 1 0 3 0 11 15 73

Total 8 13 60 18 29 14 38 14 23 217

PA 88 100 92 50 83 86 87 86 48 OA 81.1
Note: Sat. = Satellite, A = Algae, IR = Intertidal Rock, LC = Live Coral, DC = Dead Coral, S = Sand, SSd = Seagrass
+ Sand, Sd = Sand, SdS = Sand + Seagrass, R = Rubble, PA = Producer Accuracy, US = User Accuracy, OA = Total
Accuracy.

Based on this study result, the drone technology can be used as an alternative in
providing images with very high spatial resolution to map benthic habitats with high
habitat complexity. However, the use of UAV technology for benthic habitat mapping
requires further development and research, considering that the resulting UAV image in
this study only provides the RGB bands with low spectral resolution. In addition, what
needs to be considered in the use of drone technology for mapping shallow-water benthic
habitats is related to the process of acquiring aerial photographs as well as water and
weather conditions at the study site so that it can produce a better image.

The drone technology, in general, produced relatively higher accuracy for shallow-
water benthic habitats compared to other high spatial resolution satellites even though
the total class (type) of shallow-water benthic habitats was equal or less than 12 classes
such as [17] for 9 classes of benthic habitats using Worldview-2 with SVM algorithm and
produced the best accuracy of 75%, [18] for coral reef habitat map using Landsat 8 OLI
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with OBIA and SVM algorithm with total accuracy of 73% for 7 classes, [24] for 12 classes
of benthic habitats using Quickbird-2 produced the maximum accuracy of 75%, and [101]
for 12 classes of coral reef benthic habitats using Landsat 8 OLI satellite imagery with OBIA
and SVM algorithms produced total accuracy of 73%. Meanwhile, [90] mapped 11 classes of
benthic habitats using Quickbird image with fuzzy logic algorithm and contextual editing
produced total accuracy of 83.5%. [100] mapped for 5 classes benthic habitats using drone
with OBIA and SVM algorithm produced accuracy of 87.1%. The last two mapping benthic
habitat results produced better accuracy than this study probably because the total classes
of benthic habitat in the last two study were less than the total classes in this study and
also the type of benthic habitat classes may be different one of another.

Some factors affecting the accuracy map of the drone image were the flying time for
capturing image and the camera angle in respect to the water surface. In this study, the
drone flying time was at 8:00 am local time with camera angle perpendicular to the water
surface. The drone flying time was chosen at 8:00 a.m. local time due to fact that based on
trial drone flying time at 9:00 a.m., 10:00 a.m., or 11:00 a.m., 1:00 p.m., 2:00 p.m., and 3:00
p.m. all images captured by the drone were fill up with the sunglint effect. Meanwhile,
the total irradiances from the sun reached the water column especially on the blue and
green wavelengths were relatively lower at 8:00 a.m. than at 9:00 a.m., 10:00 a.m., 11:00
a.m., 1:00 p.m., 2:00 p.m., and 3 p.m. Therefore, the relatively low signal especially in the
blue and green wavelengths at 8:00 a.m. from the water column may affect the clarity
of the shallow-water benthic habitat characteristics and later affected the accuracy of the
shallow-water benthic habitats map classifications.

To increase the accuracy of the drone image classification, further research may also be
focused on flying time for the drone capturing image and the drone camera angle in respect
to the water surface. To avoid sunglint effect and to increase irradiance signals received by
the water column, the drone flying time may be chosen at 10–11 a.m. or 1–2 p.m. local time
with the drone camera angle with respect to the water column at 30◦ or 45◦. [102] stated that
variations in remote sensing reflectance from water column can be attributed to a variety of
environmental factors such as Sun angle, cloud cover, wind speed, and viewing geometry;
however, wind speed was not the major source of uncertainty. According to [102] the best
viewing angle of the instrument with respect to the vertical line of the instrument and the
water column was 45◦.

4. Conclusions

Using drone technology, we can map shallow-water benthic habitat with relatively
high overall accuracy values of 77.4% and 81.1% for 12 and 9 object classes using OBIA
method with 50 segmentation scale and applying SVM classification algorithm. This result
improved overall accuracy up to 17% in mapping benthic habitats using Sentinel-2 satellite
data within the similar region, similar classes, and similar method of classification analyses.

The algae class (A) produced the highest user accuracy (UA) value of 100%, while
sand + rubble (Sd + R) and rubble + seagrass (R + S) produced user accuracy (UA) below
the minimum requirement for an acceptable benthic habitat map with UA value of 56%
and 50%, respectively. Misclassification mostly occurred within benthic habitat elements
with closely similar characteristics.

Total area of shallow-water benthic habitats detected by the drone image in the study
region was 45.1 Ha within the 9 classes benthic habitats. Live coral (LC) dominated the
shallow-water region with a total area of 15.2 Ha (33.70%), followed by sand (Sd) of 7.1 Ha
(15.74%), sand + seagrass (SdS) of 5.7 Ha (12.64%), sand of 5.2 Ha (11.53%), and seagrass +
sand (SSd) of 5.0 Ha (11.08%), while the smallest area was the algae class (A) with a total
area of 0.6 Ha (1.33%).
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