
 
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 88, Issue 2 (2021) 80-92 

 

80 
 

 

Journal of Advanced Research in Fluid      

Mechanics and Thermal Sciences 

 

Journal homepage: 
https://semarakilmu.com.my/journals/index.php/fluid_mechanics_thermal_sciences/index 

ISSN: 2289-7879 

 

Homotopy Analysis of Carreau Fluid Flow Over a Stretching Cylinder 
 

Lim Yeou Jiann1, Sharidan Shafie1,*, Ahmad Qushairi Mohamad1, Noraihan Afiqah Rawi1  

  
1 Department of Mathematical Sciences, Faculty Sciences, Universiti Teknologi Malaysia, Skudai, 81310 Johor Bahru, Johor, Malaysia 
  

ARTICLE INFO ABSTRACT 

Article history: 
Received 26 April 2021 
Received in revised form 20 August 2021 
Accepted 3 September 2021 
Available online 29 October 2021 

Carreau fluid flows past a stretching cylinder is elucidated in the present study. The 
transformed self-similarity and dimensionless boundary layer equations are solved by 
using the Homotopy analysis method. A convergence study of the method is illustrated 
explicitly. Series solutions of the highly nonlinear differential equations are computed 
and it is very efficient in demonstrating the characteristic of the Carreau fluid. 
Validation of the series solutions is achieved via comparing with earlier published 
results. Those results are obtained by using the Keller-Box method. The effects of the 
Weissenberg number and curvature parameter on the velocity profiles are discussed by 
graphs and tabular. The velocity curves have shown different behavior in 𝑛 < 1  and 
𝑛 ≥ 1  for an increase of the Weissenberg number. Further, the curvature parameter K 
does increase the velocity profiles. 
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1. Introduction 
 

Flow over a stretching cylinder has relevance in a number of the industrial manufacturing 
process such as annealing and tinning of copper cords, fabrication of papers, and glass fiber 
production. Two-dimensional flow is generally utilized to depict the flow over a cylinder that has a 
body radius greater than the boundary layer thickness. However, the flow may be acknowledged as 
axisymmetric when the radius of the cylinder is in the same order as the boundary layer thickness. 
In this particular case, a transverse curvature term is introduced in the governing equations which 
may have an impact on the velocity profiles. This is essential in certain industrial applications such 
as food processing, polymer, blood flow in a microcirculatory system, and wire drawing where an 
accurate prediction of flow is needed so that a sufficient boundary layer can occur on slender or 
near slender bodies. In view of this, Wang [1] conducted a study to discuss the steady flow of an 
incompressible and viscous fluid over a stretching cylinder. An exact similarity solution of the 
governing equations was obtained for the stretching surface. Motivated by this work, Ishak et al., 
[2] extended the study by including the effect of a magnetic field. The flow and heat transfer of the 
fluid outside of the stretching tube was determined numerically using the Keller-Box method.   
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Further, Ishak et al., [3] considered the effects of suction and injection on the stretching 
permeable cylinder. The numerical solutions have shown that skin friction is reduced by the 
injection parameter. Besides, Lok et al., [4] have elucidated steady mixed convection flow near an 
axisymmetric stagnation point on stretching or shrinking vertical cylinder. The boundary layer flow 
is driven by a stretching cylinder in the influence of variable thermal conductivity has been 
discussed by Rangi and Naseem [5]. The Keller-box technique was practiced and found that the 
curvature of the cylinder has a significant influence on the flow and temperature field. Vajravelu et 
al., [6] acknowledged the effect of the transverse curvature, internal heat source, and temperature-
dependent thermal conductivity on the axisymmetric MHD flow and heat transfer through a 
nonisothermal stretching cylinder. Numerical results for two different types of non-isothermal 
boundary conditions were calculated by the authors. Mukhopadhyay [7] numerically analyzed the 
effect of the porous medium on the mixed convection flow along with a vertical stretching cylinder. 
Then, Mukhopadhyay [8] extended the study by considering the boundary layer flow of a fluid and 
heat transfer towards a stretching cylinder under the effect of magnetic field and partial slip 
boundary condition. The numerical results depicted that the velocity decreases but the 
temperature increases as the magnetic and slip parameters were increased. Adnan et al., [9] 
investigated the fluid flow over a permeable stretching or shrinking cylinder near a stagnation 
point. The author had analyzed the stability of the dual numerical solutions of the problem. Most of 
the above-mentioned studies are focused on the Newtonian fluid. 

Newtonian fluids are defined as fluid where the viscosity changes are independent of the shear 
rate. However, in many practical applications, the fluid is non-Newtonian such as pharmaceutical 
chemicals, jams, polymer fluids, China clay, animal blood, synthetic lubricants, and paints. The 
viscosity of those fluids is dependent on the shear rate and this is important when dealing with 
lubrication problems and polymer processing. Accordingly, various constitutive models for non-
Newtonian fluid have been presented in the literature regarding the diversity of the flow in nature 
such as the power-law model, Casson fluid, Ellis fluid, and cross fluid [10]. The effect of the 
Arrhenius activation energy, thermal radiation, and film thickness on a viscoelastic thin film 
nanofluid over a stretching cylinder and generation of the entropy was studied by Usman et al., [11] 
by using the homotopy analysis method. The power-law constitutive relation is the simplest model 
but it provides inaccuracy to predict the viscosity when the shear rate is very small or very large. In 
an assessment of such limitation, Carreau [12] proposed a rheological model which is a 
combination of power-law models and Newtonian fluid. It gives a finite viscosity at a low or high 
shear rate. The Carreau fluid has gained the attention of plenty of researchers due to its 
significance in chemical engineering and polymeric suspensions. Tshehla [13] investigated the 
Carreau fluid flow over an inclined plane with a free surface. The profiles of the velocity and 
temperature were derived using the asymptotic technique and numerical method and the 
influences by the viscosity variation parameter, the Biot, and the Brinkman numbers were 
discussed.  

Olajuwon [14] established a numerical investigation on the effect of the thermal radiation and 
thermal diffusion on the heat and mass transport in an MHD Carreau fluid past a vertical porous 
plate. The authors found that the power index and material parameters have caused an increment 
in the fluid velocity. Further, Khan et al., [15] applied the Runge-Kutta Fehlberg method along with 
the shooting technique to analyze the Carreau fluid flow and heat transfer over a non-linear 
stretching sheet. Hayat et al., [16] elucidated a two-dimensional Carreau fluid flow toward a 
permeable convective heated stretching sheet. Analytic solutions of the governing equations were 
computed by utilizing the homotopy analysis method (HAM). The effect of the embedded 
parameters such as power-law index, relaxation time, and Biot number on the velocity and 
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temperature profiles was discussed. Khan et al., [17] scrutinized the boundary layer flow and heat 
transfer of three-dimensional Carreau fluid over a bidirectional stretching sheet under the effect of 
non-linear thermal radiation. A comparison study between bvp4c results with the analytical results 
determined by the HAM was conducted to analyze the legitimacy of numerical results. A conflict 
behavior was observed by the authors for the shear-thinning fluid and shear thickening fluid on the 
velocity profile for the various value of the Weissenberg number. More recent research on the 
Carreau fluid can be found in [18-20].  

Recently, Salahuddin [21] studied the Carreau fluid flow over a stretching cylinder. The similarity 
solutions of the governing equations were obtained by the Keller box and shooting method. The 
influences of the different values of the Weissenberg number, curvature parameter, and power-law 
index on the velocity distribution were analyzed. However, in the study, the case for the shear-
thinning fluid is not discussed. Therefore, the objective of the present investigation is to reproduce 
the work done by Salahuddin [21] by including the case of shear-thinning fluid before going to 
explore the heat and mass transfer in the fluid. The homotopy analysis method is applied to solve 
the problem due to the effectiveness of the method in solving highly non-linear differential 
equations. Plenty of researches have successfully applied the method to solve the complicated non-
linear fluid problem as seen in [18, 19, 22-25]. HAM was first introduced by Shijun Liao in 1992 
when he is doing his Ph.D. dissertation at Shanghai Jiaotong University [26]. The details of the 
methods can be found in [24], [25], and [27].  
 
2.  Mathematical Formulation 

 
A steady two-dimensional and incompressible Carreau fluid flow over a permeable stretching 

cylinder is considered in the present research. As depicted in Figure 1, the x-axis is measured along 
the axis of the cylinder, and the r-axis is taken in the radial direction.  

 

 
Fig. 1. Schematic geometry of the problem 

 
The Cauchy stress tensor for Carreau fluid is given by [15, 21, 28]. 

 

1,ij = A
 (1) 

 
With 
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where 𝐀𝟏 is the first kind Rivlin-Erickson tensor, μ is the shear rate viscosity, 𝜇0is the zero-shear-
rate viscosity, 𝜇∞is the infinite-shear-rate viscosity, Γ is a material time constant, and n is the 
power-law index. 𝛾̇ is the shear rate and is expressed as  
 

( )2
1

1 1 1
,

2 2 2
ij ij

i j

tr A  = =  =
 

(3) 

 
where Π is the second invariant strain tensor. We consider in the constitutive Eq. (1), the case for 
which 𝜂∞ = 0 and  𝛤𝛾̇ < 1 , thus by binomial expansion, Eq. (2) become 
 

2
0

1
1 ( ) .

2

n
  

− 
= +  

   
(4) 

 
Substitute Eq. (4) into (1), the stress tensor can be written as  

 

2
0 1

1
1 ( ) ,

2
ij

n
  

− 
= +  

 
A

 
(5) 

 
The boundary layer approximation of the continuity and momentum equations of the Carreau 

fluid flow is represented as  
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(7) 

 
where υ is the kinematic viscosity. The corresponding boundary conditions are 
 

0 , 0, ,

0, ,

U x
u v at r R

l

u as r

= = =

→ →  

(8) 

 
where 𝑈0 is a positive constant, r and x are the cylindrical polar coordinates which r is in the radial 
direction and x represents the axial direction, and l is the characteristic length.  

Following similarity, variables are introduced to reduce the partial differential equations (6)-(7) 
into the ordinary differential equations.  
 

2 2
0 0, , .

2

oU xU Ur R R
u f v f

l R l r l






 −
= = = − 

   
(9) 

 
Substitute Eq. (9) into Eq. (6) and (7). Eq. (6) is automatically satisfied and Eq. (7) reduces to 
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(10) 

 
Utilizing the similarity variables in the boundary conditions (8), we have 

 

( ) ( ) ( )0 0, 0 1, 0,f f f = =  =
 (11) 

 
where the prime denotes differentiation with respect to η, We are the Weissenberg number and K 
is the curvature parameter which is represented as 
 

3
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1
, .
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K We x
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(12) 

 

The physical quantity of interest skin friction coefficient (
1

2
𝐶𝑓𝑅𝑒𝑥

1/2
) is expressed as 

 

( ) ( )
1/2

32
Re 1

0 0 .
2 2

f xC n
f We f

−
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(13) 

 

Where  𝑅𝑒𝑥
1/2

= 𝑥√
𝑈0

𝜐𝑙
. 

 
3. Solution by Homotopy Analysis Method 

 
In this section, the HAM is utilized to obtain the approximate analytical solutions of the Carreau 

fluid flows through a stretching cylinder. Eq. (14) and (15) are the initial guesses and the linear 
operator selected in the present study for the governing equations of the problem.   
 

( )0 1 ,f e  −= −
 (14) 

  
.fL f f = +
 (15) 

 
The above auxiliary linear operator has the following properties:  

 

( )1 2 3 0,fL c c c e  −+ + =
 

(16) 

 
where 𝑐𝑖, 𝑖 = 1,2,3 are arbitrary constants. The zeroth-order deformation equation can be 
expressed as  
 

( ) ( )  ( ) 0(1 ) : : ,f f fp L f p f p N f p  − − =
 

(17) 
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(18) 

 
Where p is an embedding parameter, ħ𝑓is the non-zero control convergence parameter and 𝑁𝑓 is 

the nonlinear operator. For 𝑝 = 0 and 𝑝 = 1, we have  
 

( ) ( ) ( ) ( )0: 0 , :1 .f f f f   = =
 (19) 

 
As the embedding parameter p approach 1 from 0, 𝑓(𝜂: 𝑝) vary from initial guesses 𝑓0 to the 

exact solution 𝑓(𝜂) [24, 26]. Taylor’s series expansion at η = 0 of the function 𝑓(𝜂: 𝑝) yields 
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Series (20) is also called the Maclaurin series. On the assumption that the Eq. (20) is analytic in 

𝑝𝜖[0,1] and converge at 𝑝 = 1 to 𝑓(𝜂), thus we have   
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𝑓𝑘 is obtained by the so-called high-order deformation equations governed by the chosen 

auxiliary linear operator. Differentiating k-times the zeroth-order deformation of Eq. (17) with 
respect to p, and dividing then by k! and finally setting p = 0, one has the kth order deformation 
equations as 
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and by using the Leibniz formula we have, 
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(24) 

 
It is worth mentioning that 𝑓𝑘 for k ≥ 1 is governed by the linear operator (15) subjected to the 

linear boundary conditions that originate from the problem, which the solutions can be easily 
determined by using symbolic computation software such as Mathematica and Maple. Here, the 
developed Mathematica package BVPh 2.0 by Liao [25] has been utilized to compute the solutions. 
To determine the convergence control parameter ħ𝑓 , which has been used to guarantee the 

convergence of the series solution (22), the so-called average residual error technique at kth-order 
approximation is applied in BVPh 2.0, defined by  
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(25) 

 
where Z is an integer and 𝜂𝑖 = 𝑖(δη), δη is the step size. At the kth-order approximation, the 
optimal values of the convergence control parameter ħ𝑓 is calculated by the minimum of the error 

𝐸𝑘
𝑓

(ħ𝑓). The details can be found in the monograph of “Homotopy analysis method in nonlinear 

differential equations” by Liao [25].  
 
4. Results and Discussion 
 

Table 1 illustrates the optimal convergence control parameter for the case K = 0.2, We = 0.2 and 
n = 1.2, from first order up to the 6th- order of approximations. The table depicts that the error 
decreases to 5.08169 × 10−5 by having the corresponding optimal convergence-control parameter 
ħ𝑓 = −1.39028 for the 6th order of approximations. It is observed that the series solutions 

converge in the region of −0.91316 ≤ ħ𝑓 ≤  −1.39028. Since the homotopy analysis technique 

has provided great freedom in choosing the convergence control parameter value to adjust and 
control the convergence region of the series solutions. For generality, the following solutions in the 
present study are computed by using ħ𝑓 =  −1.19962. In this way, the error distribution and 

profile of the series solution versus the order of approximations for the case K = 0.2, We = 0.2, and 
n = 1.2 are shown in Table 2 and Figure 2 respectively. The residual error is indeed reduced by 
increasing the order of approximation as seen in Figure 2. 
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Table 1  
Optimal value for convergence-control parameter at different orders of 
approximation for K = 0.2, We = 0.2 and n = 1.2 with the 1st type of linear operator 

k (order of approximation) 𝐸𝑘
𝑓

 ħ𝑓 

1 2.17362 × 10−4 -0.91316 

3 9.42131 × 10−5 -1.19962 

6 5.08169 × 10−5 -1.39028 

 
Table 2 
Square residual errors at different orders of the series solutions for K = 0.2, We = 0.2 
and n = 1.2 and the convergence-control parameter ħ𝑓 =  −1.19605 with the 1st 

type of linear operator 

k (order of approximation) 𝐸𝑘
𝑓

 CPU time (s) 

10 3.78124 × 10−5 70.801 

20 2.22196 × 10−5 1234.34 

30 1.63594 × 10−5 10541.4 

 

 
Fig. 2. Error profile of f, taking K = 0.2, We = 0.2 and n = 1.2 and the 
convergence-control parameter ħ𝑓 =  −1.19605 

 
Besides, another type of linear operator such as  𝐿𝑓 = 𝑓′′′ − 𝑓′, is choosing to determine the 

series solutions. Regarding the frame of HAM, one has great freedom to choose the auxiliary linear 
operator. Table 3 and 4 have depicted the residual error when computing the optimal convergence 
control parameter and at different orders of approximation of the series solutions. It is found that 
the computing time is lesser but the residual error for the second choice of a linear operator is 
larger as comparing Table 2 and Table 4. Further, the error is increased as the order of the 
approximations increase as seen in Table 4. Thus, the linear operator (15) is applied to generate the 
series solutions in this research. 
 

Table 3 
Optimal value for convergence-control parameter at different orders of approximation 
for K = 0.2, We = 0.2 and n = 1.2 with the 2nd type of linear operator  

k (order of approximation) 𝐸𝑘
𝑓

 ħ𝑓 

1 2.31926 × 10−4 -1.11977 

3 1.26672 × 10−4 -1.45384 

6 7.01766 × 10−5 -1.66151 
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Table 4 
Square residual errors at different orders of the series solutions for K = 0.2, We = 0.2 
and n = 1.2 and the convergence-control parameter ħ𝑓 =  −2.02125 with the 2nd 

type of linear operator 

k (order of approximation) 𝐸𝑘
𝑓

 CPU time (s) 

10 5.17627 × 10−5 60.18 

20 3.00657 × 10−5 971.73 

30 2.18917 × 10−5 9865.27 

 
In Table 5, limiting cases have been considered and compared with the previous literature 

results of the skin friction coefficient 𝑓′′(0) for different values of K by Rangi and Naseem [5] and 
Salahuddin [21]. This is aimed to validate the obtained analytical approximation solution. It is found 
that the present results are in good agreement with the previous numerical results. Table 6 displays 
the skin friction coefficient for the various value of Weissenberg number We, curvature parameter 
K, and power-law index n. The skin friction |𝑓′′(0)| is increased when the value of parameters K, n, 
and We increase. An opposite characteristic is observed for the We when the power-law index n = 
0.5 is used (see Table 5).  
 

Table 5 
Comparison of the local skin friction coefficient for different values of curvature parameter K when 
We = 0 and n = 1 
K Rangi and Naseem [5] (Shooting Method) [21] (Keller Box) [21] HAM 

0 -1.0000 -1.0000 -1.0000 -1.0000 
0.25 -1.0944 -1.0944 -1.0944 -1.0992 
0.5 -1.1887 -1.1887 -1.1887 -1.1962 
0.75 -1.2818 -1.2818 -1.2818 -1.2920 
1.0 -1.4593 -1.4593 -1.4593 -1.3864 

 
Table 6 
Comparison of the local skin friction coefficient for different values of 
physical parameters 
K n We HAM 

0.2 0.5 0.2 -1.07811 
- - 0.4 -1.06608 
- - 0.6 -1.04258 
- - 0.8 -0.95753 

0.0 1.2 0.2 -1.00116 
0.2 - - -1.08342 
0.4 - - -1.16359 
0.6 - - -1.24259 

0.2 1.2 0.4 -1.08784 
- - 0.6 -1.09497 
- - 0.8 -1.10449 

0.2 1.4 0.2 -1.08491 
- 1.6 - -1.08638 
- 1.8 - -1.08784 

 
The effect of the curvature parameter K on the velocity profile is demonstrated in Figure 3. 

Since, the increase of the curvature parameter K is caused by the decrease in radius of the cylinder, 
which consequently decreases the contact area of the fluid with the boundary and hence reduces 
the resistive force offered by the surface to the fluid and the velocity. Therefore, the velocity is 
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enhanced for higher values of curvature parameter K as depicted in Figure 3. Both the velocity and 
the boundary layer thickness increase with an increase in the power-law index n. This phenomenon 
is illustrated in Figure 4. Uplifting of the power-law index has enriched the space in the fluid, since 
the momentum boundary layer becomes thicker, which results in the velocity of the fluid increasing 
[29].  

 

 
Fig. 3. Velocity profile 𝑓′(𝜂) versus η for various values of K 

 

 
Fig. 4. Velocity profile 𝑓′(𝜂) versus η for various values of n 

 
Figure 5 and 6 are plotted to perceive the behavior of the fluid profiles corresponding to the 

Weissenberg number We for 𝑛 > 1, the shear-thickening fluid, and 𝑛 < 1, the shear-thinning fluid 
respectively. Figure 5 clearly illustrates the velocity profile for the shear-thickening fluid is improved 
by increasing the values of Weissenberg number We. Physically, We are the relation of the 
relaxation time of the fluid as shown in Eq. (12). Thus, the relaxation time is increased as We 
increase. Accordingly, we assume 𝛤𝛾̇ < 1, thus the shear rate decrease which results in low 
viscosity in the shear-thickening fluid. However, high viscosity is provided in the shear-thinning 
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fluid. Subsequently, there is a decline in the velocity profile as demonstrated in Figure 6. Notable, 
the results for We > 1 and n =0.5 are not converging, therefore the values We = 0.2, 0.4, 0.6, and 
0.8 are used to compute the solutions as seen in Figure 6. More study is indeed needed to enlarge 
the understanding of the present problem and also the method applied. 
 

 
Fig. 5. Velocity profile 𝑓′(𝜂) versus η for various values of We and n =1.2 

 

 
Fig. 6. Velocity profile 𝑓′(𝜂) versus η for various values of We and n = 0.5 

 
5. Conclusion 

 
In the present study, a steady Carreau fluid flow over a stretching permeable tube has been 

considered. Analytical series solutions of the similarity governing equations are obtained by 
applying the homotopy analysis method. The converging study of the series solutions has been 
conducted and the results of the present work have been validated by comparing with the existing 
solutions in the literature. Effects of the power-law index n, Weissenberg number We, and 
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curvature parameter K on the flow profiles have been examined. From this investigation, we can 
conclude 

i. A conflict behavior happens for 𝑛 > 1, the shear-thickening fluid, and 𝑛 < 1, the shear-
thinning fluid as the Weissenberg number We are increased. 

ii. The local skin friction of the fluid is enhanced by the curvature parameter K and 
Weissenberg number We. 

iii. The HAM is appropriate to be used in solving highly non-linear differential equations.  
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