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Abstract: Monitoring manufacturing process variation remains challenging, especially within a
rapid and automated manufacturing environment. Problematic and unstable processes may produce
distinct time series patterns that could be associated with assignable causes for diagnosis purpose.
Various machine learning classification techniques such as artificial neural network (ANN), classi-
fication and regression tree (CART), and fuzzy inference system have been proposed to enhance
the capability of traditional Shewhart control chart for process monitoring and diagnosis. ANN
classifiers are often opaque to the user with limited interpretability on the classification procedures.
However, fuzzy inference system and CART are more transparent, and the internal steps are more
comprehensible to users. There have been limited works comparing these two techniques in the
control chart pattern recognition (CCPR) domain. As such, the aim of this paper is to demonstrate
the development of fuzzy heuristics and CART technique for CCPR and compare their classification
performance. The results show the heuristics Mamdani fuzzy classifier performed well in classifica-
tion accuracy (95.76%) but slightly lower compared to CART classifier (98.58%). This study opens
opportunities for deeper investigation and provides a useful revisit to promote more studies into
explainable artificial intelligence (XAI).

Keywords: control chart; pattern recognition; fuzzy heuristic; decision tree; statistical features;
shape features

1. Introduction

Statistical process control charts are commonly used to detect process variations in
manufacturing processes [1]. Shewhart-based X-bar control chart introduced in 1920s
remains as one of the most widely implemented statistical process control tool [2]. Time
series plots from unstable processes would produce unnatural patterns such as trend up,
trend down, sudden shift up and down, cyclic, stratification, and systematic patterns, as
shown in Figure 1. Most of the time, normal patterns indicate a statistically in-control
process. However, as time goes on, the manufacturing process may experience tool wear,
operator fatigue, seasonal effects, failure of machine parts, fluctuation in power supply,
and lose fixture, among others. For example, a sudden shift pattern could be attributed
to failures in machined parts, and a cyclic pattern could be attributed to seasonal changes
like fluctuation in temperature [3,4]. Identification and classification of these patterns
complemented with process knowledge could be linked to a set of assignable causes for
diagnosis purposes. As such, the ability to classify such pattern classes is invaluable for
focusing the diagnosis efforts.

Advances in computing and artificial intelligence (AI) have enabled these patterns
to be automatically classified. Some of the popular soft computing methods used for
control chart patterns recognition (CCPR) are artificial neural network (ANN), support
vector machine (SVM), fuzzy inference system (FIS), decision tree and hybrid of these
techniques [5–8]. ANN offers flexibility, learning capability, and is capable of handling
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noisy data. However, ANN is seen like a black box and provides limited internal compre-
hensibility to the user. It is difficult to interpret how a CCPR decision has been reached by
the ANN-based classifier. Besides, it requires a relatively large amount of training data.
Support Vector Machine, which uses the principle of structural risk minimization, is an
attractive alternative for classification problems with a small sample size. However, SVM
requires parameter optimization and needs to be linked with optimization tools. Also, it
is challenging to select an appropriate kernel function in designing the SVM classifier [9].
Zhou et al. [10] proposed an integrated fuzzy SVM classifier for CCPR. They used a genetic
algorithm to simultaneously optimize the input features subsets and parameters of the
classifier. Sugumaran and Ramachandran [11] reported an application of a decision tree
for feature selection and for generation of rule set for a fuzzy classifier for fault diagnosis
of roller bearing. Recently Zan et al. [4,12] reported a potential application of convolution
neural network (CNN) and information fusion for CCPR. However, CNN remain opaque
especially among new researchers who need to understand the classification logic prior
to exploring more complex and advanced techniques. Furthermore, there is growing
demand for transparency in automated decision-making systems, and the trend is toward
explainable and trustworthy AI especially for diagnostic purposes such as CCPR.
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One of the comprehensible recognition approaches is fuzzy inference system (FIS).
Zarandi et al. [7] investigated Mamdani FIS system with Western Electric [13] run rules, but
their study did not include investigation to classify the control chart patterns. They used a
run rules zone tests as the input membership function. Khajehzadeh and Asady [8] used
the Sugeno FIS with subtractive clustering technique to classify control chart patterns. The
second approach with interpretable steps is the classification by using a decision tree. Pham
and Wani [14] used a decision tree as recognizer for identification of six basic types of control
chart patterns. Gauri and Chakraborty [5,15] also proposed classification by a decision
tree algorithm. Bag et al. [16] compared CART and quick unbiased efficient statistical tree
(QUEST). They reported that the CART algorithm was more effective compared to the
QUEST algorithm.

In development of CCPR, input data can be represented either as raw data or as
minimal features set. However, it is not practical to use raw data directly for classification
by either fuzzy classifiers or decision trees [14]. The most common approaches adopted by
researchers are shape features, statistical features, or hybrids of both. Each type of feature
set has its own merits and demerits considering different methods in their extraction and
selection. Pham and Wani [14] used nine shape features for the first time to recognize six
basic control chart patterns. Gauri and Chakraborty [15] used CART-based decision tree
with seven shape features. Hassan et al. [17,18] proposed six statistical features set out
of ten candidate features for CCPR using ANN recognizer. Al-Assif [19] used features
based on wavelet denoise for ANN recognizer. Cheng et al. [20] proposed features based
on correlation analysis and ANN as the recognizer. Khormali and Addeh [21] developed
six new features based on type-2 fuzzy c-mean approach and support vector machine
(SVM) as recognizer. Masood and Hassan [22] investigated feature-based ANN scheme
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for recognizing bivariate correlated patterns. Bag et al. [16] reported a study using CART
to recognize different types of CCPs with shape features. Their results indicate that the
performance of feature-based CCP recognition approach is promising. Hassan et al. [17]
argued that significant improvement in classification performance of CCPR when using
features compared to raw data is due to dimensionality reduction and compact classifier.

This study investigated two soft computing methods, namely fuzzy heuristics based
on Mamdani fuzzy inference system, and Classification and Regression Tree (CART). Based
on our review, there has been lack of study comparing these two methods particularly with
statistical features as input representation for control chart pattern recognition. The purpose
of this paper is to develop CCPR classifiers using the above two methods and compare their
performance in classifying X-bar control chart patterns. These classification methods were
chosen since they provide transparency and a comprehensible decision-making process,
require relatively less training data, and potentially result in high recognition accuracy.
Having comprehensible logic is desirable to create a trustworthy decision-making system.
It also facilitates acceptance among practitioners especially when predicted patterns can be
associated with diagnostic and preventive actions. The rest of the paper is organized as
follows: Section 2 discusses the overall methodology, Section 3 covers the development
of heuristic Mamdani fuzzy classifier, Section 4 explains the development of decision tree
classifier, Section 5 presents the results and discussion, and finally, Section 6 concludes the
paper.

2. Methodology

The methodology of the study involves sample patterns generation, statistical feature
extraction, classifier design and development, and finally, performance evaluation.

2.1. Sample Patterns Generation

It is not economically possible to collect a sufficiently balanced amount of catastrophic
unstable process data from real life situations. Thus, it is an acceptable practice for re-
searchers in this area to use mathematical pattern generator to mimic real-life process
deterioration [5, 17]. Furthermore, it is not possible to know exactly what type of patterns
generated from the real process without thorough diagnosis of the real process. These
data sets can be generated by standard patterns equations given in Table 1, along with the
variability within the specified parameter ranges. A noise magnitude of 1/3σ was used
in the pattern generators. These parameters were randomly varied between the specified
ranges. We adopted a Swift [23] approach for sample data generation to provide various
types of patterns as plotted on Shewhart X-bar chart. The notation µ represents the process
mean for stable process, N represents standardized normal distribution and γ is the related
parameters. In this study, each sampled data stream has 20 time series subgroup data with
a sample size of five. It was assumed that all the sampled streams demonstrated fully
developed patterns in the observation window before being recognized. Each data set has
a total of 800 sample patterns, where each pattern type comprises 100 patterns.

Table 1. Equations for control chart patterns samples generation [5,17].

Pattern Type Parameters Parameter Ranges Standard Equations

Trend up (TU) or Trend down (TD) Slope (γ1) 0.005 to 0.025 yt = µ+ Nt ± γ1t

Shift up (SU) or Shift down (SD) Shift (γ2) 0.005 to 2.5 yt = µ+ Nt ± γ2t

Cyclic (CYC) Amplitude (γ3)
Frequency (γ4 = 10) 0 to 1.8 yt = µ+ Nt ± γ3 sin

(
2πt
γ4

)
Stratification (STRA) Stratification (γ5) 0.1 to 0.6 yt = µ+ Nt + γ5Nt

Systematic (SYS) Departure (γ6) 0.005 to 2.5 yt = µ + Nt ± γ6(−1)t

Normal (NOR) NA µ = 0, σ = 1 yt = µ+ Nt
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2.2. Features Extraction

Statistical features extracted from raw data were used as input data representation to
achieve dimensional reduction [9,24]. Ten statistical features were extracted from each of
the sampled data streams. The candidate features were MEAN, standard deviation (SD),
skewness, mean square value (MSV), cumulative sum (CUSUM), autocorrelation, range,
MEDIAN, kurtosis and SLOPE. Some of the mathematical expressions of statistical features
are summarized below [18].

• Skewness: The symmetry of shape distribution. The estimate of the skewness in data
points from X1 to Xn is;

γ =
n ∑n

i=1(Xi − µ)3

[(n − 1)(n − 2)s3]
(1)

where Xi is individual value, µ is mean and s is sample standard deviation and n is the
number of points or window size.

• Mean Square Value:

MSV =
1

n + 1

n

∑
i=1

Xi
2 (2)

where Xi are the individual values and n is the number of points or window size.

• CUSUM: It is the cumulative sum of values. The last statistical value of CUSUM is
taken as the feature in this study. The general formula for upper and lower CUSUM
statistics are:

Ci
+ = max

[
0, xi − (µ0 + K) + Ci−1

+
]
Ci

− = max
[
0, (µ0 − K)− xi + Ci−1

−] (3)

where the starting values of Ci
+, Ci

− are set to zero.

• Autocorrelation: Exists when later data is dependent on previous data.

Axx[m] =
1

N + 1 − m
[x0x1 + x1x1+m + . . . xN−mxN ] (4)

• Kurtosis: Measures the peakness of a distribution

k =
E
[
(X − µ)4

]
σ4 − 3 (5)

The factor 3 is used for standard normal distribution to get k = 0.

• SLOPE: The first order line fitting. The slope m is used as a feature in this study.

Y = mX + C (6)

where C is the y-intercept and m is the slope. The slope can be calculated using the
following equation.

m =
∑n

i=1(Xi − X)
(
Yi − Y

)
∑n

i=1
(
Xi − X

)2 (7)

The common ones are intentionally excluded from the above list. Each feature has dif-
ferent numerical values for each pattern, and they were normalized to be in the same range
[−10, 10] to give appropriate scaling and visibility before being presented to the classifiers.
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2.3. Classifier Design and Development

Two types of explainable classification method were used in this study, namely the
fuzzy inference system (FIS) and classification and regression trees (CART). Fuzzy classifier
is transparent to interpretation and analysis. The development of fuzzy classifier involves
representation of data in fuzzy set format, selecting optimal fuzzy sets using similarity
analysis, designing FIS and finally testing and performance evaluation. We implemented
Mamdani FIS using the MATLAB fuzzy toolbox since this heuristic was more appropriate
for our CCPR compared to the Sugeno FIS. The simplified fuzzy triangular membership
function was used as input and fuzzy IF-THEN rules for inference engine. Since a crisp
value of the output was required, the final value of fuzzy output was defuzzified using the
smallest of maximum (SOM) method.

The second classification technique, CART performs patterns classification by recur-
sively partitioning the data space into an appropriate class partition. The partitioning can
be visualized graphically as a decision tree. The CART in this study was implemented
through rpart (Recursive Partitioning and Regression Trees) library in R, an open-source
programming environment [25]. Further discussion on the classifiers’ development is
provided in Sections 3 and 4, respectively.

2.4. Performance Evaluation

Six data sets were used for training and testing, where each data set consists of a total
of 800 sample patterns. Overall, a total of 4800 data were used where 60% for training and
40% for testing the classifiers. The performance was evaluated in terms of classification
accuracy and presented in terms of confusion matrix. The investigated classification
heuristics were validated using published data set from Alcock [26].

3. Development of Heuristic Mamdani Fuzzy Classifier

The development of fuzzy classifier involves representation of data in fuzzy set format,
selection of suitable fuzzy sets and then design of Mamdani fuzzy inference system (FIS).
The general steps in the development of fuzzy classifier are shown in Figure 2.
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Figure 2. Generalized steps in the fuzzy classifier development.

To determine the fuzzy sets for each feature, we adopted the simplest method by
determining the maximum, medium, mean and minimum values for each pattern in each
input feature space. The ten initial statistical features were extracted from 600 samples
for each type of patterns. The box plots were used to represent feature space for each
pattern. An example of a box plot for feature MEAN is shown in Figure 3 where pattern
types are shown on the horizontal axis. The box plots represent median points, 75 and
25 percentiles and maximum and minimum points in the feature space. The vertical axis
shows the normalized values of the feature MEAN between [−10, 10]. Overlapping can be
seen from feature spaces such as for Shift up and Trend up patterns and similarly for Shift
down and Trend down patterns. The feature spaces for Normal, Cyclic and Systematic
patterns are distributed around zero. This phenomenon occurs due to the nature of these
patterns where the expected mean values for the observed points center to zero.
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The process of fuzzification has two steps: one is to assign fuzzy labels, and the second
is to assign numerical meaning to each label. Figure 4 shows an example of membership
function for feature MEAN as fuzzy input. Among the different types of membership
functions, we used triangular membership functions as a preliminary analysis due to its
simplicity. Three points: upper bound, lower bound and center points are required to
completely define a fuzzy set. The three points were selected from the box plots for each
of the features and the respective patterns as shown in Figure 3. Each fuzzy set starts at
minimum and ends with maximum of feature space. The peak is the median of the feature
space. Each fuzzy set represents a pattern class. As shown in Figure 4, the feature MEAN
has a universe of input with crisp values divided into five fuzzy sets. These crisp inputs
are converted to fuzzy variables with membership degrees at y-axis. For example, a MEAN
value 6.0 on the x-axis belongs to the fuzzy linguistic variable SU with a membership
degree 0.8.
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Having overlapping fuzzy sets can cause difficulty in interpretation. As shown in
Figure 4, fuzzy sets SU and TU, and SD and TD shared some of the crisp values. Likewise,
the crisp values for patterns NOR, CYC, STRAT and SYS are concentrated at similar values
on the x-axis. The fuzzy sets were then simplified using simplification rules given by
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Setnes et al. [27]. This involved deleting and merging of the sets. The fuzzy sets reduction
was done based on a similarity measure (S) as in Equation (8).

S
(

Xi,j, Yj,k

)
=

∣∣∣Xij
⋂

Yk,j

∣∣∣∣∣∣Xi,j
⋃

Yk,j

∣∣∣ (8)

If value of S = 1 then the two sets are identical, and if S = 0 the two sets are completely
different. In this study we used a threshold S = 0.5. If S > 0.5, the two sets were merged.
Similar analysis was conducted for all features and the final feature sets after simplification
are shown in Figure 5. We empirically selected eight statistical features to be used in
designing the Mamdani FIS, namely, features MEAN, standard deviation (SD), mean
square value (MSV), CUSUM, autocorrelation, range, kurtosis, and SLOPE.

Symmetry 2021, 13, x FOR PEER REVIEW 7 of 13 
 

 

Having overlapping fuzzy sets can cause difficulty in interpretation. As shown in Fig-
ure 4, fuzzy sets SU and TU, and SD and TD shared some of the crisp values. Likewise, 
the crisp values for patterns NOR, CYC, STRAT and SYS are concentrated at similar values 
on the x-axis. The fuzzy sets were then simplified using simplification rules given by Set-
nes et al. [27]. This involved deleting and merging of the sets. The fuzzy sets reduction 
was done based on a similarity measure (S) as in Equation (8). 𝑆 𝑋 , , 𝑌 , = 𝑋 ⋂𝑌 ,𝑋 , ⋃𝑌 ,  (8)

If value of S = 1 then the two sets are identical, and if S = 0 the two sets are completely 
different. In this study we used a threshold S = 0.5. If S > 0.5, the two sets were merged. 
Similar analysis was conducted for all features and the final feature sets after simplifica-
tion are shown in Figure 5. We empirically selected eight statistical features to be used in 
designing the Mamdani FIS, namely, features MEAN, standard deviation (SD), mean 
square value (MSV), CUSUM, autocorrelation, range, kurtosis, and SLOPE. 

 
Figure 5. Simplified fuzzy sets after applying simplification analysis. 

We omitted feature MEDIAN simply because it has high similarity with feature 
MEAN. Feature skewness was also omitted since its fuzzy set covers the entire universe 
and all fuzzy sets overlap with each other. After fuzzy set simplification, each fuzzy set 
linguistic name was relabeled to VLOW, LOW, MED, HIGH, and VHIGH as shown in 
Figure 5. These relabeling are important for designing IF-THEN rules for fuzzy classifiers. 
Selected fuzzy sets were finally converted into trapezoidal shape as deemed more appro-
priate, specifically for feature MEAN. 

The next step in fuzzy classifier design is to formulate the inference engine, the fuzzy 
IF-THEN Rules. The antecedent IF part is the summation of fuzzy sets, and the consequent 
part is the pattern class. Iterations and fine tuning of IF-THEN rules was performed to 
obtain good inference system for the recognition of eight types of control chart patterns. 
The smallest of maximum (SOM) defuzzification method was used for the output fuzzy 
sets. The SOM method selects the smallest output with the maximum membership func-
tion (crisp value). The fuzzy IF-THEN rules are summarized in Table 2 formulated as the 
best after undergoing several simulation iterations. The stratification pattern requires two 
rules to discriminate it from normal and cyclic patterns. The final graphical representation 
of fuzzy rules is shown in Figure 6 where inputs are the first eight columns, and the last 
column is the output. 

Table 2. Fuzzy heuristic IF-THEN rules. 

Rule Description of IF-THEN Rules for the Fuzzy Classifier 
1 If (MEAN is HIGH) and (SD is MED) and (SLOPE is VHIGH) then (Pattern is Trend up) 
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We omitted feature MEDIAN simply because it has high similarity with feature MEAN.
Feature skewness was also omitted since its fuzzy set covers the entire universe and all
fuzzy sets overlap with each other. After fuzzy set simplification, each fuzzy set linguistic
name was relabeled to VLOW, LOW, MED, HIGH, and VHIGH as shown in Figure 5. These
relabeling are important for designing IF-THEN rules for fuzzy classifiers. Selected fuzzy
sets were finally converted into trapezoidal shape as deemed more appropriate, specifically
for feature MEAN.

The next step in fuzzy classifier design is to formulate the inference engine, the fuzzy
IF-THEN Rules. The antecedent IF part is the summation of fuzzy sets, and the consequent
part is the pattern class. Iterations and fine tuning of IF-THEN rules was performed to
obtain good inference system for the recognition of eight types of control chart patterns.
The smallest of maximum (SOM) defuzzification method was used for the output fuzzy
sets. The SOM method selects the smallest output with the maximum membership function
(crisp value). The fuzzy IF-THEN rules are summarized in Table 2 formulated as the best
after undergoing several simulation iterations. The stratification pattern requires two rules
to discriminate it from normal and cyclic patterns. The final graphical representation of
fuzzy rules is shown in Figure 6 where inputs are the first eight columns, and the last
column is the output.
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Table 2. Fuzzy heuristic IF-THEN rules.

Rule Description of IF-THEN Rules for the Fuzzy Classifier

1 If (MEAN is HIGH) and (SD is MED) and (SLOPE is VHIGH) then (Pattern is Trend up)
2 If (MEAN is HIGH) and (SLOPE is HIGH) then (Pattern is Shift up)
3 If (MEAN is LOW) and (SD is MED) and (SLOPE is LOW) then (Pattern is Trend down)
4 If (MEAN is LOW) and (SLOPE is HIGH) then (Pattern is Shift down)

5 If (MEAN is MED) and (SD is HIGH) and (MSV is MED) and (CUSUM is HIGH) and (Autocorrelation is
HIGH) and (Range is HIGH) and (Kurtosis is MED) and (SLOPE is VLOW) then (Pattern is Cyclic)

6 If (MEAN is MED) and (SD is HIGH) and (MSV is HIGH) and (CUSUM is MED) and (Autocorrelation is
LOW) and (Range is HIGH) and (Kurtosis is LOW) and (SLOPE is VHIGH) then (Pattern is Systematic)

7 If (MEAN is MED) and (SD is LOW) and (Autocorrelation is HIGH) and (Range is LOW) and (Kurtosis is
HIGH) and (SLOPE is HIGH) then (Pattern is Stratification)

8 If (MEAN is MED) and (MSV is LOW) and (CUSUM is LOW) and (Autocorrelation is LOW) and (Range is
MED) and (Kurtosis is HIGH) and (SLOPE is HIGH) then (Pattern is Normal)

9 If (MEAN is MED) and (SD is LOW) and (Range is LOW) and (Kurtosis is HIGH) and (SLOPE is HIGH) then
(Pattern is Stratification)

10 If (Range is LOW) then (Pattern is Stratification)
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4. Development of Decision Tree Classifier

The decision tree (DT) in this study was generated by using rpart subroutine in R
programming [25,28]. The rpart implemented many of the ideas found in the CART of
Breiman et al. [29]. It performs binary recursive partitioning where the parent is split
into two child branches. This process is repeated until the terminal leaf is reached. The
algorithm automatically selects the ‘right-sized’ classification tree and input features that
have good predictive accuracy. The default splitting criteria in rpart is based on Gini
splitting rule since it usually performs the best. The stopping rule was set to prevent
the model from over-fitting, where the complexity parameter was set to a default value
0.01. The data set was randomly divided into 60% training data and 40% testing data.
This ensures the classifiers are sufficiently trained, and the testing results are not biased
to small sample size. The proposed classification tree is shown in Figure 7 comprising
seven nodes (oval shape) and eight leaves (square shape). The predicted pattern type
is given at each leaf (terminal) as listed in Table 3. The significant features included in
the decision-making are MEAN, standard deviation (SD), mean square value (MSV), and
SLOPE. The insignificant features were excluded from the DT.
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Table 3. Decision rules derived from the decision tree.

Leaf No. IF Decision Rule THEN
(Pattern Type)

1 IF MEAN < 1.677 AND SD < −9.213 Trend up
2 IF MEAN < 1.677 AND SD ≥ −9.213 Shift up
3 IF MEAN ≥ 1.677 AND MSV ≥ −9.946 AND SD < −9.512 Normal
4 IF MEAN ≥ 1.677 AND MSV ≥ −9.946 AND SD ≥ −9.512 Stratification

5 IF MEAN ≥ 1.677 AND MSV ≥ −9.946 AND MEAN ≥
−1.259 AND SLOPE ≥ 4.106 Trend down

6 IF MEAN ≥ 1.677 AND MSV ≥ −9.946 AND MEAN ≥
−1.259 AND SLOPE < 4.106 Shift down

7 IF MEAN ≥ 1.677 AND MSV < −9.946 AND MEAN <
−1.259 AND MEAN ≥ −0.1789 Cyclic

8 IF MEAN ≥ 1.677 AND MSV < −9.946 AND MEAN <
−1.259 AND MEAN < −0.1789 Systematic

5. Results and Discussion

The performance of the fuzzy heuristics and the decision tree (DT) classifier was
evaluated using six different data sets. Each data sets comprised 40 samples of each type
of control chart patterns. Overall, a total of 1920 (6 sets × 40 sample × 8 types) unseen
samples were used in testing the classifiers. The performance of the proposed methods in
terms of recognition accuracy is summarized in Table 4. The results suggest that the overall
recognition accuracy (µ) for the DT classifier (98.58%) is better compared to the fuzzy
classifier (95.76%). The DT classifier also gave more consistent results (σ = 0.48) compared
to the fuzzy classifier (σ = 1.09) despite using only four statistical features compared to the
fuzzy classifier with eight features. The fuzzy classifier seems to have more difficulty in
classifying trend up patterns (85.4%) and systematic patterns (86.0%) compared to the DT
classifier. However, fuzzy classifier performed better in classifying normal patterns (100%).
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Table 4. Recognition accuracy of the two methods.

Pattern Fuzzy Classifier DT Classifier

Normal 100.0% 96.1%
Trend up 85.4% 100.0%

Trend down 96.3% 96.5%
Shift up 100.0% 96.0%

Shift down 100.0% 100.0%
Cyclic 98.4% 100.0%

Systematic 86.0% 100.0%
Stratification 100.0% 100.0%

Overall Recognition accuracy (µ) 95.76% 98.58%
Standard Deviation (σ) 1.09 0.48

The confusion matrices for the fuzzy classifier and the DT classifier are shown in
Tables 5 and 6, respectively. These tables show the correct recognition rate in diagonal
positions and the misclassification rate at off-diagonal positions. Table 5 reveals that normal
pattern is the most likely to be confused for true patterns of trend up (2.4%), cyclic (1.6%)
and systematic (7.8%). The results also indicate that systematic patterns are sometimes
confused with cyclic patterns (6.2%). Both shift patterns (up and down) were perfectly
classified by the fuzzy classifier. This confirms that shift patterns are among the easiest to
be differentiated. Trend up pattern tends to be confused with shift up patterns (12.2%) and
trend down patterns tends to be confused with shift down patterns (3.7%).

Table 5. Confusion matrix for the fuzzy classifier.

Classified Patterns by Fuzzy Classifier

Normal Trend Up Trend Down Shift Up Shift Down Cyclic Systematic Stratification

True
Pattern
Class

Normal 100% 0 0 0 0 0 0 0
Trend up 2.4% 85.4% 0 12.2% 0 0 0 0

Trend down 0 0 96.3% 0 3.7% 0 0 0
Shift up 0 0 0 100% 0 0 0 0

Shift down 0 0 0 0 100% 0 0 0
Cyclic 1.6% 0 0 0 0 98.4% 0 0

Systematic 7.8% 0 0 0 0 6.2% 86% 0
Stratification 0 0 0 0 0 0 0 100%

Table 6. Confusion matrix for the decision tree (DT) classifier.

Classified Patterns by DT Classifier

Normal Trend Up Trend Down Shift Up Shift Down Cyclic Systematic Stratification

True
Pattern
Class

Normal 96.1% 0 0 0 0 0 3.9% 0
Trend up 0 100% 0 0 0 0 0 0

Trend down 0 0 96.5% 0 3.5% 0 0 0
Shift up 0 4% 0 96% 0 0 0 0

Shift down 0 0 0 0 100% 0 0 0
Cyclic 0 0 0 0 0 100% 0 0

Systematic 0 0 0 0 0 0 100% 0
Stratification 0 0 0 0 0 0 0 100%

Table 6 shows that the DT classifier performed well for shift down, cyclic, systematic
and stratification patterns with 100% classification accuracy. The DT classifier has a small
tendency for normal patterns (stable process) to be confused with systematic patterns
(3.9%). Showing a similar trend to the fuzzy classifier, trend down patterns tends to be
confused with shift down patterns (3.5%). Shift up patterns tends to be confused with
trend up patterns (4%). Overall, as noted earlier, the DT classifier performed relatively
better than the fuzzy classifier.
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From the above, we observed that both the heuristic fuzzy classifier and the DT
classifier provide useful information in deriving the final decision. In case of heuristic
fuzzy classifier, the IF-THEN rules are simple, interpretable, and capable of classifying
eight types of patterns. The main drawback of heuristic fuzzy classifier is that the formation
of input fuzzy set and simplification of fuzzy sets require manual tuning. The use of three
points for each fuzzy set i.e., maximum, minimum and median significantly reduced the
data requirements in the development step. The fuzzy classifiers by nature do not require
large training data. Meanwhile, the DT method provides a simple graphical view and
understandable decision-making processes. The drawback of DT is that it requires more
training data sets; otherwise, the recognition results tend to be poor.

The performance of the above classification methods was validated by using a pub-
lished data set from Alcock [26]. The recognition accuracies of 94.16% and 97.9% were
obtained for the heuristic fuzzy classifier and the DT classifier, respectively. The validation
results confirmed the consistency of recognition accuracy of the proposed classifiers. The
proposed DT classifier performed relatively better compared to Gauri and Chakraborty [15],
who reported an overall 95.46% recognition accuracy when implemented with their seven
shape features. Our proposed classifier scored 98.58% recognition accuracy with only
four statistical features as input data. We were unable to make direct comparison for the
proposed fuzzy classifier due to lack of comparable published works. The readers need
to be cautious in generalizing the above findings as more comparison with other similar
works are recommended whenever possible.

6. Conclusions

As manufacturing industries are moving toward intelligent systems, we notice widespread
adoption of AI-based systems with limited transparency in decision-making processes. In
process monitoring and diagnosis, it is important to have transparency in key decisions
to avoid misjudgment that could lead to catastrophic failures. This paper demonstrates
the development of heuristics fuzzy inference system and DT techniques for control chart
pattern recognition. The logical rules for decision-making are outlined as explainable in
IF-THEN decision rules. The overall recognition accuracy of the DT classifier is found to be
better and more consistent (µ = 98.58%, σ = 0.48) compared to the heuristics Mamdani fuzzy
classifier (µ = 95.76%, σ = 1.09). The DT classifier only requires four statistical features,
while the heuristics Mamdani FIS requires eight statistical features for classifying the same
eight types of control chart patterns. Both methods provide explainable classification steps
rather than a black box, and this could be more attractive and convincing for decision
makers. The efficiency of the fuzzy classifier could be further improved by implementing
automatic formation of input fuzzy sets. Investigation of adaptive neuro-fuzzy inference
systems (ANFIS) could also boost its efficiency and learning ability. This study may serve
as a starting point for investigation of more advanced DT families such as random forest. It
opens opportunities for deeper investigation and provides a useful revisit into explainable
artificial intelligence.
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