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Introduction

Model organisms such as rodents are instrumental in uncovering the molecular mechanisms of 
aging. In recent studies [1,2] we have analyzed the muscle gene expression of aging humans, mice 
and rats to identify conserved pathways and underlying transcriptional regulators. Two important 
conclusions of our studies were that there are substantial differences in muscle functionality among 
individuals of similar chronological age and that the variation in functional and gene expression 
parameters can be interpreted in terms of a relatively small number of transcriptional regulators. Here 
we asked whether these can form the basis of a transcriptional clock.

Materials & Methods

RNA-Seq data set

We used 181 RNA-Seq samples obtained from human gastrocnemius muscles in the GTEx project 
(dbGaP accession number phs000424.v8.p2) [3]. Samples from male individuals aged between 22 
and 70 years were selected to be: (i) ‘Eligible For Study’; (ii) only from postmortem donors; (iii) only 
from individuals with the death classification ‘1’ and ‘2’ on the Hardy scale.

RNA-Seq data processing

Cutadapt v1.9.1 [4] was used to trim the 3’ adapter and poly(A)/poly(T) from the RNA-Seq 
reads. As the reference transcriptome, we considered protein-coding transcripts with support level 
1-3 based on GRCh38 (release 96) and the Ensembl annotation [5]. The assignment of reads to 
the transcriptome was done with the kallisto software v0.43.1 [6]. All steps were performed with a 
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Snakemake framework [7].

The gene expression level was calculated as the sum of normalized 
expression levels of transcripts associated with the gene. A gene was 
considered as expressed if its expression level was at least 1 transcript 
per million in at least 5 samples. Only expressed genes (~17’500) 
were considered for the analysis.

Estimating transcription factor activities

We used the ISMARA tool [8] to estimate the activity of 
transcription factors (TFs) and miRNAs (~600 motifs) as a function 
of age in the skeletal muscle. In the analysis we focused on TFs.

Predicting chronological age from muscle gene expression

We applied the package ‘pls’ in R [9] to construct a linear model 
based on partial least squares regression [10] taking either gene 
expression or motif activities in human muscle samples as input to 
predict chronological age. To rank predictors, ‘variable importance 

in the projection’ (VIP) scores were calculated [11].

Results

Predicting age based on gene expression

To set a baseline for the prediction power of gene expression-
based models, we used partial least squares regression (PLSR) to 
construct a linear model taking the muscle gene expression as input 
to predict chronological age [10]. To train the model, we used the 
nine principal components (PCs) that together explained more than 
50% of the variance in gene expression levels across all samples. The 
resulting model predicted the age of individuals with a mean error 
of 1.55 years and Pearson correlation coefficient r=0.98 between the 
actual and predicted ages (Figure 1A). Cross-validation by randomly 
splitting samples 80%-20% for model training and testing 100 times 
gave a mean absolute prediction error of 1.47 years for the training 
data sets, and 6.95 years for the 4-fold smaller validation data sets 
(Figure S1A). 

Figure 1: Predicting the age of individuals from muscle gene expression. A) Scatter plot depicting the actual vs. predicted age, each dot 
corresponding to one sample. Red - the reference line with slope 1 and intercept 0. ‘r’ - Pearson correlation coefficient. B) Top 100 predictor genes 
visualized in STRINGdb [18]. Only nodes already known to be involved in protein-protein interactions are shown. Nodes that significantly enriched 
(FDR<0.05) specific biological processes are marked in red - ‘muscle system process’, blue - ‘response to stress’, and green - ‘cellular response to 
cytokine stimulus’. C) Heatmap depicting z-scores of the expression level of top predictor genes (from panel B) in samples from individual age groups. 
The mean value within age groups was used.
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For each cross-validation run we also collected top 100 predictor 
genes based on the ‘variable importance in the projection’ (VIP) 
scores calculated during model training [11], and then computed the 
mean VIP score for each gene that appeared at least once among top 
predictors. Submitting the 100 genes with the highest mean score to 
STRINGdb [12] for functional analysis we found that the encoded 
proteins form two major hubs (Figure 1B), one corresponding to the 
Gene Ontology annotation ‘muscle system process’ (red), and the 
other to ‘response to stress’ (blue) and ‘cellular response to cytokine 
stimulus’ (green). Their mRNA levels either increased or decreased 
abruptly at advanced age (Figure 1C). Thus, gene expression levels in 
the muscle are highly indicative of the individual’s age.

Predicting individual age based on motif activities

The functional relationships between age-predicting genes 
indicate the action of transcription factors (TFs) that coordinate 
specific biological processes during aging. We thus asked whether 
TF activity may also serve as a reliable predictor of age.

To infer the activity of motifs corresponding to TFs during 
muscle aging, we applied the ISMARA tool [8] to the RNA-Seq data 
set. Interestingly, the principal component analysis of motif activities 
reveals the same progressive transition from adult to sarcopenic 
phases (Fig. 2A here vs. Fig. 2C in [2]).  

Further, we followed the steps described in the previous section 
to model the age based on motif activities. To set up the model, 
we used eight PCs that together explained more than 50% of the 
variance in motif activities in all samples. Although the number of 
features was significantly smaller than when using gene expression 
(~600 motifs vs. ~17’500 genes), the model predicted the age of 
individuals quite well, with the mean error 3.12 years and Pearson’s 

correlation coefficient r=0.92 (Figure 2B). As before, we estimated 
the performance of the model by cross-validation. Prediction errors 
for training and testing data sets as well as top 10 predictors defined 
by their VIP scores were collected for each validation round. The 
mean absolute prediction error was 2.67 years in the training data 
sets, and 8 years for the 4-fold smaller validation data sets (Figure 
S1B). The union of top predictors from the cross-validation 
procedure are shown in Figure 2C. These motifs represent potential 
muscle biomarkers of human aging, some of them having already 
been associated with muscle functionality.

Identified in all cross-validation rounds were the TATA-box 
binding protein (TBP), the myocyte-specific enhancer factors 
MEF2D/MEF2A and MEF2C and the interferon regulatory factors 
IRF2/STAT2/IRF8/IRF1. While TBP is necessary for muscle 
differentiation [13], it also regulates numerous inflammation-
related targets (Figure S2A). Increased activity of TBP and IRF2/
STAT2/IRF8/IRF1, factors that mediate immune and inflammatory 
responses in literally all mammalian tissues [14], likely reflects the 
aging-related inflammatory syndrome (Figure S2B). In contrast, 
the activity of MEF factors, which regulate expression of structural 
constituents of the muscle tissue such as sarcomere units Z-discs and 
M-bands (Fig. S2C, D), decreases in aging. 

The analysis also uncovered that the activity of motifs associated 
with C/EBP family TFs CEPBE, CEBPD and CEBPA increases 
during muscle aging (Figure 2C). TFs of this family are known 
to interact with the activating transcription factor 4 (ATF4) and 
regulate skeletal muscle atrophy [15].

Taken together, muscle motif activities serve as reliable predictors 
of age in humans and provide insights into the molecular pathways 
that are involved in aging processes.

Figure 2: Predicting individual age from TF motif activities. A) Principal component analysis of motif activities. Each dot corresponds to one 
sample, colors indicate the age of individuals from which the samples were obtained. The numbers associated with the PCs indicate the fraction of 
the variance in motif activities across samples that is captured by the corresponding PC. B) Scatter plot depicting the actual age of individuals vs. 
the age predicted by the model based on motif activities in the muscle, each dot corresponding to one sample. Red - the reference line with slope 
1 and intercept 0. ‘r’ - Pearson correlation coefficient. C) Heatmap depicting z-scores of top predictor motif activities. The mean motif activity within 
age groups was used.
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Discussion 

Regression models and deep-learning approaches have been 
previously applied to identify predictors of muscle age from gene 
expression [16]. Here we applied PLSR to predict muscle age from 
either gene expression or the activity of transcription regulatory 
motifs in the gastrocnemius muscle. We selected PLSR, because 
it has been designed for situations when there are many, possibly 
correlated, predictor variables and relatively few samples [10], as is 
the case here, with ~17’500 genes and ~180 samples. The resulting 
model accurately predicted the age of muscle samples with the mean 
error of 1.55 years and Pearson correlation coefficient r=0.98 between 
the actual and predicted ages (Figure 1A). The majority of top 
predictors are known to be involved in protein-protein interacting 
with each other and in processes regulating muscle homeostasis and 
inflammation (Figures 1B and 1C). Since these processes belong 
to the main pathophysiological pathways contributing to physical 
frailty and sarcopenia [17], genes that enriched these processes may 
be of interest for future studies as biomarkers of muscle aging. 

Our previous studies [1,2] indicated that muscle aging may not 
involve precisely the same genes in all muscles, but rather similar 
pathways. Thus, to identify upstream regulators of these pathways, 
we inferred the activity of transcription factor (TF) motifs in muscle 
samples using ISMARA [8]. Modeling individual’s age from motif 
activities also yielded high-accuracy predictors with mean error of 
3.15 years and Pearson correlation coefficient r=0.92 between the 
actual and predicted ages (Figure 2B). The difference in accuracy 
between the two models may be due to target predictions being 
available only for a subset of TFs, whereas the gene expression was 
estimated based on the entire transcriptome.

The predictors of both models can be directly related, as top 
predictive motif activities correspond to known regulators of muscle 
homeostasis (e.g. MEF2D/MEF2A and MEF2C) and inflammation 
(e.g. IRF2/STAT2/IRF8/IRF1). The role of predictive TFs whose 
activity decreases during muscle aging not only in humans, but also 
mice and rats, namely ESRRB/ESRRG, YY1/YY2 and NR5A2 was 
discussed before [2]. 

Conclusion

Taken together, our results demonstrate that aging affects 
conserved pathways, rather than effector genes. Motif activities can 
be used to model the age of muscle tissue and top predictors can be 
further studied as potential targets to improve muscle health during 
aging.
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