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Abstract

The relative performance of global climate models (GCMs) of phases 5 and 6 of the coupled model intercomparison project

(CMIP5 and CMIP6, respectively) was assessed in this study based on their ability to simulate annual and seasonal mean rainfall

and temperature over Bangladesh for the period 1977–2005. Multiple statistical metrics were used to measure the performance of

the GCMs at 30 meteorological observation stations. Two robust multi-criteria decision analysis methods were used to integrate

the results obtained using different metrics for an unbiased ranking of the GCMs. The results revealed MIROC5 as the most

skillful among CMIP5 GCMs and ACCESS-CM2 among CMIP6 GCMs. Overall, CMIP6 MME showed a significant improve-

ment in simulating rainfall and temperature over Bangladesh compared to CMIP5 MME. The highest improvements were found

in simulating cold season (winter and post-monsoon) rainfall and temperature in higher elevated areas. The improvement was

relatively more for rainfall than for temperature. The models could capture the interannual variability of annual and seasonal

rainfall and temperature reliably, except for the winter rainfall. However, systematic wet and cold/warm biases still exist in

CMIP6models for Bangladesh. CMIP6GCMs showed higher spatial correlations with observed data, but the higher difference in

standard deviations and centered root mean square errors compared to CMIP5 GCMs indicates better performance in simulating

geographical distribution but lower performance in simulating spatial variability of most of the climate variables except for

minimum temperature at different timescales. In terms of Taylor skill score, the CMIP6 MME showed higher performance in

simulating rainfall but lower performance in simulating temperature than CMIP5 MME for most of the timeframes. The findings
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of this study suggest that the added value of rainfall and temperature simulations in CMIP6 models is not consistent among the

climate models used in this research. However, it sets a precedent for future research on climate change risk assessment for the

scientific community.
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1 Introduction

Appraisal of climate change impacts on precipitation and tem-

perature has become essential due to increased climate-related

extreme events such as floods and droughts. Global climate

models (GCMs) are vital for climate change impact assess-

ment. However, the major challenge in climate change projec-

tions and impact assessments is selecting an appropriate sub-

set of GCMs. GCM simulations are associated with large un-

certainties arising from different sources, including model res-

olution, mathematical formulation, initial assumptions, and

calibration processes that restrict the use of all GCMs for

reliable projections of climate at the regional or local scale

(Hijmans et al. 2005; Foley 2010; Chen et al. 2011;

Northrop 2013; Khan et al. 2018a; Salman et al. 2018; Sun

et al. 2018; Ahmed et al. 2019c). Therefore, a subset of GCMs

is suggested by removing the less skilled models in simulating

observed climate to minimize uncertainties in projection (Lutz

et al. 2016; Lin and Tung 2017; Khan et al. 2018b; Salman

et al. 2018; Ahmed et al. 2019b).

Previous studies also suggest GCM selection based on their

performance in simulating the climate variable of interest to

reduce the uncertainty in the projection of that variable

(Gleckler et al. 2008; McMahon et al. 2015; Lutz et al.

2016; Sa’adi et al. 2017; Salman et al. 2018). The assessment

of the ability of GCMs to simulate different climatic parame-

ters, such as surface mean temperature, precipitation, summer

monsoon rainfall, and sea surface temperature, has been dem-

onstrated in different regions of the world (Perkins et al. 2007;

Maxino et al. 2008; Johnson et al. 2011). The studies revealed

no generally recommended approach for GCM selection.

Besides, there are no well-established guidelines for the selec-

tion of appropriate GCMs. However, it is expected that the

selected GCM would be able to replicate the mean, spatial

variability, and distribution of historical climate (Ahmed

et al. 2020). It is also suggested that the selection of GCMs

based on their performance in simulating both rainfall and

temperature as both are equally required for most of the cli-

mate change studies (Ahmed et al. 2019a; Nashwan and

Shahid 2020; Shiru et al. 2020)

GCM simulations disseminated through different phases of

coupled model intercomparison project (CMIP) are vital

sources for quantitative climate projection over the twenty-

first century (Baker and Huang 2014; Eyring et al. 2016).

The CMIP phase 3 (CMIP3) GCM simulations (Meehl et al.

2007) were used to prepare the fourth assessment report of

IPCC (Solomon et al. 2007). The CMIP5 models were the

improved version of CMIP3 models in terms of physical pro-

cesses and network accuracy (Taylor et al. 2012). Comparison

of CMIP3 and CMIP5 models showed better performance of

CMIP5 GCMs in simulating observed climate in many re-

gions and large-scale atmospheric circulations that define re-

gional climate (Sperber et al. 2013; Ogata et al. 2014).

A new coordinated series of climate experiments have re-

cently been carried out under the umbrella of phase 6 of

CMIP. In many ways, the CMIP6 GCMs differ from previous

generations, including finer spatial resolutions, enhanced pa-

rameters of the cloud microphysical process, and additional

Earth system processes and components such as biogeochem-

ical cycles and ice sheets (Eyring et al. 2019). The vital dif-

ference between CMIP5 and CMIP6 is the future scenario.

CMIP5 projections are available based on 2100 radiative forc-

ing values for four GHG concentration pathways (van Vuuren

and Riahi 2011). In contrast, CMIP6 uses socioeconomic

pathways (SSPs) with the CMIP5 scenarios premises

(O’Neill et al. 2014). Therefore, the shared SSPs are consid-

ered more realistic future scenarios (Song et al. 2021).

Another vital update of CMIP6 is the development and sup-

port of the intercomparison model, focusing on biases, pro-

cesses, and climate models’ feeds (Heinze et al. 2019). Several

studies have been conducted to compare the performance of

CMIP6 GCMs with CMIP5 GCMs in different regions

(Rivera and Arnould 2020; Gusain et al. 2020). Both better

and poorer performances of CMIP6 GCMs than their earlier

versions in CMIP5 have been reported to simulate different

climate variables and phenomena in different regions. Gusain

et al. (2020) compared the performance of CMIP6 and CMIP5

models in simulating Indian summer monsoon rainfall and

reported that the added value of CMIP6 models in summer

rainfall simulation was inconsistent. Nie et al. (2020) showed

that CMIP6 models provide more accurate measures of the

magnitude of global temperature extremes compared to

CMIP5. Rivera and Arnould (2020) showed the better capa-

bility of CMIP6 models in simulating declining precipitation

and droughts in Southwestern South America. Wu et al.

(2019) have found important enhancements in CMIP6 models

in simulating tropospheric air temperature and circulation in

East Asia at global and regional levels and climatic variability

at different time intervals, including the diurnal rainfall cycle,

annual shifts in sea levels, and the long-term surface air tem-

perature trend in the Pacific Ocean. Different studies also

showed higher warming and more sensitivity of CMIP6
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GCMs compared to their previous version (Tokarska et al.

2020; Zelinka et al. 2020). Overall, the studies suggest the

different performance of CMIP6 GCMs compared to CMIP5

GCMs in different regions. This can be attributed to the spatial

variability of GCM uncertainty (Tiwari et al. 2014).

Therefore, it is necessary to assess newly released CMIP6

models’ ability to simulate the current climate and evaluate

their performance relative to CMIP5 in different regions.

It remains unclear how well the new CMIP6 models simu-

late the climate response to anthropogenic forcing in

Bangladesh. The comparison of CMIP6 and CMIP5 is impor-

tant for the various sectors of this highly vulnerable country

for which policymakers have been engaged in developing

adaptation alternatives based on the climate change impacts

assessed by the CMIP5 simulations. Any major improvement

in the projection of the CMIP6 model relative to that of

CMIP5 models will alter the probable impact and alternatives

to adaptation (Shashikanth et al. 2014). However, the CMIP6

datasets have not been examined by any analysis to investi-

gate precipitation and temperature changes in Bangladesh so

far. Therefore, it is of great interest to systematically evaluate

CMIP6 GCMs in climate simulation across Bangladesh and

compare their performance with the previous generation of

GCMs.

The motivation of this study is to compare the performance

of CMIP6 models with their versions in CMIP5 in simulating

precipitation and temperature climatology of Bangladesh for

the period 1977–2005. The common GCMs from CMIP5 and

CMIP6 were ranked based on their performance in replicating

the annual and seasonal climatology to facilitate selecting suit-

able subsets of GCMs of CMIP5 and CMIP6 for climate

change impact assessment in Bangladesh. The adaptation

measures based on CMIP5 scenarios can be simplified with

the new shared socioeconomic pathways (SSPs) scenarios.

The performance assessment of CMIP6 models would also

provide important information such as their biases for differ-

ent climate variables in different timescales which are essen-

tial for making decisions on effective adaptation measures.

2 Study area and data

2.1 Study area

Bangladesh is located between latitude 20.34–26.38° N and

longitude 88.01–92.41°E that is bordered by India on three

sides (west, north, and northeast), Myanmar in the southeast,

and the Bay of Bengal in the South. The country is a low-lying

flood plain with three major river systems: the Ganges, the

Brahmaputra, and the Meghna, commonly known as the

GBM river system. The elevation of the country varies from

near to mean sea level (MSL) in the south to about 105 m

above MSL in the north (Fig. 1). However, there are few

uplifted land and hills in the northeast and southeast of the

country. A warm and humid climate characterized by wide

seasonal variation in rainfall dominates the country. Most of

the rainfall (~70%) occurs during the monsoon (June to

September). Between the pre-monsoon (March to May) and

post-monsoon (October to November) seasons, the rest of the

rainfall is distributed (Islam et al. 2020). The winter is fairly

dry (December to February). About 20 % is flooded annually

due to the flat topography and heavy rainfall during the mon-

soon. The recorded inundation was as high as 70% of the total

land in extreme cases, as in 1998. According to some reports,

annual precipitation in most parts of Bangladesh will increase

in the twenty-first century. The drought-prone northern area

will see the greatest rise in rainfall; however, rainfall will

decrease in the southwest (Kamruzzaman et al. 2019a). The

mean annual temperature of Bangladesh is about 25°C

(Kamruzzaman et al. 2018). A noticeable regional variation

in rainfall and temperature is seen in Bangladesh, despite be-

ing located in a monsoon-dominated area (Khan et al. 2019).

The rainfall varies from nearly 1600 mm in the northwest to

more than 4000 mm in the northeast, and the mean tempera-

ture varies between 11 and 29°C in winter and between 21 and

34°C during summer (Kamruzzaman et al. 2019b).

Bangladesh frequently suffers from different kinds of natural

disasters such as flash floods, monsoon floods, droughts, cy-

clone and storm surges, riverbank erosion, and urban floods. It

is recognized globally as one of the most vulnerable countries

to natural hazards and climate change.

2.2 Models, datasets, and analysis method

The study compared the performance of 11 GCMs of CMIP5

with their updated versions in CMIP6. The monthly simula-

tion of rainfall (R), maximum temperature (Tmax), and min-

imum temperature (Tmin) of CMIP5 and CMIP6 GCMs were

retrieved from the data portals of the Earth System Grid

Federation (ESGF). For each model, only the historical reali-

zation was analyzed. The performance assessment was con-

ducted for the period 1977–2005, considering the availability

of observed data for that period. The list of GCMs and their

developing organization is given in Table 1.

Rainfall and temperature data recorded at 35 in situ mete-

orological stations were collected from Bangladesh

Meteorological Department (BMD). The common period of

the collected data was 29 years, ranging from 1977 to 2005.

After the quality control and homogeneity test, 30 stations

were selected for the present study. The locations of the sta-

tions over the map of Bangladesh are shown in Figure 1. It can

be observed that the stations are distributed over the country,

and therefore, it can be considered that these 30 stations can

well represent the climate of Bangladesh. Some missing

values were observed in the collected dataset. However, the
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amount of missing data was <2%. The average values of the

nearest three stations were used to replace the missing data.

3 Methodology

The performance of the GCMs was evaluated based on their

capability in reconstructing annual and seasonal R, Tmax, and

Tmin climatology of Bangladesh for the period 1977–2005.

Observed data is available from 1977, while the CMIP5

hindcast is available until 2005. Therefore, the period 1977–

2005 was selected for performance assessment. The GCM

simulations were interpolated to 30 observation locations

using the inverse distance weighting method. The annual

and seasonal mean of GCM and observed R, Tmax, and

Tmin for the period 1977–2005 was estimated at all the thirty

station locations. These values were compared using Kling-

Gupta Efficient (KGE) metric to assess the performance of the

Fig. 1 Location of meteorological stations and elevation map of Bangladesh.

Table 1 CMIP5 and CMIP6 models used in the study

Sl

No.

Institution CMIP5 CMIP6 Resolution

(Lon × Lat)

1 Australian Community Climate and Earth-System Simulator ACCESS1-0 ACCESS-CM2 1.875° × 1.25°

2 Australian Community Climate and Earth-System Simulator ACCESS1-3 ACCESS-ESM1-5 1.875° × 1.25°

3 Canadian Earth System Model CanESM2 CanESM5 2.81° × 2.79°

4 National Centre for Meteorological Research, France CNRM-CM5 CNRM-CM6-1 1.41° × 1.40°

5 Institute for Numerical Mathematics, Russia Inmcm4 INM-CM5-0 2° × 1. 5°

6 Institut Pierre Simon Laplace, France IPSL-CM5A-LR IPSL-CM6A-LR 3.75° × 1.89°

7 Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute

for Environmental Studies, and Japan Agency for Marine-Earth Science and

Technology, Japan

MIROC5 MIROC6 1.41°×1.40°

8 Max Planck Institute for Meteorology, Germany MPI-ESM-LR MPI-ESM1-2-LR 1.88° × 1.86°

9 Max Planck Institute for Meteorology, Germany MPI-ESM-MR MPI-ESM1-2-HR 1.88° × 1.86°

10 Meteorological Research Institute, Japan MRI-ESM1-0 MRI-ESM2-0 1.13° × 1.12°

11 Norwegian Climate Center, Norway NorESM1-M NorESM2-LM 2.50° × 1.89°
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GCMs. For example, the performance of a GCM in simulating

annual rainfall was evaluated by comparing the annual mean

of GCM rainfall and the annual mean of observed rainfall at

30 locations. Similarly, the performance of GCMs for all three

climate variables (R, Tmax, and Tmin) for five timescales

(annual and four seasons) was computed. Therefore, a total

of 15 (3 variables × 5 seasons) KGE values were generated for

each GCM to present its performance.

Ranking of GCMs based on their performance in simulat-

ing multiple variables in different timeframes is challenging

because a GCM may show various degrees of accuracy for

different variables and timeframes. Therefore, multi-criteria

decision analysis (MCDA) algorithms were used to generate

a composite index from 15 KGE measurements. In this study,

two MCDA algorithms were used to avoid the bias that may

arise from a single MCDA, which are global performance

indicator (GPI) (Despotovic et al. 2015) and compromise pro-

gramming index (CPI) (Raju and Kumar 2020). The GCMs

were then ranked according to descending order of GPIs and

ascending order to CPI. The simple average of the ranks ob-

tained using GPI and CPI was used to provide the final rank of

GCMs. Details of the methods used for performance evalua-

tion and ranking of GCMs are presented in the following

subsections.

3.1 Kling-Gupta efficiency

The KGE (Gupta et al. 2009; Kling et al. 2012) is an objective

statistical metric that uses three measures, correlation, bias,

and similarity invariance to assess the similarity between

two datasets. The multi-component essence of KGE has made

it a composite index to be used alone for a more holistic and

balanced goodness-of-fit evaluation (Koch et al. 2018). KGE

is expressed as follows:

KGE ¼ 1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r−1ð Þ2 þ γ−1ð Þ2 þ β−1ð Þ2
q

ð1Þ

γ ¼
μs

μo

: ð2Þ

β ¼
αs=μos

αo=μo

ð3Þ

where r is Pearson’s correlation between GCM simulation

(s) and observed data (o) and β represents the bias normalized

by the standard deviation of the observed data. γ is a fraction

of the variation coefficient reflecting spatial variability, and μ

and σ represent the mean and standard deviation of the simu-

lation of GCM (s) and observed data (o), respectively. The

values of KGE vary between 1 and −∞, where 1 indicates a

perfect agreement. The KGE is a robust metric and is also

commonly used as a metric for spatial assessment

(Zambrano-Bigiarini et al. 2017; Ahmed et al. 2019a;

Nashwan et al. 2019; Nashwan and Shahid 2020).

3.2 Global performance indicator

GPI (Despotovic et al. 2015) combines the effects of individ-

ual statistical indicators to provide a single measure. The GPI

has been used in many other fields as an effective multi-

criteria decision analysis (MCDA) tool (Behar et al. 2015;

Despotovic et al. 2015). The distance between the normalized

value of a performance indicator and the median of the same

performance indicator’s normalized values is calculated.

GPI i ¼ ∑n
j¼1 yij−y j

� �

: ð4Þ

where yj is the median of the normalized values of the perfor-

mance indicator j, n is the number of performance indicators,

and yi,j is the normalized value of the performance indicator j

for the model i. A higher value of GPI indicates better

performance.

3.3 Compromise programming index

The CPI also combines multiple performance metrics into a

single metric like GPI but in a different way. The distance

between the standardized value of a performance indicator

and the ideal value of the same indicator is calculated (Raju

and Kumar 2014):

CPI ¼ ∑n
j¼1r jx

1
j−x

*
j jp

2
h i1=p

ð5Þ

where j means statistical index, x1j is the normalized value of

index j, x*j is the normalized ideal value of index j, and p is the

parameter that was considered 1 in this study for measuring

linear Euclidean distance from the ideal value. A lower value

of CPI indicates better performance of a GCM.

3.4 Relative performance of CMIP5 and CMIP6 GCMs

Multi-model ensembles (MMEs) of CMIP6 and CMIP5

GCMs were prepared by a simple averaging method. The

performance of individual GCMs and their MMEs for

CMIP5 and CMIP6 were compared to show the relative per-

formance of the GCMs of those two intercomparison projects.

Taylor diagram (Taylor 2001) was prepared for visual presen-

tation of relative performance. The Taylor diagram provides a

concise statistical summary of the degree of correlation (spa-

tial correlation coefficient (SCC)), centered root-mean-square

error (CRMSE), and the ratio of spatial standard deviation

(SD) and, thus, provides a composite comparison of model

performance.
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The quantitative assessment of the relative performance of

CMIP5 and CMIP6 models was done using Tylor skill score

((Taylor 2001),

Skill ¼
1þ rð Þ2

SDRþ 1=SDR½ �ð Þ2
ð6Þ

where r represents the correlation between model simulation

and observation and SDR is the ratio of the standard deviation

(SD) of model simulation and observation.

4 Results

4.1 Evaluation of CCM

The KGEs estimated for CMIP5 and CMIP6 models in simu-

lating annual, pre-monsoon, monsoon, post-monsoon, winter

rainfall (R), maximum temperature (Tmax), and minimum

temperature (Tmin) climatology in Bangladesh are presented

in Table 2. The performance of the GCMs was found to vary

significantly for different climate variables and timescales. For

example, ACCESS1-0 of CMIP5 performed best in simulat-

ing annual Tmin and Tmax, while MIROC5 in simulating R.

MIROC5 performed best in simulating monsoon R but per-

formed badly in estimating pre-monsoon R. Similar disparity

in the performance of CMIP6 GCMs can also be observed

from Table 2.

A large disparity in the performance of a model in CMIP5

and CMIP6 was also noticed. For example, MIROC5 per-

formed best among the CMIP5 GCMs in simulating observed

rainfall, but it was ranked 3 among CMIP6 GCMs. This in-

consistency between CMIP5 and CMIP6 was more in simu-

lating seasonal mean climatology compared to annual mean

climatology. It was not possible to compare the relative per-

formance of different GCMs due to large variability in their

performance in simulating R, Tmax, and Tmin for different

timescales. Therefore, GPI and CPI were used to generate

composite metrics and ranking of GCMs.

4.2 Ranking of GCMs

The estimated GPI and CPI values for each of the CMIP5 and

CMIP6 GCMs are presented in Table 3. The ranking of the

GCMs based on average values of GPI and CPI are also pre-

sented in the table. As the GCMs were ranked based on com-

posite indices, it can be considered that the ranks indicate their

performance in reproducing the spatial characteristics of all

climate variables for all timeframes. Results revealed

MIROC5 as the most skillful CMIP5 GCM and ACCESS-

CM2 as the most skillful among CMIP6 GCMs. On the other

hand, IPSL-CM5A-LR and MPI-ESM1-2-LR showed the

poorest performance among the CMIP5 and CMIP6 GCMs,

respectively.

4.3 Comparison of CMIP5 and CMIP6 models

4.3.1 Precipitation

Fig. 2 and Fig. S1-S4 compare the annual and seasonal pre-

cipitation climatology simulated by the CMIP5 and CMIP6

MMEs with observed climatology. The observed rainfall

(both annual and seasonal except winter) in Bangladesh is

highest in the east and gradually decreases to the west (Fig.

2a, S1a, S2a, S3a, S4a). This spatial feature was reasonably

reproduced by both CMIP5 and CMIP6 MMEs (Fig. 2, S1-

4, (b, c)). However, underestimation in annual, pre-monsoon,

post-monsoon rainfall and overestimation in monsoon and

winter rainfall, especially in the hilly eastern region, were

noticed (Fig. 2, S1-4 (b, c)).

The spatial pattern in biases of CMIP5 and CMIP6

MMEs was almost similar. The dominant rainfall underesti-

mation was in the northeastern and southeastern hilly areas.

This indicates that the effect of high topography on precipita-

tion is still a challenge in climate modeling. In CMIP5, the

underestimation in those regions for annual, monsoon, pre-

monsoon, post-monsoon, and winter precipitation was over

6 mm·day−1, 3 mm·day−1, 1 mm·day−1, 0.4 mm·day−1, and

0.1 mm·day−1, respectively, which were higher than the

underestimated values of CMIP6 models, particularly in the

eastern hilly areas (Fig. 2, S1-4 (d, e)).

CMIP6 MME showed improvement compared to CMIP5

MME in terms of bias in annual, pre-monsoon, and post-

monsoon rainfall in most of the country. However, the bias

in CMIP5 MME for monsoon and winter was higher than

CMIP6 MME. Notably, an improvement was observed in

CMIP6 over CMIP5 in simulating the spatial variability of

mean rainfall over the high rainfall receiving areas. A signif-

icant improvement in CMIP6models and their MME has been

reported over Central and North India by Jain et al. (2019).

Most CMIP5 models underestimated high rainfall over these

areas.

The performance of each GCM and MME for both CMIP5

and CMIP6 in producing observed rainfall is presented using

the Taylor diagram in Fig. 3. The figure shows a large and

dispersed between-model distribution for both CMIP6 and

CMIP5 and, therefore, large variability in bias and RMSE.

The SSC of CMIP6 MME was 0.61 (Fig. 3a), whereas it

was 0.33 for CMIP5. Overall, CMIP6 models showed a better

ability to simulate the spatial pattern of annual precipitation in

Bangladesh. The SCCs of CMIP6 MME for pre-monsoon

(0.57), monsoon (0.62), and post-monsoon (0.74) were great-

er than that of CMIP5 MME. However, it was inferior for

winter (0.22). The SCC intervals for different models were

relatively consistent for pre-monsoon, monsoon, post-
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monsoon, and summer. However, most models showed a poor

correlation in winter. This may be due to low and erratic

rainfall during winter, which is often difficult to be captured

in climate models.

Table 2 KGE value of CMIP5 and CMIP6 models in annual and seasonal timeframes during 1977–2005

Annual Pre-monsoon Monsoon Post-monsoon Winter

R Tmax Tmin R Tmax Tmin R Tmax Tmin R Tmax Tmin R Tmax Tmin

Name of CMIP5 models

ACCESS1-0 0.04 0.42 0.44 0.33 0.55 0.66 0.00 0.41 0.41 −2.68 −0.05 0.24 0.00 0.37 0.47

ACCESS1-3 −0.02 0.30 0.44 0.05 0.43 0.65 −0.13 0.22 0.35 −0.94 0.00 0.23 −0.09 0.25 0.48

CanESM2 −3.14 −0.06 0.13 −3.99 0.04 0.24 −2.62 0.05 −0.05 −0.69 −0.13 0.09 −0.50 −0.20 0.13

CNRM-CM5 −1.50 0.36 0.25 −0.48 0.36 0.52 −1.59 0.40 0.19 −0.52 −0.06 0.04 −0.16 0.24 0.24

Inmcm4 −1.01 0.16 −0.17 −2.09 0.44 −0.52 −1.13 0.09 0.08 −0.48 0.05 −0.05 −0.02 0.21 −4.87

IPSL-CM5A-LR −1.95 0.02 0.25 −17.21 0.09 0.38 −1.73 0.19 0.18 −0.64 0.08 0.17 −1.51 −0.52 0.25

MIROC5 0.17 0.17 0.41 −0.16 0.36 0.62 0.20 0.19 0.29 0.39 0.17 0.36 −1.15 0.19 0.47

MPI-ESM-LR −1.42 0.38 0.31 −3.89 0.47 0.38 −1.40 0.40 0.31 −0.93 0.13 0.33 −2.07 0.43 0.31

MPI-ESM-MR −0.17 0.21 0.36 −1.98 0.25 0.46 −0.03 0.33 0.34 −0.18 0.41 0.23 −1.26 −0.02 0.33

MRI-ESM1-0 −4.09 0.22 0.25 −3.29 0.31 0.31 −5.30 0.24 0.27 −1.11 0.21 0.25 −0.10 0.13 0.35

NorESM2-LM −1.50 0.30 0.28 −3.72 0.31 0.47 −1.25 0.49 0.28 −1.65 0.09 0.21 0.24 0.16 0.27

Name of CMIP6 models

ACCESS-CM2 0.38 0.23 0.10 −0.03 0.27 0.30 0.33 0.24 0.15 0.35 0.36 −0.05 −0.46 0.43 0.22

ACCESS-ESM1-5 −0.03 0.06 0.30 −0.32 0.19 0.40 −0.04 0.14 0.20 −0.79 −0.18 0.16 −0.08 0.14 0.45

CanESM5 −1.43 0.03 0.09 −3.92 0.11 0.16 −1.23 −0.03 −0.10 0.28 −0.04 0.02 0.12 0.04 0.13

CNRM-CM6-1 0.21 0.14 0.14 −0.52 0.22 0.26 0.34 0.36 0.06 −0.41 0.08 0.02 0.12 −0.12 0.23

INM-CM5-0 0.04 0.32 0.21 −0.38 0.28 0.23 0.01 0.32 0.20 0.40 0.25 0.30 −0.09 0.24 0.11

IPSL-CM6A-LR −0.06 0.04 0.14 −0.32 0.28 0.24 −0.12 0.17 0.12 −0.24 −0.04 0.10 −0.19 −0.25 0.20

MIROC6 0.14 0.12 0.28 −1.99 0.24 0.39 0.21 0.17 0.25 0.46 0.11 0.26 −1.15 −0.07 0.31

MPI-ESM1-2-HR −0.71 0.00 0.20 −2.94 0.22 0.28 −0.53 0.08 −0.31 −0.38 −0.05 0.16 −1.93 0.25 0.31

MPI-ESM1-2-LR −1.48 0.26 0.04 −4.35 0.44 0.14 −1.35 0.30 0.20 −1.29 0.12 0.03 −1.82 0.12 0.03

MRI-ESM2-0 −1.89 0.17 0.37 −1.43 0.43 0.38 −1.75 0.29 0.28 −1.25 0.19 0.48 −0.58 0.38 0.51

NorESM2-LM −0.81 0.14 0.15 −3.90 0.35 0.26 −0.60 0.12 0.10 −0.44 0.01 0.15 0.06 0.11 0.11

Bold font marks indicate the best model simulating corresponding climate variables in different timescales

Table 3 GPIs and CPIs in

simulating climate variables in

five different timeframes during

1977–2005

CMIP5 CMIP6

GCMs GPI CPI Final rank GCMs GPI CPI Final rank

MIROC5 0.17 7.25 1 ACCESS-CM2 0.97 4.79 1

ACCESS1-3 −0.30 7.72 2 INM-CM5-0 0.58 5.19 2

ACCESS1-0 −0.91 8.33 3 CNRM-CM6-1 −0.73 6.49 3

MPI-ESM-MR −3.25 10.66 4 ACCESS-ESM1-5 −1.27 7.04 4

CNRM-CM5 −4.25 11.66 5 IPSL-CM6A-LR −1.77 7.53 5

NorESM2-LM −7.55 14.97 6 MIROC6 −2.11 7.87 6

MPI-ESM-LR −8.79 16.20 7 MRI-ESM2-0 −5.27 11.04 7

Inmcm4 −11.84 19.26 8 NorESM2-LM −6.05 11.82 8

CanESM2 −13.23 20.64 9 MPI-ESM1-2-HR −7.18 12.95 9

MRI-ESM1-0 −13.87 21.29 10 CanESM5 −7.64 13.41 10

IPSL-CM5A-LR −24.47 31.89 11 MPI-ESM1-2-LR −10.45 16.21 11
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Fig. 2 Spatial distribution of mean annual precipitation (mm·day−1) for

1977–2005 in a observed, b CMIP5 MME, and c CMIP6 MME. The

difference of precipitation (b) between the CMIP5 MME and the

observation, (d) between the CMIP6 MME and the observation, (f)

between the CMIP6 MME and CMIP5 MME.
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(b) Monsoon
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(d) Post-monsoon
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(c) Pre-monsoon
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Fig. 3 Taylor diagrams displaying normalized pattern statistics of

climatological a annual, b monsoon, c pre-monsoon, d post-monsoon,

and e winter precipitation over Bangladesh between 11 GCMs and

observations for the period 1977–2005. Triangle and round symbols

indicate CMIP5 and CMIP6 GCMs listed in Table 1, respectively.
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Normalized standard deviations (centered rootmean square

error, CRMSE) are 0.30–1.16 (0.78–1.5) for the annual mean,

0.37–5.16 (0.96–5.15) in winter, 0.18–1.37 (0.66–1.39) in

pre-monsoon, 0.31–1.00 (0.73–1.41) in monsoon, and 0.41–

1.39 (0.85–1.52) in post-monsoon. This means that most

CMIP6 GCMs poorly simulate the spatial variability of rain-

fall climatology over Bangladesh. Moreover, the CMIP6

MME underestimated observed SD more than CMIP5 MME

except for pre-monsoon. The lower SD of most of the models

compared to observed SD indicates an underestimation of the

spatial variability of rainfall by the models.

Compared to CMIP5 GCMs, SSCs were higher, but SDs

and CRMSEs were further away from the observation for

CMIP6 GCMs (Fig. 3). This indicates a relative superiority

of CMIP6 GCMs in reproducing geographical distribution but

inferiority in simulating spatial variability. A higher SD rep-

resents high extreme precipitation events (Mohsenipour and

Shahid 2018; Attogouinon et al. 2020). Since CMIP5 MME

has a smaller SD than that of CMIP6 except for pre-monsoon,

the likelihood of extreme precipitation events is higher in

CMIP6 GCMs.

Fig. 4 shows the Taylor skill score of CMIP5 and CMIP6

models in reproducing annual and seasonal precipitation. It

was found that skill score varies with seasons. However, the

skill scores of CMIP6 models were higher than that of their

previous versions in CMIP5 for all the seasons except winter.

The number of CMIP6 GCMs showing a better (poorer)

score than their corresponding CMIP5 versions was 9 (2) for

Fig. 4 Skill scores of the climatology of a annual, bmonsoon, c pre-monsoon, d post-monsoon, and e winter precipitation in each model and the MME

from CMIP5 and CMIP6 models
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annual and monsoon, 7(4) for pre-monsoon, and 5(6) for win-

ter (Fig. 4). ACCESS-CM2 (0.99) and INM-CM5-0 (0.99) for

annual, ACCESS-CM2 (1.00) and ACCESS-ESM1-5 (1.00)

for monsoon, ACCESS-CM2 (0.98) for pre-monsoon,

CanESM5 (1.00) for post-monsoon, and CNRM-CM6-1

(0.94) and INM-CM5-0 (0.94) for winter were the highest

performing models of CMIP6. The most remarkable improve-

ment among the models was found for IPSL-CM6A-LR

(0.82) relative to IPSL-CM5A-LR (0.01) in the pre-monsoon

season. The skill score of CMIP6 MME was 0.78 for post-

monsoon, and 0.54 for winter, which were larger than the

CMIP5 MME (0.50 and 0.19, respectively), indicating the

better performance of CMIP6 MME compared to CMIP5

MME.Almost similar scores were found for annual (0.37) and

monsoon (0.35) timeframes. However, CMIP6 MME showed

a lower score than CMIP5MME for pre-monsoon. Based on a

fair comparison of GCMs produced by the same modeling

group, the GCMs’ precipitation simulation has slight im-

provement from CMIP5 to CMIP6, suggesting improvement

in intrinsic key physics schemes (Wu et al. 2019).

4.3.2 Maximum temperature

Fig. 5 and Fig.(S5-S8) present the Tmax climatology simulat-

ed by CMIP5 and CMIP6 MMEs and their biases in annual

and seasonal timeframes. The annual and seasonal Tmax is

highest over the western part of Bangladesh which gradually

decreases to the east (Fig. 5a, S5a, S6a, S7a, S8a) except for

the winter season. In winter, the maximum temperature is

higher in the north and lower in the south. Both the CMIP5

and CMIP6 MMEs were able to reproduce this spatial attri-

bute of Tmax reasonably. However, CMIP6 MME

underestimated Tmax during post-monsoon and winter sea-

sons and overestimated annual, monsoon, and pre-monsoon

seasons in most parts of the country except for the high ele-

vated areas (Fig. 5, S5-8 (b, c)).

The Tmax biases in CMIP5 and CMIP6 MMEs were

found dominant in the northwest, northeast, and southeastern

hilly areas. The underestimations in CMIP5 MME for annual

(0.98–2.98°C), monsoon (0.36–1.89°C), pre-monsoon (0.03–

2.52°C), post-monsoon (1.13–4.02°C), and winter tempera-

ture (0.93–4.3°C) were higher than that for CMIP6, particu-

larly in eastern hilly areas (Fig. 5, S5-8 (d, e)). The highest

negative bias was found in cold seasons (winter and post-

monsoon) due to cold bias in high elevated areas. Overall,

the results indicate greater reproducibility of annual, post-

monsoon, and winter Tmax in most areas by CMIP6 MME

compared to CMIP5 MME.

Fig. 6 shows the performance of each GCM and MME of

both CMIP5 and CMIP6 on the Taylor diagram. The CMIP6

models performed well in simulating the spatial pattern of

seasonal Tmax. The SCC of CMIP6 MME (CMIP5 MME)

was 0.67 (0.63), 0.77 (0.65), 0.73 (0.73), 0.28 (0.30), and 0.59

(0.53) for annual, pre-monsoon, post-monsoon, and winter

seasons, respectively. This indicates a greater or similar per-

formance of CMIP6 models compared to CMIP5 models. For

individual models, the correlation coefficients were ranged

from 0.23 to 0.72 for the annual, 0.31 to 0.82 for monsoon,

0.31 to 0.76 for pre-monsoon, −0.04 to 0.42 for post-mon-

soon, and −0.07 to 0.79 for winter. The simulation to observed

SD ratios was larger than 1 for both CMIP6 and CMIP5

MMEs. This implies that the models overestimated the annual

and seasonal variabilities of Tmax. This ratio in CMIP6MME

was highest for monsoon (2.22) and lowest for post-monsoon

(1.15). All the models also showed larger variabilities in mon-

soon Tmax ranging from 1.51 to 4.14. Compared to CMIP5

GCMs, SSCs for CMIP6 GCMs were higher, but SDs and

CRMSEs were further away from observation (Fig. 6). This

indicates a relative superiority of CMIP6 GCMs in reproduc-

ing the geographical distribution of Tmax but inferiority in

simulating the spatial variability of Tmax.

Fig.7 presents the skill scores of CMIP5 and CMIP6

models in reproducing annual and seasonal Tmax. The skill

scores of CMIP6 models and MME were found lower than

that estimated for their corresponding CMIP5 models. The

number of CMIP6 GCMs showed a better (poorer) score than

their CMIP5 parents that were 2(9) for annual, 3(8) for post-

monsoons, 4(7) for monsoon, 3(7) for pre-monsoon, and 2(9)

for winter. Among the CMIP6 models, the greatest improve-

ment was noticed for INM-CM5-0 and MRI-ESM2-0 for all

the timeframes.

4.3.3 Minimum temperature

Fig. 8 and Fig. (S9-S12) compare the Tmin climatology sim-

ulated by CMIP5 and CMIP6 MME with observed climatol-

ogy in annual and seasonal timescales. The observed annual

and seasonal Tmin is highest in the south which decreases

gradually towards the north except for monsoon (Fig. 8a,

S9a, S10a, S11a, S12a). This spatial feature was reasonably

reproduced by both the CMIP5 and CMIP6 MMEs.

However, CMIP5 MME underestimated and CMIP6 MME

overestimated annual, pre-monsoon, and monsoon Tmin,

while both CMIP5 and CMIP6 MMEs underestimated post-

monsoon and winter Tmin over most of the country (Fig. 8,

S9-12 (d, e)). The highest negative bias (less than 5°C) was

found for winter and post-monsoon seasons in high elevated

areas in CMIP5MME. Notably, an improvement was ob-

served in CMIP6 MME over CMIP5 MME in simulating

Tmin for annual and seasonal timeframes. The highest im-

provements were found in the cold season (winter and post-

monsoon) in high elevated areas. This implies that CMIP6

MME can easily remove the cold bias compared to CMIP5

MME. Overall, the results indicate greater reproducibility of

annual and seasonal Tmin in most of the areas by CMIP6

MME compared to CMIP5 MME.
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In the northwest of the country, biases in CMIP5 and

CMIP6 MMEs were found to be dominant. However, the

positive bias persisted in the southwest for CMIP6 MME.

The CMIP5 MME estimated Tmin in the northwestern re-

gions for post-monsoon and winter more than 5°C less than

the CMIP6 estimated Tmin.

Fig. 5. As in Fig. 2, but for maximum temperature
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Fig. 6. As in Fig. 3, but for maximum temperature
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Fig. 9 shows the performance of each GCM and MMEs of

both CMIP5 and CMIP6 sets in producing observed Tmin

based on the Taylor diagram. The SCC of CMIP6 MME

(CMIP5 MME) were 0.74 (0.78), 0.77 (0.83), 0.70 (0.69),

0.50 (0.54), and 0.69 (0.66) for annual, pre-monsoon, mon-

soon, post-monsoon, and winter, respectively. This indicates

better performance of CMIP6 GCMs compared to CMIP5

GCMs for all seasons except for winter. The SSC of the indi-

vidual models were ranged from 0.33 to 0.61 for annual,

−0.15 to 0.70 for monsoon, 0.34 to 0.71 for pre-monsoon,

0.19 to 0.59 for post-monsoon, and 0.22 to 0.63 for winter.

The interval of annual and seasonal SSCs for CMIP6 was

closer than that for CMIP5. The SSC intervals for different

models are relatively consistent for pre-monsoon, monsoon,

post-monsoon, and summer. However, most models showed

poor SSC post-monsoon.

The simulated SDs of both CMIP6 and CMIP5 models

were larger than the observed SD for all timescales, implying

that the models overestimated annual and seasonal Tmin var-

iabilities. Large variability was noticed for monsoon com-

pared to other seasons. The SCCs, SDs, and CRMSEs were

further away from observation in CMIP6 GCMs compared to

CMIP5 GCMs (Fig. 9). This indicates the inferior perfor-

mance of CMIP6 GCMs compared to CMIP5 GCMs in

replicating both geographical distribution and spatial

variability.

Fig.10 presents CMIP5 and CMIP6 model’s skill scores in

reproducing annual and seasonal Tmin. It was found that the

Fig. 7. As in Fig. 4, but for maximum temperature
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skill scores of CMIP6 MMEs were lower than that of CMIP5

MMEs for all seasonal except post-monsoon. The number of

CMIP6 GCMs showed a better (lower) skill score compared

to their CMIP5 parents that was 2(9) for annual, post-

monsoons, and monsoons and 3(8) for pre-monsoons and

winter. Among the CMIP6 models, the most significant im-

provement in simulating Tmin was observed for INM-CM5-0

and MRI-ESM2-0.

Fig. 8. As in Fig. 2, but for minimum temperature
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Fig. 9. As in Fig. 3, but for minimum temperature
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5 Discussions

Performance of GCMs of CMIP5 and CMIP6 in simulating

rainfall and temperature at annual, pre-monsoon, monsoon,

post-monsoon, and winter timescales over Bangladesh for

the period 1977–2005 was evaluated in this study. Both the

CMIP5 and CMIP6 MMEs were able to reasonably repro-

duce the spatial pattern of rainfall climatology in Bangladesh.

However, both the MMEs underestimated annual, pre-mon-

soon, post-monsoon rainfall and overestimated monsoon and

winter rainfall, especially in the hilly eastern region. The

coarser resolution of GCMs does not capture the orographic

effects and local landmass changes that affect spatial variabil-

ity and rainfall distribution (Shashikanth et al. 2014; Jain et al.

2019). Therefore, high resolution of climate information is

needed for the practical application over Bangladesh using

spatial downscaling techniques.

The wet bias in annual precipitation was higher over the

northeastern hilly regions of the country. The models simulat-

ed higher than the observed rainfall in the northeastern region

during monsoon and winter. This can be the possible cause of

wet bias in annual rainfall. Most of the CMIP6 and CMIP5

models simulated the southwest monsoon signals and the east-

erly wind flows from the Bay of Bengal in winter and mon-

soon. However, precipitation uncertainties in monsoon and

winter were more than those in pre-monsoon and post-

monsoon due to the easterly wind system and the orographic

effect.

Overall, an improvement in CMIP6 over CMIP5 was ob-

served in simulating the spatial variability of mean

Fig. 10. As in Fig. 4, but for minimum temperature
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precipitation over the high rainfall receiving areas. The result

was found consistent with the finding of Jain et al. (2019) in

India. They reported a significant improvement over Central

and North India in CMIP6 models and their MME, where the

majority of CMIP5 models underestimated high precipitation

over these areas. Compared to CMIP5 GCMs, SCCs of

CMIP6 GCMs were higher (except winter), but SDs and

CRMSEs were further away from the observation (Fig. 3).

This indicates a relative superiority of CMIP6 GCMs in repro-

ducing the geographical distribution but inferiority in simulat-

ing spatial variability. Duan et al. (2013) indicated that the

incorporation of sulfate aerosol indirect effects could enhance

the ability of CMIP6 models to simulate the annual precipita-

tion cycle, but a large bias remains. Considering the system-

atic model biases, more cautions should be taken in using

GCM projections for impact assessment over Bangladesh.

The cold bias was a common error for most models in the

previous generations of CMIPs (IPCC 2013; Guo et al. 2013).

It was also found to exist in CMIP6. Zhu and Yang (2020)

showed a general cold bias in annual mean temperature in

China. Almazroui et al. (2020) showed a general cold bias in

annual mean temperature in south Asian countries, including

Bangladesh. This study presents that CMIP6 models

outperformed CMIP5 in terms of simulating and Tmin for

annual and seasonal timeframes in most parts of the country.

The highest improvements were seen in high elevated areas

during the cold season (winter and post-monsoon). SCCs of

CMIP6 MMEs were higher than the CMIP5 GCMs, but SDs

and CRMSEswere farther away from the observation (Fig. 6).

It indicates a relative dominance in replicating the geograph-

ical distribution of Tmax but inferiority in replicating spatial

variability. Almazroui et al. (2020) also demonstrated that

some models overestimated the annual mean temperature.

Previous studies based on CMIP5 models showed that the

performance of GCM varies significantly and depends on

the variable being considered (Kamworapan and

Surussavadee 2019; Pathak et al. 2019). In this study, most

CMIP6 GCMs, including their MME, had a lower ability

score for simulating Tmax and Tmin at both annual and sea-

sonal scales than CMIP5. However, some individual models

performed well in CMIP6 compared to their earlier version in

CMIP5. The results emphasize the need for further research to

understand the origins of systematic model biases in

Bangladesh.

Several CMIP6 models showed better simulations of tem-

perature or precipitation compared to CMIP5. IMM-CM5

from CMIP5 and MRI-ESM2 from CMIP6 performed best

in simulating temperature over the country. Contrary to this

finding, the temperature simulation capability of CanESM5

over the Tibetan Plateau was among the top five CMIP5

models, reported by Chen et al. 2017. Likewise, IPSL-

CM5A-LR fromCMIP5was the optimal model for simulating

precipitation in China (Zhou and Li 2002). Zamani et al.

(2020) reported that the outcomes of HadGEM2-ES from

CMIP5 and CESM2 from CMIP6 were best in simulating

precipitation in northeastern Iran. The uncertainties, errors,

and topographic differences may be possible reasons for large

geographical variation in the optimal model. Some explicit

parameter control experiments are required to detect the main

factor influencing the errors and uncertainties over

Bangladesh in individual models. The weaker performance

of new-generation models indicates that confidence is not

compatible with larger scales in the model’s ability to simulate

surface temperature and precipitation on a regional scale.

More attention should be paid to choosing CMIP6 models

rather than merely replacing the corresponding CMIP5 model

without verification. The bias correction is also needed to

improve the utility of CMIP6 for further applications. The

seasonal changes of intertropical convergence zone (ITCZ)

bias and their differences among CMIP5 and CMIP6 models

are significant (Tian and Dong 2020) in the Indian subconti-

nent, including Bangladesh. Moreover, the effects of El Nino-

Southern Oscillation (ENSO), Indian Ocean Dipole (IOD),

and Southern Oscillation Index (SOI) on rainfall and temper-

ature have been observed in Bangladesh (Chowdhury 2003;

Wahiduzzaman and Luo 2020; Yousuf 2019; Ghose et al.

2021). However, they are not examined in this paper and

should be examined in the future.

Furthermore, considering the Indian summer monsoon

(ISM) dominated climate of Bangladesh, it is expected that

GCMs can simulate ISM appropriately and would provide

better climate simulation for Bangladesh. Recently, a few

studies have been conducted to evaluate the CMIP6 GCMs’

performance in simulating ISM. Investigations revealed the

GCMs can simulate mean monsoon rainfall is always not

capable of simulating spatial variability of monsoon rainfall.

Katzenberger et al. (2021) showed that CMIP6 GCMs,

CNRMCM6-1, NorESM2-MM, and FGOALS-f3-L simulat-

ed mean ISM rainfall closest to the reanalysis mean, but all the

models overestimated rainfall over the Himalaya region. This

indicates that GCMs with better ISM rainfall simulation capa-

bility does not guarantee their good performance in

Bangladesh. However, consistency in the findings of previous

studies on CMIP6 GCMs’ capability in replicating ISM was

noticed with our results. Gusain et al. (2020) compared

CMIP6 and CMIP5 MMEs’ skills in simulating ISM rainfall

and reported better capability CMIP6 MME in capturing ISM

precipitation in most parts of India. The present study also

revealed that CMIP6 MME can better simulate rainfall and

temperature over Bangladesh than the CMIP5 MME. The

models could capture the interannual variability of annual

and seasonal rainfall and temperature reliably, except for the

winter rainfall. Winter rainfall is little (nearly 3% of total an-

nual rainfall) and erratic in Bangladesh, and therefore, GCMs

are not expected to capture such rainfall. Among the CMIP6

models, ACCESS-CM2 and INM-CM5-0 showed better
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performance in simulating annual rainfall, ACCESS-CM2

and ACCESS-ESM1-5 for simulating monsoon rainfall,

ACCESS-CM2 for pre-monsoon, and CanESM5 for post-

monsoon rainfall. Though ACCESS-CM2 performed best to

produce annual and monsoon rainfall in Bangladesh,

Katzenberger et al. (2021) showed that it underestimated

India’s ISM rainfall. But their results showed that it was able

to replicate the spatial distribution of monsoon rainfall over

northeast India, including Bangladesh.

Improvement in model resolution from one generation to

another generation improved the model’s performance. For

example, the spatial resolution of many CMIP5 models was

higher than CMIP3 models. Sun et al. (2015) evaluated the

performance of CMIP3 and CMIP5 GCMs. They concluded

that improvement in CMIP5 models’ skill over CMIP5

models was partially due to spatial resolution improvement.

It is generally assumed that improved parameterizations and

additional process representations required to improve

models’ spatial resolution eventually improved models’ skills

(Sheffield et al. 2013). However, the improvement in models’

skills was not valid in simulating all climate variables. Chan

et al. (2012) showed that the improvement in resolution did

not improve the precipitation simulation skill of some CMIP5

models compared to CMIP3 models. However, model skill is

not related to model resolution for a particular CMIP. For

example, the skills of CMIP5 models are not related to their

resolution. The resolution of CMIP6 models, developed for

basic diagnostic analysis, is not different from CMIP6

(Table 1). Therefore, the improved performance of some of

the CMIP6 GCMs cannot be related to the resolution. Besides

the basic diagnostic simulations, CMIP6 introduced several

model intercomparison projects (MIPs) for specified climate

change assessment. HighResMIP is one such MIP that can be

used in the future to evaluate the performance of high-

resolution GCM compared to basic diagnostic models.

6 Conclusion

The ability of eleven CMIP6 climate models was compared

with their previous versions in CMIP5 in simulating annual

and seasonal mean rainfall and temperature over Bangladesh

for the period 1977–2005. The results showedMIROC5 as the

most skillful among CMIP5 GCMs and ACCESS-CM2

among CMIP6 GCMs in reproducing annual and seasonal

rainfall and temperature of Bangladesh. The CMIP6 GCMs

showed better skill in simulating the geographical distribution

of temperature and precipitation climatology over

Bangladesh. The performance was relatively better for rainfall

than for temperature. However, systemic wet biases in CMIP6

were found to exist in high precipitation receiving areas.

CMIP6 models outperformed CMIP5 in most parts of the

country in simulating and Tmin for annual and seasonal

timeframes. During the cold season (winter and post-mon-

soon), the highest changes were observed in high-altitude re-

gions. CMIP6 MME also showed significant improvement in

Tmax and Tmin biases, but systemic cold/warm biases still

exist. However, the highest improvement was found in cold

seasons (post-monsoon and winter) in high elevated regions.

SCCs of CMIP6 GCMs were higher than that for CMIP5

GCMs, but SDs and CRMSEs were farther away from the

observation for most of the CMIP6 GCMs. This indicates a

relative dominance of CMIP6 GCMs in replicating geograph-

ical distribution of temperature but inferiority in simulating

spatial variability in temperature. However, for minimum tem-

perature, relative inferiority was noticed in simulating both

geographical distribution and spatial variability. The Taylor

skill score showed a higher score for CMIP6 MME in precip-

itation simulation but a lower score for temperature than

CMIP5 MME in most of the timeframes. However, some

individual models showed good agreement with observation

in simulating the quantity and spatial distribution of rainfall.

This preliminary study has some limitations and can be

regarded as a possible field of near-future research that heralds

the beginning of a new age of high-resolution climate models

for CMIP6. A similar evaluation could be carried out after the

release of more CMIP6 models to gain a greater insight into

the changes within CMIP6 models commensurate to climate

valuables over Bangladesh.
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