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The effectiveness of the jet impingement system on the turbine blade pressure side 
has been experimentally investigated. The effects of height-to-diameter ratio and air 
velocity on the effectiveness of jet impingement were studied. Experiments was 
performed under varying height-to-diameter ratios (H/D = 5, 10, 15, 20) where the 
distance from the nozzle to the pressure side surface ranged from 20, 40, 60 and 80 
mm with a constant nozzle diameter of 4 mm. The Nusselt number is calculated to 
determine the cooling effect of the pressure side model surface. Experiments were 
also performed at varying air velocity at 6.4 m/s and 12.6 m/s. The findings revealed 
that there was no direct relationship between Nusselt number and H/D ratio where 
the optimum cooling impact at a velocity of 6.4 m/s was found to be at H/D=15, 
whereas at a velocity of 12.6 m/s it was found to be at H/D=5. The findings also 
reveal that the amount of Nusselts rises as the air velocity increases.  
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1. Introduction 
 

Gas turbine, also referred to as a combustion turbine, is commonly used for multiple 
applications, such as electricity generation, aircraft propulsion and other industrial applications [1]. 
The gas turbine runs at exceptionally high temperatures between 1600 K and 1900 K in order to 
improve the efficiency of the turbine [2]. However, higher operating temperature of the gas turbine 
can lead to wear, failure and fatigue of the turbine blade after a certain period of time [3]. This 
constraint renders cooling in gas turbine systems a critical field of heat transfer research. The 
cooling system plays a key role in maintaining the turbine components temperature below critical 
level and in avoiding overheating failure [4]. Several internal cooling methods may be used to 
improve the heat transfer of turbine blades, including rib turbulators, pin fins, dimples and jet 
impingement cooling [3,5]. Previously, the authors have studied the use of palm oil to reduce the 
friction rate in the system. Good lubrication will also help the cooling system [6–13]. 
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The jet impingement cooling system is extensively studied numerically and experimentally by 
several researchers due to its advantages, including its relatively simple, extremely high heat 
transfer rate, and can be used in numerous industrial applications [14–16]. A significant number of 
experiments have been performed on the factors affecting jet impingement cooling, including the 
shape of the nozzle, the angle of the nozzle, the velocity of the air, the height-to-diameter ratio and 
the number of Reynolds. Singh et al., [17] experimentally and numerically studied the influence of 
the shape of the nozzle, i.e. circular, square and rectangular, on the cooling of the circular cylinder 
jet impingement. Experiments and numerical investigations were performed in two sets of 
conditions (i) for fixed Rehyd (i.e. same average velocity and same hydraulic diameter) and (ii) for 
fixed 𝑅𝑒̅̅̅̅ ℎ𝑦𝑑 (i.e. same mass flow rate and same hydraulic diameter). They found that the 

rectangular nozzle shows the highest heat transfer rate between the nozzle shape for the fixed 
Rehyd, but the circular shape shows the highest heat transfer rate between the nozzle shape for the 
fixed 𝑅𝑒̅̅̅̅ ℎ𝑦𝑑. Bakar [18] experimentally studied the influence of the angle of the nozzle, the gap 

between the nozzle and the impinge surface and the Reynolds number. They recorded that the 
Nusselt number at a higher angle (90°) was higher than that at a lower angle (30°, 45°, 60°). They 
also observed that the Nusselt number was higher with a greater Reynolds number and a narrower 
gap between the nozzles to the impinge surface. 

Liu and Feng [19] performed numerical studies on the impingement cooling of the leading edge 
gas turbine edge. Numerical investigations are carried out at various locations of the jet nozzle 
(E/D: 0.70, 1.60, 2.52, 3.42 and 4.32) and the jet Mach number (M: 0.1, 0.3, 0.5 and 0.7). It was 
found that the area weighted average Nusselt number of the target surface increases with Mach 
number, and decreases with E/D. It also indicates that both the streamwise (Nust) and the spanwise 
length of the weighted average Nusselt number (Nusp) are observed to be higher at the lower E/D 
and higher at the higher Mach number. Liu et al., [20] numerically and experimentally evaluate the 
effects of the location of the jet nozzle and the Reynolds number (Re) on the blade leading edge of 
the impingement heat transfer. The locations of the jet nozzle employed for the study were E/D=0, 
0.5 and 1.0, whereas the amount of Re employed was Re=12000, 15000 and 20000. The heat 
transfer enhancement was noticed to be correlated with E/D and Re. The highest Nu on the target 
surface was observed for Re<15000 at E/D=0.5. However, in the case of Re=20000, the Nu 
decreases with the rise in E/D. Their results connected to the combined behaviour of vortices 
magnitude, jet velocity and turbulent kinetic energy close to the target surface. 

As can be seen from the literature review, researchers have done major work on the 
impingement cooling for the gas turbine blade leading edge, but few studies on the impingement 
cooling on the pressure side have been published. The purpose of this analysis is therefore to 
determine the effectiveness of the jet impingement cooling on the pressure side of the RR Trent 
970-B84 turbine blade surface on the basis of two criteria, which are the nozzle to surface distance 
and the velocity of air employing a circular shape nozzle. 
 
2. Methodology  
 

Present study focused on acquiring temperatures for the turbine blade pressure side model. 
The experimental setup presented in Figure 1 consists mainly of the nozzle, pressure regulator, 
compressor, pressure side model, thermocouples, thermocouple data logger and heater. The 
circular capillary channel, with a diameter of 4 mm, acts as a nozzle and is located at an angle of 90° 
at the top of the pressure side model. The position of the nozzle was placed at 90° since the 
previous researcher observed that the heat transfer rate was the maximum at this angle compared 
to the lower angle [18]. The pressure side model was produced using a zinc plate and the dimension 
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replicates the scaled down of the RR-Trent 970-84B turbine blade. Zinc material has been chosen 
because it is commonly used in industrial applications. The thermocouples were mounted at five 
separate locations, with a gap of 30 mm for each thermocouple, along the centre line of the model. 
The photograph of the pressure side model is shown in Figure 2. Thermocouple 4 was set as the 
temperature control as it is situated in the centre of the heat source at the highest temperature.  
 

 
Fig. 1. Schematic diagram of experimental setup 

 

 
Fig. 2. Photograph of the pressure side model 
and the position of the thermocouple 

 
The pressure side model was heated by the heater until the thermocouple 4 had achieved the 

target temperature (~55°C). The initial temperature of the pressure side model surface was 
determined in order to minimise the measurement errors related to its dimension. The compressed 
air supplied by the compressor is sent to the pressure regulator. The airflow of the compressed air 
was controlled by the pressure regulator. First, the compressed air flows into the capillary channel, 
and the cooling airflow impairs the pressure side model for 30 seconds. The temperature of the 
cooling phase was recorded. In the current study, two different parameters, i.e. the ratio of the 
nozzle distance from the pressure side surface to the jet nozzle diameter (H/D) and the velocity of 
air, were varied in order to test the efficacy of the jet impingement cooling on the pressure side 
model. Variations of parameters included in the present analysis can be found in Table 1. The 
temperature measured was used to calculate the following dimensionless parameter (Nusselt 
number). 
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where h is the convective heat transfer coefficient (W/m2.K), Lc is the characteristic length of the 
contact area (m) and k is the thermal conductivity of the air (W/m.K). The heat transfer coefficient 
is defined as 
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where �̇� is the mass flow rate (kg/s), ∆T is the temperature difference (K), Cp is the specific heat of 
air (J/kg.K), As is the surface area through which convection heat transfer takes place (m2), Ts is the 
surface temperature (K) and T∞ is the stream temperature (K). 
 

Table 1 
Parameters varied in the current study 

Parameter Value Unit 

Height to diameter ratio (H/D) 5, 10, 15, 20 - 
Distance from nozzle to pressure side surface 20, 40, 60, 80 mm 
Velocity 6.4, 12.6 m/s 

 
3. Results  
3.1 Effect of Height to Diameter Ratio (H/D) 
 

In order to explore the effect of the height-to-diameter ratio (H/D) on the jet impingement 
cooling method of the pressure side model, the experiment is carried out at four separate H/D 
ratios: 5, 10, 15 and 20, based on the gap between the nozzle and the pressure side surface of 20 
mm, 40 mm, 60 mm and 80 mm at a constant nozzle diameter of 4 mm. Figure 3 indicates the 
difference of the final temperature of each thermocouple location for a particular H/D at a velocity 
of (a) 12.6 m/s and (b) 6.4 m/s. It is found that the cooling pattern over the surface of the pressure 
side model is identical for all H/D. The lowest final temperature values in Figure 3(a) vary from 
22.78°C to 23.62°C at thermocouple 2 (T2). Whereas in Figure 3(b), the lowest final temperature 
values vary from 22.61°C to 23.27°C, which is also at T2. T2 has the lowest final temperature since it 
is near to the middle position of the nozzle. It can be shown that, when the position of the 
thermocouple is farther from the middle position of the nozzle, the final temperature rises. Since 
T4 is closer to the centre location of the nozzle, its final temperature was higher than that of T5. 
This is because T4 was set as a control thermocouple and observed the maximum initial 
temperature relative to the other location of thermocouple, as seen in Table 2. Under high velocity, 
see Figure 3(a), it can be shown that the final temperature rose as the H/D ratio increased. 
However, various patterns were observed at low velocity; see Figure 3 (b). It indicates that the final 
temperature decreased when the H/D ratio rose from 5 to 15, but then decreased when H/D was 
20. The lowest final temperature for both velocities is reported at T2, which is found to be the 
stagnation point of the pressure side surface. 
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Fig. 3. Variation of final temperature of each thermocouple position with 
different H/D at a velocity of (a) 12.6 m/s and (b) 6.4 m/s 

 
Table 2 
Experimental results of initial and final temperature with different H/D at a velocity of (a) 12.6 m/s and 
(b) 6.4 m/s 

Velocity 
(m/s) 

H/D Temperature (°C) 

T1 T2 T3 T4 T5 

Initial Final Initial Final Initial Final Initial Final Initial Final 

12.6 5 50.42 24.45 51.25 22.78 50.30 25.15 55.11 32.43 52.08 30.05 
10 50.13 24.44 51.6 23.18 50.60 26.75 55.25 32.92 52.21 30.60 
15 51.15 25.06 52.4 23.54 51.20 27.44 55.11 32.33 53.02 30.52 
20 51.09 25.39 52.12 23.62 50.41 27.56 55.19 34.2 52.45 31.34 

6.4 5 50.73 26.32 51.44 23.27 50.11 29.15 55.24 35.29 52.39 33.45 
10 51.07 27.37 51.81 22.72 50.60 30.82 55.14 35.74 52.01 33.61 
15 49.56 24.72 50.81 22.61 49.22 28.77 55.13 34.35 52.80 33.35 
20 48.35 24.94 49.47 22.94 48.49 28.81 55.12 34.77 54.29 33.73 

 
Figure 4 shows the variance of the Nusselt number of each thermocouple location with 

different H/D at a velocity of (a) 12.6 m/s and (b) 6.4 m/s. Generally, the Nu value patterns display a 
similar trend with all H/D ratios. The highest number of Nusselt is the stagnation point of the 
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pressure side surface recorded at T2 for both velocities. It can also be shown that the Nusselt 
number was decreased as the distance of the thermocouple from the centre point of the nozzle 
rose. The Nusselt number against H/D ratio at stagnation point was plotted in Figure 5 for further 
analysis. 

 

 
Fig. 4. Variation of Nusselt number of each thermocouple position with 
different H/D at a velocity of (a) 12.6 m/s and (b) 6.4 m/s 

 
Figure 5 shows that under high velocity (V1) the Nusselt number rises with a decrease in the 

H/D ratio. These results are compatible with previous studies by [19]. Nusselt dramatically 
decreased from 151.8418 (H/D=5) to 97.6811 (H/D=10) by 35.7 per cent and revealed a marginal 
decline in Nusselt by 4.9 per cent as the H/D ratio increased from 15 to 20. Figure 5 also indicates 
that under high velocity (V1) the highest amount of Nusselt number is 151.8418, which is located at 
H/D=5. On the other side, under low velocity (V2), the amount of Nusselt rises by 57.6 per cent 
when the H/D ratio increases from 5 to 15, but still declines by 26.9 per cent while H/D=20. Among 
the H/D ratios, the maximum amount of Nusselt at low velocity (V2) is 87.6826, which is considered 
to be at H/D=15. Based on Figure 5, the findings indicated that the H/D ratio plays a major role in 
the performance of jet impingement cooling. Current studies have found that the optimum H/D 
ratio at a velocity of 12.6 m/s is H/D=5 and at a velocity of 6.4 m/s is H/D=15. 
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In the current analysis, the amount of Reynolds at a velocity of 12.6 m/s and 6.4 m/s is 3295.81 
and 1674.06, respectively, suggesting that the experiment was performed under laminar flow 
conditions. It is interesting to note that there was no direct relationship between the Nusselt 
number and the H/D ratio at different velocity. In the case of high velocity, the Nusselt number 
decreased as the H/D ratio increased. Whereas for low velocity, the Nusselt number rose as the 
H/D ratio increased and then decreased when the optimum H/D ratio was achieved. 

Under high velocity, the Nusselt number rose as the H/D ratio declined due to lower H/D flow 
accelerations [21]. The performance of the heat transfer and the Nusselt number are associated 
with the cross-flow. The heat transfer to the surface raises the cross-flow [22]. As the H/D ratio 
raises, the cross-flow effect increases and hence decreases the effectiveness of the impingement 
cooling of the pressure side surface. In the other side, the Nusselt number rises with a rise in H/D 
from 5 to 15 at low velocity due to an increase in turbulence intensity. The rise in turbulence 
intensity is induced by interacting with ambient air and heat can be easily transmitted. However, 
the unexpected reduction in the Nusselt number at H/D=20 was attributed to the hot air beginning 
to travel upwards while the cold air from the nozzle persisted. When the nozzle distance is far from 
the plate, the compressed air coming out of the nozzle begins to disperse until it hit the plate, 
causing the hot air to travel upward, thereby decreasing the cooling power. 
 

 
Fig. 5. Nusselt number versus H/D ratio at stagnation point. (V1=12.6 m/s, 
V2=6.4 m/s) 

 
3.2 Effect of Velocity of Air 
 

The influence of the air velocity on the Nusselt number at optimum H/D is seen in Figure 6. By 
contrast, the Nusselt number for V1 is greater than that for V2. Noted that the effectiveness of the 
jet impingement cooling system is determined based on the maximum Nusselt number [23]. This 
result has shown that V1 is far more effective than V2 in enhancing the jet impingement cooling 
system. Air velocity may affect the mass flow rate where the increasing velocity raises the mass 
flow rate. The mass flow rate is associated with the coefficient of heat transfer. As the coefficient of 
heat transfer rises, the amount of Nusselt increases. In particular, the direct role of the Nusselt 
number and the Reynolds number is also well assessed in the literature. Since the Reynolds number 
for velocity 12.6 m/s is higher than those at 6.4 m/s, this explains why Nusselt number for V1 is 
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larger than those of V2. In addition, based on the expression of turbulence intensity in the 
literature [22], the turbulence intensity was correlated with the Reynolds number. Thus, the strong 
turbulence intensity of V1 renders its Nusselt number higher than that of V2. 

 

 
Fig. 6. Nusselt number versus thermocouple position at different velocities 
(V1=12.6 m/s, V2=6.4 m/s) 

 
4. Conclusions 
 

Present research experimentally evaluated the effects of the height-to-diameter ratio (H/D) and 
the velocity of the air on the jet impingement cooling system of the pressure side model. The 
maximum number of Nusselt indicates the most effective cooling system for jet impingement. The 
findings of this study can be summarised in the following points 

i. The Nusselt number at the stagnation point is greater than the other point on the pressure 
side of the model surface. 

ii. No direct relationship between the Nusselt number and the height-to-diameter ratio (H/D) 
and the optimum H/D at varying air velocity. The optimal H/D for high air velocity (12.6 m/s) 
is found to be at H/D=5, whereas at low air velocity (6.4 m/s) it is found to be at H/D=15. 

iii. The Nusselt number rises as the air velocity increases. 
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