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Multicellular eukaryotes possess up to trillions of cells, all deriving through cell di-
visions from one fertilised egg. As the DNA polymerase only introduces about one
mutation in hundred thousand nucleotides, and the proofreading and DNA repair mech-
anisms further correct 99% of the replication errors, the mutation rate during cell division
is brought down to 10710 to 10~8 [Pray, 2008]. The genome size ranging from 107 to
10'° [Maloy and Hughes, 2013], it follows that the number of mutations occurring per
genome per division is between 1073 and 102, (0.3 for humans and 20 for mice). These
numbers highlight that all cells of a multicellular organism have essentially identical
genetic information, the same DNA. Strikingly however, this information is translated
into an astonishing variety of cells, which in humans is thought to amount to hundreds
of different cell types. These differ from one another by the level of expression of dif-
ferent genomic regions. This is accomplished by regulatory mechanisms that control
the usage of DNA information, and act at different steps of gene expression, from chro-
matin remodelling, to transcription, RNA splicing and processing, export to cytoplasm,
translation into proteins and ultimately degradation [Orphanides and Reinberg, 2002].

1.1 Regulation of transcription

DNA is tightly packed around nucleosomes (composed of histone proteins) and folded
in a complex 3-dimensional structure, known as chromatin. This packing makes a large
fraction of the genome relatively inaccessible to transcription by the RNA polymerase,
thus offering opportunity for regulation [Clapier and Cairns, 2009]. Remodelling fac-
tors are recruited to reposition and eject nucleosomes, as well as unwrap the DNA,
making it accessible for transcription in a condition-dependent manner. Four major,
highly conserved families of remodelers contribute to the sliding, ejecting and spacing of
nucleosomes, to promote or repress gene expression. Remodelers target individual his-
tones by recognising enzymatically-generated chemical modifications (methylation, phos-
phorylation, acetylation, ubiquitylation, citrullination, sumoylation) of specific amino
acids [Clapier and Cairns, 2009, Phillips, 2008]. The methylation of the DNA itself can
also influence directly its accessibility to trans-acting factors [Clapier and Cairns, 2009].
DNA and histone modifications critically impact the accessibility of cis-elements that are
located in promoter regions, near transcription start sites. These elements bind tran-
scription factors (TFs), some of which act as "master” regulators of gene expression [Lee
and Young, 2013]. TFs are DNA-binding proteins that activate gene expression by re-
cruiting the RNA polymerase or repress gene expression by occluding the transcription
start site. With likely more than 1600 TFs and more than 20000 genes in the human
genome [Lambert et al., 2018], each gene can be regulated in a unique manner, through
a unique combination of TF binding sites. Work in the past decade has also uncovered
a large number of another type of cis-regulatory element, enhancers [Schoenfelder and
Fraser, 2019]. Enhancers are in many ways similar to promoters, containing TF binding
sites and supporting regulatory interactions between specific TFs and gene regulatory
elements [Pennacchio et al., 2013]. However, enhancers differ from promoters in their
location, being located more distally from the regulated gene, up to 1Mbp upstream and
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downstream [Pennacchio et al., 2013], compared to promoters, which are thought to re-
side within a kilobase of the transcription start site [Bussemaker et al., 2001, Thompson,
2003, Bajic et al., 2004, Carninci et al., 2006]. It has long been presumed that enhancers
and promoters interact [Kulaeva et al., 2012], though the mechanism behind this interac-
tion was unknown. Breakthrough research in the past few years has led to the view that
complexes of cohesin proteins create loops around the DNA, bringing regions that are
far apart in the linear sequence in close proximity, supporting their interaction with the
same regulatory proteins [Shlyueva et al., 2014, Schoenfelder and Fraser, 2019, Davidson
et al., 2019].

1.2 Post-transcriptional regulation

According to the gene and transcript annotation available in the Ensembl genome database
(www.ensembl.org), the average number of transcripts for a protein-coding gene varies
from 1 in yeast and up to more than 7 in human, with an average around 2 transcripts
per gene for most species among the 212 that are annotated (shows Fig. 1.1a). In each
distinct species, the number of transcripts per protein coding gene follows an exponential
distribution, most genes having a small number of transcripts and some genes having a
very large number of transcripts (Fig. 1.1b).

a b
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40 Drosophila melanogaster
Caenorhabditis elegans
_3 8 Danio rerio
] 30 S Gallus gallus
& o === Ornithorhynchus anatinus
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Average transcipts per gene Transcripts per gene

Figure 1.1: Statistics of number of transcripts per gene. (a) Histogram of the
average number of transcripts per protein coding gene computed across the genome
annotation of 212 species. b Distribution of transcripts per protein coding gene across
8 different species, as indicated on the legend.

The production of distinct isoforms is regulated through the use of alternative pro-
moters [Landry et al., 2003], alternative splicing and alternative termination sites [Smith
and Valcdrcel, 2000, Lee and Rio, 2015]. It has been estimated that 52% of human genes
are regulated by alternative promoter usage [Kimura et al., 2006], and 28% of mouse
genes [Tsuritani et al., 2007]. While alternative promoter usage does not necessarily
imply changes in the open reading frame [Zavolan et al., 2002, Landry et al., 2003], the



CHAPTER 1. INTRODUCTION 4

promoter structure can affect the interaction between transcription and splicing factors
splicing [Kornblihtt, 2005], thereby influencing downstream splicing. The exonic com-
position of the mature mRNA is determined by the splicing of the pre-mRNA by the
spliceosome, a large complex of proteins and small nuclear RNAs that forms stepwise on
the pre-mRNAs guided by signals known as splice site. The relative ’strength’ of splice
sites as well as additional cis-acting regulatory elements that function as binding sites for
trans-acting factors lead to enhanced or reduced splicing at specific exons, and thereby
production of alternative splicing isoforms [Wahl et al., 2009]. The secondary structure of
the mRNA and indirect effects of the chromatin state also affect alternative splicing [Lee
and Rio, 2015]. The 3’ end of most mammalian transcripts are determined by the pro-
cess of 3’ end cleavage and polyadenylation (reviewed in [Gruber and Zavolan, 2019]).
The process is again guided by short sequence elements that are recognised by specific
factors that cleave the pre-mRNA at specific sites and add a poly(A) tail, a sequence
composed almost exclusively of adenosines reaching up to 250 nucleotides [Gruber and
Zavolan, 2019]. In protein-coding transcripts, the coding region only covers a fraction of
the transcript, being flanked by 5’ and 3’ untranslated regions (UTRs). 5" UTRs have
typical role in controlling translation, while the composition of 3’-UTRs influences the
stability, localisation and translation rate of mRNAs; in mammalian genes, 3’ UTRs are
comparable in length to the coding region and have a large impact on the processing
and function of the mRNA [Gruber and Zavolan, 2019]. Cleavage and polyadenylation
of the 3’ ends is undertaken by large complex of factors binding specific sequence motifs
of the pre-mRNA [Mandel et al., 2008], and alternative choice of the poly(A) site us-
age, a specific AAUAAA motif, depends on the expression of regulatory RNA-binding
proteins [Gruber and Zavolan, 2019]. The transport of the mature mRNA from the
nucleus to the cytoplasm is supported by RNA-binding proteins such as splicing factors
and poly(A)-binding proteins that act as adaptors and allow the nuclear export receptor
heterodimer to transport mature mRNAs through the nuclear envelope, which isolates
the nucleus from the cytoplasm [Katahira et al., 2015].

In the cytoplasm, the stability and translation of mRNAs are regulated by micro
RNAs (miRNAs), small RNA molecules that function as guides for another protein
complex containing Argonaute family proteins [Meister, 2013, Swarts et al., 2014]. Small
interfering RNAs (siRNAs) are exogenous molecules that are exploited in molecular
biology for rapid reduction of gene expression, due to their ability to integrate into
Argonatute proteins and RNA-induced silencing complexes (RISC), which leads to the
specific downregulation of complementary mRNAs [Valencia-Sanchez et al., 2006]. Bind-
ing of RISC to mRNAs leads to increased degradation of the mRNA, either by direct
cleavage, which requires full sequence complementary and a specific Argonaute pro-
tein [Gruber and Zavolan, 2013], or by recruiting deadenylase and decapping complexes
that respectively shorten the poly(A) tail and remove the 5 cap of the mRNA, conse-
quently decreasing the mRNA stability [Braun et al., 2012, Gruber and Zavolan, 2013].
RISC complexes loaded with siRNA/miRNA can also silence the translation by pre-
venting the ribosome to assemble on a mRNA [Valencia-Sanchez et al., 2006] but this
function has been less well established than the function in mRNA degradation [Gruber
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and Zavolan, 2013]. Both siRNA and miRNA are about 21 nucleotides long, but the
siRNA are fully complementary to their target whereas miRNAs are more versatile in
their binding, with typically only a sequence of 6 to 8 nucleotide, called the ’seed’ of
the miRNA, being necessary for target recognition. As a result, miRNA can target hun-
dreds of mRNA and most mRNAs can by targeted by miRNAs [Gruber and Zavolan,
2013, Valencia-Sanchez et al., 2006].

Finally, translation is carried out by the ribosome, a large ribonucleoprotein complex
composed of two subunits, which bind and assemble the full complex on mRNAs [Ra-
makrishnan, 2002]. The ribosome carries out mRNA translation, catalysing the forma-
tion of the peptide bond between the amino acid carried by an incoming tRNA and the
nascent peptide. Translation proceeds one codon at the time via the translocation of
the ribosome on the mRNA [Ramakrishnan, 2002]. While the translation machinery has
largely been viewed as indiscriminate with regard to the mRNAs, any mRNA having
an equal chance of starting translation, this view is currently being challenged [Mauro
and Edelman, 2002]. Methods such as ribosome footprinting [REF Ingolia, Weissmann,
2009] revealed that the rate of translation initiation varies widely among mRNAs [Riba
et al., 2019]. The rate of translation elongation varies as well, being indirectly affected
by the concentrations of tRNAs as well as by the specific codon and amino acid usage
of mRNAs [Bulmer, 1991, Vogel et al., 2010, Guimaraes et al., 2014].

1.3 Gene regulatory networks

As the regulators of gene expression (e.g. transcription factors) are themselves the
products of gene expression, the relationships between protein-coding gene expression
are sometimes summarised as an interaction graph or gene regulatory network (GRN).
One of the fundamental questions of molecular biology and of development is how the
variety of cell types that define an organism is generated on the basis of the same ge-
netic blueprint. Decades before the constellation of regulators and their mechanisms has
been unveiled, the concepts of genetic and epigenetic regulation have been proposed to
describe changes in cells that are due to factors encoded in the genome or to factors
that do not alter the information contained in the DNA [Waddington, 1942, Tronick and
Hunter, 2016]. Conrad Hal Waddington proposed two conceptual analogies to express
his understanding of the mechanisms driving cellular differentiation. In his first analogy,
epigenetic interactions would create developmental paths similar to a tree structure of
railways; cells would evolve on this landscape as a tram moves on a railway network,
where switches are analogous to decision points in development, multiplying the number
of accessible final stable states [Waddington, 1936]. Later on, the author introduced
the idea of an epigenetic landscape [Waddington, 1940], where epigenetic interactions
engender an energy-like surface and developmental processes correspond to paths that
minimise the energy along their entire course, connecting a naive pluripotent cell to a
fully differentiated cell. Again, the developmental process was viewed as similar to mar-
bles rolling down a mountain under the action of gravity towards valleys [Waddington,
1957]. If these 2 analogies have obvious similarities, a major contrast is the deterministic
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character of the railways analogy against the relative stochasticity of a marble rolling
down valleys. This aspect has broadened the popularity of the later analogy with time
and discoveries.

The current view on gene expression is that it occurs in bursts that differ in rate,
intensity and length [Yu et al., 2006] among genes and conditions, modulated by specific
constellations of TF binding events [Paulsson, 2005]. Combined with the discrete na-
ture of mRNA copy numbers, as well as with the overall low abundance of most mRNA
species, the intrinsic noise attributable solely to the stochastic nature of biochemical
processes is in the same range as the extrinsic fluctuations caused by regulatory inter-
actions [Elowitz et al., 2002]. TFs are subjected to the same kind of noise in their
expression, noise which propagates to the transcriptional targets of these TFs. This
leads to heterogeneous responses across a population of cells that are essentially in a
similar state [Mcadams and Arkin, 1997], providing a mechanism for generating pheno-
typic heterogeneity in an isogenic cell population [Elowitz et al., 2002]. Conversely, the
remarkable reproducibility of phenotypes emerging from such highly noisy components
suggests very strong regulation [Mcadams and Arkin, 1997, Raj and van Oudenaarden,
2008]. This seemingly paradoxical emergence of deterministic macroscopic variables from
highly unpredictable microscopic states has been deeply studied in the field of statistical
mechanics [Paulsson, 2005]. In fact, the mathematical principles underlying Wadding-
ton’s epigenetic landscape description of cellular dynamics in development is closely
related to the atomic description of statistical mechanics, specifically as it hypothesises
the existence of a probability distribution over gene expression states, which underlies
differentiation processes as well as the stability of the final differentiated state of cells.
Differentiation paths are encoded in the epigenetic landscape as continuous regions of
high probability density in the gene expression space. The end point of each such path
defines a cell type as a local, stable minimum, where regulatory interactions defined in
the neighbourhood of the minima act as stabilisers of the gene expression state against
small fluctuations. In light of Waddington’s model of an epigenetic landscape, GRNs are
powerful objects to explain the mechanisms of cell differentiation, and the astonishing
variety of cells in multicellular organisms. Starting from the pluripotent stem cell, in-
ternal fluctuations or external inputs affecting the expression of a few specific regulators
can influence the expression of other regulators which are themselves influencing down-
stream regulators. Thus, a cascade of events moves the cell through the gene expression
space until the GRN reaches a stable state and a differentiated state is reached.

The concept that noisy gene regulatory interactions generate a macroscopic proba-
bility density of accessible regions of gene expression states, borrowed from statistical
mechanics, has been further highlighted by published observations that overexpression of
a few specific regulators is sufficient to modify the type of a fully differentiated cell [Davis
et al., 1987, Kulessa et al., 1995, Xie et al., 2004, Takahashi, 2012], and even to bring it
back to a naive, pluripotent stem cell state [Takahashi and Yamanaka, 2006]. These
processes, which were called transdifferentiation and reprogramming, respectively, cor-
respond in the Waddington’s landscape analogy to the transport of cells above an energy
barrier (similar to an activation energy in chemical and nuclear reactions) to a region
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of the gene expression space where the landscape will then bring the cell to a stable
state, different from the initial state. The mechanisms underlying transdifferentiation
and reprogramming are still only partially understood [Takahashi and Yamanaka, 2016].
However, these findings demonstrated that cellular states are plastic. Most importantly,
they imply that the information necessary for the differentiation and stabilisation of any
cell type is not lost during the process, but is carried in all cells of an isogenic population,
at all times, independently of their state. This information presumably resides in the
genetically-encoded regulatory networks.

Another aspect of Waddington’s rich paradigm of epigenetic regulation is the concept
of adaptability, the ability of an organism to change its state to match changes in its
environment [Waddington, 1957]. One of the first known and most studied examples of
adaptability encoded in a GRN is the lac operon in Escherichia coli [Jacob and Monod,
1961]. The Escherichia coli bacterium needs a specific enzyme for metabolising lactose
as a carbon source. The expression of this enzyme is repressed by another protein,
which is inactive in the presence of lactose. This simple mechanism allows the bacteria
to express the enzyme only when the corresponding metabolite is present. GRNs abound
in such feed-forward and feed-backward loops and in more complex sub-network that
implement specific dynamic behaviours and provide the modularity necessary for the
evolvability of GRNs [Verd et al., 2019]. Indeed, recurrent sub-network designs are used
across species, functions and environments [Davidson and Levin, 2005] making possible
the development of adaptability in an evolutionary context.

1.4 Experimental quantification of gene expression

Precise knowledge of GRN structure is therefore necessary for understanding the de-
velopment and functioning of living organisms and it starts with the quantification of
gene expression. Different methods have been developed over the years to tackle the
challenging task of reliably measuring gene expression.

In the 70’s, various methods were developed to monitor the concentration of spe-
cific DNA, RNA and proteins products, separating molecular species by size with gel
electrophoresis, labelling and visualising the molecules of interest through radioactive
or fluorescent markers, or with the help of immunofluorescent antibodies. In Southern
blotting, after fragmenting and denaturing DNA and removing the RNA, specific DNA
sequences are imaged with a complementary probe that carries a radioactive or fluo-
rescent marker [Southern, 1975]. Conversely, northern blotting visualizes RNAs with
similarly labelled complementary probes [Alwine et al., 1977]. Methods to identify spe-
cific proteins have also been designed, for example the enzyme-linked immunosorbent
assay (ELISA) [Engvall and Perlmann, 1972] and western blotting [Gershoni and Palade,
1983]. Althought these techniques have evolved and been improved over time [Lequin,
2005, Kurien and Scofield, 2006], they are still limited to the quantification of one tar-
get DNA, RNA or protein molecule and they are rather imprecise, hardly providing
more than a binary description of the expression. A considerable increase in accuracy
in the quantification of gene expression came with the reverse transcription polymerase
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chain reaction (RT-qPCR), a technique that uses a primer specific to a predefined RNA
molecule to amplify this molecule until it is visually detectable, the number of amplifi-
cation cycles serving as an estimate of expression [Rio, 2014]. This approach also allows
multiple genes to be quantified from the same sample, and the degree of gene coex-
pression to be inferred. Since its early developments in the late 80’s [Becker-André and
Hahlbrock, 1989], the popularity of RT-qPCR has grown substantially [Freeman et al.,
1999]. Nevertheless, the technique still has the drawback that only a relatively small
subset of predefined genes can be observed simultaneously, considerably fewer than the
thousands of genes expressed in a cell at a given time.

An important breakthrough in the quantification of gene expression came with the
development of Complementary DNA Microarray technology, which extended the the
number of genes whose expression patterns could be measured to virtually genome-
wide scale. The approach involved the monitoring of fluorescently labeled cDNA probe
hybridisation to cDNAs generated from samples of interest, with gene-specific probes
being placed in individual wells [Schena et al., 1995]. As whole genome sequencing
enabled the design of probes covering the entire set of genes of a given organism, au-
tomatisation of this process eventually allowed the genome-wide quantification of gene
expression [Lashkari et al., 1997, Pollack et al., 1999]. This in turn provided valuable
insights in the patterns and regulation of gene regulation based on the mRNA level
expression [Schulze and Downward, 2001].

About a decade after the dawn of microarrays in mRNA quantification, a number
of methods, grouped under the term of next generation sequencing (NGS), have been
developed to directly 'read’ the DNA or RNA sequences represented in a sample. Due
to the substantial scale of several millions and up to billions of small reads that can be
observed in a single experiment [Metzker, 2010], as well as to the fact that these meth-
ods did not limit identification and quantification to a specific set of molecules, NGS
techniques grew rapidly in popularity. They evolved from the broadly used automated
Sanger sequencing technique [Metzker, 2010], which used DNA polymerase to elongate
a cDNA template with a tuned mixture of deoxyribonucleotide and dideoxynucleotides,
the second inhibiting elongation, resulting in synthesised fragments of uniformly dis-
tributed lengths that are sorted by size with gel electrophoresis, so that a nucleotide-
specific fluorescent dye marking the terminal base in each fragment enables the DNA
sequence to be 'read’ [Sanger and Coulson, 1975, Sanger et al., 1977, Metzker, 2005].
This method was called a posteriori 'first-generation sequencing’. It was for over 40
years and was in fact the method that made it possible to obtain the first draft of the
human genome [Collins et al., 2003]. As the human genome was being assembled, draw-
backs of this method, particularly with respect to the time and cost, spurred the parallel
development of other strategies for sequencing nucleic acids, ultimately leading to what
are now called NGS technologies [Metzker, 2005]. They differ in many aspects, includ-
ing sample preparation, sequencing, imaging and data analysis [Metzker, 2010]. Sample
preparation includes fragmentation, PCR amplification and priming of the DNA or RNA
material. Sequencing follows, most commonly ’by synthesis’, where a DNA polymerase
adds fluorescent nucleotide complementary to the template, one by one, allowing their
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imaging and identification using lasers [Metzker, 2010]. RNA sequencing (RNA-seq)
technologies rapidly took over the field of gene expression estimation, as they clearly
improved the sensitivity and the detection of rare transcripts, enabled the distinction
between isoforms, increased the dynamic range of detection and the overall scale of the
resulting data [Wang et al., 2009, Metzker, 2010].

1.5 Experimental prediction of chromatin state and regu-
latory elements

Using the methods for gene expression quantification described above, the most com-
mon type of analysis is the so-called ’differential gene expression’, which aims to identify
genes that are expressed at different levels in different samples, as a result of regulatory
interactions. Whereas much computational work has been dedicated to the continuous
improvement of methods for this analysis [Costa-Silva et al., 2017], differential expression
alone does not reveal direct and indirect regulatory interactions. Alternatively, measur-
ing gene expression in time series and calculating covariances provides clues about gene
coexpression but such symmetric information alone does not distinguish the regulator
from the regulated gene. For a more mechanistic understanding of regulatory interac-
tions that give rise to gene expression patterns, a model-driven approach, that includes
other known information connecting genes in a network, is desirable. One such type of
information consists of the binding of regulators to the promoters of gene genome-wide,
which in turns modulates the rate of transcription.

The genome-wide chromatin opening state can be determined by DNase I hyper-
sensitive site sequencing [Crawford et al., 2006, Boyle et al., 2008] or similarly, by
formaldehyde-assisted isolation of regulatory elements followed by deep sequencing (FAIRE—seq)
[Giresi et al., 2007]. Both techniques take advantage of the fact that only regions of the
chromatin that are accessible to regulator binding are also accessible to and cleaved by
DNase I [Elgin, 1988]. Micrococcal nuclease sequencing (MNase-seq), reports the nucle-
osome location additionally to the open regions using the fact that the regions of the
DNA that are covered by nucleosomes are resistant to microccocal nuclease [Cui and
Zhao, 2012, Mieczkowski et al., 2016]. The currently most accurate, efficient and popu-
lar method for determining chromatin accessibility is the assay for transposase-accessible
chromatin using sequencing (ATAC-seq). This technique assesses the positioning of nu-
cleosomes, accessibility of chromatin and TF binding simultaneously [Buenrostro et al.,
2013].

To uncover direct interactions between TF and DNA, chromatin immunoprecipita-
tion followed by deep sequencing (ChIP-seq) has been used extensively for more than a
decade [Johnson et al., 2007]. In this technique, an antibody specific to a DNA-binding
protein is used to extracted genomic regions that are bound by this protein by immuno-
precipitation. The bound DNA fragments are then purified and sequenced [Johnson
et al., 2007]. Analogous method have been developed to identify binding sites of RNA
binding proteins (RBPs) [Wheeler et al., 2018]. Different variants are known such as
HITS-CLIP (high-throughput sequencing of RNA isolated by crosslinking immunopre-
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cipitation) [Jensen and Darnell, 2008, Darnell, 2010] and PAR-CLIP (photoactivatable
ribonucleoside-enhanced crosslinking and immunoprecipitation) [Hafner et al., 2010].
They use ultraviolet light to crosslink an RBP to RNAs and immunoprecipitation to
isolate and purify the RNA sequences to which the RBP is bound. Assayed together
with gene expression by RNA-seq, the approaches described here allow to infer regula-
tory interactions at different levels of regulation (chromatin accessibility, activating or
repressing effect of TFs on gene expression, stabilizing or destabilizing effect of RBPs
on mRNAs). The complexity and high dimensionality of the system combined with the
general noisy and uncertain nature of the experimental data makes an extensive and
global inference of GRNs extremely challenging. On the other hand, these experiments
do inform about sub-networks of interactions that are active in the studied system.

Several computational approaches have been developed to infer GRNs. They gener-
ally use measurements of gene expression to infer regulatory interactions between genes
in a reverse engineering approach maximising the patterns and variations explained in
the data using different classes of network models. These differ in their deterministic or
stochastic nature, in the discrete or continuous nature of assumed regulatory states, in
their dynamic or static design [Yaghoobi et al., 2012], [Goutsias and Lee, 2007, Yaghoobi
et al., 2012,Chai et al., 2014, Huynh-Thu and Sanguinetti, 2019]. Overall, computational
approaches to the analysis of large scale data have provided valuable insights into gene
regulatory interactions [Marbach et al., 2012].

The ability of specific proteins to bind DNA and RNA and to regulate the expression
of specific genes depends on the strength of physical binding between the protein and the
sequence motifs present in the DNA and RNA. This in turn is typically species-, tissue-,
and condition-specific, making the complete reliance on experimental measurement (e.g.
by ChIP-seq and CLIP) impractical [Kundaje et al., 2016, Pan et al., 2019]. Conse-
quently, a large number of methods have been developed to predict transcription factor
binding sites (TFBS), generally based on experimentally-determined positional weight
matrices representing the binding specificity of nucleic acid-interacting proteins [Matys,
2006, Portales-Casamar et al., 2009, Mathelier et al., 2014, Heinz et al., 2010, Kulakovskiy
et al., 2013, Weirauch et al., 2014], the sequence context of potential TFBS, the evolution-
ary conservation of putative binding sites across species, the colocalisation of multiple
TFBS or the competition between multiple sites [Bulyk, 2004, Hannenhalli, 2008, Arnold
et al., 2012, Jayaram et al., 2016]. Prediction methods are now increasingly benchmarked
systematically in projects like the ENCODE-DREAM challenge [Kundaje et al., 2016].
Analogously, computational predictions of functional RBP-binding sites use experimen-
tally validated binding sites to train computational approaches generalising such primary
information based on amino acids sequence similarity between proteins, their conserva-
tion, their chemical and physical properties, and the protein 3-dimensional secondary
structure [Si et al., 2015, Pan et al., 2019]. These methods provide information of var-
ious granularity, from simple binary information about the RNA binding property of
proteins, to the protein domain involved in the binding, to the 3-dimensional structure
of protein-RNA complex and the predicted RNA binding sequence [Zhao et al., 2013].

In contrast to transcription factors or RNA-binding proteins, post-transcriptional
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control of gene expression also relies on RNA regulators known as miRNAs [Gruber
and Zavolan, 2013, Hausser and Zavolan, 2014]. The rules that govern miRNA-target
interactions are distinct from those that govern the interactions of RBPs with RNAs.
Consequently, miRNA target prediction uses these principles, relying, among others, on
the complementarity of the miRNA ’seed’ sequence (nucleotides 2-7 of the miRNA). The
conservation of the putative site across species, the binding free energy of the miRNA-
mRNA hybridisation computed from the complex structure [Hofacker et al., 1994], and
the binding site accessibility defined as the free energy needed to open the structure
of the target RNA [Yue et al., 2009, Peterson et al., 2014] are also informative. Differ-
ent machine learning approaches have been designed to infer miRNA-mRNA interaction
rules that are generalisable transcriptome-wide based on experimentally determined tar-
gets, which can be determined from gene expression changes that are observed upon
transfection of cells with a miRNA [Li and Zhang, 2015, Bradley and Moxon, 2017].

1.6 The single cell resolution in gene expression measure-
ments

The experimental methods described above have all been developed initially to measure
gene expression in populations of cells, and to make typical comparisons of populations
of cells that differ by the time of their sampling, by the type of tissue being sampled or
by some internal (e.g. knock-out of a gene) or external (e.g. change in the environment)
perturbation. The differential analysis across time provides insights about the regulators
involved in the developmental processes of cell population, global differences across tissue
are informative about the tissue specificities, while the changes resulting from a gene
knock-out reveal direct and indirect regulatory interaction downstream of the gene of
interest.

However, these population-level measurements provide ’average’ expression patterns
across cells in a population, which may not be representative of any given cell type in the
population [Altschuler and Wu, 2010, Wang and Bodovitz, 2010]. Thus, to rigorously
tackle the problem of inferring GRNs, measurements at finer resolution are needed.
Indeed, returning to the analogy of Waddington, if regulatory interactions are driving
the gene expression state of each cell like a landscape constrains the trajectory of a
marble, one would need to observe the positions of several individual marbles to learn the
shape of the surface. The center of mass of the marbles would not be informative for this
purpose. As a matter of fact, even if the assumption a perfectly homogeneous population
of cells would hold, the averaging over the population would erase the small fluctuations
of cell state around the assumed common stable state that follow from the stochastic
nature of gene expression, fluctuation that can reveal regulatory interactions by a simple
covariance analysis. Those reasons motivated the development of experimental methods
for measuring gene expression in single cells [Eberwine et al., 1992]. Since the first
published experiment of RNA sequencing from a single cell a decade ago [Tang et al.,
2009], both the number of protocols for RNA-seq at the single-cell resolution (scRNA-
seq) and the number of published studies using scRNA-seq never stopped increasing
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[Svensson et al., 2018]. The number of cells sequenced in an experiment grew at an
impressive rate of roughly one order of magnitude every 1.5 years [Svensson et al., 2018].
Tens of scRNA-seq protocols have been successively developed to allow this exponential
growth [Svensson et al., 2017, Ziegenhain et al., 2017], while in parallel, methods were
developed to bring the single-cell resolution to ChIP-seq [Gomez et al., 2013, Rotem
et al., 2015], ATAC-seq [Buenrostro et al., 2015, Cusanovich et al., 2015], and other
sequencing-based approaches to measure numerous different cell state variables [Stuart
and Satija, 2019].

Considerable enthusiasm naturally follows the perspectives brought by the wide pos-
sibilities of measuring so many aspects of cell state at the single-cell resolution. However,
new technologies come with new technical challenges [Stegle et al., 2015]. Whereas a bulk
sequencing experiment involves thousands of cell and reports an average state, thereby
removing all cell-to-cell variability, only a fraction of this variability is, in fact, informa-
tive about the biological state of the cells, as the single-cell level measurements contain
substantial technical noise, due to the relatively small quantity of material that can be
extracted from a cell [Brennecke et al., 2013]. Sequencing methods rely on the poly-
merase chain reaction (PCR) [Mullis et al., 1986, Bartlett and Stirling, 2003] to amplify
the DNA/RNA signal, which contributes the major part of technical noise [Stegle et al.,
2015, Yuan et al., 2017]. In fact, as in a single cell the number of mRNA copies is low
for most genes, the PCR, predominantly amplifies the sampling noise. This type of noise
is much smaller in bulk sequencing, as the material comes from thousands to millions of
cells. This complication has been judiciously taken care of by the use of small barcodes,
known as unique molecule identifiers (UMI), that are attached to each mRNA molecule
before the PCR amplification [Islam et al., 2014], so that the amplified reads coming
from the same mRNA molecule can be identified and demultiplexed to obtain the exact
number of mRNA molecules that were captured in the each cell. UMIs are nowadays
included in the many scRNA-seq protocols for its substantial noise reduction. Never-
theless, the integral number of mRNA molecules thus obtained still carries undesirable
bias. First, due to differences in size, themselves coming from both technical (different
capture efficiencies in different droplets) as well as biological (differences in the cell cycle
stage) factors, the number of mRNAs captured from individual cells in a genetically ho-
mogeneous population cells can be quite different [Vallejos et al., 2017]. Such biases are
handled by working not with the absolute number but rather with the fraction of each
mRNA type per cell, a step commonly called library size normalisation [Stegle et al.,
2015, Vallejos et al., 2017]. However, the issue of variability in mRNA copy numbers per
cell is still deeper. Even assuming constant and independent (across time and across
cells) transcription decay rate for a given gene, at every instant and in every cell, the
number of mRNA present in a cell is an integer that follows a Poisson distribution [Griin
et al., 2014], due to the stochastic nature of gene expression. Secondly, the fraction of
mRNA being captured typically ranges between 10% and 15% [AlJanahi et al., 2018],
and up to 30% in the most recent protocols [10X Genomics, 2018]. Hence, assuming a
uniform probability for an mRNA molecule to be captured, the capture process corre-
sponds itself to a Poisson sampling, thus adding another component of Poisson noise,
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technical in this case [Brennecke et al., 2013, Griin et al., 2014]. The Poisson noise can
be dampened by adding a pseudo-count to the normalised count, but this simple method
does not rigorously account for the specific nature of the considered noise.

Different strategies have been developed to tackle the problem by fitting a statistical
model of gene expression. As the noise on gene expression is at least Poisson, this is the
noise that would be measured on a population of cells that have the exact same mean
expression level. In a population of cells that does not have the same mean expression
level, the variation in gene expression levels beyond Poisson noise are often considered
Gamma distributed because of the bursting nature of gene expression [Friedman et al.,
2006], 77?7 1 don’t understand what this tries to say: a mean expression level that
vary across cells, and is often considered Gamma distributed because of the bursting
nature of gene expression [Friedman et al., 2006]. 77?7 however, it is argued that due
to the complexity of the reaction networks determining gene expression, not only the
noise induced by bursts, but various other sources of multiplicative noise have to be
taken into account, and this is better modelled with a log-normal distribution [Beal,
2017]. The Poisson-Gamma mixture has the advantage of being solvable analytically,
giving a negative binomial distribution. To infer Gamma-distributed gene expression
levels additional to the Poisson noise, different methods are used, like LASSO regression
with penalty on non-zero parameters to avoid overfitting [Huang et al., 2018]. It has
been argued that scRNA-seq data are zero-inflated, in the sense that more zero counts
than expected are produced, for biological reasons, as genes not being expressed in a
subpolulation of cell, or technical reasons, genes not being captured through sequencing
[Vallejos et al., 2017]. Some models take this into account by multiplying the assumed
gene expression distribution by a binary probability of a gene to be seen, and infer
the model parameters, for instance, by penalised maximum likelihood approach [Risso
et al., 2018]. However, it was recently shown that no evidence of zero-inflation is in
fact apparent in scRNA-seq data [Svensson, 2020], the high sparsity of the data being
simply due to the Poisson nature of the noise, the low expression of many genes, and the
low capture rate of the current protocols. Other methods focus primarily on retrieving
non-zero expression levels for the dropout values [Li and Li, 2018], assuming a Gamma-
normal mixture model, where a dropout event is characterise by a Gamma-distribution
whereas the other events are characterised by a normal distribution.

Another prevalent approach in analysing single cell data is to assume that these data
come from a lower dimensional space referred to as manifold [Lin et al., 2015, Moon et al.,
2018]. In fact, the existence of gene regulatory networks implies that only a subspace
of gene expression state is accessible, as the expression of every gene depends on the
state of its few regulators. Within this scheme, scRNA-seq data can be interpreted as
noisy sampling on the manifold of regulator activities, and the task of denoising the data
consists in inferring the manifold to which the data can then be projected to ’denoise’
it. A popular machine learning technique to infer such manifold is autoencoders. These
are artificial neural networks containing several layers of neurons, each layer having
a lower dimension than the previous one, down to a bottleneck layer, from which a
reverse sequence of layers symmetrically brings back the dimension of the first layer
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and the original data [Kramer, 1991]. In a machine learning approach, the weights
in the neural network are inferred so as to minimise the divergence between the first
and the last layers, and it is believed that the bottleneck layer ’captures’ the lower
dimensional manifold in the desired and predefined dimensionality, so that the final
layer brings back a transformation of the original data with reduced noise. Again, models
consider zero-inflated Poisson-Gamma mixture distribution but additionally assume that
data come from an unknown latent space. The various parameters of the model are
learned by inferring the encoder network in a variational Bayesian inference fashion
[Lopez et al., 2018], or by stochastic gradient descent using mean square error loss
function [Eraslan et al., 2019]. The general problem of dimensionality reduction is
evidently much older than scRNA-seq, and a framework tackling this problem, known
as diffusion maps [Coifman and Lafon, 2006], is recurrently used in the recent literature
to reveal the complex geometrical structure embedded in the gene expression patterns
of a large population of cells [Haghverdi et al., 2016]. In this framework, the definition
of a distance measure between pair of cells defines a Markov process of cell to cell
transition called diffusion operator. The exponentiation of the diffusion operator to the
nt" power leads to the represention of the transition probabilities between any pair of
cells in n steps, producing a multiscale geometrical description of the manifold, with the
scale depending on n [Coifman and Lafon, 2006]. The spectral analysis of the diffusion
operator provides a representation of the data in a reduced dimension as the diffusion
distance is captured by the consecutive eigenvectors, with an accuracy given by the
respective eigenvalues [Coifman and Lafon, 2006]. While diffusion maps are mainly used
as a visualisation tool and for inferring cellular developmental trajectories, methods
have been proposed where this algorithm is used to denoise the data, by projecting the
raw data on the inferred manifold [van Dijk et al., 2018]. Other dimensional reduction
techniques are used for visualisation, mainly t-SNE [Van Der Maaten and Hinton, 2008],
UMAP [McInnes et al., 2018] and PCA [Jolliffe, 2005] (see [van der Maaten et al.,
2009, Lin et al., 2015] for comparative reviews on dimensionality reduction). t-SNE
maps data points from the gene expression space to a 2 or 3 dimensional space using a
gradient descent method, while retaining the local distance structure of the data with
a cost function [Van Der Maaten and Hinton, 2008]. UMAP uses theoretical results
coming from Riemannian geometry and algebraic topology and guaranteeing that any
low dimensional manifold uniformly sampled and represented as simplicial sets can be
translated to the topological and underlying metric structure of the manifold, by choosing
a metric that approaches the uniformity assumption [Mclnnes et al., 2018]. PCA is a
linear transformation applying a rotation on the data in gene expression space such
that each axis of the new base is the linear combination of the genes that recursively
maximises the variance of the data along the axis and is orthogonal to all previous
axes [Jolliffe, 2005].
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1.7 Subjects covered in this thesis

During this PhD, I worked on three different aspects in the broad field of experimental
and theoretical analysis of gene regulation.

The first part, Quantifying the strength of miRNA-target interactions, addresses the
problem of predicting mRNA targets of miRNAs. I show that biochemical measurements
of miRNA-mRNA interactions can be used to optimise the parameter inference of a
pre-existing model of miRNA target prediction. This model named MIRZA [Khorshid
et al., 2013], predicts miRNA-mRNA binding using 25 energy parameters that describe
the miRNA-mRNA hybrid structure, with 2 base pairing parameters for the AU and
GC pairs, 3 configuration parameters for the symmetric and asymmetric loops, and 21
positional parameters for the 21 nucleotides of the miRNA sequence. MIRZA was built
to infer these parameters from Argonaute protein CLIP data, which captures potential
targets of miRNAs. Upon the publication of precise measurements of chemical kinetic
constants of miRNA-mRNA binding interactions between a mRNA target and a set of
systematically mutated miRNA sequences [Wee et al., 2012], we reasoned that such data
could be used to improve the parameters inference of the MIRZA model. After showing
that the prediction of the existing model on the set of measured miRNA-mRNA pairs
shows high correlation with the binding energy calculated from the measurements, I used
simulations as a proof of principle of the inference procedure and to design measurements
that would be needed to infer the parameters of the MIRZA model.

Staying in the field of miRNA, in Single cell mRNA profiling reveals the hierarchi-
cal response of miRNA targets to miRNA induction, 1 developed an approach to infer
miRNA targets based on scRNA-seq data from cells that express the miRNA at different
levels. A miRNA can target several hundreds of different mRNAs and is present in the
cell in limited quantities, implying that the interaction of a target mRNA with a specific
miRNA depends on its concentration and on the interactions of the miRNA with its
other targets. In other words, since miRNA binding is exclusive, mRNA targets com-
pete for the same miRNA pool. Therefore, the concentrations of the thereby coupled
mRNAs depend not only on the miRNA concentration but also on the concentration
of every competing mRNA that is targeted by the same miRNA. To study this, HEK
293 cell lines were constructed to inducibly express a miRNA (hsa-miR-199a) as well as
the mRNA encoding a green fluorescent protein. Express from the same promoter as
the miRNA, this mRNA allows the monitoring of the miRNA concentration. The study
aimed not only to determine the parameters of individual mRNA-mRNA interactions,
but also to assess the dgree to which mRNAs act in a competitive manner to influence
each other’s expression. scRNA-seq was chosen to bring the resolution needed to reach
these goals. The effect of the miRNA on a bound target is to increase its decay rate,
hence the expression levels of the targets depends on the miRNA concentration and their
binding energy. To gain insight into the target binding energy, we constructed a model
considering mRNA transcription rate, the miRNA-mRNA binding/unbinding rate, the
mRNA decay rates in the bound and unbound state, and the free/bound concentration
of miRNA. We showed that the model can be factored in terms of the miRNA concen-
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trations in individual cells and the miRNA-mRNA target interaction parameters and we
solved the model to obtain estimates of miRNA-mRNA interaction parameters, which
we showed explain the mRNA levels in cells more accurately than the sequence-based
computationally predicted interaction energies.

Finally, in Bayesian inference of gene expression levels in single cells 1 carried out
fundamental technical work on the normalisation of count data obtained in scRNA-seq
experiments. As introduced above, multiple strategies have been developed with the aim
of reducing the high level of noise present on such data, and estimating a ’true’ biological
state of expression for each gene in each cell. While the project aimed to reconstruct
the Waddington landscape of regulator activity based on the single cell gene expression
measurements, at the start of the project we realised that there is no satisfactory solution
to gene expression normalisation in single cells in the literature. Thus, we tackled this
problem with a Bayesian model, considering each gene independently and inferring a
posterior probability of gene expression in each cell. Our model assumes a log-normal
distribution of gene expression across cells and additional Poisson noise caused by the
stochastic process of gene expression and the sampling process introduced by the mRNA
capture in experimental protocols. These normalised gene expression values are the basis
of a motif-activity response based approach for inferring the activity of TFs and miRNAs
in individual cells, and for reconstructing the underlying landscape.
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Abstract:

We quantify the strength of miRNA-target interactions with MIRZA, a recently
introduced biophysical model. We show that computationally predicted energies
of interaction correlate strongly with the energies of interaction estimated from
biochemical measurements of Michaelis-Menten constants. We further show that
the accuracy of the MIRZA model can be improved taking into account recently
emerged experimental data types. In particular, we use chimeric miRNA-mRNA
sequences to infer a MIRZA-CHIMERA model and we provide a framework for
inferring a similar model from measurements of rate constants of miRNA-mRNA
interaction in the context of Argonaute proteins. Finally, based on a simple model
of miRNA-based regulation, we discuss the importance of interaction energy and
its variability between targets for the modulation of miRNA target expression n
Vivo.

Highlights:

e We describe a framework for inferring parameters of a biophysical model of
miRNA-target interaction from a variety of medium and high-throughput
data sets.

e Of the variant models that we inferred in this work, the most effective in
predicting functional miRNA targets is the MIRZA-CHIMERA model, which
is derived from chimeric miRNA-mRNA sequences that were captured in
Argonaute crosslinking and immunoprecipitation (CLIP) experiments.

e While the captured chimeric sequences suggested that several miRNAs tar-
get predominantly non-canonical sites, the MIRZA model inferred from the
chimeras of these miRNAs does not improve the genome-wide prediction of
their targets.

Keywords:

miRNA, MIRZA, CLIP, CLASH, non-canonical miRNA binding, miRNA target
prediction

2.1 Introduction

MicroRNAs (miRNAs) have emerged as important regulators of gene expression
across a wide range of species. They are endogenously encoded small RNAs that
are incorporated in ribonucleoprotein complexes also containing an Argonaute
(Ago) protein, which they guide to other RNA targets to modulate their expres-
sion [Huntzinger and Izaurralde, 2011]. Although comparative genomic analyses
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indicate that a miRNA has on average hundreds of targets [Lewis et al., 2005],
how these predicted targets respond to changes in miRNA concentration is not en-
tirely clear. The best-documented outcome of miRNA-target interaction is target
destabilization [Eichhorn et al., 2014], which is typically modest, but can give rise
to interesting behaviors of miRNA-containing regulatory networks. These include
the ‘threshold-linear’ response of miRNA targets to their transcriptional induc-
tion [Levine et al., 2007, Mukherji et al., 2011] and the ultrasensitivity of target
expression to the miRNA concentration [Buchler and Louis, 2008]. The steady-
state level of a given mRNA reflects the balance between transcription and decay.
If the mRNA decay rate were constant, not modulated by miRNAs, the mRNA
level would be expected to increase linearly with the transcription rate. However,
if transcriptional induction occurs in the presence of a cognate miRNA, the tar-
get is expected to respond in a ‘threshold-linear’ manner: when the transcription
rate is low, the few mRNA molecules that are produced are bound by the cog-
nate miRNA and degraded. Once the transcription rate is sufficiently high for the
mRNAs to saturate the miRNA-Ago complexes, the mRNAs escape the miRNA-
induced repression and accumulate at a rate proportional to their transcription
rate. The location of the threshold depends on the abundance of miRNA-Ago
complexes, while the steepness of the transition between the two regimes depends
additionally on the affinity of miRNA-target interaction.

We can illustrate these concepts with a simple model that focuses on the in-
teraction of a single miRNA target with the miRNA and on the effect of this
interaction on the rate of target decay, ignoring the possible effect of miRNAs on
translation, the possible competition between targets for miRNAs and vice versa,
other secondary effects such as feedbacks on target transcription rates, etc. Al-
though these aspects most likely are relevant in in vivo situations, they go beyond
the scope of our present study. Let us consider a miRNA target that is tran-
scribed at rate amol - s7'] and decays with rate d[s~!]. The free miRNA target
F[mol] associates at rate 3[mol™! - s7!] with miRNA-Ago complexes whose total
concentration in a cell we assume to be constant, . This leads to the forma-
tion of ternary target-miRNA-Ago complexes whose concentration we denote by
A[mol], which can either dissociate into their components with rate Q[s™!], or fall
apart due to the degradation of the miRNA target, which occurs at rate dd[s™!].
The dynamics of these molecular species can then be described by the following
equations:

C;_f — a—0F—B(S— A)F +pA (2.1)
% — B(X— A)F — pA— ddA (22)

Solving this system of differential equations we obtain the dependency between
the concentration of the free (and total) target and its transcription rate, which
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has the threshold-linear form. Fig. 2.1 shows how the concentration of the free
mRNA target responds to changes in target transcription rate, assuming values
for the parameters 6 = 0.11/hour and d = 1.55, which we have recently esti-
mated [Hausser and Zavolan, 2014]. To illustrate the expected behavior of high
and low affinity targets we use two distinct values of the rate of ternary complex
formation /3, namely 0.24 and 2.4 cell/molecule/hour, and two distinct values of
the rate of ternary complex dissociation p, namely 2.16 and 21.6 1 /hour. To further
explore the behavior of targets of low, intermediate and high abundance miRNAs;,
we consider three total concentrations ¥ of miRNA-Ago complexes, namely 10,
100 and 1000 molecules/cell. Our model thus assumes that the total concentra-
tion of miRNA-Ago complexes (free or bound to targets) is constant and does not
respond to changes in miRNA target concentration. Although it remains unclear
whether this assumption holds in vivo, data showing that the targets of endogenous
miRNAs are up-regulated in response to transfection of exogenous siRNAs [Khan
et al., 2009] suggest that at least the number of Argonaute molecules in a cell
does not scale with the number of small RNAs that are present in cells. It can be
observed that the transcription rate at which the target escapes miRNA regula-
tion and accumulates rapidly depends on the total concentration of miRNA-Ago
complexes, and that the transition is sharper for targets that have a higher rate of
association with miRNA-Ago complexes. These behaviors have been observed in
experiments with reporter constructs [Mukherji et al., 2011, Bosson et al., 2014].

So far we discussed the expected behavior of an individual miRNA target.
However, because a miRNA probably has hundreds of targets, one of the strongly
debated questions in the field is whether changes in expression of one of these
targets affects the expression of the others by modulating their interaction with
the common targeting miRNA. Computational studies have shown that the targets
of a miRNA are expected to respond in an asymmetrical manner, changes in
expression of high-affinity targets affecting the binding of the lower affinity targets
but not the other way around [Figliuzzi et al., 2013, Bosia et al., 2013]. Whether
these behaviors indeed occur in vivo is largely unknown. Rather, it has become
clear that progress in understanding the impact of miRNAs on gene expression
requires accurate measurements of miRNA abundance in single cells, estimates of
the number of binding sites that a miRNA typically accesses within a cell, and
estimates of the affinity of interaction between a miRNA and its multiple targets.

The abundance of individual miRNAs in mammalian cells varies over orders
of magnitude (see for e.g. [Bissels et al., 2009]). MiR-122, a highly-expressed,
hepatocyte-specific miRNA can reach 66’000 copies per cell in mouse liver cells
and 135’000 in primary human hepatocytes [Chang et al., 2004]. The more typical
range for well-expressed miRNAs is 1’000-10°000 molecules per cell [Bissels et al.,
2009], which can probably be accommodated by the population of Ago proteins,
whose abundance per cell has been estimated to be ~ 140’000-170’000 molecules
(in a mouse epidermis and a human melanoma cell) [Wang et al., 2012].
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Figure 2.1: Accumulation of miRNA targets as a result of increasing transcription, in
the presence of miRNAs, based on the steady state solution of equations (2.1) and (2.2).
The three colors correspond to three total concentrations of miRNA-Ago complexes of
10 (red), 100 (blue) and 1000 (black) molecules/cell. (A) Thin lines correspond to low
rates of target-miRNA-Ago association = 0.24 cell/molecules/hour, and thick lines to
10-fold higher association rates, 5 = 2.4 cell/molecules/hour, with p = 2.16 1/hour. (B)
Thin lines correspond to low rates of target-miRNA-Ago dissociation of p = 2.16 1 /hour,
and thick lines to 10-fold higher dissociation rates, p = 21.6 1/hour, with § = 0.24
cell/molecules/hour.

The number of target sites that a miRNA can access within an individual
cell remains hotly debated [Bosson et al., 2014]. Recently developed methods
have enabled quantification of mRNA species within single cells, although the
mRNA capture rate appears to be low, around 10% [Griin et al., 2014]. A cursory
analysis of the published mouse embryonic stem cell (ESC) single cell data shows
that among the mRNAs that were captured, miRNA targets occur in a handful of
copies such that the top 100 predicted targets of individual miRNAs yield a few
hundred captured target molecules per cell (Fig 2.2). The targets of the mouse
ESC-specific miR-294 are less abundant, ~ 1 captured mRNA per cell, compared
to targets of the ubiquitously expressed miR-16 and of some miRNAs that are
expressed in differentiated tissues (e.g. the general differentiation marker let-7,
the neuron-specific miR-124, the muscle-specific miR-1 and the epithelia-specific
miR-200a), which were captured in 2-5 copies, on average. Assuming a capture
rate of 10%, a mouse ESC thus expresses on average 10-50 molecules per miRNA
target. The argument can be made that our estimation ignores the fact that ESCs
already contain miRNAs which have reduced the levels of their targets and that we
have thus underestimated the number of miRNA targets. Indeed, to improve these
estimates we would need to quantify mRNA abundance in ESCs devoid of miRNAs
(Drosha/Dicer knock-out ESCs). However, many studies in which miRNAs have
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been transfected in cells in which they were not previously expression found only
modest changes (less than 2-fold) in target levels and thereby decay rates (see for
e.g. [Hausser and Zavolan, 2014]). If a miRNA does target over a hundred distinct
mRNA species, binding to perhaps multiple sites within a mRNA, the number of
putative binding sites of a miRNA in a single cell can reach 10> — 10%. Precise
estimates of the number of binding sites and the ratio of binding sites to miRNA-
Ago molecules are essential for understanding the behavior of the targets in vivo,
in individual cells.

mmu-miR-294-3p
mmu—miR-16-5p
mmu-—let—7a-5p
mmu—miR-200a—3p |
mmu-miR-124-3p |
mmu—miR-1a-3p

Fraction of cells

500 1000 1500
Nb. of mRNAs

Figure 2.2: Distribution of the number of targets of individual miRNAs that were
captured from individual ESCs [Griin et al., 2014]. For each miRNA, the number of
molecules of top 100 targets that were predicted with the seed-MIRZA-G-C miRNA
target prediction program [Gumienny and Zavolan, 2015] were counted. The actual
number of molecules was probably 10-fold higher (assuming that the capture rate of
mRNA molecules in mRNA-seq is ~10%).

2.2 Inferring the strength of miRNA-target interactions
from experimentally-determined target sites; theory

An important breakthrough in the experimental identification of miRNA targets
came with the development of methods based on the crosslinking and immuno-
precipitation of Argonaute proteins (Ago-CLIP) [Chi et al., 2009, Hafner et al.,
2010], which enabled the capture of in vivo miRNA targets in high-throughput.
The basic principle is to crosslink proteins to RNAs in vivo with ultraviolet light,
immunoprecipitate the protein of interest and associated RNAs with a specific an-
tibody, and prepare the protein-bound RNA fragments for deep sequencing. The
resulting reads can be used not only to identify the mRNAs that were bound by
miRNA-guided Argonaute proteins, but also to learn more about how miRNAs
interact with their targets. For example, to describe this interaction, in previ-
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ous work we introduced a model (MIRZA) that includes besides parameters for
A—U, G—C, and G — U base pairs, for symmetrical and asymmetrical loops,
a set of parameters corresponding to miRNA position-dependent contributions to
the interaction energy [Khorshid et al., 2013]. The latter could result from the
interaction taking place within the context of the Argonaute protein (Fig. 2.3).
Parameter values were inferred within a probabilistic framework, by maximizing
the likelihood of the CLIP data. They confirmed the known importance of the
miRNA 5 end (also known as ‘seed’ [Lewis et al., 2005]) in the interaction with
the target. However, application of the model to the CLIP sites suggested that
many are bound in a ‘non-canonical’ manner (i.e. without perfect complemen-
tarity to the miRNA seed) and that the proportion of non-canonical sites that
were captured for a given miRNA with CLIP increased with the abundance of the
miRNA [Khorshid et al., 2013]. Because MIRZA provides a quantitative measure
of the strength of interaction of miRNAs with target sites, it can be used not only
for genome-wide prediction of binding sites but also to study miRNA-dependent
regulation in deeper quantitative detail. In a parallel development, a next step
in the experimental identification of miRNA target sites has been taken with the
simultaneous capture of interacting miRNAs and target sites as chimeric sequence
reads [Helwak et al., 2013, Grosswendt et al., 2014]. Initial analysis of these data
suggested that miRNAs may differ in their mode of interaction with the targets.

Thus, important open questions for the quantitative modeling of miRNA-target
interactions are: what approach yields the most predictive model; what structure
does this model have; are miRNA-specific models necessary to explain the exper-
imental data? In the following we describe the miRNA-target interaction models
that we inferred with the MIRZA approach from various types of high-throughput
data, and we evaluate their ability to identify functional miRNA targets, that are
destabilized upon transfection of the cognate miRNA.

2.2.1 Input data: Argonaute-bound RNA fragments. Output: General
model of miRNA-target interaction MIRZA-CLIP

A target site m of a miRNA p can be in one of two states, namely bound or
unbound to the miRNA. Denoting the energies of the bound and unbound states
by Ep and Ejg, the probability to find the site in bound state will be given by

Py = - E;Ei 7 The ‘bound’ state consists in fact of all ways in which the miRNA

is hybridized with the target in the context of the Ago protein. Denoting by
E(m, u, o) the energy of the state in which site m is bound to miRNA g in con-
figuration o, e®# is proportional to ePmro) - Similar to the standard model
of RNA-RNA interaction [Xia et al., 1998], E(m, i, o) can be written in terms of
a small number of parameters such as the energy of A — U, G — C and G — U
base pairs, the energy for opening a loop in the miRNA-target hybrid, energies for

extending a loop by a nucleotide in the miRNA, or in the mRNA, or by two un-
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Figure 2.3: Crystal structure of the human AGO-2 protein (silver) in complex with
miR-20a (red) [Elkayam et al., 2012]. The ‘seed’ nucleotides are visible in the structure
because the conformational entropy of the miRNA 5’ end in the binding pocket of AGO-2
is limited. The residues 11-16 of the miRNA are not resolved due to their conformational
freedom. The terminal 3’ end nucleotides, that contribute to the anchoring of the miRNA
within AGO-2, are again visible.

paired nucleotides in the miRNA and target. In addition, specific to the MIRZA
model of miRNA-target interaction [Khorshid et al., 2013] is a set of miRNA-
position-specific energies (Fig. 2.4). The logarithm of the ‘quality score’ of a
site for a miRNA that MIRZA computes can be viewed as the energy of inter-
action between the miRNA and the target. An efficient dynamic programming
algorithm for computing target quality scores has been proposed [Khorshid et al.,
2013]. This enables one to infer the parameters of the MIRZA model by maxi-
mizing the likelihood of the Ago-CLIP data. Here we have repeated the analysis
of the ~ 3000 Ago2-CLIP sites that were reproducibly isolated in multiple CLIP
experiments [Khorshid et al., 2013, Kishore et al., 2011] to derived the baseline
MIRZA-CLIP model shown in Figure 2.4.

2.2.2 Input data: chimeric miRNA-mRNA sequence reads. Output:
General model of miRNA-target interaction MIRZA-CHIMERA

As mentioned in the Introduction, Helwak et al. [Helwak et al., 2013] designed the
Crosslinking and Sequencing of Hybrids approach (CLASH), in which the inter-
acting RNAs are ligated prior to sequencing, thereby enabling the simultaneous
capture of interacting miRNAs and target sites. These appear as “chimeric reads”
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let-7a-5p, let-Te-5p, let-7f-5p, miR-10a-5p, miR-10b-5p, miR-
125a-5p, miR~125b-5p, miR-1260b, miR-1301-3p, miR-130b-3p,
MIRZA-Class 1 miR-15b-5p, miR-~17-5p, miR-183-5p, miR-185-5p, miR-23a-3p,
miR-27b-3p, miR-31-5p, miR-324-3p, miR-339-5p, miR-34a-5p,
miR-423-5p, miR-455-3p, miR-484, miR-~744-5p

miR-181b-5p, miR-221-3p, miR-30c-5p, miR-30d-5p, miR-320a,

MIRZA-Class IV | | 'R 361-5p, miR-92a-3p, miR-92b-3p

Table 2.1: Chimeras of the indicated miRNAs, obtained from the data set of Grosswendt
et al. [Grosswendt et al., 2014] were used to infer MIRZA-Class I and MIRZA-Class IV
models.

each composed partly of a miRNA and partly of the miRNA target. Grosswendt
et al. [Grosswendt et al., 2014] subsequently reported that a substantial number of
ligated miRNA-target site chimeras can be found even in samples prepared with
a standard CLIP protocol. In contrast to Ago-CLIP, in these data sets there is
no uncertainty about the miRNA that guided the interaction with each target site
captured in the chimeras. Thus, in maximizing the likelihood of the data to infer a
MIRZA-type model, one only needs to sum over all the ways in which the miRNA
and target site in each chimera hybridizes with each other (and not over the miR-
NAs that could have interacted with the target site, as in the case of Ago-CLIP
sites). We used the miRNA-target site pairs that were inferred by Grosswendt et
al. from various PAR-CLIP and HITS-CLIP experiments (Table 2.1 and Supple-
mentary Table 3 in [Grosswendt et al., 2014]) to construct a general model that
could explain all these interactions. We called this model MIRZA-CHIMERA.
Compared to the MIRZA-CLIP model that we inferred from Ago-CLIP data |,
MIRZA-CHIMERA seems to put less emphasis on the miRNA seed (Fig. 2.4).
The functional relevance of these differences will be discussed in the following
sections.

2.2.3 Input data: chimera of a specific miRNA with target sites. Out-
put: miRNA-specific model of interaction with the target

The CLASH study reported that some miRNAs, such as miR-92a and miR-181b,
interact with their targets predominantly through their 3’ rather than the 5" end,
yielding ‘class IV’ chimeras [Helwak et al., 2013]. Other miRNAs such as those of
the let-7 family were captured rather in ‘class I’ chimeras, in which the miRNA
presumably interacted through the ‘seed’. These observations suggest that the ac-
curacy of miRNA target prediction could be improved through the use of miRNA-
specific models of interaction. We decided to test this hypothesis here. However,
because the available data sets [Helwak et al., 2013, Grosswendt et al., 2014] contain
a limited number of distinct target sites ligated to individual miRNAs, we inferred
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‘class’-specific rather than miRNA-specific models. Concretely, from the data of
Grosswendt et al. [Grosswendt et al., 2014] we selected a total 2589 chimeras of 24
miRNAs (those that yielded predominantly class I chimeras in the data of Helwak
et al. [Helwak et al., 2013]) to train the “MIRZA-Class I” model and 949 chimeras
of 8 miRNAs (those that yielded predominantly class IV chimeras) to train the
“MIRZA-Class IV” model. The corresponding miRNAs are listed in Table 2.1.
The parameters of these models, shown in Figure 2.4, indicate a positive contribu-
tion of the seed positional parameters in the MIRZA-Class I model, but not in the
MIRZA-Class IV model. However, Figure 2.4 also shows a trend of positional pa-
rameters to progressively decrease from the seed to the 3’ end in the MIRZA-Class
IV model, but not in the MIRZA-Class I model. We test the functional relevance
of these differences in a subsequent section.

It has been recently observed that the miRNAs that were reported to form class
IV hybrids have G/C-rich 3’ ends [Wang, 2014]. We reproduced these observations
here (Fig. 2.5). Furthermore, we found that the proportion of class I hybrids
that were captured for a miRNA decreases with the G/C content of the miRNA
3’ end, while the proportion of class IV hybrids shows the opposite trend (Fig.
2.5). A possible explanation behind the different propensities of different miRNAs
to yield class I or class IV chimeras is that the G/C-content of the miRNA 3’
end stabilizes the interaction with the target site, facilitates ligation and leads to
an over-representation of this type of sites among the chimeric sequences. This
possibility would need to be investigated in more detail before miRNA-specific
modes of interaction are inferred from chimera data.
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Figure 2.4: The 27 parameters of various MIRZA model variants. From left to right,
base-pair parameters (A — U,G — C,G — U = 0), loop parameters (o: opening a loop,
m: looped out mRNA nucleotide, mi: looped out miRNA nucleotide, s: symmetrical
loop) and the 21 positional parameters are shown. The parameters of the MIRZA-CLIP
model are shown in black, those of the MIRZA-CHIMERA model in blue, those of the
MIRZA-Class I model in cyan and those of the MIRZA-Class IV model in red.
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Figure 2.5: Relationship between the nucleotide composition of the miRNA and the type
of hybrids in which the miRNA was captured. The miRNAs used to infer the MIRZA-
Class I model are shown in blue, the miRNAs used to infer the MIRZA-Class IV model
are shown in red and other miRNAs are shown in black. Data for analysis taken from
Helwak et al. [Helwak et al., 2013]. (A) Proportion of G/C nucleotides at different
positions along miRNAs that yield predominantly class I and IV hybrids/chimeric reads
in the data set of Helwak et al. [Helwak et al., 2013]. (B) Correlation between the
proportion of G/C nucleotides at the 3’ end of a miRNA and the proportion of captured
class I chimeras. (C) Correlation between the proportion of G/C nucleotides at the 3’
end of a miRNA and the proportion of detected class IV chimeras.

2.3 Results

2.3.1 Evaluating the models on biochemical data

The ‘quality score’ assigned to a site by the MIRZA model takes into account
all possible configurations in which the miRNA can hybridize to the target site
within the ternary miRNA-target site-Ago complex, and provides an estimate of
the binding energy between the miRNA and the target site. Thus, if the model
is accurate, it should be able to predict the free energy of interaction determined
with biochemical approaches. The dissociation constant K p, which is the ratio of
the rates of dissociation (k,rs) and association (k,,) of molecules in a complex,

Kp = k;c"of -, should be related to the Gibbs free energy of interaction through the

relationship AG = —kgT log <KLD>, where kp is the Boltzmann constant and 7' is
the temperature. Although only few measurements of miRNA-target dissociation
constants are available, particularly for mammalian systems, Wee et al. [Wee et al.,
2012] measured a related constant, namely the Michaelis-Menten constant. This is

Keat-+h : : . L .
defined as Ky = =*7—/, thus including besides the dissociation and association
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rates the rate with which the miRNA catalyzes the target cleavage. Wee et al.
measured for K,’s for perfectly complementary sequences (P M) and for sequences
that have mismatches at different positions along the miRNA (M M) in the context
of Argonaute 1 protein of Drosophila melanogaster [Wee et al., 2012] and then

PM
correlated log (%) with the difference in the free energy of interaction of the the
M

perfectly matched and mismatched hybrids given by the RNAStructure software
[Reuter and Mathews, 2010]. Computing this correlation separately for duplexes
in which mismatches were located at the 5" and 3’ ends of the miRNA, respectively,
Wee et al. concluded that the standard base pairing rules apply to miRNA-Ago2-
target complexes [Wee et al., 2012]. We thus sought to use the measurements of
Wee et al. [Wee et al., 2012] to further validate the MIRZA models that we inferred
from CLIP data sets.

First, we compared the energy differences inferred from measurements of Kj;’s
with those predicted with the current version (5.7) of the RNAStructure soft-
ware and with those predicted with MIRZA-type models. As described by Wee et
al. [Wee et al., 2012], we found relatively good correlations between RNAStructure-
based predictions and experimental measurements, if we consider separately hy-
brids with mismatches in the miRNA seed region (Spearman correlation coefficient
p = 0.81, p-value = 0.015) and in the miRNA 3’ end (Spearman correlation coeffi-
cient p = 0.4, p-value = 0.20). However, considering all the hybrids together, the
correlation is rather poor (Spearman correlation coefficient p = 0.2), presumably
because the nearest neighbor model implemented in RNAStructure does not ap-
propriately describe interactions that take place within RNA-protein complexes,
where different nucleotides in the RNA can have disproportionate contributions to
the energy of interaction.

In contrast, evaluating all of the hybrids within the MIRZA-CLIP model yields
predictions that are strongly correlated with the experimental results (Spearman
correlation coefficient p = 0.85, p-value = 3.6e — 9, 95% confidence interval =
[0.71,0.93]). Interestingly, the MIRZA-CHIMERA model gives a slightly higher
correlation with the experimental data (Spearman correlation coefficient p = 0.87,
p-value = 3e-9, 95% confidence interval = [0.73,0.94]), although the difference is
not significant. Thus, these two models, that were inferred from different types of
sequenced miRNA target sites, predict remarkably well the energies of interaction

between miRNAs and target sites that are inferred from biochemical measurements
(Fig. 2.6).

2.3.2 Genome-wide prediction of miRNA targets

One of the main applications of these models is in the genome-wide prediction
of miRNA binding sites. However, the predicted energy of interaction between
a miRNA and a target site is only one of the factors that contributes to a func-
tional interaction. Other features of the target site have also been shown to be
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Figure 2.6: Ratio of binding free energies of mismatched and perfectly matched hy-

brids. The Spearman correlation was computed between the values estimated based on

KLM>) and values predicted with

three distinct models: RNAStructure 5.7 (left), MIRZA-CLIP (center) and MIRZA-
CHIMERA (right). Data points in red correspond to hybrids with mismatches in the
miRNA seed region, those in blue to hybrids with mismatches in the 3’ region.

biochemical measurements (energy of interaction In (

important [Hausser et al., 2009]. Thus, in recent work we sought to build on
MIRZA and develop a model that is suitable for accurate prediction of miRNA
binding sites genome-wide. The resulting MIRZA-G model combines the MIRZA
target quality score with the accessibility of the target site, the G/U content of
the region in which the site is embedded, the relative location of the site in the
transcript and, optionally, with the degree of evolutionary conservation of the pu-
tative target site (Fig. 2.7). MIRZA-G is trained by fitting a generalized linear
model with a logit function to discriminate between miRNA-complementary sites
located in mRNAs that do and mRNAs that do not respond to the transfection
of the cognate miRNAs [Gumienny and Zavolan, 2015]. Furthermore, because
high-throughput studies evaluate the effects of miRNAs at the level of transcripts
and genes rather than individual sites, MIRZA-G computes transcript/gene scores,
summing up the probabilities that individual target sites have a functional impact.
Using different MIRZA variants to compute target quality scores for the MIRZA-
G model we can test the ability of these variants to predict which transcripts
are most affected by the transfection of individual miRNAs. Thus, we employed
the MIRZA-CLIP/CHIMERA /Class 1/Class IV models individually within the
MIRZA-G framework to predict and rank targets of individual miRNAs. Because
different MIRZA variants yield different distributions of target quality scores and
in the genome-wide prediction of target sites we only consider putative sites with a
minimal ‘target quality’ score, we have used different thresholds for different mod-
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els. The weight of different features of target sites within the MIRZA-G model
were kept unchanged.
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Figure 2.7: Diagram of the approach for predicting miRNA targets with MIRZA-G.

To determine a target quality score threshold for different MIRZA variants
we noted that ‘canonical’ interactions that involve perfect pairing of the miRNA
seed have the highest scores with all MIRZA variants. Thus, we employed the
procedure that we used before for MIRZA-CLIP [Gumienny and Zavolan, 2015].
That is, with each MIRZA variant, we assigned to each of the 2’998 CLIPed sites
from Khorshid et al. [Khorshid et al., 2013] the most likely guiding miRNA. This
was the miRNA with the highest target quality score for the site given under the
considered MIRZA model. We then predicted the structure of the most likely
hybrid between the target site and the guiding miRNA, and divided the sites into
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canonical - those with perfect base-pairing over nucleotides 2-8 of the miRNA or
perfect pairing over nucleotides 2-7 followed by an adenine (opposite position 1
in the miRNA) - and non-canonical - all other sites. Based on the cumulative
distribution of target quality scores for canonical and non-canonical sites, we set
a threshold that allowed us to capture the majority of canonical sites without
including too many non-canonical sites, that may be artifactually captured. For
MIRZA-CLIP a threshold of 50 captures 91% of canonical sites and 18% non-
canonical sites, for MIRZA-CHIMERA a threshold of 20 captures 97% canonical
and 20% of non-canonical sites, for MIRZA-Class I a threshold of 30 leads to the
capture of 94% of the canonical and 18% of non-canonical sites, while for MIRZA-
Class IV a threshold of 20 captures 94% of canonical target sites and 20% of the
non-canonical target sites.

2.3.3 Wide range of MIRZA quality scores across the targets of a given
miRNA

Although we do not focus on this aspect here, it has been proposed that differences
in affinity between targets may underlie asymmetries in the crosstalk of mRNAs
that bind the same miRNAs [Figliuzzi et al., 2013]. Thus, having shown that the
target quality scores computed with MIRZA models correlate very well with the
affinities of miRNA-target interactions measured with biochemical methods, we
wondered how much variation there is in the affinity of different target sites for a
miRNA. Therefore, we determined the MIRZA target quality score for all the sites
of all miRNAs that were considered in the genome-wide predictions with MIRZA-
G. These had a probability of being functional of at least 0.12 (see [Gumienny and
Zavolan, 2015] for details). For each miRNA we have divided the 0 to 10 range of
MIRZA target quality scores into bins of 0.2 and have shown the distribution of
the target sites of each miRNA as a heat-map, which each line corresponding to a
miRNA and the intensity of the color indicating the density of target sites within
a bin (Fig. 2.8). It can be seen that the target sites of an individual miRNA span
a range of ~ 4 log units or they can differ by ~ 50 fold in the predicted affinity.

2.3.4 Evaluation of the MIRZA models on miRNA transfection data

MiRNAs have been reported to destabilize their mRNA targets, inhibit their trans-
lation [Huntzinger and Izaurralde, 2011], and even to increase transcript stabil-
ity under specific circumstances [Vasudevan et al., 2007]. Of these, perhaps the
least controversial is mRNA destabilization, which has been argued to be the
dominant mechanism behind the repressive effect of miRNA, with translational
repression playing a small, perhaps more transient role [Eichhorn et al., 2014].
The importance of this mechanism is further underscored by observations that
miRNA-complementary sites that are conserved in evolution and sites that induce
strongest downregulation of their host transcripts upon miRNA transfection have
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Figure 2.8: Distribution of the MIRZA quality scores of target sites of individual miR-
NAs. Each line corresponds to one miRNA and the intensity of the color indicates the

density of target sites within a particular range of target quality scores, computed with
MIRZA-CLIP.

similar properties [Hausser et al., 2009]. Furthermore, acting through the miRNA
pathway, small interfering RNAs (siRNA) also destabilize many transcripts (the
so-called “off-target” mRNAs) [Jackson et al., 2006]. Thus, it is reasonable to
expect that the extent of mRNA destabilization upon miRNA transfection is a
robust measure of the strength of interaction between a miRNA and the mRNA.
Consequently, the ranking assigned by a computational miRNA target prediction
method to mRNAs should correlate well with their change in expression upon
miRNA transfection. This is the assumption that we make in discussing the rela-
tive performance of various models for miRNA target prediction.

First, we tested whether the models can predict the mRNA expression changes
that were induced by individual transfections of miRNAs. To this end, we used
data corresponding to 26 miRNA transfections into human cells and one trans-
fection into mouse cells (Table 2). The processing of the transfection data was
described extensively in [Gumienny and Zavolan, 2015]. For each type of MIRZA
model of miRNA-target interaction we used two variants of the genome-wide
MIRZA-G prediction model to predict sites. One of these considered the evo-
lutionary conservation of the sites and the other did not [Gumienny and Zavolan,
2015] (see Fig. 2.7). We sorted targets predicted by each of these models in the
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Reference

Data source (Gene Expression
Omnibus (GEO) accession /
URL)

miRNAs in the data set

Dahiya ot al. 2008
[Dahiya et al., 2008]
Frankel et al. 2011
[Frankel et al., 2011]
Gennarino et al. 2008
[Gennarino et al., 2009]
Hudson et al. 2012
[Hudson et al., 2013]
Leivonen et al. 2009

[Leivonen et al., 2009]

Linsley et al. 2007 [Lins-
ley et al., 2007]

Selbach et al. 2008 [Sel-
bach et al., 2008]

Olive et al. 2013 [Olive
et al., 2013]

GSE10150
GSE31397
GSE12100
GSE34893

GSE14847

GSE683

http://psilac.mdc-
berlin.de/download/

GSE53225

miR-200c, miR-98
miR-101
miR-26b, miR-98

miR-106b

miR-206, miR-18a, mir-
193b, miR-302¢

miR-103, miR-215, miR-
17, miR-192, let-7c, miR-
106b, miR-16, miR-20,
miR-15a, miR-141, miR-
200a

miR-155, let-7b,
30a, miR-1, miR-16

miR-92a

miR-

Table 2.2: Data sets of mRNA expression changes following miRNA transfection that
were used to test the MIRZA models.

order of their prediction score. We then computed the median logy fold-change of
the top N predicted transcripts as a function of the number N of top targets con-
sidered. The average profiles, computed over the 26 data sets, are shown in Figure
2.9A-B. We found that all four models perform as expected in predicting miRNA
targets genome-wide. Consistent with its slightly better performance in predict-
ing the in vitro-measured free energy of interaction between miRNAs and target
sites, the targets predicted by the MIRZA-CHIMERA model are somewhat more
downregulated compared to the targets predicted with MIRZA-CLIP, particularly
when the evolutionary conservation of the sites is not taken into account.
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Figure 2.9: Relationship between prediction score and the extent of mRNA downregula-
tion. Genome-wide target predictions were carried out with the MIRZA-G generalized
linear model [Gumienny and Zavolan, 2015], within which the target quality scores were
calculated with different MIRZA variants: MIRZA-CLIP, MIRZA-CHIMERA, MIRZA-
Class I and MIRZA-Class IV. Measurements of mRNA expression in control and miRNA-
transfected cells were used to determine the logs fold-changes of predicted miRNA tar-
gets. (A) Median logs fold-change of the top N targets of the transfected miRNA, in
function of N, were averaged over a data set of 26 miRNA transfection experiments.
(C) Same procedure, but showing the median log2 fold-change of predicted let-7 targets
upon let-7 transfection (Table 2.2, data from [Linsley et al., 2007] and [Selbach et al.,
2008]) . (E) Same procedure, but showing the median log2 fold-change of predicted
targets of the mouse miR~92a upon miR-92a transfection in mouse cells (Table 2.2, data
from [Olive et al., 2013]). For (A), (C) and (E), genome-wide predictions were carried out
including evolutionary conservation whereas for (B), (D) and (F), without [Gumienny
and Zavolan, 2015].
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Next we asked whether Class I and Class [V-specific models are more accurate
in predicting targets of miRNAs that have been found to yield predominantly class
I and class IV chimeras, respectively. As representatives of the first we chose the
let-7 family of miRNAs and as a representative of the latter the miR-92a. Because
we did not find transfection data for Class IV-chimera forming human miRNAs,
we used a data set obtained from mouse cells transfected with the mouse miR-
92a. The results, shown in Figure 2.9, panels C-D for let-7 and E-F for miR-92a,
clearly indicate that the general MIRZA-CLIP and MIRZA-CHIMERA models are
more accurate in predicting transcript downregulation upon miRNA transfection
than Class I/IV-specific models. Together with the fact that the sites that are
predicted with these models tend to be canonical sites, these results indicate that
the origin and relevance of class IV hybrids needs to be further investigated. As
mentioned above, a possibility that needs to be ruled out is that the experimental
procedure for isolating miRNA-target hybrids via chimeric sequences enriches for
non-canonical hybrids that have increased stability prior to ligation.

2.3.5 Inferring a MIRZA model from biochemical data

The results presented above indicate that the MIRZA-CLIP/CHIMERA models
explain well both the biochemical data as well as the response of mRNAs to miRNA
transfection. However, given the complexity of CLIP experiments and the indirect
nature of the resulting data, one wonders whether an even more accurate model
of miRNA-target interaction could not be derived from in vitro measurements of
interaction affinity as obtained in the study of Wee et al. [Wee et al., 2012]. To gain
further insight into the design of an efficient experiment, we generated synthetic
data sets of hybrids, computed their pseudo-energies of interaction with MIRZA-
CLIP, and then asked how our ability to recover the model parameters from the
synthetic data sets depends on the number and type of hybrids and the accuracy
of the provided pseudo-energies.

First, we simulated the experimental design of Wee et al. [Wee et al., 2012], in
which energies of interaction between close variants of a single miRNA (let-7) and
their perfectly complementary sequences were measured. There are 1890 possible
two point-mutants of let-7, from which we sampled datasets of different sizes. An
alternative design is to to measure the energies of interaction between ‘random’
small RNAs and their partially complementary sequences. In this approach the
small RNA is an entirely ‘random’ sequence whereas the interacting site is a se-
quence whose complementarity to the small RNA varies. To construct it, we first
chose the average number of complementary nucleotides. With probabilities of
complementarity chosen uniformly between 0.25 to 1, we can simulate from in-
teractions of random RNA fragments to interactions of perfectly complementary
sequences. This second approach is meant to provide datasets containing more
information in terms of pairs interacting nucleotides than the first approach. For
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both methods, while constructing subsets of various sizes, we aimed to cover uni-
formly the space of interaction energies and of nucleotide positions involved in the
binding. Finally, we considered the possibilities that the measurements are not
entirely accurate. To simulate this, we added Gaussian noise to the computed
interaction energy for each hybrid with a standard deviation of 0 (no noise), 1%,
5% and 10% of the predicted energy of interaction. For each data set size and
each noise level we generated 100 synthetic data sets. To each synthetic data set
we applied the simulated annealing procedure that was described in Khorshid et
al. [Khorshid et al., 2013] to recover the parameters of the MIRZA model used to
generate the pseudo-energies. The results, averaged over the 100 replicates of each
setting, are shown in Figure 2.10. They indicate that if the measurement noise is
less than 10%, ~250 hybrids, chosen from across the entire range of expected affini-
ties would be sufficient to recover the model parameters with reasonable accuracy
(root mean square difference, RMSD, between recovered and input parameters <
1). If the measurements were very precise (relative error of a few percent), the
number of hybrids necessary to recover a model with RMSD < 1 is considerable
smaller, ~100, which is within reach with the technology available today. The
experimental design of measuring closely related variants of a single miRNA does
not yield equally accurate parameter values from a comparable number of hybrids,
presumably due to the limited sampling of nucleotide/position combinations.

3 - - - - 3
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Figure 2.10: Root mean square difference (RMSD) between the MIRZA parameters used
to generate the training set and the MIRZA parameters inferred from the training data,
as a function of the size of the training set. The colors correspond to the noise added
to the training set data (0%, 1%, 5% and 10% of the predicted energy value). For (A),
the data sets were generated with the ‘randomized’ procedure, whereas for (B), the data
sets were generated through mutations of the let-7 miRNA.
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2.4 Discussion and Perspective

That miRNAs are important for the proper development and function in a large
number of species is undisputed. Similar to transcription regulation by transcrip-
tion factors, miRNA-dependent regulation is ‘combinatorial’. That is, a regulator
typically has many targets and a target is affected by many regulators. In con-
trast to transcription factors, miRNAs induce milder changes in target expression,
which makes it more difficult to distinguish bona fide regulatory effects from bio-
logical or experimental variability. Consequently, the field is exploring a number of
distinct directions. Many groups have started to explore functional consequences
of miRNA-target interaction that go beyond the repression of a single miRNA tar-
get into dynamical aspects of the response of a larger network, containing multiple
miRNAs and multiple targets [Bosson et al., 2014, Figliuzzi et al., 2013,Bosia et al.,
2013, Poliseno et al., 2010, Denzler et al., 2014]. Such a network is quite complex
and can exhibit very rich behaviors. For example, a recent study emphasized that
even an increased expression of some miRNA targets can be expected in response
to the increased expression of a miRNA. This could happen if miRNAs with differ-
ent efficiencies in target down-regulation compete for the same sites on the target
, because over-expression of the miRNA that is less effective in repressing the tar-
get could lead to the displacement of the miRNA that is more effective and thus
to a net increase in target expression [Nyayanit and Gadgil, 2015]. Additional
experiments are necessary to determine whether this behavior occurs in wvivo.

More generally, given the wide range of behaviors that computational models
can predict, it is important to sufficiently constrain them with accurate param-
eters. Indeed, as described in previous sections, recent studies have started to
provide measurements of the concentrations and the rate of interactions between
the relevant molecular players. Our work shares this aim. Up to this point we
used high-throughput data sets of miRNA binding sites that were derived with
various approaches to parameterize a model of miRNA-target interaction. This
model allows us to compute the energy of interaction between miRNAs and arbi-
trary target sites and to carry out genome-wide predictions of miRNA targets. We
have shown that the model inferred from sequenced Argonaute/miRNA binding
sites predicts quite accurately hybrid energies that are measured with biochem-
ical methods in vitro. Furthermore, we have proposed a strategy for deriving a
MIRZA-like model from biochemical measurements that can be obtained with the
technology available today.

Although on its own, the energy of miRNA-target interaction is not sufficiently
predictive of functional interactions, it is one of several informative features that
together enable fairly accurate transcriptome-wide predictions. These additional
features reflect the secondary structure of the target mRNA, its interactions with
RNA-binding proteins, as well as other factors that are yet not understood but
can be captured in the degree of evolutionary conservation of the putative miRNA
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binding site. Dynamical changes in the miRNA targetome between cell types or cell
states will remain difficult to model computationally, but they may be important
for the interpretability of experimental data. For example, it has been shown that
taking into account tissue/condition-specific isoform expression can improve the
prediction of miRNA targets [Nam et al., 2014], because alternative polyadenyla-
tion can change the susceptibility of transcripts to miRNA regulation. Conversely,
miRNA stability is also subject to regulation, e.g by addition of nucleotides (espe-
cially of uridine and adenine) at the 3’ end [Kim et al., 2010]. Argonaute protein
modifications, mainly phosphorylation, provide another layer of regulation, reliev-
ing target repression or changing the subcellular localization [Ha and Kim, 2014].
Nevertheless, the approach that we presented here provides the basis on which
more complex, context-specific and even dynamical models describing the impact
of miRNA regulation on cellular function can be developed.
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Abstract:

MiRNAs are small RNAs that regulate gene expression post-transcriptionally. By
repressing the translation and promoting the degradation of target mRNAs, miR-
NAs may reduce the cell-to-cell variability in protein expression, induce correla-
tions between target expression levels and provide a layer through which targets
can influence each other’s expression as ”competing RNAs” (ceRNAs). However,
experimental evidence for these behaviors is limited. Combining mathematical
modeling with RNA sequencing of individual human embryonic kidney cells in
which the expression of two distinct miRNAs was induced over a wide range, we
have inferred parameters describing the response of hundreds of miRNA targets
to miRNA induction. Individual targets have widely different response dynamics,
and only a small proportion of predicted targets exhibits high sensitivity to miRNA
induction. Our data reveal for the first time the response parameters of the entire
network of endogenous miRNA targets to miRNA induction, demonstrating that
miRNAs correlate target expression and at the same time increase the variability
in expression of individual targets across cells. The approach is generalizable to
other miRNAs and post-transcriptional regulators to improve the understanding
of gene expression dynamics in individual cell types.

Keywords:

miRNA regulation, target downregulation, scRNA-seq, Michaelis-Menten constant,
ceRNA

3.1 Introduction

MiRNAs guide Argonaute proteins to mRNA targets, repressing their expression
post-transcriptionally [Huntzinger and Izaurralde, 2011]. Measurements of tran-
script and protein levels following perturbations in the levels of individual miR-
NAs showed that the fundamental molecular mechanism of mammalian miRNAs
is target destabilization, through the recruitment of factors that promote mRNA
decay [Lim et al., 2005, Hausser et al., 2009, Guo et al., 2010, Bartel, 2009]. How-
ever, time series of mMRNA and protein level measurements after miRNA transfec-
tion also revealed that repression of target translation precedes the increase in its
degradation rate [Bazzini et al., 2012, Hausser et al., 2013, Eichhorn et al., 2014]. A
miRNA typically has hundreds of evolutionarily conserved target sites [Lewis et al.,
2005, Griin et al., 2005, Gaidatzis et al., 2007], yet only very few predicted targets
are down-regulated more than 2-fold in miRNA transfection experiments [Hausser
and Zavolan, 2014]. Whereas disruption of miRNA biogenesis impairs the abil-
ity of embryonic stem cells to differentiate [Kanellopoulou et al., 2005], and some
miRNAs such as the founders of the class, the lin-4 and let-7 miRNA of Caenorhab-
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ditis elegans have striking developmental phenotypes [Ha et al., 1996, Wightman
et al., 1993, Reinhart et al., 2000], most miRNA genes are individually dispensable
for development and viability, at least in the worm [Miska et al., 2007]. These
observations suggested that strong repression may not be the primary function of
miRNAs, and that other functions should be investigated [Ebert and Sharp, 2012].

A computational study of small RNA-dependent gene regulation in bacteria
initially proposed that post-transcriptional regulators impose thresholds on the
protein levels of their targets in response to transcriptional induction, conferring
robustness to transcriptional noise [Levine et al., 2007]. Experiments with target
reporters in mammalian systems demonstrated that miRNAs could play a similar
role [Mukherji et al., 2011]. Gene expression being a stochastic process, the num-
ber of protein molecules expressed from a given gene varies between cells in a cell
population. The ratio of variance to mean of the number of protein molecules per
cell (the "noise” in protein expression) is predicted to be proportional to the ratio
of mRNA translation and mRNA degradation rates [Shahrezaei and Swain, 2008].
Intriguingly, these are the rates that miRNAs modulate so as to decrease protein
expression noise. Indeed, a recent study reported increased variability in CD69
protein expression across miRNA-deficient, developing mouse thymocytes [Blevins
et al., 2015]. However, as the reduction in target protein noise is predicted to scale
as the square root of the miRNA-induced change in protein level [Osella et al.,
2011, Schmiedel et al., 2015], which is small for the vast majority of evolutionar-
ily conserved miRNA targets [Hausser et al., 2013, Eichhorn et al., 2014, Hausser
and Zavolan, 2014, it is unlikely that many of the predicted miRNA targets are
regulated in this manner.

It has also been proposed that at the cellular level, miRNAs provide a ”chan-
nel” through which the many predicted miRNA targets ”communicate” as ”com-
peting RNAs” (ceRNAs) [Poliseno et al., 2010, Figliuzzi et al., 2013, Cesana et al.,
2011,Karreth et al., 2015, Wang et al., 2013]. Rough estimates of the number of po-
tential binding sites for a miRNA (also called miRNA "target abundance”) are in
the range of ~ 10° sites per cell, much higher than the number of cognate miRNA
molecules [Denzler et al., 2014]. In this regime, where the targets are already in
high excess relative to the miRNAs, over-expressing a single target could not appre-
ciably affect the expression of the other targets. Yet examples of ceRNAs continue
to emerge [Poliseno et al., 2010, Figliuzzi et al., 2013, Cesana et al., 2011, Karreth
et al., 2015, Wang et al., 2013]. These estimates of target abundance did not con-
sider the possibility that targets may not be equivalent in their ability to bind
and sequester miRNAs. Indeed, a computational analysis suggested that miRNA
targets have asymmetric relationships, high affinity targets being able to sequester
miRNAs from low affinity targets, at comparable target concentrations, but not
the other way around [Figliuzzi et al., 2013]. In vitro measurements indicate that
miRNA target sites can have widely different affinities for the miRNA-Argonaute
complex [Wee et al., 2012], an observation that is supported by measurements of
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Argonaute dwelling times on individual miRNA target sites [Chandradoss et al.,
2015]. However, estimates of in vivo miRNA-target interaction constants are lack-
ing.

Taking advantage of a system in which the expression of a single miRNA pre-
cursor can be induced over a wide concentration range, we measured the tran-
scriptomes of thousands of individual cells and assessed how the expression lev-
els of miRNA targets relate to the expression level of the miRNA. We obtained
experimental evidence for behaviors that were previously suggested by computa-
tional models or evaluated only with miRNA target reporters. These include the
non-linear, ultrasensitive response of miRNA targets to changes in the miRNA
concentration as well as the dependency of the variability in target levels between
cells on the concentration of the miRNA. Furthermore, we found that only a small
fraction of predicted targets are highly sensitive to changes in miRNA expression.
With a computational model we illustrate how these targets can influence the ex-
pression of other targets as competing RNAs. Our approach is applicable to other
post-transcriptional regulators of mRNA stability, allowing the analysis of their
concentration-dependent impact on the transcriptome.

3.2 Results

3.2.1 A system to study the impact of miRNA expression on the tran-
scriptome of individual cells

MiRNA target reporters are widely used to study miRNA-dependent gene regula-
tion. However, these reporters are often expressed at much higher levels than when
expressed from their corresponding genomic loci. Furthermore, these reporters do
not respond to the regulatory influences to which the endogenous transcripts re-
spond. To circumvent these issues and investigate the crosstalk of miRNA targets
in their native expression context, we used a human embryonic kidney (HEK) 293
cell line, 1199 [Hausser et al., 2013], in which the expression of the hsa-miR-199a
miRNA precursor and of the green fluorescent protein (GFP) can be simultane-
ously induced by doxycycline, from a pRTS1 episomal vector (Figure 3.1A). To
assess the reproducibility of the inferred sensitivity parameters for miRNA targets,
we used a related cell line, i199-KTN1 [Hausser et al., 2013], derived from i199
through the stable integration of a target of hsa-miR-199a-3p. This target con-
sisted of the renilla luciferase coding region followed by the 3’ untranslated region
(UTR) of kinectin 1 (KTN1). We reasoned that these similar but not identical
cell lines should allow us to assess the reproducibility of the inferred parameters,
which we do expect to vary between more distant cell types due to differences in
the expression of regulatory factors.

The processing of hsa-mir-199a gives rise to two mature miRNAs, hsa-miR-
199a-5p and hsa-miR-~199a-3p. These miRNAs have distinct "seed” sequences (at
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positions 2-7 of the miRNA) and therefore, largely non-overlapping target sets;
only 7 of the top 100 targets predicted [Gumienny and Zavolan, 2015] for each
miRNA are shared. The bidirectional nature of the promoter in the pRTS1 vector
was characterized before, by fluorescence-activated cell sorting [Bornkamm et al.,
2005]. In our construct, the luciferase protein-coding sequence has been replaced
by a pri-miRNA. As no method is currently available for simultaneously measur-
ing the expression of a miRNA and of a protein-coding gene in single cells, we
assessed whether the two bi-directionally transcribed RNAs have correlated ex-
pression in cell populations. Indeed, by RT-PCR we found that the expression of
hsa-miR-199a-5p and of the GFP mRNA, in cell populations induced with differ-
ent concentrations of doxycycline, were highly correlated (Figure 3.1B, Spearman
r=0.91,p = 1.74 - 1077). Furthermore, the expression of both mature miRNAs
processed from the hsa-mir-199a precursor increased in parallel to the concentra-
tion of the inducer, as expected (Appendix Figure 3.6A). Altogether, these data
indicates that the level of GFP mRNA can serve as a ”"proxy” for the miRNA lev-
els in studying the response of miRNA targets to the miRNA in individual cells.
Carrying out Argonaute 2 protein crosslinking and immunoprecipitation in fully
induced (1pg/ml doxycycline) HEK 293 cells, we confirmed that hsa-miR-199a-5p
and hsa-miR-199a-3p were incorporated into the miRNA effector complex, and
were among the highest represented miRNAs (Appendix Figure 3.6B).

We then induced cells with doxycycline concentrations spanning the 0 pg/ml to
1 pg/ml range (as described in 3.4), then pooled the cells and carried out mRNA
3" end sequencing of 3280 distinct 1199 and 3143 i199-KTN1 cells, on a 10x Ge-
nomics platform. In parallel, we carried out bulk mRNA sequencing from both
non-induced 1199 cells and cells that were fully-induced (1 pg/ml doxycycline).
The distribution of the number of distinct transcripts obtained from individual
single cells is shown in Appendix Figure 3.6C. GFP mRNAs were captured from
43% of the 1199 cells, in which the mean GFP mRNA expression was 32 tran-
scripts per million (TPM) (Figure 3.1C). mRNA expression levels inferred either
by averaging over single cells (SC) with no GFP mRNA or from bulk sequenc-
ing of non-induced cell populations (CP), were highly correlated (Spearman r of
log, expression values = 0.89, p < 107!%, Figure 3.1D). The expression of the top
100 MIRZA-G-C-predicted targets of the two miRNAs [Gumienny and Zavolan,
2015] was significantly lower in cells with high GFP mRNA expression (> 6.8
TPM) compared to cells with no GFP expression (0 TPM, Figure 3.1E). Impor-
tantly, the expression of predicted targets decreased in parallel with the increase
in GFP mRNA levels, further indicating that the GFP mRNA is a good proxy for
the miRNA expression in individual cells (Appendix Figure 3.6D,E). Finally, the
miRNA-induced changes in target expression, inferred either from bulk or from
single cell sequencing of strongly induced and uninduced cells, were significantly
correlated (Figure 3.1F). The results were reproduced in the related i199-KTN1
cell line (Appendix Figure 3.7). Results of a parallel analysis with miRNA targets
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predicted by TargetScan [Garcia et al., 2011] are shown in the Appendix Figures
3.11-3.17. Altogether, these results indicate that the system behaves as expected
and can be used for further analysis of miRNA-dependent gene regulation in single
cells.

3.2.2 miRNA targets follow theoretically predicted behaviors in re-
sponse to miRNA induction

The dynamics of small networks composed of miRNAs and targets has been inves-
tigated computationally, with stochastic models [Bosia et al., 2013, Figliuzzi et al.,
2013]. Bosia et al [Bosia et al., 2013] predicted that the coefficient of variation
(Cy) of miRNA targets increases with the transcription rate of the miRNA, show-
ing a local maximum in the region where the miRNA and targets are in equimolar
ratio. The correlation of expression levels of mRNAs that are targeted by the same
miRNA was predicted to exhibit a maximum around the same threshold. We used
a similar simple model of miRNA-dependent gene regulation to predict the be-
havior of targets in our experimental system. Briefly, we considered M mRNA
targets of a given miRNA, each with a specific transcription rate «;, decay rate d;,
and level m;, with ¢« € {1,..., M}. Target ¢ could bind a miRNA-containing Arg-
onaute (Ago) complex at rate k,, and dissociate from the complex at rate k,sy.
Because in our experimental system we induced miRNA expression to specific sta-
ble levels before carrying out the mRNA sequencing, we neglected the dynamics
of the miRNA and assumed that the total number A of Ago-miRNA complexes
in a given cell was constant, though varying between cells. The number of free
Ago-miRNA complexes is then given by Ap = A = ij\il A;. Finally, we assumed
that Ago-miRNA-bound mRNAs decay at rates k... Under this simple model (see
also [Hausser and Zavolan, 2014]), free mRNAs (m;) and miRNA-bound mRNAs
(Ay,;) follow the dynamics described by the system of 2M differential equations

argit(t) = o — 6;my(t) — Kon,mi(t) (A — ; Ap, (t)) + kg Am, (1) (3.1)
A, (1)

T = konimi(t) (A - jZlAmj (t)) - kOffiAmi (t) - kcatiAmi (t) (3'2)

We carried out stochastic simulations of a system with four miRNA targets
(Figure 3.2A), choosing parameters of target expression and interaction with the
miRNA such that (1) target expression spanned a broad range, (2) they underwent
miRNA-dependent down-regulation at either low (targets a and b), or high (targets
c and d) miRNA levels, and (3) down-regulation of all targets was moderate, as
generally observed in experiments. The response of individual in silico targets to
miRNA induction is shown in Figure 3.2A. Figures 3.2B,C show the variability of
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Figure 3.1: Design and characterization of the experimental system. A.
Schematic representation of the construct used to express hsa-miR-199a-5p (red), hsa-
miR-199a-3p (blue), and the reporter GFP mRNA from a bidirectional promoter. Shown
are also the "seed” sequences (nucleotides 2-7) of the two miRNAs. B. The expression
levels of hsa-miR-199a-5p and GFP mRNA,| measured from cell populations by quanti-
tative PCR, are highly correlated. C. Histogram of normalized GFP mRNA expression
(TPM) in individual i199 cells. D. Correlation of mRNA expression levels estimated from
SC sequencing (1875 TV cells (see text for definition) from which no GFP mRNA was
captured) and from CP mRNA-seq (6 replicates of non-induced cell populations). E. Cu-
mulative distribution of expression differences of the top 100 targets of hsa-miR-199a-5p
(red), top 100 targets of hsa-miR-199a-3p (blue), and of 7347 remaining, ”background”
genes (black) between cells expressing highest and lowest GFP levels [216 T cells with
> 6.8 TPM GFP (”ind”) vs. 1875 T° cells with 0 TMP GFP (”ctrl”)]. Box plots of log,-
fold change of non-targets, top 100 miR-199a-3p and top 100 miRNA-199a-5p targets
are shown in the inset. P-values of the rank-sum test comparing targets and non-targets
are also shown. Horizontal line is a mean, box shows where 50% of data points are
(interquartile range, IQR), whiskers show points within 1.5-IQR from 25/75-percentile
border of the box. F. Scatter plot of expression differences of the top 100 targets of each
miRNA, estimated from bulk sequencing (CP) or from single cell sequencing (7> and
TO cells defined as for previous panel).
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target expression between simulated cells and the pairwise correlations of target
expression levels across all simulated cells, as functions of the total miRNA level.
Similar to the predictions of Bosia et al. [Bosia et al., 2013], the targets in our in
silico system also experience destabilization, increased correlation and increased
expression noise, all within a limited range of miRNA expression, i.e. at a specific
threshold. Figure 3.2B also shows that for each target, the coefficient of variation
increases in function of miRNA expression level, as the target expression level is
reduced by the miRNA, and that targets with low expression level have higher
coefficients of variation compared to highly expressed targets. Furthermore, there
is a noticeable spike in the coefficient of variation of each target, in the region where
the target experiences a hypersensitive down-regulation in response to the miRNA
(see also Appendix Figure 3.7A). The miRNA also induces correlated changes in
its targets (Figure 3.2C); targets with high sensitivity to the miRNA, that are
repressed at low miRNA concentrations (a and b in our example), exhibit the
highest correlation coefficient, and over a widest range of miRNA concentrations.
However, targets that differ strongly in concentration of the miRNA that triggers
their response, or in the magnitude of miRNA-induced decay appear uncorrelated
(c with respect to the others in our example).

We then turned to the experimental data. For both miRNAs and both cell lines,
the total target level (see section 3.4 for target selection) exhibited the expected
threshold-decrease in function of the GFP expression level, which we used as proxy
for the miRNA expression (Figure 3.2D,G and Appendix Figure 3.7D). The Cy
and rp values, computed as ratios to the corresponding values for a similarly-sized
set of non-targets also showed the expected behaviors. Namely, the coefficient
of variation in total target expression across individual cells increased with the
GFP expression (Figure 3.2E,H, see also Appendix Figure 3.7B,E), while the mean
pairwise correlation coefficient of target expression in individual cells peaked at an
intermediate level of GFP mRNA expression (Figure 3.2F.I, see also Appendix
Figure 3.7C,F). Randomizations showed that in spite of the large noise, indicated
by the size of the error bars, the Cy of targets remained larger than that of
non-targets and the correlation of target expression larger than the correlation of
non-target expression. Thus, even though the noise of single cell experiments is
large and mRNA capture incomplete, the experimental data follow the theoretical
predictions and the simulations.
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Figure 3.2: Expected and observed response of miRNA targets to miRNA
induction in single cells. A. Results of numerical integration (Eqgs (3.1)-(3.2), solid
lines) and the average of six stochastic simulations (dots) of a model with four target
genes (indicated by distinct colors) chosen to cover a wide expression range and to have
either high or low sensitivity to the miRNA. Fifty in silico cells, each with a defined
miRNA concentration were simulated. B. Coefficient of variation (Cy) of in silico target
levels across cells, calculated in function of miRNA expression, from the simulation
trajectories. C. Pearson’s correlation coefficients of expression levels of pairs of genes
from in silico cells, calculated in function of miRNA expression from the simulation
trajectories. D,G. Total expression (log, sum of TPMs) of 100 lowest Ag hsa-miR~199a-
5p (red) and hsa-miR-199a-3p (blue) targets (see also Materials and Methods for target
selection) in the 1199 (D) and 1199-KTN1 (G) cells, in function of log, GFP expression in
the same cells. E,H. Mean Cy and F,I. Mean Pearson’s pairwise correlation coefficients
for miRNA targets in function of GFP expression in i199 (E,F) and 1199-KTN1 (H,I)
cells. Averages were calculated from the two hundred cells with GFP expression closest
to a specific expression level. Cy values are shown as ratios to corresponding values
computed for all non target mRNAs (E,H) and rp to mean of 50 evaluations of random
selection of 100 non-target genes (F,I). For B,C,D and G plot standard deviations are
shown, for E,F,H and I standard error.
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3.2.3 The sensitivity of individual targets to miRNA regulation can
be inferred from their expression in cells with varying miRNA
level

We used the computational model described in Eqs (3.1),(3.2) to derive two mea-
sures of target sensitivity to miRNA regulation. First, we derived the Michaelis-

Menten-like constant [Wee et al., 2012] K, = W defined as the ratio of the

dissociation rate of mRNA ¢ from the miRN A—primea Argonaute protein (whether
or not accompanied by Ago-catalyzed decay) and their rate of binding. We fur-
ther derived the level of free Ago-miRNA complexes at which a specific target i is
halfway between its maximum level T, realized when the miRNA is not expressed,
and its minimum level 77°, realized when the miRNA is in high excess relative to
all targets. As shown in the Methods, this critical concentration is given by

c _ KMi
BT T

We then devised a procedure for inferring these two parameters for each miRNA
target from the experimental data, which has a high level noise (total target levels
vary almost 2-fold in individual cells with similar GFP expression (Figure 3.2D,G),
for reasons that may include the low mRNA capture rate and the imperfect cou-
pling of miRNA and GFP mRNA levels). We used the system described in Egs.
(3.1),(3.2) to test procedures for analyzing noisy single cell data such that we
can infer target-specific parameters at the limit of accuracy afforded by the single
cell experiments. Relevant for the inference are the expression levels of targets in
the absence of the miRNA, the expression levels when the miRNA is present at
maximal concentration, and the expression levels in all cells in which the miRNA
has intermediate expression. Thus, we generated in silico data with the com-
putational model (Figure 3.3A), added noise in target levels comparable to the
noise observed in vivo (Figure 3.3B) and then experimented with the selection of
cells to use in the inference and with the smoothing of the target levels (Figure
3.3B,C) to most accurately recover the input parameters (see also Methods and
Appendix Figure 3.9). In particular, different miRNA targets respond at different
miRNA concentration, and only cells in which the miRNA concentration is in the
relevant range for that target could be used for inferring the shape of the target’s
response. Thus, to select cells that are relevant for the inference of parameters
of all targets in parallel, we examined the dependence of average target level as a
function of the miRNA concentration in a cell. As even the average target level
varies quite widely between cells with similar miRNA concentration (Figure 3.3B),
we explored procedures for smoothing average expression levels as a function of
miRNA expression before the selection of cells for the inference, as described in
Methods. The region of target sensitivity to the miRNA is indicated by the red
line in Figure 3.3B, and the gradient in mean target level as a function of miRNA

(3.3)
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concentration is shown in Figure 3.3C. The free miRNA levels inferred from these
in silico data showed that only when the total miRNA level is sufficiently high to
occupy all the available target sites (Figure 3.3D) does free miRNA accumulate, as
expected. The correlation between target-specific input and recovered parameters
(Figure 3.3E, Pearson’s r = 0.56, p-value = 3.0-1072°) was at the upper bound set
by the level of noise in the simulated data, as shown by correlation between the
parameters recovered from two simulations that only differed in the measurement
error added to the target expression levels in the simulated cells (Figure 3.3F).

3.2.4 A limited number of targets exhibit high sensitivity to miRNA
induction

We then turned to estimating the sensitivities of the predicted miRNA targets
from the experimental data. For each miRNA, we selected the 300 MIRZA-G-C-
predicted targets with highest prediction scores [Gumienny and Zavolan, 2015],
that had an expression level of at least ~8 TPM when the miRNA was not ex-
pressed, and underwent at least 8% downregulation at the highest miRNA concen-
tration (log, T7°/T? < —0.12). We used cells with log, GFP expression of 0 TPM
(1875 and 1629 cells for i199 and i199-KTN1 cells, respectively) to infer target
levels T?, when the miRNA is not expressed, those with more than 6.8 TPM GFP
(216 cells for i199 and 205 for i199-KTN1) to infer target levels 7;° at saturating
miRNA concentration, and all other cells to construct the 7" matrix of individ-
ual target expression levels in single cells with intermediate miRNA expression.
Applying the inference described in the methods (3.4), we obtained A% (Figure
3.4A) and K, (Figure 3.4B) parameters for all targets, and found that their dis-
tributions covered a 4 to 8 fold range. The average response of the 20 targets
with lowest and highest values of these two parameters to miRNA induction is
shown in Figure 3.4C. For both hsa-miR-199a-5p and hsa-miR-~199a-3p miRNAs,
target parameters inferred independently from the two cell lines were significantly
correlated (Figure 3.4D,E), indicating the robustness of our results. For hsa-miR-
199a-3p, Pearson’s correlation coefficients were 0.49 (p-value = 2.6-107!1) for A,
and 0.4 (p-value = 5.9 - 1078) for K, while for hsa-miR-199a-5p they were 0.43
(p-value = 3.6 - 10—8) for AG, and 0.34 (p-value = 2.2 - 107°) for K. Especially
apparent on the scatter plot of A% values is a small group of targets that respond
at low miRNA concentrations and thus have low A% in both cell lines (see also
Figure 3.4C). These low A% targets have higher prediction scores and are enriched
in DNA-binding factors compared to the high A% (Appendix Table 3.1 and 3.2
and Appendix Figure 3.10A). The measure that is most broadly used to validate
computational target predictions is the change in expression that predicted tar-
gets experience upon strong miRNA induction (Figure 3.4F). Sorting targets by
their MIRZA-G-C scores and computing the average fold change (between cells
with high (77°) and no (7?) miRNA expression) of the top = targets as a function
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Figure 3.3: Validation of the approach for inferring target sensitivity from
single cell data. A. Response of 300 in silico targets, each with associated parameters
describing its transcription, decay, rates of binding to and dissociating from the miRNA
(values drawn from distributions around experimentally measured values, see Appendix
Figure 3.9) in response to increasing miRNA concentration. B. Noise (orange) was
added to the target expression (black) and then running means (blue) were calculated
over increasingly wider windows to ensure that the estimated expression levels T;; for
gene i in cell j (for cells used in the inference (red)), were between the maximum (77)
and minimum (77°) levels, corresponding to no miRNA being expressed and to the
miRNA being expressed at very high levels in the cell (allowing for a small tolerance c;
dashed lines). C. Cells for which the gradient of the total target level with respect to
the miRNA level was less than -0.01 (shown in orange, and corresponding to the points
shown in red in panel (B)) were used to construct the 7" matrix of gene expression levels
per cell. D. Scatter plot of the total miRNA levels that were used as input to the model
and the levels of free miRNA inferred from the simulated data. E. Scatter plot of the
input vs. inferred Ag values. The Pearson correlation coefficient and its associated
p-value are also shown. F. Scatter plot of Ag values inferred from in silico data that
were generated with the same input target parameters, but to which two distinct sets of
”measurement errors” were applied. The Pearson correlation and associated p-value are
also shown.
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of x, we indeed found that the highest-scoring targets undergo the largest down-
regulation (Figure 3.4F, dotted lines), as expected. Similar patterns of stronger
down-regulation of top targets was also apparent when we sorted targets based
on their sensitivity to the miRNA reflected in the A% parameter (Figure 3.4F,
dashed lines). However, the best indicator of the degree of down-regulation of a
predicted target was its inferred K, (Figure 3.4F, full lines). This could indicate
that the inferred K, values are dominated by k.., the rate of target degradation
when complexed to the miRNA, while the rates of miRNA-target association and
dissociation vary less between targets. Finally, we examined what features of the
predicted miRNA binding site were most informative for the A%, Kj;, and fold-
change of the target (Appendix Figure 3.10B). For this, we selected only the 231
targets with a single binding site (for either of the miRNAs), to ensure that the
site context effects could be attributed unambiguously. Consistent with prediction
models being trained to predict mRNA level changes upon miRNA transfection,
the prediction scores correlate best (in absolute value) with the fold-change of the
predicted targets in cells with high miRNA expression compared with low miRNA
expression. Measures related to the A/U content in the vicinity of sites and their
relative location in 3" UTRs are most predictive for A% and Kj;, whereas the
degree of evolutionary conservation is most informative for the fold-change of the
target.

3.2.5 Implications for the ceRNA function of miRNA targets

To evaluate the implications of our results for the debate about the prevalence
of competing endogenous RNAs [Denzler et al., 2014, Bosson et al., 2014], we
used again our computational model with realistic Kj; values and explored the
effect of one miRNA target (the ceRNA) on the expression of all other targets.
Target parameters were set as described in section " In silico analysis”, to cover
the range inferred from various experimental systems. We note that a ceRNA
is only one species of RNAs expressed in a cell and, for the vast majority of
parameter values that are in the range determined for other RNAs in the cell,
the ceRNA is predicted to cause expression changes that are very low, below 1%.
Nevertheless, we illustrate some of the more interesting scenarios below. We set
the decay rate of the free ceRNA to 0.1/h, its k,, = 0.2/h, similar to those of
other targets, and we varied the k,;¢ and k., to achieve either low or high K.
We then asked how much the expression of the pool of targets with either low (less
than 0.02M) or high (greater than 2M) K, targets changes, when the ceRNA
is expressed at different levels. As shown in Figure 3.5, we found that highly
expressed ceRNAs with low K, can induce the upregulation of low, and especially
high K, targets. However, substantial upregulation of other targets, larger than
a few percent, is only achievable when the ceRNA has very high transcription
rate and does not decay when in complex with the miRNA. This is what one
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Figure 3.4: Parameters describing the response of individual targets to changes
in miRNA expression. Histograms of A% (A) and K (B) values of hsa-miR-199a-
5p (red) and hsa-miR-199a-3p (blue) targets, inferred from the 1199 cell line. The lines
indicate the best-fitting Gaussian distributions. C. Response of hsa-miR-~199a-5p (red)
and hsa-miR-199a-3p (blue) targets to the miRNAs in i199 cells. Targets were selected
based on A% (dashed lines) or Ky, (full lines) values, targets with low values of the
respective parameters are shown in strong color and those with high values in faded
colors. 20 targets were summed up for each category. Dots show the point where
the targets have undergone 1/2 of their maximal down-regulation. D. Scatter plot of
log, Ag values inferred for individual targets from the 1199 and i199-KTN1 cell lines.
Shown are also Pearson’s correlation coefficients and corresponding p-values. E. Scatter
plot of log, K s values inferred for individual targets from the i199 and i199-KTN1 cell
lines. Shown are also Pearson’s correlation coefficients and corresponding p-values. F.
Average log, fold change of hsa-miR-199a-5p (red) and hsa-miR-199a-3p (blue) targets
as a function of the number of top targets considered, where predictions are made based
either on K values (highest to lowest, full lines), Ag values (lowest to highest, dashed
lines) or MIRZA-G-C scores (highest to lowest, dotted lines).

intuitively expects, namely that a ceRNA can influence the expression of other
targets when its expression is comparable to that of all other targets taken together.
On the other hand, if the ceRNA has high K, its influence on the expression of
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other targets will be negligible. These results strongly suggest that ceRNAs that
were observed so far are highly expressed transcripts that are relatively resistant
to degradation. These would be able to "sponge” miRNAs from targets which
the miRNA strongly destabilizes, these having high k., and high Kj;. Good
candidates seem to be the relatively recently described circular RNAs [Memczak
et al., 2013, Hansen et al., 2013]. However, given the multiple constraints that a
transcript has to fulfill to be able to function as a ceRNA (very high transcription
and /or stability, low K;), this mode of regulation should be rare.
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Figure 3.5: Predicted response of different types of miRNA targets to the
induction of a ceRNA. A competing RNA with low (A,D), or medium (B,C,E,F)
Ky is transcriptionally induced at three different levels. A-C show the response of
targets with low Kj/(< 0.02) to the transcriptional induction of the ceRNA whereas
D-F show the response of targets that have high Kj; (> 2.0). The decay rate of the
ceRNA when unbound to the miRNA d..pnv4 was set to 0.1/h, whereas when bound to
the miRNA the ceRNA was assumed to be either stabilized and long-lived (k.q; was set
to 0.002/h) (A,B,D,E) or destabilized and shorter-lived (k.q: was set to 0.2/h) (C,F).
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3.3 Discussion

Single cell RNA-sequencing has opened a new route to the quantitative under-
standing of cellular functions. This technology has been used to characterize
transcript isoforms and gene expression [Shalek et al., 2013], to improve classi-
fication of cell types [Buettner et al., 2015], and to discover new, particularly rare
types of cells [Griin et al., 2015]. The relatively low rate of mRNA capture and the
large technical noise remain important issues for single cell sequencing, particularly
with droplet-based methods, which rarely use spike-ins for normalization [Ziegen-
hain et al., 2018, Gao, 2018]. However, developments such as unique molecular
identifiers [Griin et al., 2014] push the boundary towards ever increasing accuracy.
Although data analysis methods are still in flux, in our study, we used known prop-
erties of miRNA targets to gage whether our processing of the data is appropriate.
For example, we showed that miRNA target down-regulation computed from the
inferred target levels in single cells is similar to the down-regulation inferred from
bulk sequencing. Single cell analysis has also been used to infer parameters of gene
expression (see [Munsky et al., 2015] for a recent review).

Although it was proposed that miRNAs buffer stochastic fluctuations in gene
expression between cells [Hornstein and Shomron, 2006], experimental data per-
taining to expression of miRNA targets in individual cells with different levels of
miRNA expression is very limited. Some studies estimated the effect of endoge-
nous miRNAs on the protein expression noise of target reporters with multiple
miRNA-complementary sites [Mukherji et al., 2011, Schmiedel et al., 2015]. The
reduction in protein expression noise has been related to the degree of miRNA-
induced down-regulation, which is generally limited, except for reporters that carry
multiple perfectly-complementary miRNA binding sites in their 3 UTRs. Addi-
tional studies are needed to evaluate the extent to which miRNAs regulate the
expression noise of their targets in their native context (see also [Schmiedel et al.,
2015]). Target reporters have also been used to investigate whether miRNAs induce
correlations in the expression levels of their targets [Bosia et al., 2015]. However,
how endogenous miRNA targets simultaneously respond to miRNA induction in
individual cells is insufficiently understood, leading to ongoing debates about the
influence that one target can have on the expression of others.

In this study we developed a methodology to characterize the regulatory effects
of a miRNA on its hundreds of targets in single cells. We constructed an experi-
mental system in which the expression of a miRNA precursor can be induced with
doxycycline together with that of GFP from a bidirectional promoter. This system
was initially tested with two protein-coding genes, one for the nerve growth factor
and the other for eGFP, which showed good, though not perfect correlation at
single-cell level [Bornkamm et al., 2005]. In our case, absolute quantification of
the miRNA and GFP mRNA in cell populations indicated that expression of the
two RNAs was highly correlated in response to doxycycline induction, and we thus
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used the GFP mRNA as a proxy for the miRNA. It is likely that a direct measure-
ment of miRNA expression in the cells whose mRNAs are sequenced would further
increase the accuracy of the results of our model, and we expect the technology
to become available in the near future. We showed that this system exhibits pre-
dicted behaviors such as a peak in target noise as well as a peak in the correlation
of target levels, in the region of maximal sensitivity to the miRNA. The construct
can be easily modified to enable inducible expression of other miRNAs. We fur-
ther developed a methodology for the variational fitting of Michaelis-Menten-type
constants (/Ks) characterizing individual miRNA targets. This method takes ad-
vantage of the variability in transcriptional activity between individual cells that
leads to variability in miRNA expression levels between cells. For the first time we
have uncovered the hierarchy of targets of a miRNA, defined by the miRNA con-
centrations at which these targets respond within the context of all other targets
in the cell as well as by the Michaelis-Menten-type constants. We found that high
K, targets undergo the largest down-regulation, indicating that this parameter
reflects primarily their k., the rate of decay in the presence of the miRNA. Some
targets were particularly sensitive to the miRNA | requiring relatively low miRNA
concentrations to respond and having reproducibly low A% values. Their higher
prediction scores and enrichment in DNA-binding factors suggest that these are
prototypical miRNA targets [Gruber and Zavolan, 2013]. Simulations indicate
that targets with low Kj; and low A% values could sequester the miRNA from
other targets if they are highly expressed and do not decay substantially when
they interact with the miRNAs. Current approaches for studying miRNA-target
interactions, that measure mRNA level changes upon miRNA overexpression to
uncover the most relevant targets likely overlook these targets. Thus, it would
be interesting to apply our approach to systems in which functional ceRNAs have
been reported [Poliseno et al., 2010, Cesana et al., 2011, chun Cheng and Lin,
2013]. Interestingly, early analyses of miRNA and target expression found that
many miRNA targets are expressed at relatively high level in the tissue in which
the miRNA is expressed [Farh et al., 2005]. However, this has been attributed to
miRNAs optimizing the protein output of their targets rather than entirely sup-
pressing it. Our analysis also suggests that targets with low A%, which bind the
miRNAs but do not undergo substantial down-regulation in response to it, could
impose a threshold for miRNA-dependent regulation, which would otherwise affect
a large fraction of the transcriptome.

To demonstrate the robustness of our approach we have inferred parameters of
individual targets from two closely related cell lines. However, it is likely that the
sensitivity of a target to miRNA regulation is context dependent [Erhard et al.,
2014]. Because we wanted to map the parameters of miRNA-target interaction
in a native context of mRNA expression, we induced the miRNA expression from
an exogenous construct in HEK 293 cells. Although a large number of studies of
miRNA-dependent gene regulation have similar designs, it remains possible that
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the "true” targets of the miRNA are not naturally expressed in the cell type in
which the experiment is carried out. To fully address this possibility one would
perhaps have to progressively remove a highly abundant, cell type-specific miRNA,
which would be more challenging than inducing miRNA expression. miR-122 in
liver cells could be a good candidate for this type of experiment (see also [Denzler
et al., 2014]).

The miRNA target parameters that we inferred in our study will enable an
improved understanding of the dynamics of networks containing many compet-
ing miRNA targets. Furthermore, the approach can be easily extended to RNA-
binding protein regulators of mRNA stability as well as to other types of regulators
such as transcription factors.

3.4 Methods

3.4.1 A model to describe the dynamics of miRNA targets

We used the model shown in Egs. (3.1), (3.2) in the main text and also shown
below, which considers M targets of a miRNA, each being described by a tran-
scription rate «, decay rate ¢, rate of binding the Ago-complexed miRNA k,,,., rate
of dissociating from this complex k,¢s, and rate of degradation when complexed
to the miRNA k..,. With m; being the concentration of the free target, A,
the concentration of the miRNA-bound target, and A the total concentration of
Ago-miRNA complexes, we have the following system of 2M differential equations

Gﬂgt(t) = a; — 6;my(t) — kon,mi(t) (A — ; A, (t)) + kogp, Am, (t) (3.4)
8Ag£(t) = Kon,m;(t) (A — ; Am, (t)) — Ko f, A, (t) = Keat, Am, (t)  (3.5)

Denoting the total concentration of mRNA i (either free or bound to the
miRNA) by 7; and summing the two equations corresponding to mRNA i, the
dynamics of T; is described by

OTi(t)
ot

or, in terms of the fraction f; of molecules of mRNA i that are bound to
miRNAs,

= a; — 5mi(t) — Eear A, (1) (3.6)

oTi(t)
ot

= ;i = 6i(1 = i) Ti(t) = Kear, [T (1) (3.7)
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Defining the total concentration of mRNA ¢ when no miRNA is present as

TP = %t and when the miRNA is in high excess as T;° = o we obtain the total

concentration of mRNA i at a steady state as

o T
T = : - 1 : 3.8
0i(1— fi) +kears fi 1 1 <7:C—éoo _ 1) (3.8)

Note that the concentration of the miRNA is reflected in the fraction of bound
targets. In our experimental system, we vary the expression of the miRNA from
very low to very high levels and we can therefore estimate T and T7°. However,
the fraction of mRNA ¢ that is bound to the miRNA depends not only on the
constants of interaction of this mRNA with Ago-miRNA complexes, but also on
all other targets that are present in the system. To determine the interaction
constants we first derive for each mRNA i the fraction f; that is bound to the
miRNA, as follows. At equilibrium, we have

mikonZ‘AF = Aml (konffz kcatZ') ’ (39)
i 1—fi kors + kear,

mi L= i Kops o+ Feats (3.10)

Ami fz koniAf

and thus {
fi= ———, (3.11)
1 + S

with the Michaelis-Menten parameter defined as K, = Rossitheat; Considering

koni
all cells j € {1,..., N}, each with a different concentration of free Ago-miRNA
complexes Ap, and substituting f; in equation (3.8) we obtain

T0
Ty = d (3.12)

— - 7
1+ 1+iMi (F B 1)

J
where T}; is the total concentration of mRNA ¢ in cell j which can be computed
from the measured target levels. We isolate the ratio % and rewrite
i

T0

i 1 K
s M;
o T A (3:13)
Tji !

or equivalently, in vector form, substituting the left hand side of the equation by
T

?

T = A Ky (3.14)
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Here Kj; is a (1 x M)-matrix of Michaelis-Menten constants for individual
mRNAs, Az is a (IV x 1)-matrix of free Ago-miRNA complexes in individual cells
and T is a (N x M)-matrix of expression levels of individual mRNAs in individual
cells. T can be viewed as a Kronecker product of the two vectors Kj; and A}l,
written in a more general form as

B=uay'. (3.15)

Determining the vectors x and y becomes the reverse Kronecker product prob-
lem and has a known solution satisfying

min |B — vy | (3.16)

where ||- || denotes the Frobenius norm. The solution is obtained from the singular
value decomposition (SVD) B = UXV " as

ri=v2XuUa, vi=vEuVa (3-17)

From equation (3.13) we see that the SVD provides us the solution (Ag, Kj)
up to a scaling factor a, ‘ij—’g = Ij—f,Va € R. In principle, it is possible to
determine the factor a which explains the data best, using the total concentration
of Ago-miRNA complexes A in all cells.

Fitting the vectors Ar and K, on data generated from simulations of model
(3.4) & (3.5), we found that the correlation of the fitted Ap with the input value
was significantly higher than for Kj;. This is explained by the fact that we use the
total concentration of the miRNA in the cells to sort the cells and smoothen the
mRNA expression. Ar being a monotonic, strictly increasing, continuous function
of A, smoothing the data along the cell dimension (i.e. along the j index in
equation (3.12)) leads to a reduction of noise in the direction of the miRNA levels
Ap, but not in the mRNA dimension K,;. Therefore, the vector Ag is inferred
more precisely compared to Kj;. Using the more precisely inferred Ap values and
averaging over cells, we can increase the precision of Ky, values; relation (3.14)
always holds and after fitting, we use the values of Ar to compute the values Ky,
by averaging Ap,T;; over all cells j € 1...N

N
1 =
KM«L = N jé_l AF].ZFJ'Z', ] = 1, ,N (318)

We define A% the concentration of free Ago at which the target will be exactly
halfway between T and T7°.

T? TP + T Ky,
L S i Ry Lo (3.19)
1 Ti 2 J Ti
L+ 1+ngi (Tioo B 1) T

Fj
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3.4.2 In silico analysis

Stochastic simulations based on equations (3.1) & (3.2) were used to verify the
solution obtained in equation (3.12). Stochastic simulations were performed using
StochKit v.2.0.11 [Sanft et al., 2011]) with a tau leaping algorithm. For each
in silico cell, 6 simulations of length 100’000 (arbitrary time units) were carried
out to ensure convergence. The first 10’000 steps were considered the ”"burning
phase”, and were discarded before the analysis. Means and standard deviations
were calculated from the values obtained in the independent simulations.

To test the K, inference method we constructed an in silico data set as follows.
We considered a regulatory network of 300 miRNA targets. Each target was
characterized by parameters o, 0;, kcat;, Fon,, koff,, Whose values we assumed to be
in the ranges provided by our previous literature survey [Hausser and Zavolan,
2014]. For each target we chose a set of parameters from log-normal distributions,
which are shown in Appendix Figure 3.9. Similar to the experimental data set, we
considered 4000 virtual cells, each with a distinct concentration of free Ago-miRNA
complexes, chosen from a uniform distribution on the log, range of -40 to 14, such
as ~50% of cells end up with no miRNA expression, as observed in the experiment.
The expression of all targets as a function of the miRNA abundance in these virtual
cells is presented in Figure 3.3A. Note however that in the experimental system we
could not measure miRNA levels but rather the copy number of the GFP mRNA
and thus, in comparing the response of targets in the in silico and experimental
systems the z-axes differ, being the miRNA level for the in silico data, and the
GFP mRNA level for the experimental data. Interestingly, the miRNA-to-GFP
mRNA conversion factor corresponds well with the miRNA:GFP mRNA ratio of
4-8 that is apparent from the qPCR data (see also Figure 3.1). Each target starts
to decay at a specific threshold, depending on its parameters of interaction with
the miRNA and the effective miRNA concentration, which depends on the other
targets as well. To complete our in silico data generation we added log-normal
noise to the analytically computed expression levels of the targets (see Figure
3.30).

To focus on cells were the miRNA targets responded most sensitively to the
miRNA, we started with the selection of single cells from which to construct the
matrix 7. T7° and T were calculated from about 200 in silico cells with the
highest and 1600 cells with the lowest concentration of miRNA, numbers similar
to these in the experimental system. We analyzed the derivative of the sum of
log, target levels in function of miRNA expression and selected the cells where the
gradient was lower than -0.01 (Figure 3.3B). Cells with target expression values
very close to T or T/ were filtered out to avoid instabilities caused by division
by small numbers (see Equation 3.13). Next, we applied a smoothing procedure to
ensure that at intermediate miRNA expression, the Tj; level of targets 7 in cells j
was strictly in the range (77°;T0) (see Figure 3.3C). We started by replacing the

2
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expression level of a given target in a given cell with the mean over the 50 cells
with miRNA expression level closest to that in the reference cell. In a second pass,
for the smoothed Tj; values outside of the (77°;T?) range, we computed again a
running mean starting with a window size of ten and discarding iteratively the
strongest outliers until the mean value 7T} within each window was within the
(T2°; T?) range. For the windows were this procedure did not leave any points,
we increased the size of the second-pass window locally, repeating the pruning
procedure until all the Tj; values were within the (77°;7)) range. To ensure the
stability of the SVD we adjusted the boundary of the T intervals computed from
the data by a small safety margin ¢ (i.e. T) —c < Tj; > T + ¢,¢c = 10% of
T? — T for each gene).

We assessed the accuracy of the fitting procedure by comparing the inferred
Agj and K, parameters with those that were used in the model that generated
the in silico data. In spite of very high noise (Figure 3.3C) there was a good
correlation between the fitted and input values of the parameters, as shown in
Figure 3.3D. In addition, the correlation of parameters observed when simulating
two independent ”samples”, with two independent noise applications, was also
relatively high (Figure 3.3D). We also observed that the range of inferred Kj;s is
narrower than the range of input K;s.

Having validated our inference procedure on in silico data, we applied it to the
experimental data.

3.4.3 Cell culture

We used a Human Epithelial Kidney (HEK) 293 cell line with inducible expression
of hsa-miR199a (i199) and a derivative of this cell line (i199KTN1) in which a
Renilla Luciferase coding sequence followed by the 3’UTR of the kinectin 1 gene
(KTN1) were inserted in the genome. These cell lines have been introduced in
a previous study [Hausser et al., 2013]. Cells were grown in DMEM media with
10% FCS supplemented with Pen-Strep and Hygromycin for plasmid integrity.
For all the experiments, unless otherwise mentioned, cells were stimulated with
doxycycline at concentrations of 1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003 or 0
pg/ml, for 8 consecutive days. During this period, fresh medium with doxycycline
was provided every 24 hours and cells were split every 72 hours to prevent slowed
down growth in confluent cultures [Ghosh et al., 2015].

3.4.4 Single cell mRNA-sequencing
Cell capture, GEM Barcoding and cDNA synthesis

Cells were detached with Accutase® reagent (Gibco, Life Technologies™). The

cell number was determined with the Countess™ Automated Cell Counter (invitrogen™)
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following manufacturer’s instructions. Cells that were induced with different doxy-
cycline conditions (see section above) were pooled together in equal proportions
(1500 cells/ul of each). The cells were finally resuspended in PBS containing 0.04%
BSA at a target concentration of 700 cells/ul after straining with a cell strainer
to avoid clumps. This is performed so as to partition the input cells across tens
of thousands of droplets (GEMs) for the purpose of lysis and barcoding. GEM
Generation & Barcoding was performed according to manufacturer’s instructions
(Chromium™ Single Cell 3" Reagent Kits v2, Part No-120234, 10X Genomics).
Subsequently, reverse transcription (RT), and post GEM-RT cleanup was done
exactly as specified in the protocol from the manufacturer. The purified GEM-RT
product was then pre-amplified for 10 cycles, purified with SPRI select (Beckman
Coulter) and analysed on a high sensitivity Bioanalyzer.

Library preparation and sequencing

Library construction including Fragmentation, End Repair & A-tailing was per-
formed as per manufacturer’s protocol (Chromium™ Single Cell 3° Reagent Kits
v2, Part No-120234, 10X Genomics). Subsequently the fragments were purified
with a double sided size selection with SPRI select (Beckman Coulter), and lig-
ated to adapters. After ligation, the samples were purified once more with SPRI
select prior to the steps of sample index PCR reactions. The end product was
finally obtained with another round of double sided SPRI selection of the PCR
reaction. Quality control of the libraries was done on an Agilent Bioanalyzer High
Sensitivity chip. Libraries were then sequenced (Paired End) on a NextSeq 500
system (NextSeq 500/550 High Output v2 kit (75 cycles)) and the reads were
obtained according to the following parameters :

1. Seq Readl 26 cycles
Seq Read2 58 cycles
IDX Read 8 cycles

[Nlumina basecalling software version: bcl2fastq v2.19.0.316

SAN

Demultiplexing software version: cellranger mkfastq (2.0.0)

The library preparation and sequencing were performed at the Genomics Fa-
cility Basel. The sequencing data has been deposited to the Sequence read archive
(www.ncbi.nlm.nih.gov/sra/) under the accession number SRP067502.

Computation of the coefficient of variation of target expression

Given the set of cells sorted by their GFP expression, we calculated the coeffi-
cient of variation (C'V, standard deviation/mean) of a specific target as follows.


www.ncbi.nlm.nih.gov/sra/
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We traversed the list of cells from those with lowest to those with highest GFP
expression and for each cell, we considered the 199 cells with closest GFP level to
the reference cell, and calculated the C'V of each target. We then log,-transformed
the C'V of individual targets and determined the mean (and standard error) over
all 100 selected low A% targets. We applied the same procedure to all non-targets
(genes targeted neither by hsa-miR-199-3p nor by hsa-miR-199-5p). We then sub-
tracted the log, mean C'V of targets and non-targets, repeated this procedure for
the entire GFP expression range and shown the normalized C'V" as a function of
the log, GFP level in the reference cell.

PAGODA variance normalization

The 199 and i199-K'TN1 single cell data sets were divided in 100 cell batches,
grouped according to GFP expression level in the cells. A random sample of 100
cells was subsampled from the cell population with no GFP expression. Next,
the PAGODA data preparation, error modeling and variance normalization func-
tions were used with a standard parameters, on the raw data sets, as specified in
the PAGODA tutorial, http://hms-dbmi.github.io/scde/pagoda.html. The
normalized variance was used for the analysis showed in Appendix Figure 3.8B,E.

Computation of the pairwise correlation coefficients of target expression lev-
els

Given a population of cells sorted by their GFP expression, we calculated the
Pearson correlation of log, expression levels for all pairs of 100 targets, in function
of GFP level (as for C'V,| average values were computed over 199 cells with GFP
expression closest to that in the reference cell). Thus, we started from those
cells with lowest GFP expression and moved by one cell at a time to cells with the
highest GFP expression, computing the mean correlation coefficient (and standard
error of the mean) over all pairs of genes within a cell. We repeated the procedure
for 50 evaluations of 100 random genes that were not predicted as targets. Finally,
we divided the mean correlation coefficients of targets and non-targets and shown
this as function of GFP level in the cell.

Computation of GO enrichment

The hyperGTest function from GOstats package (R-Bioconductor repository) was
used to find enriched GO terms. The maximum ’pvalueCutoff’ for reporting was
set to 0.1, 'conditional’ to "TRUE’ and ’testDirection’ to ’Over’.


http://hms-dbmi.github.io/scde/pagoda.html
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3.4.5 Cell population mRNA-seq
Total RNA isolation

Total RNA was extracted with TRI Reagent® (Sigma-aldrich) following manufac-
turer’s instructions. Briefly, cells were detached from the plate by 5 min incubation
with Trypsin-EDTA solution (T3924 SIGMA), conditioned media was added and
whenever necessary, cells were counted with a Countess™ cell counter (Thermo
Fisher Scientific). A defined number of cells were pelleted and either snap frozen for
future use or resuspended right away in TRI Reagent® (#719424,Sigma-aldrich).
Total RNA was resuspended in nuclease free Water (#AM9937, Thermo Fisher
Scientific). Samples were always kept on ice or at -80°C.

mRNA purification

To select the Poly(A)* RNA, a double purification with Dynabeads® Oligo (dT)25
(Dynabeads® mRNA DIRECT™ Kit, Ambion™) was performed, using the man-
ufacturer’s manual and recommendations. Since the starting material was purified
total-RNA, only buffer B was used for the washing steps.

Library preparation

Purified mRNA was fractionated with Alkaline Hydrolysis Buffer at 95°C for
5 min. Fractionated mRNA was selected with RNeasy MinElute Cleanup Kit
(Qiagen, Inc.). Purified mRNA fragments were dephosphorylated with FastAP
(Life Technologies, Inc. ) and 5-phosphorylated with PNK (Life Technologies,
Inc. ) following manufacturer’s instructions for optimal conditions of the en-
zymatic reaction. After another round of RNeasy MinElute Cleanup Kit (Qia-
gen, Inc.), a pre-adenylated DNA adapter (5-TGGAATTCTCGGGTGCCAAGG-
3’) was ligated to the 3’end of the mRNA fragments at 4°C overnight using
the T4 RNA ligase 2, truncated K227Q (New England Biolabs, Inc.), in 1x
T4 RNA ligase buffer (no ATP) and 15% DMSO. The next day, after another
round of RNeasy MinElute Cleanup Kit (Qiagen, Inc.), an RNA adapter (5-
GUUCAGAGUUCUACAGUCCGACGAUC-3’) was ligated to the 5end of the
RNA fragments at 4°C overnight using the T4 RNA ligase 1 (Life Technologies,
Inc.), in 1x T4 RNA ligase buffer (1mM ATP) and 15% DMSO. Next day, after
another round of RNeasy MinElute Cleanup Kit (Qiagen, Inc.), Reverse Tran-
scription was performed using Superscript IV (Invitrogen, Inc.) and RTP primer
(5-CCTTGGCACCCGAGAATTCCA-3), following manufacturer’s instructions.
cDNA was then amplified by 12 cycles of PCR using NEBNext® High-Fidelity 2x
PCR Master Mix (NEB, Inc.), and Illumina TruSeq® Small RNA PCR compatible
primers.
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Library sequencing

The library was sequenced in the Genomics Facility Basel, on Illumina HiSeq 2000
or HiSeq 2500 instruments using Truseq compatible primers. Reads of 50 nt were
generated along with 8nt index reads corresponding to the sample-specific barcode.

3.4.6 Read mapping and data preprocessing

Reads from single cell and cell population mRNA-Seq were mapped to the tran-
scriptome (Ensembl, GRCh38.rel88) with Cellranger-1.3.1, the software provided
by 10x Genomics to map the reads produced by the Chromium™ Single Cell 3’
solution. Cellranger processes the cell and transcript barcodes, uses STAR 2.5.1b
to align the reads and counts the number of transcripts observed from each gene
to provide a table of unique molecular identifier (UMI) counts per gene and per
cell. The sequence of the eGFP mRNA, that was expressed from the exogenous
pRTS1 vector, was added to the transcriptome before mapping. After summing
the counts for all Ensembl entries for a given Entrez gene ID, the gene counts were
normalized to have in each cell one million counts. Next, a pseudocount, 0.001,
was added to each gene (and 1.0 to GFP gene for clarity of visualization). In all
of the analyses, genes with very low final estimated expression (mean TPM < 7
across cells) were discarded.

Targets selection

If not specified otherwise, we used in analyses the 300 highest probability targets
predicted by MIRZA-G-C [Gumienny and Zavolan, 2015] that were down-regulated
at least 8% at the maximum miRNA concentration (log,(77°/T?) < —0.12). This
selection applied to both miRNAs and both cell lines.

3.4.7 mRNA and miRNA qPCR

Cells were induced with various concentrations of doxycycline (as indicated in
the figure) for 8 days. After counting the cells, total RNA was extracted with
TRI Reagent® (Sigma-aldrich) following manufacturer’s instructions. c¢cDNA of
the targets of interest was generated using superscript III (Invitrogen™) fol-
lowing manufacturer’s protocol. For miRNA assays, reverse transcription and
PCR of either non-induced or Dox induced cells were performed following the
TagMan® Small RNA Assays quick reference protocol (Life Technologies™) with
100 ng of total RNA. For estimation of relative miRNA quantities , hsa-miR-
16 levels were used as an invariant control. For reverse transcription of GFP
mRNA, the following linear DNA primer was used: EGFP_R RT tagman, 5’-
TGTCGCCCTCGAACTTCAC-3’. To generate a cDNA copy of hsa-miR199a-5p
a stem-loop primer system from Life technologies ™ was used (Assay ID-000498).
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All gPCR were performed and read in StepOnePlus™ Real-Time PCR Systems
(Life Technologies™). To obtain absolute quantification data, standard curves
for GFP and hsa-miR-199a-5p were also included. GFP mRNA was generated
by in vitro transcription with pcDNA3-eGFP linearized vector and RiboMAX™
Large Scale RNA Production System — T7 (Promega, Co.) following manufac-
turer’s instructions. Molarity was estimated taking into account mass concentra-
tion (Qubit® RNA HS assay kit - Life Technologies™), average length (Agilent
RNA 6000 Pico Kit - Agilent Technologies, Inc.) and fragment sequence, with
the following formula: molarity = mass/(lengthxmass RNA base). The hsa-miR-
199a-5p miRNA (5-CCCAGUGUUCAGACUACCUGUUC-3’) was ordered from
Microsynth AG, and the molarity was calculated the same way. Absolute molecule
numbers were obtained utilizing the StepOne™ Software (Life Technologies™).

3.4.8 CLIP Seq

CLIP Seq was performed as described in Jaskiewicz L et. al [Jaskiewicz et al.,
2012] with few modifications. Ago2-CLIP in i199 cells was performed using Ago2
antibody-containing serum (kind gift from Prof Gunter Meister, University of Re-
gensburg, Germany) crosslinked to 100 ul of Dynabeads Protein G (#10003D,
Thermo Fisher Scientific). TURBO DNase (#AM2238, Thermo Fisher Scientific)
treatment of UV-crosslinked cell lysates was followed by a brief treatment with
RNase T1 (#EN0541, Thermo Fisher Scientific) for the specific recovery of Ago2-
protected RNA fragments. Subsequently, antibody-bound beads were incubated
with the cell lysate for 3 hrs at 4°C for precipitation. Furthermore, the beads
were washed, treated again with RNase T1, dephosphorylated and labelled with
radioactive ATP [y-32P] to facilitate purification of the required fragments from a
nitrocellulose membrane filter following a standard SDS PAGE electroelution pro-
cess. The recovered RNA fragments were ligated to a pre-adenylated 3’ adapter,
annealed to the RT primer and subsequently ligated to the 5" adapter prior to a step
of reverse transcription with SuperScript™ ITI Reverse Transcriptase (#18080044,
Thermo Fisher Scientific). In the finals steps, a PCR amplification of the reverse-
transcribed cDNA derived from the Ago2 immunoprecipitate, was followed by size
selection of 140-180 nucleotide long fragments in native PAGE and sequenced after
purification.

Data availability

The datasets produced in this study are available in the following databases:

e RNA-Seq, scRNA-Seq and CLIP-Seq data: NCBI Sequence Read Archive
with accession SRP150046 (https://www.ncbi.nlm.nih.gov/Traces/study/
?acc=SRP150046)
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https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP150046
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Figure 3.6: Appendix Figure S1. Characterization of hsa-miR-199a-5p and
hsa-miR-199a-3p miRNA activity. A. Relative hsa-miR-199-3p (blue, left y-axis)
and hsa-miR-199-5p (red, right y-axis) miRNA levels in doxycycline-induced cells com-
pared to the non-induced cells, measured by quantitative PCR, demonstrate that the
two miRNASs are co-expressed. The C; values obtained for each set were normalized to
the levels of hsa-miR-16 and to the values from non-induced cells. Error bars indicate
standard deviations from 2 experiments. B. Expression of miRNAs in fully induced
HEK cells as measured by Clip-Seq. Two replicates are correlated, hsa-miR-199-5p and
hsa-miR-199-3p are indicated. C. Number of transcripts identified in individual 1199
cells. D,E. Downregulation of top 100 predicted targets of the miRNAs in i199 cells
with different levels of GFP. Three sets of cells (200 cells each) with increasing GFP
expression levels were used, showing that the downregulation of hsa-miR-~199-3p (blue
lines, D), and hsa-miR-199-5p (red lines, E) targets increases with level of GFP expres-
sion; the distribution of log- fold changes of non targets is shown in black. P values are
from the Kolmogorov-Smirnov test comparing the distributions of targets with that of
non-targets.
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Figure 3.7: Appendix Figure S2. Characterization of miRNA activity in single
i199-KTN1 HEK cells. A. Count of transcripts identified from each individual gene
in single 1199-K'TNT1 cells. B. Normalized GFP mRNA expression distribution in single
cells. C,D. Downregulation of top 100 predicted targets of the miRNAs in i199-KTN1
cells with different levels of GFP. Three sets of cells (200 cells each) with increasing
GFP expression levels were used, showing that the downregulation of hsa-miR-199-3p
(blue lines, C), and hsa-miR-199-5p (red lines, D) targets increases with level of GFP
expression; the distribution of log-fold changes of non targets is shown in black.
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Figure 3.8: Appendix Figure S3. Expected and observed response of miRNA
targets to miRNNA induction in single cells; additional information. A. Fano
factor, of in silico target levels across cells, calculated in function of miRNA expression,
from the simulation trajectories. The panel corresponds to panel B, Figure 3.2, where
Cy is calculated using the same data. B, E. Normalized variance (using PAGODA
package [Fan et al., 2016]) of 100 lowest A% hsa-miR-199a-5p (red) and hsa-miR-199a-
3p (blue) targets and all genes (grey) in the 1199 (B) and 1199-KTN1 (E) cells, in function
of logy GFP expression in the same cells; see Methods about PAGODA normalization
and calculation details. D. Total expression (log, sum of TPMs) of 1000 random genes
in the 1199 (lower line) and i199-KTN1 (upper line) cells. C,F. Mean Pearson pairwise
correlation coefficients for miRNA targets in function of GFP expression in 1199 (C) and
i199-KTN1 (F) cells. Mean from 50 calculation evaluations of random selection of 100
non-target genes is shown as grey line. Means were calculated from the two hundred
cells with GFP expression closest to a specific expression level (C,D,F). For A,C,D and
F panels standard deviations are shown, for B and E standard error.
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Figure 3.9: Appendix Figure S4. Distribution of parameters of the in silico
targets. log, values are shown. See section ”In silico analysis” for additional explana-
tion.
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Figure 3.10: Appendix Figure S5. hsa-miR-199a-3/5p targets AIC;' correlate
with binding site properties. A. Low Ag targets have higher MIRZA-G-C scores
compared to high Ag targets. For each gene, we calculated the mean of the Ag values
inferred from the 1199 and i199-KTN1 data. We also calculated total MIRZA-G-C
scores for each gene by summing the prediction scores for the two miRNAs. We took the
union of the 40 targets with with lowest Ag for the two miRNAs (77 targets, as some
were targeted by both miRNAs) and the similar list of targets with the highest Ag and
compared their MIRZA-G-C scores. B. Spearman correlation of Ag, Ky and FC to site
properties. Binding site properties used to calculate MIRZA-G-C score for all targets of
the two miRNAs which have only one binding site (of either of the two miRNAs, about
70% of targets) are used in this correlation. The partial properties are not additive
and thus multi-site targets are omitted. Here ”Probability with conservation” is the
MIRZA-G-C score.
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Figure 3.11: Appendix Figure S6. Design and characterization of the ex-
perimental system. A. Schematic representation of the construct used to express
hsa-miR-199a-5p (red), hsa-miR-199a-3p (blue), and the reporter GFP mRNA from a
bidirectional promoter. Shown are also the "seed” sequences (nucleotides 2-7) of the two
miRNAs. B. The expression levels of hsa-miR-199a-5p and GFP mRNA, measured from
cell populations by quantitative PCR, are highly correlated. C. Histogram of normal-
ized GFP mRNA expression (TPM) in individual i199 cells. D. Correlation of mRNA
expression levels estimated from SC sequencing (1875 T9 cells (see text for definition)
from which no GFP mRNA was captured) and from CP mRNA-seq (6 replicates of non-
induced cell populations). E. Cumulative distribution of expression differences of the
top 100 targets of hsa-miR-199a-5p (red), top 100 targets of hsa-miR-199a-3p (blue),
and of 6179 remaining, ”background” genes (black) between cells expressing highest and
lowest GFP levels (216 T cells with > 6.8 TPM GFP (”ind”) vs. 1875 TV cells with 0
TMP GFP ("ctrl”)). Box plots of log,-fold change of non-targets, top 100 miR-199a-3p
and top 100 miRNA-199a-5p targets are shown in the inset. P-values of the rank-sum
test comparing targets and non-targets are also shown. F. Scatter plot of expression
differences of the top 100 targets of each miRNA, estimated from bulk sequencing (CP)
or from single cell sequencing (7°° and TV cells defined as for previous panel). Similar
to main Figure 3.1, but using TargetScan 6.2 instead of MIRZA-G-C-predicted targets.
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Figure 3.12: Appendix Figure S7. Expected and observed response of miRNA
targets to miRNA induction in single cells. A. Results of numerical integration
(Egs 3.1-3.2, solid lines) and the average of six stochastic simulations (dots) of a model
with four target genes (indicated by distinct colors) chosen to cover a wide expression
range and to have either high or low sensitivity to the miRNA. Fifty in silico cells, each
with a defined miRNA concentration were simulated. B. Coefficient of variation (Cy/)
of in silico target levels across cells, calculated in function of miRNA expression, from
the simulation trajectories. C. Pearson correlation coefficients of expression levels of
pairs of genes from in silico cells, calculated in function of miRNA expression from the
simulation trajectories. D,G. Total expression (log, sum of TPMs) of 100 lowest A%
hsa-miR-199a-5p (red) and hsa-miR-199a-3p (blue) targets (see also Methods for target
selection) in the 1199 (D) and i199-KTN1 (G) cells, in function of logy GFP expression in
the same cells. E,H. Mean Cy and F,I. Mean Pearson pairwise correlation coefficients
for miRNA targets in function of GFP expression in 1199 (E,F) and i199-KTN1 (H,I)
cells. Averages were calculated from the two hundred cells with GFP expression closest
to a specific expression level. Cy values are shown as ratios to corresponding values
computed for all mRNAs (E,H) and rp to mean of 50 evaluations of random selection
of 100 control genes (F,I). For B,C,D and G plot standard deviations are shown, for
E,F,H and I standard error. Similar to main Figure 3.2, but using TargetScan 6.2
instead of MIRZA-G-C-predicted targets.
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Figure 3.13: Appendix Figure S8. Parameters describing the response of in-
dividual targets to changes in miRINA expression. Histograms of AIC; (A) and
Ky (B) values of hsa-miR-199a-5p (red) and hsa-miR-199a-3p (blue) targets, inferred
from the 1199 cell line. The lines indicate the best-fitting Gaussian distributions. C.
Response of hsa-miR-199a-5p (red) and hsa-miR-199a-3p (blue) targets to the miR-
NAs in 1199 cells. Targets were selected based on A% (dashed lines) or K, (full lines)
values, targets with low values of the respective parameters are shown in strong color
and those with high values in faded colors. 20 targets were summed up for each cat-
egory. Dots show the point where the targets have undergone 1/2 of their maximal
down-regulation. D. Scatter plot of log, A]C;' values inferred for individual targets from
the 1199 and i199-KTN1 cell lines. Shown are also Pearson correlation coefficients and
corresponding p-values. E. Scatter plot of logy, Ky values inferred for individual targets
from the 1199 and i199-K'TN1 cell lines. Shown are also Pearson correlation coefficients
and corresponding p-values. F. Average log, fold change of hsa-miR-199a-5p (red) and
hsa-miR-199a-3p (blue) targets as a function of the number of top targets considered,
where predictions are made based either on K values (highest to lowest, full lines), Ag
values (lowest to highest, dashed lines) or Target-Scan context+scores scores (lowest to
highest, dotted lines). Similar to main Figure 3.4, but using TargetScan 6.2 instead of
MIRZA-G-C-predicted targets.
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Figure 3.14: Appendix Figure S9. Characterization of hsa-miR-199a-5p and
hsa-miR-199a-3p miRNA activity. A. Relative hsa-miR-199-3p (blue, left y-axis)
and hsa-miR-199-5p (red, right y-axis) miRNA levels in doxycycline-induced cells com-
pared to the non-induced cells, measured by quantitative PCR, demonstrate that the
two miRNAs are co-expressed. The C; values obtained for each set were normalized to
the levels of hsa-miR-16 and to the values from non-induced cells. Error bars indicate
standard deviations from 2 experiments. B. Expression of miRNAs in fully induced
HEK cells as measured by Clip-Seq. Two replicates are correlated, hsa-miR-199-5p and
hsa-miR-199-3p are indicated. C. Number of transcripts identified in individual 1199
cells. D,E. Downregulation of top 100 predicted targets of the miRNAs in i199 cells
with different levels of GFP. Three sets of cells (200 cells each) with increasing GFP
expression levels were used, showing that the downregulation of hsa-miR-199-3p (blue
lines, D), and hsa-miR-199-5p (red lines, E) targets increases with level of GFP expres-
sion; the distribution of log- fold changes of non targets is shown in black. P-values are
from the Kolmogorov-Smirnov test comparing the distributions of targets with that of
non-targets. Similar to Figure 3.6, but using TargetScan 6.2 instead of MIRZA-G-C-
predicted targets.
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Figure 3.15: Appendix Figure S10. Characterization of miRNA activity in
single i199-KTN1 HEK cells. A. Count of transcripts identified from each individual
gene in single 1199-KTN1 cells. B. Normalized GFP mRNA expression distribution in
single cells. C,D. Downregulation of top 100 predicted targets of the miRNAs in i199-
KTN1 cells with different levels of GFP. Three sets of cells (200 cells each) with increasing
GFP expression levels were used, showing that the downregulation of hsa-miR-199-3p
(blue lines, C), and hsa-miR-199-5p (red lines, D) targets increases with level of GFP
expression; the distribution of log-fold changes of non targets is shown in black. Similar
to Figure 3.7, but using TargetScan 6.2 instead of MIRZA-G-C-predicted targets.
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Figure 3.16: Appendix Figure S11. Expected and observed response of miRNA
targets to miRNNA induction in single cells; additional information. A. Fano
factor of in silico target levels across cells, calculated in function of miRNA expression,
from the simulation trajectories. The panel corresponds to panel B, Figure 3.2, where
Cy is calculated using the same data. B,E. Normalized variance (using PAGODA
package [Fan et al., 2016]) of 100 lowest A% hsa-miR-199a-5p (red) and hsa-miR-199a-
3p (blue) targets and all genes (grey) in the 1199 (B) and 1199-KTN1 (E) cells, in function
of logy GFP expression in the same cells; see Methods about PAGODA normalization
and calculation details. D. Total expression (log, sum of TPMs) of 1000 random genes
in the 1199 (lower line) and i199-KTN1 (upper line) cells. C,F. Mean Pearson pairwise
correlation coefficients for miRNA targets in function of GFP expression in 1199 (C) and
i199-KTN1 (F) cells. Mean from 50 calculation evaluations of random selection of 100
genes is shown as grey line. Means were calculated from the two hundred cells with GFP
expression closest to a specific expression level (C,D,F). For A and D panels standard
deviations are shown, for B,C,E and F standard error. Similar to Figure 3.8, but using
TargetScan 6.2 instead of MIRZA-G-C-predicted targets.
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Figure 3.17: Appendix Figure S12. hsa-miR-199a-3/5p targets Al(j: correlate
with binding site properties. A. Low Ag targets have lower Target-Scan scores
compared to high AI(:: targets. For each gene, we calculated the mean of the Al(j: values
inferred from the 1199 and i199-K'TN1 data. We also calculated total Target-Scan scores
for each gene by summing the prediction scores for the two miRNAs. We took the
union of the 40 targets with with lowest Ag for the two miRNAs (72 targets, as some
were targeted by both miRNAs) and the similar list of targets with the highest Ag and
compared their Target-Scan scores. B. Spearman correlation of Ag, Ky and FC to
site properties. Binding site properties used to calculate Target-Scan context+score for
all targets of the two miRNAs which have only one binding site (of either of the two
miRNAs, about 70% of targets) are used in this correlation. Note that features that
form Target-Scan and the context+score have minus values, as opposite to MIRZA-G-C
score and its partial elements. Similar to Figure 3.10, but using TargetScan 6.2 instead
of MIRZA-G-C-predicted targets.
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3.5.2 Appendix tables

’ Nr ‘ GO name

hydrolase
acting on carbon-
nitrogen (but not
peptide) bonds
transcriptional
vator activity, RNA
polymerase II core
promoter proximal re-
gion sequence-specific
binding

RNA polymerase II
transcription  factor
activity, sequence-
specific DNA binding

‘ GOMFID P—value ‘ ExpCount ‘ Count ‘ Size ‘

activity,
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monooxygenase activ-
ity

G0:0004497

0.062719265

0.5035461

deacetylase activity

G0:0019213

0.062719265

0.5035461

heme binding

G0:0020037

0.062719265

0.5035461

Nel oo N| (=)

tau protein binding

G0:0048156

0.062719265

0.5035461

NN DN N

NN DN N

10

sequence-specific
DNA binding

G0:0043565

0.065069175

6.2943262

10

25

11

helicase activity

G0:0004386

0.069707031

1.7624113

12

transcription regula-
tory region sequence-

G0:0000976

0.097208599

5.035461

20

specific DNA binding

Table 3.1: Appendix Table S1. ”Molecular function” GO categories enriched
in targets with low Ag. The union of the 40 targets with the lowest Ag for each of
the two miRNAs (mean over 1199 and i199-KTN1 data, 74 targets in total) was used as
foreground set. As a background the joint list of targets (all for which Ag values were
calculated) for 3p and 5p arm (present in both i199 and i199-KTN1 data sets; 301 in
total) was used. 15 of the 74 targets are annotated with GO terms 2,3,5,10-12, related
to transcription regulation and DNA binding.



CHAPTER 3. A.J. RZEPIELA ET AL. / MOL SYST BIOL 14(8) (2018)

81

’ Nr ‘ GO name ‘ GOMFID \ Pvalue \ ExpCount \ Count \ Size ‘

organic anion trans-

1 | membrane trans- | GO:0008514 | 0.01355234 | 0.7234043 3 3
porter activity

g | transmembrane trans- | o 6090857 | 002635304 | 2.6524823 6| 11
porter activity

3 | transferase activity GO:0016772 | 0.03671596 5.787234 10 24

4 | Substrate-specific G0:0022892 | 0.04285169 | 3.6170213 7| 15
transporter activity
carbohydrate deriva-

51 .. . GO:0097367 | 0.05152047 | 11.0921986 16 46
tive binding

6 | NAD+ kinase activity | GO:0003951 | 0.05749476 | 0.4822695 2 2

7 | diacylglycerol kinase | 1504143 | 0.05749476 | 0.4822605 21 2
activity
organic acid trans-

8 | membrane trans- | GO:0005342 | 0.05749476 | 0.4822695 2 2
porter activity
amino acid transmem-

9 | brane transporter ac- | GO:0015171 | 0.05749476 | 0.4822695 2 2
tivity

10 | antiporter activity GO:0015297 | 0.05749476 | 0.4822695 2 2

11 | Adremergic receptor | 031600 | 0.05749476 | 0.4822695 21 2
binding
metal ion transmem-

12 | brane transporter ac- | GO:0046873 | 0.05749476 | 0.4822695 2 2
tivity

13 | catalytic activity GO:0140103 | 0.05749476 | 0.4822695 2 2

14 | adewyl o mucleotide | 0. 0030554 | 0.07966644 | 9.8865248 14| 41
binding

15 | anion binding GO:0043168 | 0.08369943 | 13.5035461 18 56

16 | purine ribonucleotide | o ha0555 | () 085241 | 10.8510638 15 | 45
binding

|7 | lon transmembrane | o001 5075 | 008612716 | 1.1732852 3] 5
transporter activity

18 | ATP binding GO:0005524 | 0.08957296 | 9.1631206 13 38

19 | calmodulin binding GO:0005516 | 0.09252429 | 1.2056738 3 5
cation transmem-

20 | brane transporter | GO:0008324 | 0.09252429 | 1.2056738 3 5
activity

21 | tubulin binding GO:0015631 | 0.09660753 | 2.6524823 5 11

Table 3.2: Appendix Table S2. ”Molecular function” GO category analysis
for high Ag targets. The union of the 40 targets with the highest Ag for each of
the two miRNAs (mean over 1199 and i199-KTN1 data, 77 targets in total) was used as
foreground set. As a background the joint list of targets (all for which Ag values were
calculated) for 3p and 5p arm (present in both 199 and i199-KTN1 data sets; 301 in
total) was used.
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Abstract

Despite substantial progress in single-cell RNA-seq data analysis methods, there
is still little agreement on how to best to normalize such data. Starting from basic
requirements such as that inferred expression states should correct for both bio-
logical and measurement sampling noise, and that changes in expression should
be measured in terms of fold-changes, we here derive a Bayesian normalization
procedure called Sanity (SAmpling Noise corrected Inference of Transcription ac-
tivitY) from first principles. Sanity estimates expression values and associated er-
rors bars directly from raw unique molecular identifier counts without any tunable
parameters. Using simulated and real scRNA-seq datasets, we show that San-
ity outperforms other normalization methods on downstream tasks such as finding
nearest-neighbors cells, and clustering cells into subtypes. Moreover, we show that
by systematically overestimating the expression variability of low expressed genes
and by introducing spurious correlations through mapping the data to a lower-
dimensional representation, other methods yield severely distorted pictures of the
data.

4.1 Introduction

In the past decade, much effort has been invested in adapting methods for quan-
tifying transcriptome and epigenome states on a genome-wide scale to the single-
cell level. This has led to a large number of new methods that are starting to
make it possible to track the states of single cells across tissues and embryos as
they are developing [Picelli et al., 2013, Hashimshony et al., 2012, Macosko et al.,
2015,Klein et al., 2015,Buenrostro et al., 2015, Cusanovich et al., 2015, Rotem et al.,
2015, Smallwood et al., 2014, Nagano et al., 2013, McKenna et al., 2016, Kalhor
et al., 2018, Frieda et al., 2017, Frei et al., 2016, Raj et al., 2018, Spanjaard et al.,
2018, Wagner et al., 2018, Angermueller et al., 2016, Clark et al., 2018, Adamson
et al., 2016, Dixit et al., 2016, Jaitin et al., 2016, Datlinger et al., 2017]. It is
widely expected that these methods will revolutionize our understanding of the
ways in which cell fate and cell identity are regulated, and large consortia are be-
ing formed with the aim to comprehensively chart single-cell landscapes in model
organisms [Regev et al., 2017, Rajewsky et al., 2020].

To fulfill the promise of these single-cell measurement technologies, it will be
crucial that computational methods are available to unambiguously determine
what the raw measurements say about the states of individual cells. We not only
want to be able to integrate results of single-cell RNA-seq (scRNA-seq) measure-
ments from different labs and protocols, but also with results of different measure-
ment technologies such as FISH (e.g. [Raj et al., 2008]). To make this possible, the
expression values that we extract from scRNA-seq data should correspond to phys-
ically meaningful quantities that can be directly compared with measurements of
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the same quantities made with other experimental methods. In addition, the esti-
mated values of these concrete physical quantities should follow directly from the
experimental data with as small a number of additional assumptions as possible,
and not depend on arbitrary parameters that the user can set at will. Moreover,
to be able to determine when different measurements are mutually consistent,
estimates should be accompanied by error bars.

However, although there has been a veritable explosion of scRNA-seq analysis
tools in recent years, little attention has been given to satisfying these objectives.
Instead of a few methods that estimate quantities with clear physical interpretation
in a transparent manner, scientists are faced with a large number of ad hoc methods
that apply complex transformations to the data to perform combinations of tasks
including imputation /normalization, clustering, dimensionality reduction, pseudo-
time and trajectory inference, and visualization. These methods often have many
tunable parameters, produce outputs in abstract spaces that lack clear biological
meaning, and are often even stochastic, giving varying outputs even when run on
the same data with the same parameters. For example, the popular t-SNE [Van
Der Maaten and Hinton, 2008] and UMAP [Mclnnes et al., 2018] visualization
tools, are both stochastic, highly-dependent on parameter settings, and position
cells in a space whose dimensions lack biological interpretation.

Here we focus on the basic task of normalization/imputation of single-cell gene
expression states from raw scRNA-seq transcript counts. Using only minimal
assumptions we derive from first principles a Bayesian method that corrects not
only for the finite sampling associated with the capture and sequencing of mRNAs,
but also for the Poisson noise inherent in the gene expression process itself. Our
method, which we call Sanity (SAmpling Noise corrected Inference of Transcription
activitY) is deterministic, has no tunable parameters, and provides error-bars for
all its estimates.

We compare Sanity with a selection of popular methods for imputation /normalization
from the recent literature ( [Eraslan et al., 2019, Lun et al., 2016, van Dijk et al.,
2018,Huang et al., 2018, Li and Li, 2018, Hafemeister and Satija, 2019, Lopez et al.,
2018], see methods) and show that only Sanity can effectively remove Poisson
sampling fluctuations to infer the true variation in gene expression of each gene
across cells. In addition, we show that all other methods we tested introduce
severe distortions of the data such as inducing strong correlations between ex-
pression estimates and total Unique Molecule Identifier (UMI) count of cells, or
inferring strong co-expression between large numbers of genes when none is evi-
dent in the data. Finally, we show that the expression levels estimated by Sanity
outcompete those of other methods in downstream analysis tasks such as finding
nearest-neighbor cells and clustering.
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4.2 Results

Sanity’s approach, which is detailed in the online methods, is summarized in Fig.
4.1. Although it is tempting to consider the gene expression state of a cell to
simply correspond to the vector of its mRNA counts, these mRNA counts will
exhibit Poisson fluctuations from cell to cell, even if the rates of transcription and
mRNA decay were constant across cells and time. We thus argue that changes
in expression state should only reflect changes in transcription and decay rates of
mRNAs, and correct for the intrinsic noise in gene expression. The crucial insight
is that, even if transcription and mRNA decay rates vary with time in an arbitrary
way in a given cell, the mRNA count m, of each gene g is still just a Poisson sample
of a single effective ‘transcription activity’ a,, which is a weighted average of its
recent transcription and mRNA decay rate in the cell (Fig. 4.1a and b). Sanity
represents the expression state of a cell by a vector of transcription quotients «,
corresponding to these relative transcription activities (Fig. 4.1b and c). As shown
in the online and supplementary methods, the probability of the raw UMI counts
of a cell given its transcription quotients is a product of Poisson distributions (Fig.
4.1d).

In order to infer the log transcription quotients (LTQ) of each gene in each
cell from the UMI counts, Sanity makes as few prior assumptions about how LTQs
might vary across genes and cells. In particular, it only assumes that, for each gene
g, the distribution of its LTQs across cells can be characterized by an unknown
mean fi, and variance vy. Given this, the entire inference procedure follows from
first principles, without any tunable parameters.

As detailed in the online methods, we use 7 real and 2 simulated scRNA-seq
datasets to compare Sanity’s performance with those of two basic normalization
methods that simply log-transform raw or normalized UMI counts (called Raw-
Counts, and TPM, respectively), and 7 other recently proposed normalization
methods (DCA [Eraslan et al., 2019], Deconvolution [Lun et al., 2016], MAGIC
[van Dijk et al., 2018], SAVER [Huang et al., 2018], scImpute [Li and Li, 2018],
sctransform [Hafemeister and Satija, 2019], and scVI [Lopez et al., 2018]).

4.2.1 Sanity accurately corrects for Poisson fluctuations to identify
true variance in gene expression

A key aim of Sanity’s normalization is to correct for both biological and technical
sampling noise to quantify the true biological variation in gene expression across
cells. Testing this is challenging because the true expression variability of each gene
is generally unknown. To address this issue we first analyzed a carefully designed
study of mouse embryonic stem cells (ESCs) from Griin et al [Griin et al., 2014]
in which not only scRNA-seq measurements were taken for cells cultured in both
2i and serum conditions, but the same measurement protocol was also applied



CHAPTER 4. J. BREDA ET AL. NAT BIOTECHNOL 39 (2021) 86

a . N
Nucleosome Cohesin I

R —\l’ it Pre-mRNA mRNA RISC
o —~— 1.7
5 —Promoter Ecw_:— - __Ago R

Spliceosome RNase AN

ﬁ ; JQ_ —~~ ;
Aglt) /\/\l\' - 1g(t), W

Sue

Histone modification

Transcription activity of gene g Cell state O
00 t
(l,/ 777”
ag = (MmN g) = / Ag(t) exp |:7 / ;1,,(7')(17'] dt Gy==—=(=
0 Jo Z,,’ ag' Z,/ my
c
Transcription activity G¢ in cell ¢ mRNA counts 772¢ in cell ¢ UMI counts 7ic in cell ¢
Each mRNA count my, is a Each UMI count ng is a
e = AcQlc Poisson sample with mean ¢ Poisson sample with mean peage
(age)™oe _ (peage)"se _
with A = Z("/“ P(mgelage) = 2 e~ P(nge|pe, age) = —2L—e Petge

mgc!

nge!

9

Captured
mRNA

Likelihood: Probability of the UMI counts 72 given the cell state (¢

Noavge)"e
pi = T [ ]

9

Figure 4.1: Summary of the Sanity approach. a: Cartoon of the flow of causality from the
physical state of the cell to gene expression patterns. The concentrations of transcription
factors (TFs), chromatin modifiers, and other regulatory factors determine changes in
chromatin state, 3D organization of the chromosomes, binding and unbinding of TFs to
promoters and enhancers, and so on. These determine the time-dependent rate A4 (%)
at which gene g was described a time ¢ in the past. Similarly, the concentrations of
microRNAs, RNAses and other RNA binding proteins determine the time dependent
rate f1q(t) at which mRNAs of gene g decayed a time ¢ in the past. b: The ‘transcription
activity’ a4 of gene g is defined as the expected number of mRNAs and is a weighted
average of its transcription and decay rates in the past. We define the expression state
of the cell as the vector @ of relative transcription activities of all genes. c: Logical flow
from expression state d. to observed UMI counts 7i.. The expression state &, and total
transcription activity A. determine the transcription activities a4.. For each gene g, the
probability P(mgc|age) to have mgy. mRNAs is a Poisson distribution with mean age.
Assuming each mRNA in cell ¢ has a probability p. to be captured and sequenced, the
probability P(ngc|pe, ag) to obtain ng. UMIs is a Poisson distribution with mean pcage.
d: The probability to obtain the UMI counts 7i. given the cell state &, is a product over
genes of Poisson distributions with means N.ag., where N, is the total UMI count in
cell c.
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to single-cell equivalent aliquots from pooled RNA. The expression variation in
these aliquots thus solely derives from technical sampling noise. In addition, the
ESCs are highly homogeneous so that little true expression variation is expected
for ESCs in the same condition.

Figure 4.2a shows box-whisker plots of the distributions of coefficients of varia-
tion (CV) across genes for each of the 4 datasets, as calculated from the expression
estimates of each of the normalization methods (except for sctransform, which
does not report estimated expression values). Analogous results using standard-
deviation in LTQ (which is equivalent to CV when CV is small, see Suppl Text 1)
are shown in Suppl. Fig.4.6.

Ideally the methods should infer that there is no true variability at all for
the aliquots, and relatively little variability for the ESCs. However, although all
methods infer that CVs are slightly larger in serum than 2i, which is in line with
previous analysis [Griin et al., 2014, most methods infer substantial variability for
most genes. In particular, methods that do not correct for Poisson noise (Raw-
Counts, TPM, Deconvolution, and sclmpute) infer CVs of larger than 0.5 for the
large majority of genes in both cells and aliquots. In contrast, the CVs that Sanity
infers are at least twofold lower than those of all other methods, and only Sanity
correctly infers that there isn no expression variability in the aliquots, i.e. with
CVs less than 10% for almost all genes.

There is no reason to expect that CVs in expression should correlate with
mean expression, and in bulk RNA-seq there is indeed no correlation between
mean log-expression and variance in log-expression across conditions (Suppl. Fig.
4.7). However, at the single-cell level, the intrinsic Poisson fluctuations will add
a term 1/y/mean to the CV, as is well appreciated in the scRNA-seq literature,
e.g. [Brennecke et al., 2013]. Thus, systematic correlations between CV and mean
of normalized expression levels reflect to what extent a method has failed to correct
for Poisson sampling noise. Figure 4.2b shows scatter plots of CV against mean
expression for all methods and we see that, with the exception of Sanity and
MAGIC, all other methods show a strong negative correlation between CV and
mean, indicating that Poisson sampling noise dominates the observed variability
for all but the highest expressed genes. These observations apply to all datasets
(Suppl. Fig. 4.8), including the simulated dataset that we discuss next.

To more directly test the accuracy with which different methods estimate the
expression variance of each gene, we constructed a simulated dataset for which the
true mean and variation in LTQ across cells is known for each gene (see Online
Methods and Suppl. Fig. 4.9). Comparing the true CVs of each gene with those
inferred by each method (Suppl. Fig. 4.10) shows that only Sanity, and to a
lesser extent Saver, exhibit a good correlation between true and inferred CVs. A
comparison of true and inferred variances in LTQs confirms this overall picture
(Suppl. Fig. 4.11). Notably, for all methods except for Sanity, the Poisson noise
causes the inferred CVs of low expressed genes to be systematically higher than
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Figure 4.2: Effects of Poisson fluctuations on gene expression variance. a: Box-whisker
plots showing the median (circle) as well as the 5th, 25th, 75th, and 95th quantiles of
the distribution of coefficients of variation (CV) of gene expression levels across genes,
for each of the 4 datasets (see legend) as inferred by each of the normalization methods.
b Scatter plots of CV (standard-deviation divided by mean) against mean expression
for all genes in each of the 4 datasets (colors as in panel a) as inferred by each of the
normalization methods. The Pearson correlation coefficient between log CV and log
mean is shown on top of each plot. The axes are shown on logarithmic scales and are
kept similar across panels, except for Sanity and scVI where the mean expression values
are on a very different scale from those of the other methods.

their true CV, resulting in an almost complete loss of correlation between true
and inferred CV across genes for most methods. For very low expressed genes the
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expression data is so sparse that it is only possible to estimate an upper bound
on expression variability (see Suppl. Text 1) and Sanity conservatively infers that
the true expression variability is low, so that these genes will not significantly
contribute to most downstream analyses.

In summary, Sanity is the only normalization method that can reliably correct
for the Poisson sampling noise to estimate the true expression variability of each
gene.

4.2.2 The accuracy of gene expression estimates strongly depends on
the depth of coverage

The gene expression measurement noise is expected to scale inversely proportional
to absolute expression, i.e. for a gene with (n) expected UMI in a cell the Poisson
noise will cause the measured log-expression log(n) of a gene to differ from the true
log-expression log({n})) by a term of order 1/y/n. We thus used the same simulated
dataset to compare the accuracy of the gene expression estimates of the different
methods methods as a function of depth of coverage. In particular, we stratified all
genes into bins according to their absolute expression (average number of UMI per
cell) and calculated the accuracy of various expression estimates for each method
and each bin (Fig. 4.3).

While most methods accurately estimate mean log-expression levels for genes
with at least 0.1 UMIs per cell, DCA, scVI, sctransform, and scImpute never do
(Fig. 4.3a). Second, although Sanity is essentially the only method that can accu-
rately estimate the true variance in log-expression levels across cells, even Sanity
can only reliably estimate the true variance in LT(Q for genes that have at least 1
UMI per cell on average (Fig. 4.3b). Third, the Pearson correlations between true
and estimated log fold-changes quantify how accurately each method identifies in
which cells a gene is highest and lowest expressed (Fig. 4.3c). We observed that
Pearson correlations systematically increase with absolute expression, with Sanity
performing best at each expression level, followed closely by TPM, Deconvolution
and SAVER. In contrast, the log fold-changes predicted by MAGIC, DCA and
scVI show almost no correlations with the true log fold-changes, even for highly
expressed genes, suggesting that these method systematically distort expression
levels. However, even for the best methods, correlations are only consistently high
for genes with at least 1 UMI per cell, and consistently low for genes with less
than 0.1 UMI per cell.

As discussed in Suppl. Text 1, with current capture efficiencies the vast ma-
jority of genes have less than 1 UMI per cell (Suppl. Fig. 4.31). As accurate
estimates of expression levels are only guaranteed for genes with at least 1 UMI
per cell (Fig. 4.3), this implies accurate estimates of expression patterns for only a
few hundred genes. Consequently, if it were possible to substantially raise capture
and sequencing efficiencies, the number of genes for which we would be able to
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Figure 4.3: Accuracy of the gene expression estimates as a function of depth of coverage.
Genes were stratified into 5 bins of absolute expression (in average number of UMI per
cell) and for each bin the distribution of relative errors in estimated mean log-expression
(panel a), estimated variance in log-expression (panel b), and Pearson correlations be-
tween true and estimated log fold-changes across cells (panel ¢) were calculated for each
method (different colors, see legend). The distributions are shown as box-whisker plots
showing the median, inter-quartile range, 5 percentile, and 95 percentile for the genes
in each expression bin. Note that the vertical axes are shown on a logarithmic scale for
the top two panels. Methods are sorted from right to left in approximate order of their
accuracy in each panel.

obtain accurate expression estimates could be dramatically increased (Suppl. Fig.
4.31).

4.2.3 Many normalization methods introduce spurious correlations

Due to variation in cell size, mRNA capture efficiency, and sequencing depth, the
total number of UMIs can fluctuate significantly from cell to cell. Therefore, most
scRNA-seq processing methods normalize expression levels for the total number
of mRNAs (i.e. UMIs) that were captured from a given cell. The simple TPM
procedure does so by dividing the observed counts for each gene by the total UMI
count of the cell, and Deconvolution accomplishes the same normalization using
a more sophisticated approach. With the exception of RawCounts and scImpute,
all other methods normalize for total UMI count.

If the normalization for total UMI count were successful, we would expect no
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systematic correlation between inferred expression levels and total UMI counts
across cells for most genes. However, this is not what we observe. For each
method and gene, we calculated the Pearson correlation between the inferred log-
expression levels and log total UMI counts. Using the Zeisel dataset as an example,
Fig. 4.4a-b shows the distribution of Pearson correlations, as well as raw scatters
of the normalized expression levels as a function of log total UMI count for one
example gene (Zbed3).

As expected, because RawCounts and scImpute do not normalize for total UMI
count N, for these methods most genes show a positive correlation between the
inferred expression levels and log(N,). In contrast, the simple TPM method, De-
convolution, and especially Sanity and sctransform, successfully remove this cor-
relation. However, although DCA, SAVER, MAGIC and scVI also intend to nor-
malize for total UMI counts, their normalized expression levels show even stronger
correlations with log(N.) than the non-normalized RawCounts. The scatters with
the inferred expression levels for the gene Zbed3 as a function of log(N,) illustrate
how dramatically some normalization methods transform the input data. The
RawCounts show that this gene has fairly low expression, with 0 or 1 UMIs ob-
served in most cells, and with a slightly higher chance to observe 1 or 2 UMIs
when the total UMI count N, is larger. However, DCA, MAGIC, SAVER, and
scVI completely transform this input data into a scatter of continuously varying
expression levels that either correlate negatively (DCA, SAVER, scVI) or strongly
positively (MAGIC) with total UMI count. These observations again generalize
to all other datasets as shown in Suppl. Fig. 4.12.

In many studies, systematic analysis of the co-expression of pairs of genes is
used to identify co-regulated pathways or regulatory modules. For such applica-
tions, it is thus crucial that the pairwise correlations of the expression profiles
accurately reflect the co-expression evidence in the data. To investigate this, we
calculated Pearson correlations of the normalized log-expression levels of all pairs
of genes, and then compared these pairwise correlation coefficients across the var-
ious methods, using the Baron dataset as an example (Fig. 4.4c-g). The pair-
wise correlations by-and-large agree between Sanity and the simple TPM method
(Fig. 4.4c), and this agreement is also observed for Deconvolution and sctrans-
form (Suppl. Fig. 4.13). Although Sanity and scImpute also by and large agree
on which pairs of genes are most strongly positively or negatively correlated (Fig.
4.4d), scImpute predicts moderately positive correlations for many gene pairs for
which Sanity predicts no correlation at all. This behavior results from sclmpute
not normalizing for total UMI count, and is indeed also observed for RawCounts
(Suppl. Fig. 4.13).

A very different pattern is observed for the comparison of Sanity with MAGIC
(Fig. 4.4e). For many of the pairs of genes for which Sanity infers no co-expression,
i.e. zero correlation, MAGIC infers a broad range of correlations running from
almost perfect anti-correlation, to perfect correlation. To further investigate this,
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Figure 4.4: Correlations between inferred gene expression levels and library size, and
between pairs of genes. a: Scatter plots of the normalized log-expression log(e.) of the
example gene (Zbed3) versus the logarithm of the total UMI count log(NN.) across cells
for each method. The Pearson correlation of the dependence is shown above each panel.
b: Violin plots of the distribution of correlation coefficients between log(e.) and log(N,)
for all genes, for the Zeisel dataset. Each color corresponds to a method, indicated
below each plot. c-e: Density plots of Pearson correlations for all pairs of genes as
inferred by Sanity (x-axis) against the correlations inferred by TPM, scImpute, and
MAGIC (y-axis). The color scale shows the density in log;; number of gene pairs and
zero counts are shown in white. The red and the magenta rectangles in panel e indicate
the pairs of genes with correlation above 0.975 for MAGIC and between -0.03 and 0.005
for Sanity (red), and all pairs with correlation between -0.3 and 0.3 for MAGIC and
between 0.6 and 0.93 for Sanity (magenta). f: 2-dimensional histogram of counts per cell
summed over the 4360 pairs of genes from the red rectangle in panel e. The height of the
histogram is shown in log;, as a color and zero counts are shown in white. g: Analogous
2-dimensional histogram of counts for the 105 pairs of genes from the magenta rectangle
in panel e.
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we focused on a subset of 4360 pairs of genes within the red rectangle of Fig.
4.4e, for which MAGIC predicted nearly perfect correlation and Sanity almost
none. Summing across all 4360 pairs of genes and all cells, we found there was
not a single example for which both genes in a pair were observed in the same
cell (Fig. 4.4f). That is, although MAGIC infers that these 4360 pairs of genes
are almost perfectly co-expressed, none of them are ever observed to be present at
the same time in any cell. In contrast, for the small set of pairs for which Sanity
infers co-expression whereas MAGIC does not, we do generally find evidence of
co-expression (Fig. 4.4g). This same pattern is observed for the comparisons of
Sanity’s pairwise correlations with those of DCA, SAVER, and scVI (Suppl. Fig.
4.14). That is, these methods all infer large numbers of highly correlated or anti-
correlated pairs of genes, whereas there is no evidence at all of co-expression in
the raw counts of these pairs. Consistent with these observations, these methods
show very wide distributions of pairwise correlations on each dataset, whereas
correlations are highly peaked around zero for Sanity, TPM, Deconvolution, and
sctransform (Suppl. Fig. 4.15). Moreover, although our simulated dataset contains
no correlations by construction, DCA, MAGIC, scVI, and to a lesser extent SAVER
also predict a wide range of correlations on this data (Suppl. Fig. 4.16).

We believe that these pervasive spurious correlations result from the fact that
these methods map the expression data to a lower dimensional manifold. Indeed,
if we project the TPM-normalized results from the simulated data on the first
n PCA components, the amount of spurious correlations systematically increases
with decreasing n (Suppl. Fig. 4.17). Comparison of Suppl. Figs. 4.16 and 4.17
shows that the amount of spurious correlation in SAVER'’s results is equivalent to
projecting on the first 100 — 200 PCs, the first 20 — 30 PCs for DCA and scVI,
and the first 5 — 10 PCs for MAGIC.

4.2.4 Sanity outperforms other methods on identifying nearest-neighbor
cells

Many downstream scRNA-seq analyses including clustering and trajectory recon-
struction, require estimating the distances between cells in gene expression space.
In particular, many methods involve identifying the k nearest-neighbors of each cell
with the most similar expression profiles (with & typically in the range of 3 — 30).
Assessing the accuracy of different methods in identifying nearest-neighbor cells
on real data is challenging because it is not known which cells are truly nearest-
neighbors. We thus created a simulated dataset in which cells are distributed
along a tree that was constructed by performing a branched random walk through
gene expression space, i.e. setting the true LTQs of each cell equal to those of
the previous cell plus a small random perturbation to the LTQ of each gene (see
Suppl. Methods).

For each method, we calculated the Euclidean distances between the normalized
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log-expression vectors of all pairs of cells, and determined the £ nearest-neighbors
of each cell. For Sanity we also estimated cell-to-cell distances using a Bayesian
method that incorporates Sanity’s error bars, which automatically causes genes
with large error bars €, to contribute less to the distance estimate (Suppl. Meth-
ods). For each method we then calculated the fraction of predicted k nearest-
neighbors that belong to the set of true k nearest-neighbors, as a function of k
(Fig. 4.5a).

Sanity clearly performs best in identifying the k nearest-neighbors, but when
its error bars are ignored the performance is much reduced, highlighting the value
of incorporating error-bars. This reduction in performance is due to the noisy
estimates of the LTQs of low expressed genes because, if we calculate distances
based only on the genes with at least 1 UMI per cell on average, Sanity’s perfor-
mance without error bars is dramatically improved, approaching the performance
incorporating error bars for large k (Fig. 4.5b). Other normalization methods,
e.g. TPM and sctransform, also perform much better when distances are only
estimated from genes with at least 1 UMI per cell. In contrast, the performance
of scVI and DCA is not sensitive to excluding low expressed genes, suggesting
that for these methods the expression levels of low expressed genes are effectively
determined by the expression levels of high expressed genes. Notably, whereas
DCA and scVI performed poorly on previous tests concerned with the accuracy of
inferred gene expression levels, here they are the best performing methods after
Sanity, and also perform well at estimating distances between all pairs of cells
(Suppl. Figs. 4.18 and 4.19). This shows that these methods are optimized to
correctly estimate distances between cells at the expense of severely distorting the
expression patterns of individual genes.

To give a visual impression of the accuracy with which different methods are
able to capture the local structure in the data, Suppl. Fig. 4.20 shows t-SNE
visualizations of the matrices of true cell-to-cell distances and cell-to-cell distances
as estimated by each of the methods. It is notable that, even though the data
corresponds to a complex tree structure of 149 branches with 13 cells each, Sanity’s
estimates of the cell-to-cell distances allow a reasonably accurate reconstruction
of this complex structure.

4.2.5 Sanity outperforms other methods on clustering cells into sub-
types

One of the main applications of scRNA-seq is to identify (novel) cell types and
this is generally done by clustering cells based on their gene expression patterns.
For six of our test datasets, the corresponding study reported an annotation of cell
types, that was typically obtained by combining automated clustering with anal-
ysis of marker gene expression and hand curation using prior knowledge. Taking
the Zeisel dataset as an example [Zeisel et al., 2015], Fig. 4.5¢ visualizes the clus-
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Figure 4.5: Accuracy of the k nearest-neighbor and clustering predictions. a: For each
method we calculated the Euclidean distances between the log-expression profiles of all
pairs of cells to predict the nearest-neighbors of each cell, on the simulated dataset for
which cells lie along a branched random walk in gene expression space. The curves show
the fraction of predicted k nearest-neighbors for each method (colors, see legend) that
are members of the set of true k nearest-neighbors, as a function of k. b: As in panel A
but now calculating distances using only highly expressed genes (at least 1 UMI per cell
on average). c: Each panel shows a t-SNE visualization of the Zeisel dataset using the
normalized gene expression values of the method indicated at the top of the panel. Each
point represents a cell and is colored according to the cell type annotation given in [Zeisel
et al., 2015]. d: Similarity scores between the annotated and predicted clustering were
calculated, for each method, across 72 combinations of 6 annotated datasets, 3 clustering
algorithms, and 4 similarity metrics. The bars show, for each method, the number of
combinations on which it performed best. e: For each method m, the distribution
(across the 72 combinations) of the ratio s,,/s. of its similarity score s,, relative to the
similarity score s, of the best performing method (on that combination) is shown as a
box-whisker plot indicating 5the percentile, first quartile, median, third quartiles, and
95th percentile.
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tering structure implied by the different methods by applying the popular t-SNE
algorithm [Van Der Maaten and Hinton, 2008] to the normalized expression val-
ues of each method. Although it is well-known that, beyond reasonably conserving
which cells are nearest-neighbors, it is difficult to interpret these visualizations, the
visualization does suggest that there is considerable disparity between normaliza-
tion methods. In particular, Sanity, TPM, and Deconvolution appear to separate
the cell types more reliably than MAGIC, RawCounts, and scImpute, and similar
observations can be made on the other datasets (Suppl. Figs. 4.21-4.25).

Rigorously benchmarking the performance of the normalization methods on
clustering is challenging because the ground truth is again not known. While the
provided reference annotations are likely reasonable, it is by no means clear that
these annotations are optimal. In addition, the clustering performance will also
depend on what clustering algorithm is used, and even what similarity measure is
used to compare clusterings. We thus chose to assess the quality of each normal-
ization method by its performance across all 6 datasets using 3 different cluster-
ing algorithms (K-means [Lloyd, 1982], Ward [Ward, 1963], and Louvain [Blondel
et al., 2008]) and using 4 different similarity measures (Suppl. Methods), giving 72
comparisons of similarity scores across methods (Suppl. Fig. 4.26). To summarize
these results, we calculated the number of times each method was the best per-
forming method (Fig. 4.5d). In addition, we a calculated how close each method
comes to the best performing method across the 72 combinations (Fig. 4.5e).
Sanity clearly outperforms the other methods, being the best performing method
on more than half of the combinations, and scoring close to the best performing
method on the large majority of combinations. TPM, Deconvolution, DCA, and
scVI also perform robustly, typically scoring within 10% of the best method.

As a final example of downstream analysis we tested the ability of the normal-
ized expression values to identify genes that are significantly upregulated in partic-
ular subtypes of cells, as detailed in Supplementary Text 1. Here too we found that
Sanity performed best, although sctransform, TPM, and Deconvolution achieved
almost equal performance, whereas MAGIC, DCA, and scVI typically performed
poorly on this task (Suppl. Fig. 4.27). Supplementary Text 1 provides additional
in-depth discussion of Sanity’s features and limitations, including its performance
for multimodally (Suppl. Fig. 4.28) and very low expressed genes (Suppl. Fig.
4.29), and how the observed absolute expression distributions (Suppl. Fig. 4.30)
and sequencing depth determine the accuracy of expression estimates across genes
(Suppl. Fig. 4.31).

4.3 Discussion

In this work we developed a new normalization procedure for scRNA-seq data from
first principles using only two basic assumptions. First, we characterize a cell’s gene
expression state by the vector of log transcription quotients (LTQs) across genes,
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i.e. the logarithms of the expected fractions of the transcript pool for each gene.
Second, to estimate these LTQs from the raw UMI count data, we characterize
the prior distribution of LTQs of each gene by just its mean and variance across
cells. Given these two assumptions the entire procedure follows from first principles
without any tunable parameters, and returns estimated LTQs that correct both
for the Poisson noise that is intrinsic to the process of transcription, as well as
the sampling noise of the scRNA-seq measurements. Consequently, variation in
the inferred LTQs reflect changes in the rates of transcription and mRNA decay
of each gene.

Although our procedure makes only minimal assumptions, one may still ask
how arbitrary these assumptions are. If one accepts that biological and techni-
cal sampling noise do not reflect changes in gene expression state, that expression
changes should be measured in terms of fold-changes rather than absolute changes,
and that rescaling the expression levels of all genes by a common factor does not
change expression state, then LTQs naturally follow as the most general represen-
tation of a cell’s expression state. Similarly, our prior distribution over LTQs of a
gene also aims to minimize the strength of our method’s assumptions by using the
least assuming, i.e. maximum entropy, distribution consistent with a given mean
and variance. Improving on these assumptions would require specific biological
information to determine more informative priors on the gene expression states
that cells can take on.

Our benchmarking tests indicate that Sanity’s normalized expression values
outperform those of other methods on basic downstream processing tasks such as
clustering cells into subtypes and identifying nearest-neighbor cells. More impor-
tantly, we showed that all other methods produce a representation of the data that
is distorted in one or more respects.

The simple TPM and closely related Deconvolution methods produce repre-
sentations of the data that are generally reasonable and perform quite well on
downstream tasks such as clustering and identification of differentially expressed
genes. The main problem with the TPM method is that the variation in normal-
ized expression levels is dominated by Poisson fluctuations for most genes, and
low expressed genes are predicted to be the most variable, whereas in reality these
have least evidence of true variability. This also causes the TPM and Deconvolu-
tion methods to perform poorly in identifying nearest-neighbor cells, although this
can be mitigated to some extent by only considering highly expressed genes. The
simple RawCounts method, and the similarly performing scImpute method, suffer
from these same problems, but additionally have the problem of not correcting for
variation in total UMI count across cells.

The sctransform method outputs z-statistics rather than gene expression es-
timates. Although this has some advantages, e.g. the method performs well in
identifying differentially expressed genes, the clear drawback is that it cannot ac-
curately predict log fold-changes in expression levels, and performs quite poorly



CHAPTER 4. J. BREDA ET AL. NAT BIOTECHNOL 39 (2021) 98

in identifying nearest-neighbor cells.

The sophisticated scVI and DCA methods that use autoencoders to map the
data to a low-dimensional manifold perform well on estimating the distances be-
tween cells but do this at the cost of strongly distorting the expression levels of
individual genes. These methods poorly estimate log fold-changes of genes across
cells, produce strong artefactual correlations of the normalized expression values
with the total UMI count in each cell, and spuriously predict large numbers of
co-expressed genes. Although SAVER performs better in estimating the variances
and log fold-changes of genes across cells, it suffers from the same spurious pre-
diction of correlations, as does MAGIC which, in our hands, performed poorly on
most tests.

That such spurious correlations are also induced when the TPM normalized
expression values are projected onto the top PCA components suggests that they
generically result from fitting the data to a lower-dimensional representation. Al-
though it is reasonable to assume that the space of gene expression states that cells
take on has much lower dimensionality than the full dimensionality of the tran-
scriptome data, the task of finding such lower-dimensional representations should
be clearly distinguished from normalization and noise-correction. Because Pois-
son sampling noise scales with absolute expression levels, different genes and cells
are affected to different extents, and this may be erroneously mistaken for ‘struc-
ture’ in the data. Thus, unless the process of noise removal and normalization is
carefully separated from fitting of the data to lower-dimensional representations,
artefactual correlations are likely to be introduced.

Finding biologically meaningful lower-dimensional representations of genome-
wide gene expression states is one of the most important challenges in the field.
However, it is likely a very hard problem in general, and it is unclear to us whether
the problem is even solvable with current data. For example, we are not aware of
mathematical results that show under what conditions a lower-dimensional mani-
fold embedded in a very high-dimensional space can be reliably reconstructed from
a limited number of noisy measurements. We believe that, rather than black box
procedures for dimensionality reduction, progress in understanding the genome-
wide structure of expression data will crucially depend on connecting transcrip-
tome data to the underlying biophysical mechanisms, e.g. the dynamics of the
chromosome, chromatin accessibility at enhancers and promoters, the binding and
unbinding of transcription factors, recruitment of the transcription machinery, and
the mechanisms of transcription initiation. However, whatever approach is taken
to finding lower-dimensional representations of gene expression states, a prerequi-
site is that the raw data are carefully normalized and corrected for both biological
and technical sampling noise. The Sanity method that we presented here aims to
provide such normalization methodology.
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4.4 Online Methods

4.4.1 A Bayesian method for inferring gene expression states from
count data

After motivating how we represent gene expression states of single cells, and to
what concrete physical quantities these gene expression states correspond, we in-
troduce our probabilistic model of a scRNA-seq experiment, and calculate the
probabilities of the observed raw transcript counts as a function of each cell’s
expression state. We then explain the Bayesian procedure by which the gene ex-
pression states are inferred from the sequencing data, and the outputs that the
method provides. Additional discussion of the properties and limitations of San-
ity’s model are provided in Supplementary Text 1, including a discussion of how
Sanity can be used to correct for technical batch effects.

Defining gene expression states

For any given cell ¢, we want to represent its ‘gene expression state’ by a vector €,
whose components e, quantify how strongly each gene g is expressed. These gene
expression states should satisfy two basic desiderata. First, the gene expression
states should have concrete physical interpretation. Second, for each gene g, the
difference ey —e4 should meaningfully reflect the change in its expression between
cells ¢ and .

One might think that we could simply take the vector m, of the actual number
of mRNAs m,, that exist in cell ¢ for each gene g as the gene expression state of the
cell. However, the gene expression process is inherently stochastic due to thermal
noise and the low molecule numbers involved, e.g. there are only 1-2 copies of
each promoter in a given cell, causing mRNA counts to fluctuate even between
cells that are in the same state. To illustrate this, let’s imagine a gene that is
transcribed at a constant rate A and whose mRNAs decay at a constant rate u
in every cell. This is as close one can come to having no variation in expression
state across cells. However, even in this case the actual number of mRNAs m for
this gene will fluctuate across cells according to a Poisson distribution with mean
a = A/u. That is, the probability to find m mRNAs is P,, = a™e~*/m! which has
mean (m) = a and variance var(m) = a. Thus, instead of interpreting any change
in mRNA number m as a change in gene expression state, it makes more sense
to identify changes in gene expression state with changes in the transcription and
decay rates A and pu.

In general, for a given gene g in a given cell, both its transcription rate A,
and the decay rate p, of its mRNAs will vary with time in time ¢ in a potentially
complex manner. As illustrated in the cartoon Fig. 4.1A, a large array of different
biophysical processes can affect the transcription rate of a given gene including
changes in the chromatin state around its locus, the binding and unbinding of
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transcription factors (TFs) to its promoter and enhancers, changes in the 3D or-
ganization of the chromosome, and so on. Together these processes will determine
some time dependent transcription rate A,(¢). Similarly, the rate yu,(t) at which
mRNAs for gene g decay will depend on the concentrations of RNAses, microR-
NAs, various RNA binding proteins, and so on. If at some point in time the cell
c is sampled and its mRNAs extracted, then the number of mRNAs m,. that one
finds for gene g will depend on what the transcription rate A\,(t) and decay rate
fg(t) were in the recent past of this cell.

In particular, if we denote the time point at which the cell is sampled as t = 0,
and denote by A, (t) and p,(t) the transcription and decay rates a time ¢ into the
past of the cell, then the expected number of mRNAs (m,.) is given by

o = [ wtten |- [ t 71| 1= 0 (@1)

which we call the ‘transcription activity’ ag. of gene g in cell ¢ (Fig. 4.1B). Note
that a,. is a weighted average of the transcription rates in the past of the cell, where
the weights correspond to the probability that an mRNA that was described a time
t in the past has survived until now.

Crucially, independent of how A,.(t) and p,.(t) have fluctuated in time, the
probability to see mgy, mRNAs for gene g in cell ¢ is still given by a Poisson
distribution with mean ay. [Thattai, 2016] (Fig. 4.1C), i.e.

(@9e)™" ay. (4.2)

P(mgeclage) = Mo
ge:

Thus, independently of how A,.(t) and p4.(t) have fluctuated in the cell’s past,
the number of mRNAs m,. depends on these rates only through the transcription
activity ag.. Vice versa, all information about the time-dependent rates A\;(¢) and
ftg(t) that is contained in measurements of mRNA counts in cell ¢, is contained
in the transcription activities a,4. for each gene. Thus, we propose to characterize
the expression state of a cell by the vector @, of its transcription activities. Note
that, as discussed in Supplementary Text 1, it is in principle possible to learn
more about the functions A,.(t) and j4.(t) by also incorporating information from
intronic UMIs of each gene g, e.g. as employed in the RNA velocity approach [La
Manno et al., 2018,Bergen et al., 2020]. Although an interesting direction for future
extensions of Sanity, we here do not yet incorporate information from intronic
UMIs.

Next, we propose that rather than directly representing the gene expression
state of the cell by the vector d. of absolute transcription activities ag., it is
beneficial to use the vector @, of relative transcription activities, defined as

ge = =2 (4.3)

Eg’ ag/C’
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which we will refer to as transcription quotients, and which correspond to the ex-
pected proportions of mRNAs in the cell (Fig. 4.1B). First, it has been shown that,
as cell volume increases, cells globally upregulate transcription to maintain ap-
proximately constant mRNA concentration [Padovan-Merhar et al., 2015] so that
transcriptional activities a4, of all genes are generally expected to scale with cell
volume. We argue that a global change in transcriptional activities by a common
scale factor S, i.e. ag. — Sagy. for all genes, does not correspond to a change in gene
expression state, but just to a change in cell size. Second, it is well known that, in
current scRNA-seq protocols, the rate of capture and sequencing of mRNAs varies
significantly across cells [Griin et al., 2014, Stegle et al., 2015] so that there is only
a weak quantitative relationship between the total number of sequenced mRNA
molecules and the true total mRNA content of a cell. Although it is possible to
estimate capture and sequencing efficiencies, at least to some extent, using RNA
spike-in controls [Brennecke et al., 2013, Griin et al., 2014], most experiments are
performed without such controls. Therefore, for most scRNA-seq datasets it is
unclear to what extent variations in total sequenced mRNAs across cells represent
biological variability, as opposed to technical variability. Consequently, transcrip-
tion quotients ay. can generally be much more accurately estimated than absolute
transcription activities a,4., because they do not directly depend on capture effi-
ciency. Note that quantifying gene expression by quotients, i.e. transcripts per
million transcripts, is also the standard approach in bulk RNA-seq experiments.

Finally, we note that if we were to use differences in transcription quotients of
mRNAs ag4. — ag4e to quantify the change in expression of gene g between cells
¢ and ¢, then this change would be proportional to the overall expression level
of the gene. That is, a change from 20 to 40 transcripts per million would be
considered ten times as large as a change from 2 to 4 transcripts per million. Since
the early days of transcriptomics it has been observed [Hoyle et al., 2002] that,
as would be expected from the multiplicative effects of fluctuations in rates of
various biochemical reactions [Beal, 2017], the relative expression levels of genes
in a sample follows a roughly log-normal distribution that covers several orders
of magnitude and the variance in absolute expression of a gene across conditions
scales with the square of its means expression (Suppl. Fig. 4.7). Consequently,
if we were to quantify expression changes directly by the changes oy, — g, the
expression changes between two cells would be dominated by those of the highest
expressed genes. Therefore, it has long become standard to instead use logarithms
of the expression levels. Indeed, in bulk RNA-seq experiments one also generally
finds that the variance in log-expression of a gene across conditions is uncorrelated
with its mean expression (Suppl. Fig. 4.7).

Thus, we propose to quantify the gene expression state of a cell by the loga-
rithms of the transcription quotients (LTQs) log(cy.) so that an z-fold change in
quotient age — age = oy, corresponds to the same additive change log(cy.) —
log(ay) + log(z) in LTQ, independent of the absolute value of the quotient .
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To define an overall change in expression state between two cells, we still have
to combine the changes in LTQ of all genes into a total ‘distance’. As motivated
in more detail in Supplementary Text 1, we will follow the generally accepted
practice of calculating simple Euclidean distances in the space of LT(Q vectors, i.e.
the squared distance d?, between a pair of cells ¢ and ¢ is defined as

A2y = Z log(ae) — log(ozgc/)]Q : (4.4)

g

A probabilistic model for a scRINA-seq experiment

The initial steps of scRNA-seq analysis involve basic processing of the raw sequenc-
ing reads such as quality control, identification of barcodes to identify the library,
the individual cell, and the unique mRNA molecule (if available), and mapping
each read to the corresponding genome or transcriptome. The methods used in
these steps are similar to methods used for bulk RNA-seq and ChIP-seq and have
matured to the point that there is little variability in the results from commonly
used tools, e.g. [Love et al., 2015, Bray et al., 2016, Dobin et al., 2013, Genomics,
2020].

The introduction of unique molecule identifiers (UMIs) [Islam et al., 2014]
was an important development in scRNA-seq technology in that it avoids PCR
amplification noise and allows determining the number of unique mRNA molecules
that were captured for each mRNA. It is currently unclear how to realistically
model the noise statistics of protocols that do not incorporate UMIs and we will
here focus on scRNA-seq protocols that use UMIs.

After basic processing of the raw sequences, the data will consist of a matrix
of integers ngy. giving the number of captured mRNA molecules for each gene g in
each cell ¢. The key assumption of our probabilistic model is that, in a scRNA-seq
experiment, each mRNA molecule in a given cell ¢ has the same probability p.
to be captured and sequenced. This capture probability varies from cell to cell,
and has been estimated to be in the range of 10 to 15% [AlJanahi et al., 2018]
and up to 30% with the most recent protocols [10X Genomics, 2018]. Under this
assumption, the probability of the observed UMI counts ng. in cell ¢ given the
transcription quotients «,. is given by a product of Poisson distributions (Fig.
4.1C and Supplementary Methods). Finally, if we marginalize over the unknown
capture efficiency p, we obtain (see Supplementary Methods)

NC C "o —
P(ﬁc|o7c):H[—( Qe) " o (4.5)

; Nge!

where 7. is the vector of UMI counts in cell ¢, @, the vector of transcription
quotients in cell ¢, and N, the total number of UMIs in cell ¢ (Fig. 4.1D). Crucially,
the convolution of the biological Poisson noise and the sampling noise introduced
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by the scRNA-seq measurement together still lead to a simple Poisson distribution
in terms of the transcription quotients . (Supplementary Methods).

Prior probabilities and the Bayesian solution

Having argued that we want to characterize each cell’s gene expression state by
the vector of LTQs log(c,.), and having determined how likely it is to observe
UMI counts 7. given the transcription quotients @, i.e. equation (4.5), we now
want to invert this relation and estimate the LTQs from the observed UMI counts.
The uniquely consistent set of mathematical procedures for doing this is generally
referred to as Bayesian probability theory [Jaynes, 2003].

This calculation requires that we specify a prior probability distribution that
represents the prior information we want to assume about how LTQs may vary
across cells, before obtaining the expression data. As we aim to minimize the
number of assumptions, our model will not assume any dependence structure be-
tween the LTQs of different genes, i.e. we will not assume a priori that the gene
expression data derives from a low-dimensional manifold. We will also not assume
that the LTQs of gene across cells follow a particular distribution. The only thing
that we will assume is that, for each gene, the prior distribution of LTQs log(cyc)
can be characterized by its mean i, and variance v,.

Without loss of generality, we rewrite the transcription quotients c,, in terms of
an average log-quotient p, and cell-specific log fold-changes d,., i.e. . = etoT0e,
With this reparametrization, the ¢4 derive from a prior probability distribution
with mean zero and variance v,. Given that we only specify the variance of the
distribution of the ¢, to be vy, this implies that the prior corresponds to the
maximum entropy distribution consistent with this constraint, which is a Gaussian
distribution [Jaynes, 2003]. Importantly, this does not mean that we assume that
the log fold-changes d4. follow a Gaussian distribution. Indeed, as we demonstrate
in Supplementary Text 1, the ¢4, that our method infers upon seeing the data do
not necessarily follow Gaussian distributions. For example, if a gene is bimodally
distributed, the method correctly infers this in general (Suppl. Fig. 4.28).

In the Supplementary Methods we show in detail how this model can be solved
to estimate, for each gene g:

1. The mean LTQ p, and its error-bar 6.
2. The estimated variance v, of the changes in LTQs d,. across cells.

3. For each cell ¢, the estimated log fold-changes ;. and an error-bar €, on
each of these.

Note that the ;. provide estimates for how much the transcription and decay
rates of each gene ¢ in cell ¢ differ from their average rates, and thus correct for
both the intrinsic biological Poisson fluctuations as well as the finite sampling
fluctuations inherent in the scRNA-seq measurements.
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4.4.2 Other methods for scRNA-seq normalization

To assess the performance of Sanity we compare it with a number of other methods
for normalization/imputation from scRNA-seq data. Here we introduce these other
methods and highlight the ways in which their approaches differ from Sanity’s.
Apart from tools from the recent literature, we include two basic normalization
procedures that are widely used. First, the simplest approach to estimating gene
expression levels e, from scRNA-seq data is to simply log-transform the observed
number of UMIs n,. after adding a pseudocount p to avoid problems with zero
counts ngy. = 0, Le.

ege = log(nge + p). (4.6)

A typical choice for the pseudo-count is p = 1, because it attenuates fluctuations in
nge on the order of magnitude corresponding to the resolution of the experimental
measurements. We refer to this normalization, with p = 1, as the RawCounts
normalization, since it essentially just log-transforms the raw UMI counts.

However, the total number N. of mRNAs captured and sequenced from an
individual cell ¢ can vary substantially due to fluctuations in capture efficiency and
sequencing depth, as well as differences in cell size. Consequently, the RawCounts
procedure introduces systematic correlations between the expression levels e, and
the total number of UMIs N, that were sequenced from cell ¢. Thus, the most
commonly used normalization approach is to first divide the RawCounts ny. by
the total count N, and then multiply by a typical total count N before adding a
pseudocount and log transforming, i.e.:

Nge
Ne

ege = log [ N + 1] . (4.7)
Here we take for the typical total count N the median of the counts N, across
all cells. In a slight abuse of terminology, we will call this normalization the
TPM normalization because of its close connection to the transcripts per million
normalization used in bulk RNA-seq (which corresponds to setting N = 10°).

Given the definition of the LT Qs as logarithms of relative expression levels, a
reader may wonder how our approach is even different from this standard TPM
procedure. Indeed, for a cell with total count N, and LTQs log(ag.) = fig + dge,
the expected number of UMI is

(nge) = Neelstooe, (4.8)

which might suggest that if we simply divide n,. by N, and log-transform the
result, we would end up with the LTQ p, + d4.. However, the actual UMI counts
nge are not the same as the expectations (ng.). That is, the ng. are measured
quantities that contain Poisson noise both due to the intrinsic stochasticity of
gene expression and due to the measurement process. Importantly, instead of
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nge differing from (n,.) by noise of a constant size, the size of the Poisson noise
depends on the expected count (ngy.) itself. In addition, since UMI counts n,. are
very small for most genes, the noise is typically larger than the true variation in
LTQ across cells. Therefore, to estimate the LT(Q of each gene in each cell, it is
crucial to account for this Poisson noise and this is one of Sanity’s main aims.
Beyond the simple RawCount and TPM normalization methods, we compare
Sanity’s performance with those of the following recently published tools:

1. DCA [Eraslan et al., 2019], which uses a deep learning based autoenconder
together with a zero-inflated negative binomial noise model.

2. Deconvolution [Lun et al., 2016], which is similar to the TPM method, but
uses a more sophisticated approach to normalize for the variation in sequenc-
ing depth across cells.

3. MAGIC [van Dijk et al., 2018], which uses diffusion of measured gene expres-
sion states between cells with similar expression profiles.

4. SAVER [Huang et al., 2018], which assumes negative binomial counts distri-
butions ny. and models the underlying rates using Poisson LASSO regression
with the expression levels of other genes.

5. sclmpute [Li and Li, 2018], which focuses mainly on correcting ‘dropouts’,
i.e. data points for which ny. = 0.

6. sctransform [Hafemeister and Satija, 2019], which uses regularized negative
binomial regression and reports Pearson residuals of this regression rather
than estimated expression values.

7. scVI [Lopez et al., 2018], which uses a deep neural network based autoencoder
together with a zero-inflated negative binomial noise model.

Note that, with the exception of RawCounts and scImpute, all these methods seek
to normalize the expression levels for the total UMI count per cell. In contrast to
Sanity, RawCounts, TPM, and Deconvolution, all other methods seek to remove
noise by fitting the data to lower dimensional representations. Specifically, in
SAVER and sctransform the parameters of each gene’s negative binomial model are
fitted by using information from other genes, in scmpute zero values are corrected
for by using information from neighboring cells, in MAGIC the entire expression
profile of each cell is estimated using information of neighboring cells, and in DCA
and scVI the autoencoders effectively force a lower dimensional representation of
the distribution of cells in gene expression space.

Many of the models above use a negative binomial or zero-inflated negative
binomial to model the distribution of UMI counts of a gene across cells and the
reader may wonder how Sanity’s noise model relates to these models. In Supple-
mentary Text 1 we explain why, as discussed recently [Svensson, 2020], no zero
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inflation is necessary and discuss the relationship of Sanity’s model with negative
binomial noise models.

We used default parameters for all methods except for scVI, where we adapted
settings based on direct feedback of the developers of scVI (the default parameter
n_epochs=20 was increased to 400 and we used the recently added get_sample_scale
instead of imputation method to get predicted expression values).

Since all methods report expression values in linear space, we log-transformed
all expression values. MAGIC sometimes reports 0 or even negative values and,
as suggested by its developers, we first set all negative values to 0 and then add
a pseudocount of 1 to all expression values (including the nonzero ones) before
log-transforming. Similarly, scImpute reports some zero values and we added a
pseudocount of 1 to all the expression values.

Directly comparing the results of sctransform with those of the other methods
is complicated by the fact that, in contrast to all other methods, sctransform does
not provide estimated gene expression values, but z-statistics zy that quantify
how significantly the expression of gene g in cell ¢ deviates from what would be
expected from the negative binomial model. The authors of the sctransform paper
suggest that these z-statistics should be used for downstream analyses. Since the
z-statistics are variance normalized and centered around zero, we use the z-statistic
Z4c equivalently to the log-fold changes d,.. Finally, in the negative binomial fit,
sctransform fits the expected mean log-expression ji4. of gene g in cell ¢ to a
function of the form 4. = By + f1 log(V,), with NV, the total UMI count of cell c.
To calculate a predicted average expression for gene g we use p, = Sy + 31 log(N),
with NV the median total UMI count.

4.4.3 Test datasets

To assess the performance of the different methods we used a collection of datasets
for which annotation of the sequenced cell types was available. These were (labelled
by the first author of the publication):

1. Grin: 160 mouse embryonic stem cells and 160 corresponding aliquots con-
sisting of 80 cells from culture in 2i medium, 80 cells from culture in serum,
and 80 aliquots for each condition that were created by pooling RNA from
the cells, and then splitting the pool into single-cell mnRNA equivalents [Griin
et al., 2014].

2. Zeisel: 3’005 cells from the somatosensory cortex and from the CA1 region
of the mouse hippocampus, annotated into 7 cell types [Zeisel et al., 2015].

3. Baron: 1’937 human pancreatic cells annotated into 14 cell types [Baron
et al., 2016].

4. Chen: 14,437 adult mouse hypothalamus cells annotated into 15 clusters
[Chen et al., 2017].
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5. Three datasets from LaManno [La Manno et al., 2016]:

(a) LaManno/Embryo: 1’977 ventral mid-brain cells from human embryo
annotated into 25 classes.

(b) LaManno/ES: 1’715 human embryonic stem cells annotated into 17
classes.

(¢) LaManno/MouseEmbryo: 1’907 ventral mid-brain cells from mouse em-
bryo annotated into 26 classes.

In addition to these real datasets we also constructed two simulated datasets as
detailed in the Supplementary Methods. The distributions of means and variances
in log-expression, as well as the distribution of total UMI count per cell were
chosen so as to mimic the statistics of an arbitrarily chosen real dataset, for which
we chose the Baron dataset (see Fig. 4.9). In the first simulated dataset the
expression profiles of all genes were drawn randomly and independently, so that
there are no expression correlations by construction. This dataset we used to test
the ability of different methods to correctly estimate true means, variances, and log
fold-changes in expression of each gene, and to assess the extent to which different
methods spuriously predicted co-expression of genes. The second simulated dataset
was constructed by performing a branched random walk in the high-dimensional
gene expression space so that the true expression profiles of the cells fall on a
tree. We used this dataset to test the ability of different methods to identify the
k nearest-neighbor cells of each cell.

Data Availability

The raw UMI count tables for each of the scRNA-seq datasets, as well as all the
normalized expression values as inferred by each of the methods are freely available
from https://doi.org/10.5281/zenodo.4009187.

Code Availability

Sanity was implemented in C and is freely available for download at https:
//github.com/jmbreda/Sanity. Besides Sanity itself, we also provide code for
estimating pairwise distances between cells. In addition, at the same github side
we provide a collection of scripts and supplementary files that should allow other
researchers to reproduce the results presented in this publication.
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4.5 Supplementary Methods

4.5.1 Sanity

We denote, for each cell ¢ and each gene g, the transcription rate a time ¢ in the past
as Ag(t) and the decay rate of its mRNAs a time ¢ in the past as p,.(t). Given
these time-dependent transcription and decay rates, we define the transcription
activity ay. of gene g in cell ¢ as the expected number of mRNAs (m,.) which can
be written as the following integral

age = (Mye) = /0 " A u(8) exp {— /O t ugc(s)ds]. (4.9)

That is, the transcription activity a,. is a weighted time average of the recent
transcription rates a time ¢ in the past, with the weight equal to the expected
fraction of the mRNAs produced a time t ago that survive until now.
Conditioned on the transcription activity a4, the distribution of the actual
number of mRNAs my, for gene g in cell ¢ is given by a simple Poisson distribution

<a96)mgc

e, 4.10
e (4.10)

P(mgclage) =

We now assume that, in the scRNA-seq measurement, each mRNA existing in
cell ¢ has a probability p. to be captured and sequenced. Given this, the probability
that precisely ny unique mRNAs will be sequenced for gene ¢ in cell ¢ is given by

. Mge n Mge—Nge
P(ngelage, pe) = Z (ng >(pc) (1 = pe)"ee e P(mygelage)  (4.11)
Mgec=TNgc gc
(D)™ ey (4.12)
Nge!

which is still a Poisson distribution.
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Next, we define the transcription activity ay. as a product of the total tran-
scription activity A, = > g (ge 10 cell ¢ and a transcription quotient ay:

Qge Qge
Qge = =2 = —9¢, (4.13)

“ T S A
Note that ay. is the expected fraction of all mRNAs in cell ¢ that are mRNAs for

gene ¢, i.e. we have
Nge

— /) = Qge.
<Zg' ng’c> gc

If we define the cell dependent constant A\, = p.A., then we can rewrite this Poisson
distribution as

(4.14)

>\C (& Mge —
P(ngeloge, Ac) = Qctrge)™r Zg |> e~ Aege (4.15)
ge:

and the probability for the entire data-set in cell ¢ has the form:

)\C C Mg —
Pl ) = [T |l (116

. Nge!

where the notation 7. refers to all counts n,. for cell ¢, and @, refers to all tran-
scription quotients oy, for cell c.

In the next step we remove the dependence on the cell-dependent scale factor
Ac. If one integrates over A, (using a scale prior 1/).) one finds that the probability
of the data for one cell is a simple multinomial in the transcription quotients ayge,
i.e

P(7.|@.) N'H (@ge)™ (4.17)

ngc

Note that in this equation the agy. of dlfferent genes are subtly coupled together
through the constraint ) oy, = 1 and this makes further analytical treatment
difficult. We will thus make the key approximation that, for each gene g, the
fluctuations of ay. across cells can be treated as independent of the fluctuations
of the ay. of the other genes. This approximation is accurate as long as the total
transcription activity A, is spread over many genes and not dominated by one or
a few very highly expressed genes.

We first formally decouple the genes by, for each gene g, integrating over all
the ay, of all other genes ¢’. The multinomial distribution over all genes then
becomes a binomial for a single gene g:

Nc n c—Ngc
P(ngca N0|agc) - (TL )(0496) o (1 — a90>N . (4.18)

gc

Whenever oy, < 1 and N, is large, this binomial is well approximated by a Poisson
with mean N.oy,.. We then obtain for the probability of the observed counts 7i. in
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cell ¢:

P(iicla.) = [ | [Me_ a] . (4.19)

Nge!

That is, the number of sequenced mRNAs ngy. for each each gene g in cell ¢
is still a Poisson distribution with expectation value N.ogz. The probability of
the entire dataset of counts {n} given all transcription quotients {a} is given by
simply taking the product of this expression over all cells, i.e

Pt = 1 {MN} | (4.20)

Tge!
g g9¢

Instead of trying to estimate the . for all genes at once, we will focus on one
specific gene ¢ at a time, and infer how ay. varies across the cells c. Note that if
we collect all the terms that depend on the «,. of single gene g we obtain

P(itgldy) = I ] [Me_m%c} : (4.21)

; Nge!
where 7, is the vector of counts for gene g and @, is the vector of transcription
quotients for gene g.

Finally, without loss of generality, we will write the transcription quotients c.
in terms of the average quotient of the gene o, and a log-fold change d,. in a given
cell ¢, i.e.

Qrge = Qrge’se. (4.22)

In terms of these parameters we have

— Ncnge
P(ﬁ9|a97 59) = (H n | > a;g exXp [Z ngc(sgc - Oég Z Nceégc 5 (423)
gc: c -

C

where ng4 is the total number of sequenced mRNAs for gene g.

Marginalizing over the average transcription quotient o,

We now first focus on estimating the log fold-changes d,.. We return to estimating
the overall average transcription quotient o, once we have determined these. To
marginalize expression (4.23) over a, we use a simple uniform prior P(ay)do, o
doyg. Integrating with this uniform prior from 0 to co we obtain

Ngc

P({ng}{dy}) = (H ]7\1[;:! ) I'(ng+1)exp <Z Ngcdge — (ng + 1) log [Z NceégC]> .

(4.24)




CHAPTER 4. J. BREDA ET AL. NAT BIOTECHNOL 39 (2021) 111

Note that, because «y is a fraction, we should have really only integrated from 0 to
1, but as long as each gene is only responsible for a small fraction of all UMIs in the
cell, the only contribution to the integral comes from values of oy, much smaller
than 1, and we can extend the range of the integral to infinity without loss of
accuracy. That is, we approximate the incomplete gamma function integral with a
complete gamma function integral. To assess the accuracy of this approximation,
the key parameters are the total number n, of UMIs for gene g and the quantity
N, = >, N.ePe. Since €’ is order 1 on average, N, is on the order of the total
number of UMIs in the entire dataset, i.e. Ny~ Y  N. = N. Let f, = n,/N
denote the fraction of all UMIs in the dataset that are for gene g. Approximating
the incomplete gamma function with a complete gamma function then leads to a
relative error of order N~N0U=/¢) which is very small as long as f4 1s not close to 1.
That is, the approximation will be very accurate as long as no gene is responsible
for almost all of the UMIs in the data. This always holds in practice.

Note also that the factor (Hc Ne gc) I'(ng + 1) is determined entirely by the

Nge!

counts and does not depend on the 4, and we will neglect this prefactor from
Nnow on.

Including prior probabilities for the d .

We next introduce prior probabilities over the log fold-changes d,.. Assuming only
that the ¢4 for gene g have a variance v, and mean zero, we use the maximum
entropy distribution consistent with these constraints, which is a Gaussian

1 5,
P(d,. = — - 4.25
() = e |5 (4.25)

Thus, the prior over the vector 51, of log fold-changes for the C' cells is given by

9 =1

C
P(gglvg) & (Ug)_c/2 €xp <_% 25§C> : (4.26)

Combining the prior with the likelihood we obtain

Loz _ 1
P(iig, dglvg) = (vg) 2 exp <_§ Z 553 + anc5gc — (ng+1)log [Z Nceégc]> ,
9 - .

(4.27)
up to a prefactor that does not depend on the parameters d,, and v,.

Calculating P(ii4|vy) using the Laplace approximation

We next focus on calculating the probability P(7i,|v,) of the data given only the
variance v,. To obtain the probability P(7,|v,), we need to integrate over all
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possible d4.. As the integral is close to Gaussian in form, we will assume we can
approximate the integral by the Laplace approximation, i.e. by approximating
the log-likelihood L(gg,vg) = log [P(ﬁg,ggwg)] by expanding it to second order
around its maximum. The log-likelihood has the form

- C 1
L(3g,vg) = = 108(vy) = 5= D 05+ > mgedye = (mg + 1) log (Z Nce%c>
9 . c c

(4.28)
Taking derivatives with respect to the d4., the equations for the optimum be-

come 5 5
N, el
gc c
— 4+ nge— (g + 1) ==+
Ug g ( g )Z(} Ng@égE
To solve this equation we are going to multiply the equation by v, and then define
the c-independent quantity

=0 Ve. (4.29)

el = Z N,ee, (4.30)

the normalized quantities
fgc = eiquceisgc’ (4'31)

which sum to 1, i.e. >, fy,c = 1, and the c-dependent quantities
Yge = Vgge + 10g(N,), (4.32)

which are directly determined by v, and the data.
In terms of these quantities the equations for the optimum become

log(fge) +vg(ng + 1) fge = —qg + Yge Ve, (4.33)
whose solution is
W [e 9t Ysen, (n, + 1)]
vg(ng + 1)
with W(z) the Lambert W-function (also called productlog). Note, however,
that the solution depends on g4, which itself depends on the f,.. However, since

> . fse = 1 per definition, we can sum equation (4.34) over ¢ to obtain the following
consistency equation for g,

fgc:

, (4.34)

Z W e~ boey (ng +1)] )

oy + 1) (4.35)

C

In the above equation, everything is determined either by the data (n,., n,, and
N.) or the variance v,, except for the unknown constant ¢,, which needs to be
solved for numerically. We can perform a binary search to find the value of g, for
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which equation (4.35) is satisfied. Note also that the expression on the left hand
side of equation (4.35) is a monotonically decreasing function of ¢,, guaranteeing
that there is only a single solution for g,.

Once g, has been determined, we obtain the f,. from equation (4.34) and we
obtain the optimal 4;, as

Ope = log(fge) — log(Ne) + qq. (4.36)

Note that these optimal oy, are functions of the variance vy, which we from now
on will express explicitly in our notation.

Substituting the optimal J7.(v,) into equation (4.28) we obtain the optimal
log-likelihood L. (v,). By expanding the log-likelihood to second order around its

maximum, the probability P(i,, 5g|vg) can then be rewritten as

P(ii, 5g|vg) = exp [L*(Ug) - % Z(égc - 5;(%))]\/[36(595 - 5;5(%)) ) (4.37)

c,C

where the matrix MY is given by the second derivatives of the log-likelihood around
its optimum, i.e.

0?L
T = MY 4,
T = M (139
We find
* 1 * *
M= (00 D) + ) b= (0 D00 (439
g

The integral over the likelihood can now be easily written in terms of the
determinant of the matrix MY, giving us for the marginal probability of the data
as a function of v,:

. L= N eL*('Ug)
P(n9|vg) = /P(n9759|vg)d59 = W‘

Finally, given the relatively simple structure of the matrix MY, we use the
matriz determinant lemma toq write the determinant as

0 (ng +1)(fae(0y))?
det(M?) = (1 - Z (ng + 1) f5.(vg) + i)

(4.40)

1 ((ng 1) fylvg) + i) - (441)

Posterior P(v4|ii,) over variance v,

To obtain a posterior over the variance v, we need a prior over the variance
vy, for which we will use a scale prior, i.e. uniform in the logarithm of vg:
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P(vy)dv, o< dlog(v,). Note, however, that our solution of P(7i,|v,) involved a
numerical determination of ¢4, so that we do not have an analytical formula for
P(vy|fiy). In order to approximate the full posterior P(v4|1i;) we pick a range
[Umin, Umax] Within which we presume all v, fall, divide this range into B bins of
equal size in log(v,), and calculate P(7i,|v,) for each bin b. Per default we choose
[Vmins Umax) = [0.001,50] since this covers the range of observed variances in the
datasets we considered. Trading off speed versus accuracy we chose B = 160 bins
by default, so that the variance increase by a little under 7% from one bin to the
next. However, if desired these values can be changed by the user.

Let v, denote the variance of bin b and Lj, the log-likelihood log[P(7iy|vs)]. We
then approximate the full posterior P(u,|7,) by a distribution over a finite number
of points:

elv

25:1 el

We note that there are of course much more sophisticated ways of performing
this numerical integral. However, as becomes clear below, we need to perform
integrals over v, with weights P(v,|n,) many times, i.e. for each J,. and its error
bar €,.. Therefore, it is efficient to calculate a fixed set of weights e for binned
values vy, once, and then approximate all integrals by summing over the same bins
with the same vector of weights. In any case, we have explicitly checked that, for
the datasets analyzed here, increasing the number of bins does not alter any of the
results.

P(uit;) = (4.42)

The posterior P(gg|ﬁg,vg) of log-fold changes given a variance v,

For a given value of the variance vy, the posterior distribution over the log fold-
changes d4. is given by a multi-variate Gaussian with means (dy.) = d;.(v,) and
a covariance matrix C' given by the inverse of the matrix MY. In particular, the
variances var(dy.) of the log fold-changes across cells are given by the diagonal
elements of the inverse of MY. Fortunately, given the relatively simple structure
of the matrix MY, we can also obtain analytical expressions for these variances.
In particular, the components (¢, ¢) of the inverse of M9 are given by the ratio of
the minor [MY] .y (the determinant of matrix M9 with the cth row and column
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removed) and the determinant of the full matrix. We have

var(dyz) % (4.43)
(1_27&%) e (0 + D+ L) )

ng+1 «
<1 - Z (nq+1 ch ) <(n9 + 1)fgc + %)

where again it should be noted that the f;. are themselves functions of v,.

A technical complication arises in estimating the variance var(dy.) when the ob-
served number of UMIs is zero. That is, when n,. = 0 the log-likelihood L(gg, vy)
can be a highly asymmetric function of d,. around its maximum 6;,(vy). In partic-
ular, whereas the fact that no UMIs were observed, i.e. ng. = 0, ensures that the
log-likelihood decreases quickly as d,. increases above d7.(v,), it drops only slowly
with decreasing d,.. That is, when no UMI are observed, we can give a reasonably
tight upper bound on ¢4, but n,. = 0 is consistent with arbitrarily low d,.. Since
we want to summarize the accuracy of the estimate d;,.(v,) with a single (i.e. sym-
metric) error bar we need to resolve this asymmetry and we choose to set var(d,.)
from its upper bound for cases with ny. = 0. In particular, note that for a Gaussian
distribution with mean p and variance o2, the difference between the log-likelihood
at the optimum g and at p+o0 is L(p) — L(p+0) = (u+0—p)?/(20%) = 1/2. We
thus define the o, = /var(d,.) such that the difference between the log-likelihood
at 9y, and d;,. + 04 is 1/2, i.e. the solution of

090(2(5;C + 04c)

20,

(4.46)

N | —

L<5;c) - L((s;c + U!J¢> =

which we determine numerically.

+(ng+1)log(1+ fo.(e7c =1)) =

Final estimates (§,.) and error-bars €,

For each value of vy, we have determined the posterior probability P(v,|i,), and
given a variance v, we have a Gaussian posterior distribution P(d,|f,, v,) over the
log fold-changes, with means 97 .(v,) and variances var(dy.)(vy). Using these, we
can now calculate final estimates of the log fold-changes d,.. In particular, the
expectation value (d,.) is given by the integral

(Oge) = /dvgdggégcp(gg‘ﬁgvU9>P<Ug’ﬁg> = /dvgésc(vg)P@g’ﬁg)? (4.47)
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which we calculate numerically with the same weighted sum over the B bins.
Similarly, we find for the overall error-bar 630

65210 = ((d4¢)*) = (04e)” (4.48)
= [ duy [sar(E)e) + (@ 0))] Pl - 6,07 (409)

_ / vy (Var(8,e) (vg) + (65.(0) — (0))*) Plugly),  (4.50)

which we also calculate numerically using the same weighted sum over the B bins.
Sanity returns, for each gene ¢ in each cell ¢, both the estimated log fold-change
(d4e) and its error-bar €.

Mean expression (log(ay))

Once we have fitted a set of ;.(vy) for each vy, and determined the posterior
P(v,|7ly) we can now easily estimate the mean log quotient p, = log(ay) of each
gene. Returning to equation (4.23), and marginalizing over the d,. using the
Laplace approximation, we find that the posterior over ¢, is proportional to the
expression (4.23) in which the d,. have been set to d;.(v):

P(O_‘g|ﬁ97 Ug) X (O‘g)ng exp [_agqu(vg)] ) (4.51)

where n, is the total number of UMIs captured for gene g, ed9(v9) = > N, e%c() ag
defined above, and we have explicitly indicated that g, is a function of the variance
Ug.

Using (4.51) the expectation value of log(cy,) at a given value of the variance
vy is given by

(log(arg))v, = ¥(ng + 1) — gg(vy), (4.52)

where ¢ (z) is the digamma function, i.e. the derivative of the logarithm of the
gamma function. Note also that, since n, is an integer, we have ¢(n,+1) is simply
related to the Harmonic numbers, i.e. ¥(n,+1) = —y+> .2, 1/k, with v = 0.577
the Fuler-Mascheroni constant.

To get a final estimate p, = (log(a,)) we obtain the weighted average over the
variance vg, 1.e.

o = ¥y +1) — / 0y (0) P0ylity) = by + 1) — (ay). (4.53)

Error bar on mean expression

Going back to equation (4.51) we find that the variance in log(cy,), at a given value
of the variance vy, is given by the derivative of the digamma function:

var(log(a,)),, = 1 (ng + 1), (4.54)
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with 11 (z) the derivative of the digamma function, which is also called the trigamma
function. Note that this variance is independent of v,.
The final error-bar dy, for log(cy, + 1) is then given by

(5N9)2 =i(ng +1) + /dvg (qq(vg) — <QQ>>2 P(vgiiy). (4.55)

Note that, as for the calculation of the log fold-changes, these integrals over v, are
approximated by sums over the same set of B bins.

4.5.2 Simulated datasets

We created two simulated datasets. In the first dataset the expression patterns of
all genes were chosen randomly and independently so that there are no correlations
between the gene expression patterns of different genes. In the second dataset
we created expression profiles by performing a branched random walk in gene
expression space as described below. For both simulated datasets we matched the
gene expression statistics to those of the Baron et al. dataset [Baron et al., 2016].
The first dataset was created as follows:

1. The dataset contained Ngene = 16’016 genes and Neoy = 1937 cells.

2. For each gene in the Baron et al. dataset, we calculated the total number
of UMI Ny in the data and defined its mean LTQ as y1, = log(Ny/ >, Ny).
In the simulated dataset, each gene was randomly assigned one of the mean
LTQ values p, of the Baron et al. dataset.

3. Similarly, Sanity estimated the true variances v, in LTQ to be roughly ex-
ponentially distributed in the Baron et al. dataset, with a mean of approx-
imately 2. For the simulated datasets, we assigned each gene a variance in
LTQ v, by drawing a random number from an exponential distribution with
mean 2.

4. For each gene g and each cell ¢, we randomly sampled a log fold-change .
from a Gaussian distribution with mean zero and variance v,.

5. We set the LTQ of gene ¢ in cell ¢ to log(aye) = ftge — vg/2 + 6ge-

6. For each cell ¢ we take the total UMI count N, from one of the cells in the
Baron dataset.

7. Finally, for each gene g in each cell ¢ we sample the UMI count n,4. from a
Poisson distribution with mean N.o ..

Note that in step 5 we subtracted a term v,/2 from the mean LTQ p, before
adding the log fold-changes d .. This is done to make sure that the expected mean
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transcription quotient matches e#s and that the sum of the expected transcription
quotients is 1, i.e. that we have

D lage) =) (etomvol2 ey = "eta = 1, (4.56)

g g g

The second simulated dataset was created in exactly the same way, except for
the way in which the log fold-changes d,. were chosen. These were sampled as
follows

1. For the first cell ¢ = 1, all d,; are drawn from a Gaussian with mean zero
and variance one.

2. For each next cell ¢ a parent cell 7(c) was assigned, and the log fold-changes
d,4c were chosen to be equal to those of its parent cell m(c), plus a random
Gaussian variable of mean zero and variance one, i.e.

5gc = (5g7r(c) + ch, (4.57)
where 0, is a Gaussian random variable with mean zero and variance 1.

3. Once every 13 cells, the parent m(c) is chosen uniformly randomly from all
existing cells, and for all other cells 7(¢) = ¢—1, i.e. the parent cell is simply
the previous cell. Thus, the ¢4 are drawn by performing a random walk in
gene expression space, where after every 13 random walk steps, a new random
walk is started from a randomly chosen cell. This causes the cells to fall on
a tree with branches of 13 cells each.

4. Finally, in order to make sure the variance of the LTQs of each gene matches
the assigned variance v,, we calculate the variance var(d,) of the log fold-
changes of gene g along the random walk, and then rescale all the log fold-

changes d,. by multiplying them by +/v,/var(d,).

Figure 4.9 shows the distributions of the total number of mRNAs per cell, the
total number of mRNAs per gene, and the variance in observed mRNA counts for
both the Baron dataset and the simulated data. Note that the distributions are
highly similarly except for the variances, which are more widely distributed in the
simulated data.

4.5.3 Estimating cell-to-cell distances

Given two cells ¢ and ¢/, the squared distance d?, is the sum of the squares of the
per gene LTQ differences, i.e.

A2y = (0ge — 0g0)°, (4.58)

g
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where p15 4 4 is the true LTQ of gene g in cell ¢ and d,. the true log fold-change.
Notably, the true log fold-changes d,, will differ from the estimated log fold-changes
0. that Sanity reports. In particular, for each gene g and cell ¢, Sanity also reports
an error bar €, on this estimate.

In order to estimate the distance d.» while incorporating these error bars we
are going to make a few simplifications to make the calculation tractable. First,
Sanity estimates an overall variance v, for each gene and, although this estimate
of course also has finite accuracy, we will ignore this uncertainty in v, and presume
that, given the data D, for gene g, the variance v, is determined. Second, although
there are nonzero covariances across cells in the full posterior distribution of the
log fold-changes d,4., we will ignore these as well and approximate the posterior
over all 4. by a product of independent posteriors with means 4, and variances

ef] . That is, given v, and the data D, for gene g, the posterior for the true log

fold-change 0, is given by the Gaussian:

P(596|Ugv Dg) =

1 (8ge — 5;(,,)2] | (4.59)

exp |—
\/ 21, p[ 2¢2,

Given these posteriors and given a pair of cells (¢, ') we now want to estimate
the sum of the square deviations (J,. — d,)* and to this end we introduce some
simplifying notation. Let z, denote the estimated difference in the LTQs of gene
g between the two cells, i.e.

Ty =0, — g, (4.60)

and let A, denote the true difference in LTQs:
Ay =dgc — Oger, (4.61)

Also, we denote by ¥ and A the vectors of estimated and true LTQ differences
across all genes.
In order to estimate the true squared deviations AZ we need a prior distribution

P(A) over the vector of true LTQ differences A and a likelihood P(D,|A) of the
data for the two cells given the vector of true LTQ differences between the cells.
Once the likelihood and prior are given, the expected square distance (d?) between
the two cells is formally given by the following ratio of integrals

[dA (Zg Ag) P(D.v|R)P(A)
[dAP(D,.|A)P(A)

(@) => (A = (4.62)

g

To set the prior P(ﬁ) we first note that the overall squared-deviation d? is the
sum of squared deviations Ag over all genes. From the entire set of cells Sanity
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has estimated that, averaged over all pair of cells, the expected squared deviation
of gene g is proportional to vy, i.e.

(AZ) = 2v,. (4.63)

Taking this into account, we parametrize the expected square deviations (Ag) for
a single pair of cells (¢, ¢’) by a hyperparameter a which specifies that the expected
square deviation for gene ¢ is

(A2) = av,. (4.64)

That is, for a = 0 the two cells are expected to have identical expression profiles,
whereas for a = 2 the two cells are expected to be as distant as a random pair
cells.

Noting that the maximum entropy distribution consistent with a given expected
square deviation Ag is Gaussian, we will assume a Gaussian prior distribution over
each A, with mean zero and variance av,. That is, given hyperparameter «, we
have for the prior

, (4.65)

S 1 A?
P(A|V, a) = ————exp (— g )
1;[ [, /2T, 2awy

where we have explicitly indicated that this prior depends on the vector v of
estimated variances v, and the hyperparameter o. Our final prior P(A|v) is given
by using a uniform distribution over the unknown hyperparameter « for each pair
of cells, i.e. we have

P(A|7) / doP(A]7, ). (4.66)

To obtain the likelihood P(D,»|A), we note that the posterior P(d4| Dy, vy) is
proportional to a product of the likelihood and prior used by Sanity, i.e.

P(8gc| Dy, vg) o< P(Dy|Gge, vg) P(dgc|vy), (4.67)
where Sanity’s prior is itself a Gaussian with mean zero and variance v,, i.e.
1 52
P(d,. = -, 4.68
(ki) = —g=en (5 (4.68

Using this, and solving for the likelihood, we find that the likelihood P(Dy|d,c, vy)
is given by

1 (850 — 0ge)?
P(D,|0ge,vy) = ——exp | -2 |, (4.69)
e ! \% 27T7]gc Qﬁgc
with the rescaled mean y v
Ope = 0F g 4.70
g gc Ug o 652;(: ( )
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and variance

2 2 Ug
— ] 4.71
T/gc 6gc vy — 62@ ( )

Finally, combining the likelihoods for ¢, and d,, and defining z, = 590 — 590/ and
772 = ngc + 7730,, we find for the likehhood of the difference in LTQ

P(Deo|R) =] { \/%ng exp (—%)] (4.72)

Combining the expressions for the likelihood and prior into equation (4.62), we
find the expected square distance can be rewritten as

B deéd& <Zg Az) P(Dc,c’u &|@717)

Ay - G (4.73)
p [ dadAP(D, ., Ala, ¥)
with
> 1 (A, —x,)? A2
P(D..,Ala,v) = ———exp | — g &4 £ 4.74
(D, %) 1;[ 27mn4\/av, [ ; 2n2 2a, (4.74)

The integral over A in the denominator can be performed analytically to obtain

2

P(Deola,®) =[] ! o {—Q(L} . (4.75)

g 1\/2m(avy + 2 avg +173)

We can use this to define a posterior distribution over a:

P(D, oo, v)

Dc el R
Pla|Dee,v) = [daP(D.v|, 7)

(4.76)

and rewrite the expectation value for the squared distance as
ZA? Z/daP a|De.r, ) /dA ALP(Ag| Do, vg, c0), (4.77)

with the posterior distribution over A, given o and the data given by

_ v By = fe(a)ay)?
P(Ag| Do, vg,00) = 7.0 p { 32 () : (4.78)
with ov
fola) = —"—. (4.79)
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Finally, performing the integral over all A, we obtain
(d?) = Z/daP(a]Dcyc/,ﬁ) [Q:ng(oz)2 + ngfg(a)} ) (4.80)
g

Note that, at a given value of «, the expected square difference in the LTQs
for gene g is av,. If the variance 773 corresponding to the measurement noise
in the estimated squared difference :Ef] is small compared to av,, then f,(a) is
approximately 1, and the term in the square brackets is x7 + 7. That is, in
that limit the contribution of gene g to the squared distance is dominated by
the estimated change in LTQs xz. In contrast, if the measurement noise is high
and 773 > awy,, the terms in brackets becomes awv,. That is, in that limit the
contribution of gene ¢ is simply the expected squared difference av,. The estimated
distance is thus given by a weighted average of the terms in the squared brackets
over all values of a, weighing each a with its probability P(a|D. »,¥) given the
data for all genes. Note that, to obtain (d?) we simply need the weighted averages
(fg) and (f7), which we calculate numerically.

4.5.4 Clustering analysis

Assessing the performance of the different normalization methods on downstream
clustering of cells is challenging for several reasons. First, for real data the optimal
clustering is at best partially known. That is, although we have a number of data
sets for which reference clusterings were provided, it is by no means obvious that
these reference clusterings are really optimal. Second, clustering is a complex
problem for which there is no algorithm that is optimal in all situations, so that
the performance may vary depending on what clustering algorithm is used [Kiselev
et al., 2019]. Finally, partitions of a set into subsets are fairly complex objects
themselves, and it is not even obvious how to quantify the similarity between two
possible partitions. Consequently, a host of different similarity measures are used
in the literature.

We therefore decided to benchmark the performance of the normalization meth-
ods on the clustering by using 6 different scRNA-seq datasets that have annotated
reference clusterings, run 3 different popular clustering methods on each, and then
use 4 different similarity measures to compare the resulting clusterings with the
reference clusterings. We reasoned that the quality of each normalization can be
assessed by the robustness in performance across datasets, clustering methods, and
similarity measures.

Clustering algorithms

The three clustering algorithms we used were:
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e K-means : A method that starts from a random initial clustering and it-
eratively reassigns objects to clusters so as to minimize intra-cluster vari-
ance [Lloyd, 1982].

e Ward: A hierarchical clustering methods that constructs a linkage tree of the
objects by iteratively fusing the pair of objects so as to minimize the increase
in intra-cluster variance [Ward, 1963].

e Louvain: A more recent method for extracting the community structure of
graphs. Starting from a k-nearest neighbor graph, cells are merged in clus-
ters by optimizing the modularity, an objective function that measures the
density of links inside communities as compared to links between communi-

ties [Blondel et al., 2008]

For both the K-means and Ward method we set the number of clusters to match
those of the reference annotation for each dataset (which is not possible for the
Louvain clustering). The only parameter for the Louvain clustering is the number
of nearest neighbors, which we set to 30.

Clustering similarity measures

Let the sets {A} and {B} denote two partitions of a set of cells, with A; € N
and B; € N, representing the number of the subset to which cell ¢ is assigned in
each of the partitions, with ¢« = 1, ..., C, and C' the number of cells.

The size distributions and the joint distribution of the two partitions are defined
as the frequencies

{Ai=dl<i<C)

C

where |-| denotes the cardinality of a set, i.e. Pa(a) is the fraction of cells belonging
to cluster a in partition { A}, Pg(b) is the fraction of cells belonging to cluster b in
partition { B}, and Pag(a,b) is the fraction of cells that belong to both clusters a
and b.
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The entropies of these distributions are then defined as

H(A) = =) Pu(a)log Pa(a) (4.84)

H(B) = =Y Pg(b)log Py(b) (4.85)

H(A,B) = — Y Pap(a,b)log Ps(a,b), (4.86)
a,beNy

and the mutual information is defined as

[(A;B) = H(A)+ H(B)— H(A, B) (4.87)
. a o PAB(a,b)
"2, e By e

representing the amount of information the two partitions contain about each
other.
As a first measure of similarity, we use the Normalized mutual information,

defined as
I(A; B)

H(A)H(B)

The other three similarity measures are all based on comparing, the reference
partition {A} with a given other partition {B} by counting the number of pairs
(,7) that are either in the same cluster in both partitions (called true positives
TP), in the same cluster in the reference { A} but not in partition { B} (called false
negatives FN), in the same cluster in {B} but not in the reference (called false
positives FP), or that are in different clusters in both partitions (true negatives
TN).

The three other similarity measures define similarity in terms of the counts TP,
FN, FP, and TN as follows:

NMI(A; B) = (4.89)

e The Adjusted rand index or ARI:
TP-TN —FN-FP

ARI(A,B) =2 4.

RI(A, B) (TP+ FN)(FN+TN)+ (T'P+ FP)(FP+TN) (4.90)

e The Fowlkes—Mallows index or FM:

TP TP
FM(A, B) = ) 4.91
(4, B) ¢TP+FNTP+FP (4.91)
e The Jaccard index:
TP

Jaccard(A, B) = (4.92)

TP+ FN+FP’
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Ranking of the normalization methods based on their similarity scores

Using the 6 annotated datasets, the 3 clustering algorithms and the 4 similarity
measures, we obtain a total of 72 different similarity scores for each method (Suppl.
Fig. 4.26). To summarize these results, we first calculated the number of times
each method was the best performing method across the 72 combinations (Fig.
4.5d). Second, to measure the robustness of each method, we first calculated for
each of the 72 combinations and each method m, the ratio r,, = s,,/s. of the
similarity score s,, that method m had, and the highest similarity score s, on that
combination. We then calculated for each method the distribution of the ratio r,,
across the 72 combinations (Fig. 4.5e).

4.5.5 Differential expression analysis

Let eg4. denote the log-expression of gene g in cell ¢, C' an ensemble of cells, and
C its complement, i.e. all other cells in the dataset. The t-statistic t,c quantifies
the statistical evidence that the average expression of gene ¢ in the cells of set C'
differs from the average in all other cells:

te = Hoe — FoC (4.93)
¢a§c/|c| +02/|C|
= c 4.94
HgC |C’ cezceg ( )
Hoo = |C, Zce (4.95)
JSC = Z €ge — #gC (4.96)
cEC
CEC

with |C| and |C| the number of cells in set C' and its complement, respectively.

Given a t-statistic ¢,c, the p-value under a one-sided ¢-test for the null hypoth-
esis that the gene has the same average expression in set C' as in its complement
is

Plt,e) = %Erfc <t97%) | (4.98)

Sorting all genes by the t-statistic ty¢, the list of over-expressed genes at a false
discovery rate of f is obtained by picking a cut-off ¢, such that average of P(t,¢)
for all genes with t,c > t.is f.



CHAPTER 4. J. BREDA ET AL. NAT BIOTECHNOL 39 (2021) 126

Finally, the reference sets of differentially expressed genes were constructed
using a negative binomial generalized linear regression to obtain posterior prob-
ability distributions for the class-specific contributions to each gene’s expression
(also considering contribution of age and sex and a basal expression per gene)
(see [Zeisel et al., 2015], Supplementary Materials, Gene expression enrichment
analysis).
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4.6 Supplementary figures
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Figure 4.6: a: Box-whisker plots showing the median (circle) as well as the 5th, 25th,
75th, and 95th quantiles of the distribution of standard-deviations in log gene expression
levels across genes, for each of the 4 datasets (see legend) as inferred by each of the
normalization methods. b Scatter plots of standard-deviation in log-expression as a
function of mean log-expression for all genes in each of the 4 datasets (colors as in panel
a) as inferred by each of the normalization methods. The Pearson correlation coefficient
between standard-deviation in log-expression and mean log-expression is shown above
each plot.
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Figure 4.7: In bulk transcriptome data the variance in expression levels scales with the
square of the mean, and the variance of log-expression levels is independent of the mean.
Left panels: Scatter plots of the variance in TPM versus mean TPM across genes for
the FANTOMS5 expression atlases for human (top) and mouse (bottom) based on deep
CAGE sequencing [Forrest et al., 2014]. Each dot corresponds to one promoter. Both
axes are shown on logarithmic scales and the red line shows the quadratic relationship
y = 2. Right panels: The same scatter plots but now showing the variance in log-TPM
versus the mean in log-TPM. Note that there is no longer any systematic dependence

between mean and variance.
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Figure 4.8: Scatter plots of the CV against mean of expression levels across genes. Rows
correspond to different scRNA-seq datasets. Colors and columns correspond to the dif-
ferent methods used to normalize the data, as indicated above each column together with
the Pearson correlation between log(CV) and log(mean). The bottom row corresponds
to the simulated dataset and the black scatter on the right shows the true means and
CVs used in the simulation.
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Figure 4.9: Expression statistics of the simulated dataset match those of the Baron
dataset. a: Distribution of total number of UMI per cell N, in the simulated dataset
(blue) and the Baron dataset (red). b: Distribution of total number of UMI per gene Ny
in the simulated dataset (blue) and the Baron dataset (red). c: Distribution of variance
per gene calculated on the raw count matrix obtained from the simulated dataset (blue)
and the Baron dataset (red).
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Figure 4.10: Comparison of the true CVs in expression used to simulate the data and
the CVs in expression inferred by each of the normalization methods on the simulated
dataset. Each panel shows a scatter plot of the true CV (horizontal axis) against the CV
inferred by the normalization method (vertical axis) across all genes. The color of each
data point shows the mean expression level of the gene (average number of UMI per cell,
see color bar). Both axes are shown on a logarithmic scale. The Pearson correlation
between the inferred CVs and the true CVs is shown on top of each panel.



CHAPTER 4. J. BREDA ET AL. NAT BIOTECHNOL 39 (2021)

RawCounts r: 0.018 TPM r: 0.025 DCAT: 0.3
10
7.5
5
2.5 )
o G <2
Deconv. r: 0.02 MAGIC r: 0.082 Sanity r: 0.79

Inferred variance

SAVER r: 0.52

sctransform r: 0.5

sclmpute r: 0.019

10
7.5

2.5 gl

0 ’ A 0
0 5 10 15 20
scVir: 0.29

10
7.5

2 5 [k

0 5 10 15 20

60
45
30

0 5 10 15 20 0 5 10 15 20

True variance
<UMI> per cell

102
10
10°
10!
1072
1073

133

Figure 4.11: Comparison of the true variances in log-expression used to simulate the data
and the variances in log-expression inferred by each of the normalization methods on the
simulated dataset. Each panel shows a scatter plot of the true variance (horizontal axis)
against the variance as inferred by the normalization method (vertical axis) across all
genes. The color of each data point shows the mean expression level of the gene (average
number of UMI per cell, see color bar). The Pearson correlation r between the inferred
variances and the true variances is shown above each panel. Note that for sctransform
the inferred variance corresponds to the variance of the z-values.
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Figure 4.12: Violin plots of the distributions of correlation coefficients between inferred
log-expression levels of genes and log of total UMI count per cell. Rows correspond to
different datasets, as indicated above each row, with the bottom panel corresponding to
the simulated dataset. Columns correspond the different methods, as indicated at the
bottom.
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Figure 4.13: Density plots of the Pearson correlations of normalized log-expression values
of all pairs of genes as inferred by Sanity (x-axis) and the corresponding pair correlation
as inferred by RawCounts (a), Deconvolution (b), and sctransform (c) on the y-axis, for
the Baron dataset. The color scale shows the density in log;, of gene pairs and values

log(0) are shown in white.
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Figure 4.14: Density plots of the Pearson correlations of normalized log-expression values
of all pairs of genes as inferred by Sanity (x-axis) and the corresponding pair correlation
as inferred by DCA (a), SAVER (d), and scVI (g) on the y-axis, for the Baron dataset.
The color scale shows the density in log;, of gene pairs and values log;((0) are shown in
white. For panels a, d, and g, the red and magenta rectangles show selections of gene
pairs for which the two methods disagree most strongly on the correlation. For each such
set of pairs, we counted the number of times n; ;, across all pairs and all cells, for which
i UMI were observed for the first gene and j UMI for the second gene. The panels b,
c, e, f, h, and i show the corresponding 2-dimensional histograms n; ; for each selected
set with the number of pairs indicated above the panel. The height of the histogram is
shown in log;, as a color and values log;;(0) are shown in white.
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Figure 4.15: Distributions of the Pearson correlations of all pairs of genes, as inferred by
each normalization method. Each panel corresponds to one dataset (indicated above it)
and each color corresponds to one of the normalization methods, indicated in the legend.
Note that the y-axis is shown on a logarithmic scale. Methods that map expression states
to a low-dimensional representation have wide distributions of correlations, whereas
methods that do not have correlations sharply peaked around zero.
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Figure 4.16: Many methods generically predict spurious correlations on simulated data
without any true correlations in the expression patterns of genes. The density plots
show the Pearson correlations of normalized log-expression values of all pairs of genes
as inferred by each method (y-axis) versus the true correlations used in the simulation
(which are all near zero). Each panel corresponds to the method indicated at the top.
The color scale shows the density in logig of gene pairs and values log;((0) are shown in

white.
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Figure 4.17: Projecting gene expression patterns on the top n PCA components in-
troduces spurious gene expression correlations. The density plots show the Pearson
correlations, for all pairs of genes, of the log-expression values that result from pro-
jecting the TPM normalized expression values on the first n PCA components (y-axis)
versus the true correlations used in the simulation (which are all near zero). Each panel
corresponds to a different number n of top PCA components, going from all genes (top
right) to only 5 components at the bottom right. The color scale shows the density in
logq of gene pairs and values log;,(0) are shown in white.
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Figure 4.18: Comparison of the true distances between all pairs of cells with the dis-
tances estimated by each method, using all genes. The panels show density plots of the
Euclidean distances of the true LTQ vectors of each pair of cells (horizontal axis) versus
the Euclidean distances of the estimated log-expression vectors. Each panel corresponds
to one method. The top of each panel indicates the method and the overall Pearson
correlation between the true and estimated distances. For reference, each panel also
shows the line y = z.
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Figure 4.19: Comparison of the true distances between all pairs of cells with the distances
estimated by each method, using only genes with at least 1 UMI per cell on average. The
panels show density plots of the Euclidean distances of the true LTQ vectors of each pair
of cells (horizontal axis) versus the Euclidean distances of the estimated log-expression
vectors. Each panel corresponds to one method. The top of each panel indicates the
method and the overall Pearson correlation between the true and estimated distances.
For reference, each panel also shows the line y = x.
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Figure 4.20: T-SNE visualizations of the true and estimated distances between pairs
of cells for the simulated dataset corresponding to a branching random walk in gene
expression space. The top left panel shows a t-SNE visualization of the true distances
between the cells, with each 13-cell branch of the random walk given a different color
as a guide for the eye. For each method, t-SNE was run with the same parameters,
and starting from an initial condition corresponding to the visualization of the true
distances, using the matrix of cell-to-cell distances as estimated from the normalized
log-expression values. Methods are sorted from top left to bottom right by the accuracy
of their k£ nearest-neighbor predictions, i.e. the area under the curve of the fraction of
correct nearest-neighbors as a function of k.
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Figure 4.21: T-SNE visualizations of the Baron dataset. Each panel shows a t-SNE
visualization of the Baron dataset using the normalized gene expression values of the
method indicated at the top. Each point represents a cell and is colored by the cell type

annotated in the original publication.
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Figure 4.22: T-SNE visualizations of the Chen dataset.
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Each panel shows a t-SNE

visualization of the Chen dataset using the normalized gene expression values of the
method indicated at the top. Each point represents a cell and is colored by the cell type

annotated in the original publication.
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Figure 4.23: T-SNE visualizations of the LaManno/Embryo dataset. Each panel shows
a t-SNE visualization of the LaManno/Embryo dataset using the normalized gene ex-
pression values of the method indicated at the top. Each point represents a cell and is
colored by the cell type annotated in the original publication.
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Figure 4.24: T-SNE visualizations of the LaManno/ES dataset. Each panel shows a
t-SNE visualization of the LaManno/ES dataset using the normalized gene expression
values of the method indicated at the top. Each point represents a cell and is colored
by the cell type annotated in the original publication.
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Figure 4.25: T-SNE visualizations of the LaManno/MouseEmbryo dataset. Each panel
shows a t-SNE visualization of the LaManno/MouseEmbryo dataset using the normalized
gene expression values of the method indicated at the top. Each point represents a cell
and is colored by the cell type annotated in the original publication.
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Figure 4.26: Similarities between the reference clusters and the clusters inferred using
the normalized gene expression values of the different methods across 6 datasets (rows),
3 clustering methods (main columns), and 4 different similarity metrics (columns within
each main column). Clustering was carried out using either hierarchical clustering with
Ward’s method (left column) k-means clustering (middle column) or Louvain cluster-
ing with 30 nearest-neighbors (right column). The similarity measures used were the
mutual information (MI), the Adjusted Rand Index (ARI), the Fowlkes-Mallows index
(FM), and the Jaccard index. Each similarity measure takes values between 0 (no sim-
ilarity) and 1 (perfect match). Each group of bars shows the similarity scores for a
particular combination with colors indicating the different methods (see legend). Meth-
ods are sorted from left to right according to their average similarity score across all
combinations.
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4.7 Supplementary Text 1: Additional properties of San-
ity’s model

4.7.1 Sanity outperforms other methods in identifying differentially
expressed genes

As another example of downstream analysis we consider the ability of the normal-
ized expression values to identify genes that are upregulated in particular subtypes
of cells. That is, we aim to identify genes whose average expression in a given sub-
type of cells is significantly higher than its average in all other cells. A simple and
standard statistic for comparing the averages of populations is the t-statistic and
we used this to identify upregulated genes for each cell type in a given dataset. In
particular, for each gene g and each cell type k annotated in a given dataset, we
calculated a t-statistic .

tgk _ Hgk ,ugk : (499)

\/agk/nk + 0%/

where pig; is the average of the normalized expression values of gene g in cells of
type k, i, is the average in all other cells, O'zk and o2 the corresponding variances
gk

in normalized expression levels, and n; and nz the number of cells in type k& and
the number of all other cells. The t-statistic ¢y, quantifies the statistical evidence
that gene ¢’s average expression in cell type k is higher than in the other cells.
To predict a set of upregulated genes, one would then pick a cut-off in t-statistic
corresponding to a particular rate of false discovery (FDR), e.g. a 5% FDR. By
applying this procedure to the normalized expression values of each method we
derived, for each method, a set of upregulated genes for each cell type k of a given
dataset of interest.

To test the performance of these predicted sets of upregulated genes we com-
pared these lists with similar lists of predicted upregulated genes from the original
publications. For 3 of our test datasets, i.e. the Zeisel and two LaManno datasets,
the authors published, for each identified cell type, a list of genes that had higher
average expression in the cell type compared to the other types of cells [Zeisel
et al., 2015, La Manno et al., 2016]. These lists were obtained using a fairly com-
plex regression procedure and it is of course debatable whether these published
lists can be treated as a gold standard. However, since they were obtained using
a method that is very different from our simple ¢-statistic, we reasoned that the
match to these reference lists can still be used to assess the relative performance
of the different normalization methods.

For each normalization method we calculated a precision-recall curve by pro-
ducing one sorted list of the t-statistics t,. for all genes in all subtypes and, as
a function of a cut-off on ¢, compared the predicted set of significantly upregu-
lated genes, with the reference lists published in the original study. Figure 4.27
shows the precision-recall curves obtained for each of the methods on each of the
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Figure 4.27: Precision recall curves showing the positive predictive value, i.e. the fraction
of predicted upregulated genes that correspond to upregulated genes in the corresponding
reference list, as a function of sensitivity, i.e. fraction of all genes in the reference lists
that were predicted, as obtained using the t-statistics for each of the normalization
methods (colors, see legend) for the Zeisel (top left panel) and two LaManno datasets
(top right and bottom left panels). The dots show the values that are obtained when
using a cut-off on the t-statistic corresponding to a false discovery rate of 5% (based on
a one-sided t-test, see Materials and Methods).

3 datasets for which reference lists were available. The colored dots indicate the
sensitivity and positive predictive values (PPV) that are obtained for each method
when using a t-statistic cut-off corresponding to a 5% FDR. We see that, for each
dataset, Sanity achieves the highest accuracy of predictions, i.e. a higher PPV
at a given sensitivity than all other methods, followed by sctransform, and then
the simple TPM and Deconvolution methods. Note that, at a 5% FDR, the more
complex DCA, MAGIC, and scVI methods all predict very large numbers of up-
regulated genes which leads to low PPVs. In summary, these results suggest that
Sanity’s normalized expression levels also achieve highest accuracy for downstream
identification of differentially regulated genes.
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4.7.2 Limitations of Sanity’s model and going beyond them

To motivate Sanity’s model we started from the simplest model of gene expres-
sion, in which there is a constant rate of transcription A\, and constant rate of
mRNA decay u, leading to a Poisson distribution of the number of mRNAs with
average a = A\/p. One popular way in which this simple model can be generalized
is to assume that the transcription rate A can stochastically switch between an
‘on’ state with high transcription rate \,, and an ‘off’ state with low/basal tran-
scription rate A\.g. However, in reality the transcription rate at a given promoter
can almost certainly take on many more than two values. The transcription rate
is likely a complex function of the chromatin state and binding configurations of
transcription factors at both the promoter and enhancers, and of the 3D structure
of the chromosome. In addition, transcription and decay rates will also vary in a
continuous manner as a function of the concentrations of RNA polymerases, basal
transcription factors, RNAses, and even of the cell cycle state, size of the nucleus,
and so on. Recognizing this, we thus generalized the stochastic model of gene
expression to assume that, for each gene ¢ in each cell ¢, there are unknown time-
dependent functions \,(t) and p,(t) that set the transcription rate and mRNA
decay rate for gene g at a time t in the past of the time at which the cell was
sampled for measurement. Under that model, the expected number of mRNAs
(myc) for gene g in cell ¢ is given by the integral

(mye) = /0 T elt) exp {— /O t Mgc(sms} dt = ay., (4.100)

which we defined as the transcription activity ag.. The actual number of mRNAs
mge is then a Poisson sample with expected value age.

Note that one should think of the functions A\,(¢) and p,(t) as fluctuating
on a typical time scale. That is, in the model both transcription and mRNA
decay events are effectively described as instantaneous events, i.e. A, (t)dt is the
probability that a transcript is produced during the small time interval between
t and t + dt in the past. However, the actual process of transcribing a gene and
processing the pre-mRNA into an mRNA takes a considerable amount of time,
especially for long genes. One can thus think of \;(¢)dt as the probability that
an mRNA is finished during the time interval length dt. This probability will be
a convolution of probability distribution of the time 7 that it takes to transcribe
and process, and the transcription ¢nitiation rate at time ¢t — 7.

Similar remarks apply to the fluctuating mRNA decay rate p,(t). Note also
that, because different mRNAs of gene ¢ may be in different states, e.g. bound by
different RNA binding complexes, the mRNA decay rate of different mRNAs of
the same gene may be different and one should think of p,(t) as the average decay
rate of all mRNAs of gene g at time t. In summary, our general model will apply
when during short time intervals dt that are long relative to the time it takes for
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a transcription initiation event to occur, but short relative to the time between
transcription initiation events and the life times of mRNAs, there is effectively
a constant probability for a transcription event or mRNA decay event to occur.
Under those assumptions the statistics of the mRNA numbers at any time point
are still a Poisson distribution with mean the transcription activity a,. defined
above.

Although we believe this model is consistent with current biophysical knowledge
about the gene expression process, it is certainly possible to imagine biophysical
processes that could not be described by this model. To give one example, it
is conceivably that at some point in the near future it will be discovered that
large complexes exist that contain collections of RNA polymerases together with
general transcription factors such that, when such a complex binds to a promoter,
a process is started by which all the RNA polymerases in the complex are fed in a
regular manner onto the promoter so as to each start a new transcript at regular
time intervals until all RNA polymerases in the complex are used up. Clearly,
during that period of time we cannot describe the process as having only a certain
probability per unit time for a transcript to be produced. One might still argue
that one could simply ‘zoom out’ to a larger time scale at which the processing
of the entire complex appears as a single event in which a burst of transcripts is
initiated. But the size distribution of these bursts will then be given by the size
distribution of these complexes containing RNA polymerases, and these may not
respect Poisson statistics. As another example, the model also effectively assumes
that the probability of one mRNA to decay during a short time interval dt is
proportional to the total number of mRNAs for gene g. If, for example, mRNAs
for gene g were to reliably aggregate together into complexes, and all mRNAs
within such complexes were degraded at the same time, then this assumption
could also break down. We give these examples not because we believe they likely
apply, but just to stress that the biophysical processes involved in gene expression
are so complex that we cannot exclude that processes exist that strongly violate
our model’s assumptions.

Another assumption that our model makes is that fluctuations in the LTQ of
one gene do not significantly effect the LT Qs of other genes. As discussed in the
supplementary methods, this assumption is likely accurate as long as not one or a
few genes are responsible for a large fraction of all mRNAs in the cell. However, we
have also noted that, although rare, in practice there can be cases where a single
gene is responsible for a large fraction of the reads in one cell, e.g. hemoglobin can
be responsible for more than 50% of the reads in red blood cells.

Information from intronic sequencing reads

A notable limitation of our model is that it effectively ignores the process of tran-
scription itself, including splicing and other mRNA maturation processes. In par-
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ticular, the model currently only considers the number of unique mRNA molecules
nge that were sequenced for each gene g in each cell ¢, and ignores sequencing reads
coming from introns. However, the amount of intronic reads may give important
information about the time derivative of the gene expression state [La Manno
et al., 2018, Bergen et al., 2020] which can be especially useful when aiming to
reconstruct the trajectories that cells follow through gene expression space. Thus,
an important future extension of Sanity’s model is to include information from
intronic reads.

Incorporating information about the cell’s total transcription activity

In our current model we focus on the relative transcription activities, i.e. the
transcription quotients oy, and treat the product of the total transcription activity
of a cell A, and the capture and sequencing efficiency p. as one effective parameter
A that is integrated out of the likelihood. Depending on the system under study
and the particular scRNA-seq protocol used, the variation in the capture and
sequencing efficiency p. across cells may be larger than the fluctuations in total
activity A., and in those cases the variation in total UMI counts N, will mainly
reflect technical variability and not contain much useful biological information.
Moreover, some of the variations in A, may correspond to stochastic fluctuations
in cell size that have no effect on cell state. However, especially in more complex
tissues there may be cells of different types that have very different sizes and total
activities A.. In those cases the total UMI count NN, may well contain useful
information about the cell type of cell ¢ and one might want to make use of this
information. Note, however, that it is easy to simply use the total counts N, as a
separate quantity in addition to the estimated LTQs 15 + dgec.

4.7.3 The relation to negative binomial noise models and zero-inflation

Virtually all statistical models of scRNA-seq data agree that the observed UMI
counts are a Poisson sample of an underlying expected UMI count (n). If one
assumes that this expected count is completely constant across cells, then the
fraction of cells with zero counts should match Poisson statistics, i.e. equal e=(™.
In reality much higher fractions of zeroes are observed and this phenomenon is
known as zero-inflation. However, there is of course no reason to assume that the
expected UMI count (n) must be constant across all cells, i.e. this expectation
will vary from cell to cell due to changes in gene expression state, cell size, mRNA
capture efficiency, and sequencing depth. Once such variations are taken into
account, evidence of zero-inflation disappears [Svensson, 2020]. Since our model
explicitly takes such variations into account, there is thus no need to incorporate
any zero-inflation.

Since all models agree that the observed UMI count n is a Poisson sample of
the expected UMI count (n), the distribution of UMI counts is a convolution of
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the Poisson distribution with the distribution of expected UMI counts (n) across
cells. The negative binomial model arises if one assumes that (n) follows a gamma
distribution across cells. However, as far as we are aware, there is no reason to
assume that the expected counts (n), which depend on variations in transcription
quotient, cell size, capture efficiency, and sequencing depth, should follow a gamma
distribution. The gamma distribution is assumed mainly for mathematical conve-
nience, since the convolution with the Poisson can then be calculated analytically,
yielding a negative binomial distribution.

In contrast, we have argued that the quantities that we want to estimate are the
LTQs and we decided to characterize the prior distribution of LTQs for each gene
only by its mean and variance, leading to a Gaussian prior on LTQs. Note that
this is equivalent to assuming a log-normal prior distribution over transcription
quotients. In summary, the effective difference between negative binomial noise
models and Sanity’s noise model is that we convolve the Poisson distribution with
a log-normal rather than with a gamma distribution. Apart from the theoretical
motivation, we also prefer the log-normal model because it naturally arises under
multiplicative noise (via the central limit theorem), and it naturally implements
that the expected variance in expression scales as the square of the mean. However,
it is possible that the choice of gamma versus log-normal may not make a large
difference in practice.

4.7.4 The coefficient of variation and variance in log-expression are
equal in the limit of small variations

For a random variable x with mean m and variance v, its coefficient of variation

CV is defined through

v

CV? = —5 (4.101)
The variance of the logarithm of z is given by
var (log(z)) = ([log(x) — {log(x))]*). (4.102)

If we write x = m + €/v, with € a random variable with mean zero and variance
1, then we can write to first order
log(x) = log (m + e\/ﬂ) ~ log(m) + eﬁ, (4.103)
m

which is accurate whenever /v is significantly smaller than m, i.e. when the CV
is small. We then find for the variance in log(x):

var (log(z)) ~ %%} 2> - # — OV2 (4.104)

Thus, when the variations in gene expression are small relative to the mean, the
CV-squared equals the variance in log-expression.
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4.7.5 Using Euclidean distance to measure distances between cells

Once we have decided that we want to measure the gene expression state of a cell
by a vector of log transcription quotients (LTQs), it immediately follows that the
difference in the expression of gene g between cells ¢ and ¢ is given by d.:(g) =
log(ayge) — log(ayz), which is the log fold-change of the expected expression levels
between cells ¢ and ¢é. Note that, because log(ay.) = iy + dyc in terms of the mean
LTQ py and the log fold-changes d,. that Sanity reports, we can also write

dez(g) = dgc — Oge. (4.105)

However, it is less obvious how to best combine the log fold-changes d.z(g) of
each of the genes into a single distance d.z between the two cells. By far the most
commonly used metric is to simply calculate the Euclidean distance between the
vectors &, and g@, ie.

2= (8ge — 040)* (4.106)
g

and this is also how we decided to calculate distances between cells in this work.

Although we are not aware of any compelling arguments for favoring other dis-
tance metrics over this standard Fuclidean metric, it is to some extent arbitrary to
use the Euclidean distance metric. In particular, there is no reason to assume that
the Euclidean distance d .z between two cells corresponds to some true biophysical
difference in the expression states. However, there are several good mathematical
arguments for using FKuclidean distance. First, the Euclidean distance is a true
distance metric in the sense that it satisfies the triangle inequality, i.e. for any
triplet of cells a, b, ¢, the distance from a to ¢ cannot be larger than the sum of
the distance from a to b and the distance from b to ¢. Second, our usage of the
Euclidean distance is consonant with characterizing the expression variability of
each gene by its mean and variance. That is, the variance v, of the expression of
gene g across the cells is equal to the expectation of the squared-deviation (5§C>,
which is directly related to the average squared distance between two randomly
chosen cells, i.e.

C
(oo = 050 = 23 O (Bge = bue)? = 20, (4.107)

c,c=1

That is, the expected squared Euclidean distance between two randomly chosen
cells is twice the sum of the variances v,, summed over all genes. Thus, when
using Euclidean distances the distances between cells are directly related to the
variances in expression across cells.

In addition, in contrast to most alternative metrics, the Euclidean distance also
has the advantage that it is invariant not only under translation but under arbi-
trary continuous rotations of the vectors. Therefore, the distances between cells are
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invariant to the set of orthonormal base vectors used to represent expression states.
In principal component analysis one searches for lower dimensional subspaces that
capture most of the variance in the data and, when using the Euclidean distance
as a distance metric, this is equivalent to finding the lower dimensional subspace
for which the averaged squared distance between the cells is largest. Finally, note
also that, if all cells have approximately the same total squared distance from the
global average expression profile, i.e. when

D e mV =) v, Ve, (4.108)
g g

then there is also a monotonic relationship between the squared distance between
two cells, and the Pearson correlation of their expression profiles, i.e.

doc =3 (40— 640)> = 2V (1 — (5, })) , (4.109)

g

with 7(3,, 6z) the Pearson correlation of the two vectors (i.e. their inproduct nor-
malized by the product of their lengths). Although none of this shows that usage
of Euclidean distances is required, it does argue that it is a natural choice.

4.7.6 Correcting for batch effects with Sanity

The term batch effect is used to refer to a wide array of uncontrolled variations in
experiments of both technical and biological nature, and some normalization meth-
ods also specifically aim to correct for batch effects. In our opinion, normalization
methods should not conflate true biological differences in gene expression (for ex-
ample due to different genotypes or experimental conditions) from differences that
result from technical variation in the experimental protocols. Normalizing away
differences that correspond to true biological differences may well remove evidence
of important biological effects. We thus feel that normalization methods should
only aim to correct for technical variation and we here briefly discuss what types
of technical variations Sanity can and cannot correct for.

First, we note that there are types of experimental variability that no normal-
ization method (that we are aware of) corrects for. For example, the efficiency in
extraction of cells of different types from the tissue or system under investigation
may vary across protocols. Such biases will crucially affect the way cells from a
given sample will appear to be distributed in gene expression space. However,
since normalization methods, including ours, only quantify the expression states
of the cells that were captured, they cannot correct for such cell capture biases.

There are also technical variations that Sanity automatically corrects for. First,
since Sanity defines the gene expression state of a cell in terms of the vector @, of
transcription quotients, the method naturally corrects for variations in the total
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UMI count per cell. This includes variations in total UMI count both due to
variations in cell size as well as due to technical variation in the efficiency of
mRNA capture and sequencing. In particular, Sanity automatically corrects for
arbitrary variations in the total transcription activities A, and the capture and
sequence probabilities p. across cells.

Sanity assumes that, in a given cell ¢, each mRNA has the same probability p.
to be sequenced. However, it is plausible that in reality mRNAs for different genes
have different probabilities to be captured and sequenced. Note that, if the capture
and sequence probability py. of gene g in cell ¢ were to vary in an arbitrary way
across both genes and cells, it would be impossible to disentangle fluctuations in
gene expression from fluctuations in py.. However, at least for the cells within one
experiment, it seems reasonable to assume that the relative capture and sequencing
efficiencies of different genes are the same. Under that assumption, we would have
that the capture and sequence probability for gene ¢ in cell ¢ is a product of a
cell-specific factor and a gene specific factor, i.e

Pge = Dely- (4.110)

Note that in this model the relative probability of capturing an mRNA of gene
g in two cells ¢ and ¢ is p./pr independent of the gene, and the relative probability
of capturing two different genes ¢ and ¢’ is ¢,/q, independent of the cell. That
is, in this model different genes may have different propensities g, to be captured,
and capture efficiency p. may vary across cells, but the relative propensities across
genes stays the same across cells within one experiment.

If we define the rescaled average LTQs across genes 5, = gy0a4, then all the
calculations that we performed above go through in the exact same way by simply
replacing o, with 3, everywhere in the equations. In addition, note that equation
(4.110) above is invariant under rescaling all the ¢, by some constant X if we at
the same time rescale all p. by 1/X. Thus, without loss of generality we can freely
pick the normalization of the ¢, and a natural choice is to demand that

D Be=> gy =1. (4.111)

This way, the §, are still normalized so that they sum to 1.

We can then simply reinterpret the estimated average LTQs pi4 as the sum of
the true biological average LTQ log(c,) and shift log(g,) due to technical capture-
and-sequence bias, i.e.

pg = log(By) = log(ay) + log(gy)- (4.112)

In other words, the mean LTQs that we estimate for each gene are the sum of the
true mean LTQ plus an unknown correction term due to (unknown) technical bias
in the efficiency and capture of different genes.
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Importantly, while the biases g, are likely roughly constant across cells within
one experiment, and maybe even across multiple experiments that use the same
protocols, we can easily imagine that the g, will change when the scRNA-seq
protocol is changed. However, it should now be clear how one can correct for
such batch effects. When combining data from different ‘batches’ of scRNA-seq
experiments, we can simply run Sanity separately on the UMI counts of each of
the batches b. The estimated log fold-changes d,. and their error bars €, do
not depend on variations in the g, and can be combined directly from the different
batches. However, for each batch b and each gene g we will get a separate estimated
mean LTQ pg. We can then define a final mean LTQ p, for each gene by simply
averaging the i, across the batches, i.e.

1
Hg = B Zﬂgb = log(ay) + (gy), (4.113)
b

where B is the number of batches and (g,) is the bias of gene g averaged over all
batches.

4.7.7 Sanity’s use of a Gaussian prior on LTQs does not preclude it
from correctly identifying non-Gaussian expression distributions

Since Sanity uses a Gaussian distribution for the prior probabilities P(d,.|vy) of
the log fold-changes across cells, one could suspect that this makes it impossible for
Sanity to correctly identify the expression distributions for genes whose expression
is bimodally distributed, or have some other non-Gaussian distribution. However,
this is not the case. The crucial point to note is that the Gaussian distribution
is only a prior distribution used to estimate the total variance in LT(Q of each
gene. The estimated log fold-changes 04, that Sanity infers do not only depend
on this prior, they are in fact mostly driven by the observed UMI counts ng.. In
particular, if these UMI counts show clear evidence of bimodal expression, Sanity
will infer bimodally distributed log fold-changes ..

To explicitly demonstrate this we created a simulated dataset with 2000 cells
whose total UMI counts N, were drawn from a lognormal distribution with mean
10* and standard deviation 925 (which roughly matches the distribution of total
counts in real data) and containing 4 genes. The log transcription activities of
these genes were chosen as follows

1. Gene 1 had Gaussian distributed log transcription activities with mean 1 and
variance 1.

2. Gene 2 had bimodally distributed log transcription activities consisting of an
equal mixture of two Gaussians, one with mean 1 and variance 0.1 and one
with mean log(20) and variance 0.1.
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3. Gene 3 had uniformly distributed log transcription activities in the range
[0, 4].

4. Gene 4 was a dummy gene that was used to set the total transcription activity
in each cell ¢ to the desired value N..

We first sample the log transcription activities log(ay.) for the first 3 genes across
all cells. Then, for each cell ¢ the UMI counts of the first 3 genes are sampled
from a Poisson distribution with mean equal to the value of ay. that was sampled.
Finally, the UMI count for the 4th gene is sampled from a Poisson distribution
with mean N, — 23:1 Nge, 1.€. 0 as to ensure the expected total count is N.. Note
that the true LTQ of genes one through three are given by «,. = log(ag./N.). We
then ran Sanity on this simulated dataset and subsequently ignored the results for
the dummy gene 4.
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Figure 4.28: Sanity’s use of a Gaussian prior on LT Qs does not preclude it from correctly
identifying bimodal and other non-Gaussian expression distributions. We simulated data
from three genes whose true LTQs are either Gaussian distributed (top row), bimodally
distributed (middle row), or uniformly distributed (bottom row). Each column of panels
shows, from left to right: the histograms of true LTQs across cells, the histogram of
raw UMI counts across cells, the histogram of normalized log-expression levels using
the simple TPM normalization, the histogram of LTQs values that Sanity inferred, and
the inferred overall distribution of LTQs obtained by taking the mixture of posterior
distributions for the LTQ in each cell.

Suppl. Fig. 4.28 shows, for each of the three genes, the distribution of true
LTQs, the distribution of raw UMI counts, the histogram of log-expression values
when using the simple TPM normalization method, the histogram of the LTQ
values ji, + 0y, that Sanity estimates, and finally, the overall distribution of LTQ
values that Sanity infers. The distribution in this rightmost column of panels
is obtained by taking the estimated LTQs p, + d;. and their error bars €, and
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calculating the mixture of Gaussians with means i, + 97, and variances €2 across

all cells. !

For gene 1, whose LTQs are Gaussian distributed and whose average expression
is fairly low, the raw UMI counts are peaked at zero and when using the simple
TPM method, this leads to a clearly bimodal distribution of log-expression, with
cells with zero UMIs clearly separating from cells with one or more UMIs (Fig.
4.28, top row, second and third columns from left). The histogram of LTQ values
reported by Sanity is already much closer to the true distribution of LTQs (Fig.
4.28, top row, second column from the right). However, the inferred LTQ values
for cells in which there are zero UMI counts still show up as a second mode to
the left of the true mode of the distribution. Note that, at the same time, the
tail of LTQ values is truncated relative to the true distribution (Fig. 4.28, top
row, leftmost column). What is happening is that for most cells for which the true
LTQ is below —9.5, the observed UMI count is zero. Since the only information
we have about the true LTQ log(cy.) in a cell is the observed UMI count ng, the
total count N, and an estimate of the total mean p, and variance v, in LTQ,
the estimated dy. for cells with zero UMI are all very similar, leading to a peak
in LTQ around —9.5 in the fourth panel from the left. However, for each of these
cells Sanity also reports a substantial error bar €, for the estimated d,., which
indicates that the true LTQ values in those cells could be anywhere in the range
[—12, —9] or so. If we take these error bars into account and reconstruct an overall
distribution of LTQs by averaging over all cells, i.e. we define

C
1 1 (0ge — 05)?
P(5)=— E - %" 9¢
( g) C c:1 ,—27T€gc eXp |: 2(—:36 :| )

with C' the total number of cells, then we see that this distribution P(d,) is in fact
very close to the true distribution of LTQs (Fig. 4.28, top row, rightmost panel).

For gene 2 the true distribution of LTQs is bimodal and this bimodality is even
seen in the distribution of raw UMI counts (Fig. 4.28, middle row, first two columns
from the left). The frequent occurrence of cells with zero UMI count still leads to
an extra mode for the TPM normalized log-expression values. Most importantly,
the LTQ values that Sanity estimates have a bimodal distribution that quite closely
approximates the true bimodal distribution of LT(Q values, showing that Sanity’s
Gaussian prior does not preclude the algorithm from correctly inferring bimodal
distributions of LTQ values. Note, however, that because the Gaussian prior
assigns highest probability to values in between the two modes, the modes of the
inferred LTQ values are slightly less well separated than the true LTQs, as is most
clearly visible when plotting the distribution of LTQ values, as calculated using
equation (4.114) (Fig. 4.28, middle row, rightmost column).

Finally, for gene 3 with a wider and more uniform distribution of LTQs, Sanity
also correctly infers a broad distribution of LTQ values that is approximately flat
over the same range as the true LTQ values (Fig. 4.28, bottom row).

(4.114)
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4.7.8 Estimated variances v, for very lowly expressed genes

As shown in Suppl. Figs. 4.10 and 4.11, when the absolute expression levels of
a gene are very low, Sanity can often estimate a variance of true LTQs v, that is
much lower than the true variance, and one might wonder if this is not a systematic
error. However, as we show here, at such low expression levels the variance in LTQs
is simple not detectable from the data. Conceptually, one can easily have that a
gene’s LTQs vary over a wide range but with such low absolute values that the
expected number of UMIs in each cell is still below one. In that case, all that
would be observed in the data is a single UMI in a few cells, and zero UMI in all
other cells. From such data it is impossible to infer the true amount of variability
in LTQs because all this variation occurs below the detection limit. We illustrate
this with simulated data.

Using the same simulation scheme as described in the previous section, we
simulated the UMI counts in C' = 1000 cells, with total UMI counts N, distributed
around 10%, for 3 genes with the following true distributions of log transcription
activities

1. Gene 1 has a mean log transcription activity of pu, = —1.9 with no variation
at all, i.e. the log transcription activity is the same in every cell.

2. Gene 2 has Gaussian distributed log transcription activities with mean py =
—2 and variance vy = 0.1

3. Gene 3 has Gaussian distributed log transcription activities with mean p, =
—2.8 and variance v, = 1.

Thus, the 3 genes have very different true variation in LT(Q, with gene 1 not
varying at all, gene 2 showing moderate variation, and gene 3 showing fairly large
variations in LTQ. The true histograms of log transcription activity for these 3
genes are shown in Fig. 4.29, top row.

Note that the mean expression levels of these genes were chosen on purpose to
be so low that, for about 90% of cells no UMIs are observed, and the distributions
of UMI counts are very similar across the 3 genes (Fig. 4.29, bottom left). That
is, all three genes have zero UMI in about 90% of the cells, one UMI in about 100
cells, and two UMI in around 10 cells. In fact, the distribution of UMI counts for
genes 1 and 2 is almost exactly the same, i.e. with the same number of cells for
which 1 or 2 UMIs are observed. The only difference is that there is one cell in
which gene 2 has 3 UMIs, whereas there is no cell with 3 UMIs for gene 1. The
highly variable gene 3 also has an almost exactly equal distribution of UMI counts,
differing only by having slightly more cells with 2 UMIs and a single cell with 4
UMIs. Thus, the raw data for these three genes are almost identical.

When Sanity is run on this data, it returns the posterior distributions over
the true variances v, shown in the middle row of Fig. 4.29. For gene 1, Sanity



CHAPTER 4. J. BREDA ET AL. NAT BIOTECHNOL 39 (2021) 160

2 2 2
=-19 =0 =-2 =0.1 =-2.8 =1
1000 —*~ < 100 —& 7 K 7
100
> > >
(] Q o
c c c
2 500 2 50 e 50
o o o
o o o
iy iy iy
0 0 0
-6 -4 -2 0 2 -6 -4 -2 0 2 -6 -4 -2 0 2
True transcription activity True transcription activity True transcription activity
0.015 0.1
0.01
§ '§ 0.01 §
= 0.005 = £ 005
o0 T T
= = 0.005 =
- - |
0 0 0
10° 102107t 10° 10! 10210210 100 10? 10210210 100 10?
variance variance variance
1000
100

10

0 1 2 3 4
UMI count

Figure 4.29: Estimates of true variance in LTQ for low expressed genes. We simulated
data for three genes whose LTQs are Gaussian distributed with variance vy = 0 (left),
vg = 0.1 (middle), and v, = 1 (right), and with means p, chosen such that each gene is
expected to have zero UMIs in approximately 90% of the cells. The top row shows the
histogram of true log transcription activities for each of the genes across the C' = 1000
cells. The bottom left panel shows the distribution of raw UMI counts for the three
genes, which are almost identical. The panels in the middle row show the posterior
distributions P(vg4|7) for each of the genes, with the vertical line showing the expected
value (vg).

correctly infers that the most likely value of the variance v, is zero, although values
of the variance v, as high as 0.5 cannot be excluded. The estimate that Sanity
returns is given by an average over this posterior distribution, which is about 0.07
for gene 1. For gene 2, we see that the single cell with UMI count of 3 already
noticeably alters the posterior distribution over v,. While the most likely value
occurs around v, = 0.3, there is a constant tail to the left showing that the data is
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almost equally consistent with arbitrarily low values of v,. Thus, given the data it
cannot be excluded that this gene’s LTQ does not vary at all. Taking the average
over the posterior distribution of gene 2 leads to an estimate v, slightly above the
true value of 0.1. Finally, for gene 3, in spite of the almost identical distribution
of UMI counts, Sanity’s posterior distribution is highly peaked around the true
value of v, = 1.

In summary, when genes are very low expressed, distributions of LTQs with
very different variances can lead to distributions of UMI counts that are almost
identical. However, even when these distributions of UMI counts are almost iden-
tical, Sanity is exquisitely sensitive to the precise distribution of UMI counts, and
can detect true variations in LTQ even from a few extra cells with one or two ex-
tra UMIs. Consequently, when Sanity infers that there is no evidence in the data
for true variation in LTQs, it really means there is no information whatsoever to
support that the gene’s LT(Q varies across cells. Although this does not guarantee
that the gene does not vary in LTQ across cells, it means that this variation is
entirely below the limit of detection, so that it is impossible to tell in which cells
the gene is higher or lower expressed. Given that, it is appropriate for Sanity to
default to assigning no variability in the LTQ at all, i.e. to predict a low value for
V.

4.7.9 The fraction of genes for which expression levels can be accu-
rately estimated depends strongly on coverage

Fig. 4.3 in the main text showed that, because of the inherent Poisson noise,
accurate estimates of gene expression can only be guaranteed for genes with at
least 1 UMI per cell on average. Consequently, the number of genes for which
expression levels can be accurately estimated depends on the capture efficiency
and depth of sequencing, as well as on the distribution of absolute expression
levels across genes.

As shown in Fig. 4.30, the distributions of mean expression levels p, across
genes are very similar for the datasets that we analyzed here. The most common
value of the mean LTQ p, lies between 107° and 107, and the frequency drops
must faster toward higher p, than toward lower p,. Consequently, genes with
ftg > 0.001 are extremely rare.

Given that the median number of UMI per cell N, ranges from about 2000 to
10’000 for the datasets we analyzed here, this means that for the large majority of
genes the expected number of UMI per cell is less than 1. We pooled data from
all the distributions shown in Fig. 4.30 to obtain a single distribution of mean
expression (i, across genes and then determined the reverse cumulative distribution
of the average number of UMI per cell, assuming different total UMI counts NV,
ranging from N, = 1000 to N, = 100’000 (i.e. tenfold larger than achieved with
current scRNA-seq protocols). These reverse cumulative distributions are shown
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Figure 4.30: Distributions of the mean LTQs pi4 across all genes, for the datasets analyzed
in this work (colors, see legend). Each curve corresponds to the distribution of mean
LTQs pg4 as inferred by Sanity with p, shown on the horizontal axis and the probability
density shown on the vertical axis. Note that the vertical axis is shown on a logarithmic
scale.

in the left panel of Fig. 4.31.

From these reverse cumulative distributions we can calculate the fraction of
genes that have at least 1 UMI per cell on average, as a function of the total
UMI count N, (Fig. 4.31, right panel). Given that the median UMI counts per
cell ranged from 2000 to 10’000 for the datasets analyzed here, we see that even
for the datasets with the deepest coverage of N, ~ 10%, only about 10% of genes
have at least 1 UMI per cell on average. Thus, with current depth of coverage we
can only get accurate estimates of gene expression patterns for the 10% highest
expressed genes. This means that, if certain cell states only differ in the expression
states of more lowly expressed genes, it would be very difficult if not impossible
to distinguish between these with current depth of coverage. Most importantly,
however, this also means that if we could increase the capture and sequencing
probability, we could substantially increase the fraction of genes for which gene
expression can be estimated accurately. In particular, if we increase the capture
and sequencing probability by a factor 3, we would be able to get accurate estimates
for approximately 25% of the genes, and if we could capture 10> UMI per cell, we
could get accurate estimates for over 40% of the genes. Finally, for comparison, the
total number of mRNAs in mammalian cells is likely in the range 10° — 10° [Islam
et al., 2014].
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Figure 4.31: Left panel: Reverse cumulative distributions of the average number (n)
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UMI per cell on average, for 5 different values of the total number of UMI per cell N,
(colors, see legend). Both axes are shown on logarithmic scales. Right panel: Fraction
of the genes that have at least 1 UMI per cell on average (vertical axis), as a function of
the total number of UMI per cell N, (horizontal axis). The colored dots correspond to
the N, values used for the corresponding curves in the left panel. The horizontal axis is
shown on a logarithmic scale.
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5.1 Introduction

The cellular complexity of higher eukaryotes originates from a single egg cell that
divides and differentiate into a myriad of cells having identical genomic informa-
tion but differing by the expressed segments of the genome. Different regulatory
mechanisms control DNA usage at the level of chromatin remodelling, transcrip-
tion, RNA splicing and processing, export to cytoplasm, translation into proteins
and ultimately degradation [Orphanides and Reinberg, 2002]. Every regulator
of gene expression is itself a product of gene expression, creating the gene regu-
latory networks (GRNs) [Davidson and Erwin, 2006, Davidson, 2010]. Whereas
noise in gene expression could naively be viewed as a nuisance, more recent work
started to reveal other interesting aspects. For example, the coupling between a
target gene and a noisy regulator could be viewed as a rudimentary form of gene
regulation [Wolf et al., 2015]. As gene expression is known for being inherently
stochastic [Mcadams and Arkin, 1997, Elowitz et al., 2002, Paulsson, 2005, Raj and
van Oudenaarden, 2008], we expect regulatory interactions to define a probability
density of cell states in the high dimensional space of gene expression. That is,
GRNSs engender a function defined in gene regulatory space analogous to a poten-
tial energy which constrains the stochastic fluctuations as well as the continuous
changes in the gene expression state of cells. Such a system, involving a large num-
ber of particles with high degree of freedom, with an inherently stochastic nature
and under the influence of an energy potential, have been deeply described by sta-
tistical physics, and from this premise we conclude that the distribution of cells in
gene expression space subject to regulatory interactions, will follow the maximum
entropy distribution given only the energy function generated by GRNs, known as
the Boltzmann distribution. Under this description, gene regulatory interactions
can be observed from noisy fluctuations across similar cells, and cellular process in
which the cell state varies (e.g. differentiation, development, responses to stimuli
or malignant transformation) are defined as continuous regions in gene expression
of high probability density.

On the task of inferring gene regulatory interaction from gene expression data,
the MARA model has brought valuable and validated insights about gene regula-
tion in various systems since its initial release [Gruber et al., 2014, Grunin et al.,
2016, Yan et al., 2016, Dimitrova et al., 2017, Yeung et al., 2018, Tauran et al.,
2019, Danoy et al., 2019], but was primarily built for bulk RNA sequencing. To
account for the noise specific to single-cell RNA sequencing (scRNA-seq) [Griin
et al., 2014], we developed a Bayesian model [Breda et al., 2021], such that gene
regulatory interaction can be inferred from biological signal. The idea of a GRN
creating a potential surface constraining the regions of gene expression that cells
can reach, is closely related to the idea of an epigenetic landscape as imagined by
Conrad Hal Waddington in 1957 [Waddington, 1957].

Cell differentiation is a central question of biology and is still partially under-
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stood today. In 1957, Waddington introduced the idea of an epigenetic landscape
driving cell differentiation [Waddington, 1957]. In this analogy, a stem cell evolves
similarly to marbles rolling down a surface. The shape of the surface creates mul-
tiple path and branching, that the marbles can follow, and end up in one of the
stable minima of the surface. Similarly, a stem cell would evolve through gene
expression space to end up in a stable state called mature cell type (See Figure
5.1). As a consequence of discoveries in cell reprogramming, there has been a surge
in activity in this area, and Waddington’s representation remains one of the most
popular metaphors employed in thinking about how regulatory networks control
cell state and identity. However, it remains unclear how Waddington’s landscape
picture can be taken beyond an attractive metaphor.

Here we propose a computational framework, that, by combining a new noise
model for scRNAseq [Breda et al., 2021] with modelling of transcriptional states in
terms of the activities of transcriptional regulators [Balwierz et al., 2014], recon-
structs an explicit epigenetic landscape that can be used to identify stable cellular
states and the regulators that control their stability, and identify developmental
path.

Gene expression state

>
>

Development

. (—— Stem cell
time -

Gene
regulation
potential

Figure 5.1: Waddington’s epigenetic landscape. A stem cell moves through gene ex-
pression space along developmental time to end up in a stable cell type state. (From
[Waddington, 1957])
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5.2 Model and methods

To infer a regulatory potential energy from gene expression, we use the observed
fluctuations in gene expression across a population of cells from the same type.
From the point of view of physics every system can be characterized by an energy
function. And since the studied system shows inherent stochasticity together with
large degree of freedom, we can use the mathematical framework of statistical
physics. That is, the probability of finding a system in a state s, knowing only
the energy of states E(s), follows the maximal entropy distribution, known as
Boltzmann distribution:

P(s) = ¢ PP (5.1)

As scRNA-seq technology measures of distribution of cell in gene expression
space, we can use this framework to infer an energy function E(s). However, a
scRNA-seq experiment really measures a number of transcript for every gene. To
obtain a density in gene expression P(s) we developed the method Sanity presented
previously in this work (chapter 4, [Breda et al., 2021])

In his 1957 book, The Strategy of the Genes [Waddington, 1957], Waddington
imagined a ” Complexe system of interactions underlying the epigenetic landscape”
controlled by the ”chemical tendencies which genes produce” as he illustrated on
Figure 5.2. Indeed, regulators are driving gene expression. The major regulators
of gene expression being transcription factor we used a model previously developed
in the group of Erik van Nimwegen called MARA (for Motif Activity Response
Analysis) [Balwierz et al., 2014]. MARA allow us to infer the landscape in the
space of regulators rather than genes. It has a much lower dimension and the
landscape we infer directly reveals gene regulators interactions. Furthermore, The
fact that each regulator activity can be inferred from the expression of many genes
considerably reduces the noise.

Briefly, MARA for each gene identifies binding motifs of transcription factors
on the promoter region and miRNA on the 3’-UTR of the transcripts. The model
then interprets the measured gene expression of promoter p in cell ¢ E,. as a linear
combination of the number of binding sites on promoter p for each motif m N,
multiplied by the activity of the corresponding motifs m in cell ¢ A,,.:

Epe =Y NpmAme (5.2)

Let A¢ € RM the maximum a posteriori esitmates of the activity vector of cell
¢ in motif activity space, with M the number of motifs. Given this cell only, the
probability of A is® :

 from equation (8) of ISMARA: Automated modeling of genomic signals as a democracy of regulatory
motifs supplementary material
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FIGURE §
The complex system of interactions underlying the epigenetic landscape.

Figure 5.2: Waddington’s schematic view of regulatory interactions underlying his epi-
genetic landscape and responsible for its shape. (From [Waddington, 1957))
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with % = > (Epe =20 Npm Ame)?.
Using the scale-invariant prior P(o) o % and marginalizing over the unknown
o, we obtain the probability of activity A.

P(Ale, N) = /0 " doP(0)P(Alc, N, o) (5.4)
() P
[Zmn(Am = Afn)Wmn(An - A%) + X3]5

P A, = A VW (A, — A
Introducing a global temperature parameter 5, we have
PW
P(Alc) = exp (—g(A - AC)TV(A - AC)) (5.7)
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As W is real and symmetric, it has an orthonormal basis S so that W = STAS,
where A is a diagonal matrix of eigenvalues \;.
So we can generally write :

> (Am = A )W (An — A =D N(X; = X)? =D (Vi —Y)®  (58)

m,n ) [

where X; = S;,A4,, and Y; = /N X,.

In this basis the probability of state Y is given by

P(Ye) = exp (—ff S - Y;)) . (5.9

7

Let’s define w, = X—P;.

Taking the maximal entropy distribution of cell motif activity state assum-
ing only its mean activity, we use the Boltzann distribution to define the energy
function

1 1 g
E(Y)=-=1lo P(Y|e)| =—=1o exp | —=we Y (V; = Yf)?
(Y) ﬁg;(!) ﬁg[; <2;( ))
(5.10)
A minima of E(Y) must obey the equation
OE(Y) _ Y. P(Y[ow(Y; — Y) :
_ ZLuc = 1
o, S 10
implying
ZP o|Y)w,Y; ZP | Y)w Yy (5.12)
where we define P(Ye)
PllY) = =——— (5.13)
> P(Yle)
A minma Y* must then satisfy
> w.YP(c|Y)
Y = =L 14
>, wPelY) o1y
The second derivative at Y* is given by
ayay Z weP(|Y*) [ — we(Y = Y)Y = Y)]  (5.15)

Because the first term is proportional to the identity matrix, the eigenvectors
of the full Hessian are also eigenvectors of this sort of covariance-matrix

Oy = = > weP(| Y )wi(Ye = Y)Y = Y)) (5.16)
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5.3 Results

The derivations in section 5.2 show how to derive a potential function defined in
regulatory motif activity space from scRNA-seq data. We use two data sets to
apply this framework on two questions; inferring cell sub-types and developmental
trajectories.

5.3.1 Mature cells of human pancreas

Equation (5.10) defines an energy function in motif activity space and its minima,
characterized by equation (5.14), represent an intuitive way of defining cell types
as local regions of high cell density. To test this hypothesis we used a published set
of human pancreas cells from 4 human donor [Muraro et al., 2016]. Figure 5.3.a
shows all 2’298 cells projected on the first 3 principal components, capturing 46%
of the total variance.

Equation (5.14) is a condition each local minimum must satisfy. We can use
it as an expectation maximization (EM) equation: starting from any vector Y,
we iterate (5.14) until reaching a stable point Y*. As each local minimum is
located in a region of relatively high density of cells, we argue that starting the
EM recursion from each cell guarantees to find every existing minimum. Each
found minimum is defined as a cell type and each cell is assigned to the cell type of
the local minimum reached by the EM recursion that started from that cell. This
procedure is illustrated on Figure 5.3.b with the inferred landscape projected on
the first 2 principal components defined by the cells. Equation (5.9) shows that the
landscape depends on the temperature parameter 8. This unique parameters scales
the contribution of each cell to the overall landscape and determines its number
of minima. Figure 5.3.c, shows that for small £, there is only one minumum
containing all cells whereas high S implies that no minima with at least 2 cells
is found, meaning that each cell is in its own minimum. Hence, only a restricted
range of values of 3 between 0.02 and 0.12 produces some cell types. We chose
the value of § maximizing the number of minima with at least 10 cells. Applying
this method we find 7 minima. To assign the minima to different cell types of
pancreatic cells, we used the set of marker genes associated with each cell type
that have been found in the publication [Muraro et al., 2016]. As the publication
does not provide cell types annotation but a list of marker genes per identified cell
types, we used this list of marker genes sorted by significance to compared our cell
types using genes differentially expressed in each type. The identified cell types
are annotated on figure 5.3.e on all cells colored by type and projected on the first
3 principal components.

As those cell types define regions in the space of regulatory motif activity, we
asked which regulator best distinguish the cell types. The 15 regulators which best
distinguish the cell types are shows as projected axis on Figure 5.3.d, and some
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examples of regulatory motif activity distributions are showed on figure 5.3.e.
From the literature, we could corroborate those factors as important regulators
of pancreatic cells [Xuan and Sussel, 2016, Nishimura et al., 2006, Maity et al.,
2018, Dooley et al., 2016, Algiil et al., 2007, Martin et al., 2015, Ait-Lounis et al.,
2007, Cebola et al., 2015, Aghdassi et al., 2012, Qian et al., 2017].
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Figure 5.3: Single-cell and epigenetic landscape analysis of human pancreatic cells. a:
2298 human pancreatic cells projected on the first 3 principal components. Percentage
of variance captured by each component indicated on the axis. b: Epigenetic landscape
inferred from the cells on panel a, projected on the first two principal components of
panel a. c¢: Number of cluster as a function of b for clusters of at least 2 cells (blue),
5 cells (orange) and 10 cells (yellow). d: 2’298 human pancreatic cells projected on
the first 3 principal components (same projection as panel a) and colored by inferred
cell type. The 15 gene regulators that vary the most across cell types are projected
and showed as axis on the 3 first principal components. e: Distribution of activity of 8
regulators across the different cells types colored according to the cell types defined on
panel d.
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5.3.2 Neural stem cells from mouse at embryonic day 13.5

One of the essential question that scRNA-seq allows to investigate is the process
of cell differentiation. As the data set of the previous section consists of mature
pancreatic cells, we do not expect to observe differenciation. Hence, to look at
a more complex and dynamic system, we applied the described frame work (5.2)
on a scRNA-seq data set of mouse neural stem cells from the forebrain cortex
sampled at day 13.5, during neurogenesis. The neocortex of mouse and human
is developed during neurogenesis in successive layers of distinct types of neurons,
and those neurons come from the asymmetric division of the neural stem cell.
Alternatively, neural stem cell undergo symmetric division giving rise to other
neural stem cell [Lee et al., 2014, Mukhtar and Taylor, 2018, Paridaen and Huttner,
2014, Gtz and Huttner, 2005, Taverna et al., 2014].

We applied the framework described in the previous section (see section 5.2) and
inferred the landscape from those cells. Figure 5.4.a shows the 5793 cells projected
on the 3 first pc, together capturing 39% of the total variance and Figure 5.4.b
show the inferred landscape projected on the first 2 principal components defined
by the the cells. Applying the exact same procedure as on the previous section
(section 5.3.1), we found 4 local minima on the landscape. However, in we see a
distinct behaviour. Indeed, if the minima were clearly separated in section 5.3.1,
we now observe a valley connecting different minima rather that clearly separated
minima. As we would expect, the sampled neuronal stem cells are undergoing a
differentiation process such that we must observe the fluctuations associated with
the process. To observe this valley connecting the different minima, we computed
the minimal energy path between every pair of those 4 minima. The minimal
energy path is defined as the path that connects two points of the landscape such
that the average energy along the path is minimized. To find the 6 different possible
paths connecting each pair of the 4 minima, we used the zero temperature string
method [E et al., 2005, Ren et al., 2005]. The zero-temperature string method is a
recursive algorithm. Starting from an initial line between 2 points A and B, the
initial string is defined as a group of N equidistant "beads” with the first and the
last bead corresponding to A and B. As initial string, we put all N beads along
the straight line joining A and B. We then compute the first derivative of the
landscape at the position of each N beads and move each bead in a small step
dx (parameter) following the gradient. We then do a linear interpolations along
each successive N points and replace each bead but the first and the last along the
interpolation lines such that the beads are equidistant. Surprisingly the 6 different
possible path joining all pairs of minima all ended on a single minimal energy path
connecting all 4 minima as showed as a red path on figure 5.4.b. This confirms
the observation that the single cells are arranged along one main valley.

The inferred minimal energy path is defined in the whole space of regulator
activity and we can ask which regulators are most variance along the path. Figure
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5.4 shows the activity of the 16 most variable regulators, along the minimal en-
ergy path. We can see different groups of regulators with similar profiles. Those
regulators have predicted target genes on which we performed a gene ontology
analysis [Ashburner et al., 2000, Carbon et al., 2021] to ask what process are being
regulated. As showed on figure 5.4.c, we identified 3 groups of regulators with
similar profiles. The first group consist of Hoxb7, Sox2, Sox3, Sox10, Sox6, Sox9,
Ezh2/Atf2/Tkzf1, miR-30 (GUAAACA), Pou5fl, Neurod1 and Sp1 and their target
genes are related to various biological process related to neuronal differentiation.
The second group consists of E2f7, E2f6, E2f2, E2f5, E2f1, Max and Mycn, whose
target are related to DNA replication. The third group consist of Max, Mycn,
Gem2, Ybx1, Nfya, Nfyb, Nfyc and Cebpz, whose whose target genes are related
to and cell mitosis.

This indicate that on the first half of the valley, cells are between mitosis state
and S phase state, indicating cells going through cell cycle, whereas cells are going
towards a state of neuronal differentiation along the rest of the valley. Those ob-
servations are in good agreement with current knowledge about the studied system
where neural stem cells undergo alternatively a symmetric division to increase to
neural stem cells population or an asymmetric division giving rise to basal progen-
itors that start differentiating towards neurons [Mukhtar and Taylor, 2018].
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Figure 5.4: Single-cell and epigenetic landscape analysis of mouse neural stem cells. a:
5’793 mouse neural stem cells projected on the first 3 principal components. Percentage
of variance captured by each component indicated on the axis. b: Epigenetic landscape
inferred from the cells on panel a, projected on the first two principal components of
panel a. Minimal energy path shown in red. c: Activity profile of the 16 gene regulators
that are most variable along the minimal energy path showed on panel b. For each group
of regulators that have similar profiles, we performed a gene ontology analysis [Ashburner
et al., 2000, Carbon et al., 2021] on their joined predicted target genes. The biological
processes associated with each group of regulators are showed.

5.4 Discussion

We presented here a procedure that uses the previously published methods Sanity
[Breda et al., 2021] and ISMARA [Balwierz et al., 2014] to reconstruct an energy
landscape from the density of cells in regulatory activity space. We illustrated two
applications of this landscape; finding cell types as minima of the landscape and
identify the regulators that distinguish those cell types, and identify developmental
path with associated gene regulators. The aim wasn’t here to discover new biology
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about the studied systems but rather to use consensual biological knowledge to
validate our method as a proof of principle.

The tasks of finding cell types and developmental trajectories in scRNA-seq
data have been extensively explored, however our approach to those questions
using a regulatory landscape is, to our knowledge, novel.

Among the multitude of methods currently used for the clustering of scRNA-seq
we can identify a few general strategies that are based on some distance measure
between each pair of cells, the arrangement of cells on a hierarchical tree, dimen-
sional reduction, a graph representation of all cells considering a defined number of
nearest neighbor cells, and often a combination of those strategies [Kiselev et al.,
2017]. Bench-markings have not yet been able to point out one strategy that
clearly prevails, but is it rather observed that the best performing methods are de-
pending on the dataset [Freytag et al., 2018, Menon, 2018, Mereu et al., 2018]. This
could be due to experimental, biological or technical differences between data sets
used for bench-marking, and likely the lack of a clear definition of what a cell type
is when constructing gold-standard data sets that are essential for a meaningful
bench-marking.

Comparing methods that infer developmental trajectories is more challeng-
ing than cell clustering because we do not process ground truth data that could
represent a gold-standard of developmental strategies. Each methods has to be
evaluated from the biological validity of its prediction. In this task as well, we ob-
served that our approach is novel. The reconstruction of a one-dimensional path
of cellular development, often referred to as pseudo-time, generally consist in a
dimensional reduction step followed by the trajectory modeling that infer either
a linear or a branched path [Cannoodt et al., 2016, Kester and van Oudenaarden,
2018]. The most popular strategy of trajectory modeling represents all cells in a
graph and find the longest path in a minimal spanning tree [Trapnell et al., 2014]
or the shortest walk from a defined starting cell to every other [Matsumoto and
Kiryu, 2016, Bendall et al., 2014, Setty et al., 2016, Welch et al., 2016]. Alterna-
tively, analogous graph based methods use cell clusters rather the unique cells for
constructing the graph [Shin et al., 2015, Chen et al., 2016, Ji and Ji, 2016, Griin
et al., 2016]. Additional strategies include using the information of sampling time
in subsequent samplings [Eugenio et al., 2014], using t-SNE transformation to
fit principal curves [Eugenio et al., 2014], or estimating the transcription time
derivative using the spliced to unspliced ratio of mRNA molecules to estimate the
orientation of the trajectory in the near future in a framework known as RNA
velocity [La Manno et al., 2018, Svensson and Pachter, 2018, Bergen et al., 2019].

One crucial point of our proposed framework consisting in inferring cell types
and trajectory from a energy landscape inspired by Waddington’s ideas, it that
the use ISMARA to perform dimensional reduction, which produces local minima
and trajectories in the space of gene regulators. This has the invaluable advantage
of increasing the results interpretability. In fact, as illustrated in this work, the
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gene regulators that define minima of the landscape as cell types or valleys as
developmental trajectories can be interpreted as the key factor that constrain
cells into a stable state or that are responsible for the changes in gene expression
associated with a developmental process. Another key difference and advantage
of the energy landscape as defined here is that it is twice differentiable anywhere
in the space of regulatory motif activity. This allows to easily infer regulatory
interaction from second derivative in a minima or along a trajectory, and to find
saddle point as metastable states along developmental trajectories. Indeed, saddle
points between two cell types or along a trajectory theoretically represent energy
barrier that have to be passed in order to reprogram a cell from one type into
another. In other words, it would hint on the key transcription factors that whose
expression would need to be perturbed in reprogramming protocols [Aydin and
Mazzoni, 2019, Wang et al., 2021]. Of course, this is purely theoretical and several
investigations and validations are needed to support this statement.

The method used to perform the normalization of the scRNA-seq data provides
error bars on the estimated gene expression per cell, and it has been shown to add
valuable information for subsequent analysis [Breda et al., 2021]. Therefor, we aim
in a future work to incorporate those error bars into the ISMARA model used to
infer regulatory activity in single-cells and in the inference of the energy landscape.
We believe this could bring a valuable improvement to the work presented here.
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The general aim that links all parts of the work presented here is to elucidate
the gene regulatory programs that drive cell differentiation. These are responsible
for the astonishing complexity of multi-cellular organisms and also underlie com-
plex human diseases. The first two sections of this thesis dealt with the prediction
of the strength of interaction between a regulator and its target. I have focused on
miRNA-mRNA interactions, as miRNAs are important post-transcriptional reg-
ulators of mRNA expression levels. Thus, accurate prediction of their targets is
necessary for the design of further models that aim to explain gene expression
levels in terms of the activity of their potential regulators. Ultimately, this type
of model provides information about the role played by various regulators across
conditions, time points or cells types [Suzuki et al., 2009, Balwierz et al., 2014].
This modelling approach takes advantage of the fact that the transcriptome-wide
gene expression can be much more efficiently measured, in terms of time consump-
tion and cost, with today’s technology than the activity of regulators. The latter
is technically more challenging to measure, and only for one regulator at the time.
Such a model of gene regulation, called motif activity response analysis (in short,
MARA) has been developed about a decade ago by my PhD advisers, and was
used to analyse microarray and bulk RNA-seq data, to uncover TF and miRNA
regulators that are active in various conditions [Balwierz et al., 2014, Suzuki et al.,
2009]. An important ingredient in this analysis are prediction of regulator bind-
ing sites (TFs and miRNAs). Using known sequence specificities of TFs, whole
genome sequences, and measures of conservation of potential binding site across
closely related species, predictions of TF binding sites in windows of 500 base pairs
upstream and downstream of the transcription start site of every annotated gene
can be obtained [Arnold et al., 2012]. With a similar approach, but starting from
predictions of miRNA-target interaction energies using the models that I worked
on, miRNA binding sites can also be predicted genome-wide [Gumienny and Za-
volan, 2015]. Assuming that the effect of every regulator on the expression of its
targets is proportional to the regulator’s activity, MARA infers the most likely
activity of each regulator given the measured gene expression patterns across mul-
tiple samples. At a first look, the data from an scRNA-seq experiment seems
similar to data from bulk RNA-seq experiments. However, treating scRNA-seq as
a large collection of bulk RNA-seq data sets and applying MARA, one quickly re-
alises that there is a major difference which hampers this analysis. This difference
is in the structure of the noise, as explained in the introduction and the third part
of this present work. In fact, if the noise in log-expression displayed by microarray
or bulk RNA-seq data can be assumed homogeneous across genes and is damp-
ened by the aggregation of thousands of cells, the noise in log-expression of raw
scRNA-seq data depends systematically on the expression level, the most variable
genes being those with lowest expression. Thus, when a model like MARA at-
tempts to explain changes in gene expression between cells as a linear combination
of changes of regulators activity, what the model is faced with is almost entirely
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random fluctuations, either due to the stochastic nature of gene expression or to
the experimental sampling noise. Thus, it becomes clear that reducing this noise
is paramount to a meaningful analysis of regulation in single cells. It is for this
precise reason that we developed Sanity, as extensively described in the third part
of this thesis.

Since its initial release, the MARA model has brought valuable and validated
insights about gene regulation in various systems [Gruber et al., 2014, Grunin et al.,
2016, Yan et al., 2016, Dimitrova et al., 2017, Yeung et al., 2018, Tauran et al.,
2019, Danoy et al., 2019]. Based on its insightful predictions at the population
level, we are hopeful that applying the MARA model to single cell gene expression
will help elucidate cell-specific regulatory states, and reveal regulatory interactions
that drive cellular level heterogeneity, cell differentiation and development.

Applying MARA on a single scRNA-seq data set reveals the regulatory state of
the cells captured in that experiment. This still does not yet reveal the dynamics
of gene expression along differentiation paths. However, assuming that the cells
that are captured from a complex tissue in a given experiment reflect an on-going
differentiation dynamics that takes place in that tissue, and that the sampling done
within the experiment is uniform, i.e. the probability of a given cell state/type to
be captured is proportional to the time spent by cells in that specific state, the
obtained cell states provide a fine grain description of the studied system. This
should reflect the regulatory mechanisms that distinguish closely related cells un-
dergoing a common dynamic process, being for instance, cellular differentiation of
a population, reaction to a perturbation, the cell cycle, or even the stochastic fluc-
tuations of gene expression states around a stable state. This view of a sScRNA-seq
sample is reminiscent of a concept proposed roughly half a century ago by Conrad
Hal Waddington, namely that of an epigenetic landscape, analogous to a potential
energy landscape. The epigenetic landscape is viewed as resulting from epigenetic
interactions that are encoded in GRNs, constrain the regions of gene expression
space that are accessible to cells and drive them through those regions towards
stable states that correspond to stable cell states/types. Undoubtedly, at the time
when Waddington postulated the existence of such epigenetic regulation [Wadding-
ton, 1957], none of the current knowledge about gene regulation was established,
the DNA structure had just been discovered [Watson and Crick, 1953], the primary
structure of proteins had just been hypothesised to be determined by the linear
structure of DNA [Dounce, 1952, Gamow, 1954], the neoclassical concept of a gene
was about to reach its peak with the theory of one gene controlling the synthesis of
one messenger RNA| consecutively controlling the synthesis of one protein [Portin,
2002, Portin and Wilkins, 2017]. Tt was decades before concepts such as gene dupli-
cation, alternative splicing, overlapping genes, promoter architecture, alternative
polyadenylation, and enhancers were discovered [Portin, 2002, Portin and Wilkins,
2017]. However Waddington hypothesised a ”complex system of interactions un-
derlying the epigenetic landscape” controlled by the ”chemical tendencies which
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genes produce” [Waddington, 1957]. This is a very general view, solely assuming
that the state of a cell changes in a continuous manner and that the likelihood of
a cell changing its state depends on a dynamic landscape that depends on other
genes. This is also a radically different view than the previous of the epigenetic
landscape as a rail structure, because it leaves room for stochasticity in the pro-
cess as well as for processes such as reprogramming, which depend on an intrinsic
reversibility of differentiation. Various concepts related to Waddington’s epige-
netic landscape have acquired specific embodiments during decades of molecular
biology research. For example, gene expression regulatory process have been un-
covered, cell differentiation pathways have been mapped, the stochasticity in gene
expression and regulation have been demonstrated. Many aspects are still unclear,
but state of the art methods in transcriptomics and epigenomics at the single cell
resolution have brought us in a position where measurements at single cell resolu-
tion can reveal cellular states along a structure such as imagined by Waddington.
Developing tools for this task such as the scRNA-seq MARA model is therefore
both extremely valuable and very exciting.

While stochasticity was long viewed as a nuisance, more recent work started
to reveal other interesting aspects. For example, work from my group has shown
that the coupling between a target gene and a noisy regulator could be viewed as a
rudimentary form of gene regulation [Wolf et al., 2015]. On the other hand, in my
work I have found that the variability in expression between cells can also reveal
important information about their underlying regulatory state. Gene expression
being inherently stochastic [Mcadams and Arkin, 1997, Elowitz et al., 2002, Pauls-
son, 2005,Raj and van Oudenaarden, 2008], we expect gene regulatory interactions
to define a probability density of cell states. By inverting this map, in the work
on single cell MARA we aim to learn about the GRN-dependent landscape struc-
ture by taking advantage of the distribution of cells over gene expression states.
That is, GRNs engender a function defined in gene regulatory space analogous
to a potential energy which constrains the stochastic fluctuations as well as the
continuous changes in the gene expression state of cells. Such a system, involv-
ing a large number of particles with high degree of freedom, with an inherently
stochastic nature and under the influence of an energy potential, have been deeply
described by statistical physics, and from this premise we conclude that the dis-
tribution of cells in gene expression space subject to regulatory interactions, will
follow the maximum entropy distribution given only the energy function gener-
ated by GRNs, known as the Boltzmann distribution. After a rigorous inference
of the state of gene expression of cells from a scRNA-seq experiment using the
method Sanity presented in this work, the MARA algorithm estimate a posterior
probability distribution for each cell of the measured population defined in the reg-
ulatory space of transcription factors and miRNA regulatory activity, in the form
of a multivariate Gaussian distribution. Collectively considered, and assuming a
uniform cell capture probability, the cells posterior probabilities create a proba-
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bility distribution of cell state specific to the sampled cell population, and the
hypothesis of this distribution being the maximum entropy distribution given an
energy function allows us to infer this energy function. Going back to Wadding-
ton’s analogy of marbles rolling down a landscape, this framework comes down
to reconstructing the shape of a landscape given only the instantaneous positions
of thousands of marbles rolling down the landscape at given and predefined time
points. As the epigenetic potential comes from the joint distribution of thousands
of cell posterior probabilities, we obtain a function defined in the entire regulatory
space and differentiable in that whole space. Different applications emerge from
the constructed function, tackling relevant questions of single-cell biology.

The epigenetic surface contains an intuitive definition of cell types, as the dif-
ferentiability of the surface allows to computationally find local minimal. Every
captured cell has an estimated position on the inferred epigenetic surface and a
gradient descent algorithm assigns a unique local minimum to each cell such that
every minimum defines a distinct cell type and every cell has its type assigned by
the minimum it falls in. Since the early developments of scRNA-seq, the iden-
tification of cell subpopulations has probably been one of the main applications,
which brought valuable insights about the cellular heterogeneity of tissues and or-
gans [Jaitin et al., 2014, Patel et al., 2014, Zeisel et al., 2015, Baron et al., 2016, La
Manno et al., 2016, Chen et al., 2017, Schaum et al., 2018|. Today there are more
than a hundred published tools designed for this specific task [Zappia et al., 2018].
They cluster into a few distinct strategies, which are often combined [Kiselev
et al., 2019]. Multiple methods are based on a distance measure between pairs of
cells, like the popular k-means method that starts from a random initial cluster-
ing and converges to a local optimum satisfying an intra-cluster minimisation of
the variance [Lloyd, 1982]. Comparably popular, hierarchical clustering methods
create and entire linkage tree of the cells, with the advantage of producing dif-
ferent degrees of granularity and a measure of distance between clusters [Ward,
1963]. Distance-based methods are often used after dimensional reduction, which
typically projects the data on the first k& principal components, or after feature
selection, typically filtering out genes below a predefined variance threshold func-
tion on the gene mean expression. The latter approach aims to overcome the issue
known as the ”curse of dimensionality” [Bellman, 1957], which denotes a concen-
tration of distances around a common value as the dimensionality increases. This
is due to the sparsity of the data points in a volume rapidly increasing with the
dimension. Graph-based strategies for clustering have became increasingly popu-
lar [Kiselev et al., 2019]. The approach is to create a graph with nodes as cells and
edges as a predefined number of nearest neighbours of each cell, a cluster being
identified as a community of connected cells. Benchmarking studies do not uncover
a globally optimal method [Freytag et al., 2018, Menon, 2018, Mereu et al., 2018], as
the rankings differ across tested datasets. Thus, different methods seem to be used
depending on various parameters of the sequencing experiment such as the depth



CHAPTER 6. DISCUSSION 183

of the sequencing [Menon, 2018]. A seemingly advantageous aspect of defining cell
types as minima of an epigenetic landscape, is that the shape of the surface itself
in the neighbourhood of each minimum contains biological information about the
regulators that are responsible for stabilising the cell state/type and, conversely,
about the regulatory interactions that need to be altered to change one cell state
into another.

The clustering approach in scRNA-seq data assumes cell types as discrete re-
gions of gene expression space and implicitly neglects dynamic processes that cells
undergo, such as cell cycle, cell differentiation, response to external inputs. Thus,
this clustering may be appropriate when dealing with populations of cells that are
fully differentiated and in ’steady state’. The identification of pathways of differ-
entiation from scRNA-seq data has been a computational problem of great interest
in recent years. Different methods have been proposed to tackle this challenge with
approaches that reconstruct a one-dimensional path ordering cells according to a
so-called pseudotime. These methods generally consist of a dimensionality reduc-
tion and a trajectory modelling component [Cannoodt et al., 2016, Kester and van
Oudenaarden, 2018]. Dimensionality reduction is used to reduce the noise on the
data, infer a lower dimensional manifold, select the features showing non-negligible
variance, cluster together similar cells. Subsequently, differentiation trajectories
between the representative types are sought, or a k-nearest neighbour graph is con-
structed. The graph representation is probably the most popular strategy today,
and is used in various ways to infer trajectories, as the longest paths in a minimal
spanning tree [Trapnell et al., 2014], or as the shortest walk in terms of added
edge length from a user-defined ”starting cell” to every other cell [Matsumoto and
Kiryu, 2016]. The construction of a k-nearest neighbour graph is also used to
similarly infer shortest path between a ”starting cell” and every other cell [Ben-
dall et al., 2014, Setty et al., 2016, Welch et al., 2016]. Graph based strategies are
analogously applied on the graphs of cell clusters [Shin et al., 2015, Chen et al.,
2016, Ji and Ji, 2016], which can be collected at subsequent timepoints [Eugenio
et al., 2014]. On a fully connected graph constructed from clusters, each individual
cell can be projected on the edges, to select edges along which the cell density is
high enough to support the existence of a biologically-relevant trajectory [Griin
et al., 2016]. Alternatively, it has been proposed to fit principal curves into lower
dimensional transformation as done by t-SNE [Eugenio et al., 2014], or to esti-
mate a time derivative of gene expression to predict the near future state of cells,
and thereby an orientated trajectory as done in the RNA velocity framework [La
Manno et al., 2018, Svensson and Pachter, 2018, Bergen et al., 2019].

The epigenetic landscape as proposed here above offers an intuitive definition
of developmental trajectories as minimum energy path between cell states. Besides
being related to Waddington’s landscape, our view also relates to concepts from
theoretical chemistry [Quapp and Heidrich, 1984, Sheppard et al., 2008, Vaucher
and Reiher, 2018], where reactions are represented as continuous paths between
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an initial and a final states along which the energy is minimised. As a matter of
fact, the problem of finding the optimal path with respect to the energy in a n-
dimensional energy surfaces is very general. This curve optimisation problem has
been extensively studied and various algorithm have proposed [Sheppard et al.,
2008]. Within the proposed epigenetic landscape framework, we assume rather
intuitively, that a developmental path is a continuous region of high cell density.
We assume that each cell of a population undergoing a differentiation process
has equal probability to be captured in a scRNA-seq experiment. The obtained
trajectory is differentiable in every dimension of the regulatory space as it is not
constrained to a sequence of edges connecting cells together, but instead every
point of the path takes into account the density contribution of each and every
cell, with a weight exponentially decreasing with the euclidean distance as each
cell has a density given by a multivariate Gaussian distribution.

An important aspect of trajectory inference is the identification of branchings
that define the tree of cell fate specification. In our framework, these branchings
are unambiguously determined by the minimum energy path procedure. Every
point in the space of regulator activities is characterised by the weighted contri-
bution of every cell considered in the inference of the landscape. Therefore, gene
expression can also be defined everywhere in the gene regulatory space, and in
particular on the minimum energy path. However, inferring developmental trajec-
tories in the space of regulators rather than of gene expression has the considerable
convenience of estimating effects that have causality embedded in them. In other
words, and to reconnect with Waddington’s ideas, the height of the epigenetic
potential reflects physical interactions between genes and regulators; it is only rel-
evant to assume such a potential function in a space of variables that can physical
influence the gene expression state of a cell, that is the space of gene regulators ac-
tivity. Hypothetically, the minimum energy connecting two distinct cell states on
the epigenetic landscape, defined as local minima, gives the minimal perturbation
in the level of gene regulators needed to reprogram or transdifferentiate a cell from
one type to another, an application that would be highly valuable given the lack of
understanding in the mechanisms underlying these processes, and the current lack
of method to predict effective perturbations [Takahashi and Yamanaka, 2016].

Differences in the density of cells in the gene regulatory space can reflect differ-
ences in the relative abundance of these states, and thus, states that are very tran-
sient will be poorly represented in the data. Recent developments in scRNA-seq
analysis have brought an elegant solution to the issues of sampling transient states
and inferring directionality of single cell trajectories. Specifically, in RNA-seq ex-
periments, a considerable number of captured mRNA are still unspliced, between
15% and 25% depending on the scRNA-seq protocol [La Manno et al., 2018]. These
intermediates can be captured due to the priming of poly(T) oligonucleotides to
intronic regions of pre-mRNAs [La Manno et al., 2018]. Unspliced mRNAs are gen-
erated by transcription (at a certain transcription rate), then spliced into mature
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mRNAs that have a certain degradation rate. Thus, assuming a constant splic-
ing rate across gene, the measured relative abundance of spliced and unspliced
molecules, allows to estimate the decay rate and solve the differential equations at
steady state to obtain the instantaneous time derivative of the number of mature
mRNA [La Manno et al., 2018]. Further work proposed a generalisation of this
framework relaxing the steady state condition, assuming gene specific transcrip-
tion, splicing and decay rates, and solving the system of differential equation with
a likelihood-based dynamical model [Bergen et al., 2019].

The various methods of trajectory inference mentioned here above all rely only
on scRNA-seq data and are almost all based on the assumption that captured cells
come from shared lineages such that similarities between expression profiles indi-
cates closely related states along a shared lineage. However, the gene expression
based similarity alone is neglecting the general fact that all the cells come from a
unique ancestor and that differentiation takes place through cell division, which
should generally be considered in a descriptive model of cell differentiation if one
aims to better understand the phenomenon. Different experimental approach have
been developed to retrace cell lineage, that can be separated into prospective and
retrospective lineage tracing. Prospective techniques use the incorporation of in-
heritable, measurable and distinguishable traits to a subset of cells at a given time,
such that the later progenitors of each marked cell can be identified by the detec-
tion of, for instance, fluorescent markers, DNA barcodes or CRISPR-Cas9-induced
small modification of DNA [Kester and van Oudenaarden, 2018]. Retrospective lin-
eage tracing tackle a more challenging task of reconstruction the whole phylogeny
of a cell population by inferring a tree from somatic mutations, copy number varia-
tion, single nucleotide variants or epigenetic marks [Kester and van Oudenaarden,
2018]. Most of those methods are informative about the genetic relationship be-
tween cells but all lack a more phenotypic characterisation that can be provided
by scRNA-seq. A few methods have combined transcriptomic measurements with
prospective lineage tracing, using imaging of single-molecule fluorescent in situ
hybridization data [Hormoz et al., 2016, Kimmerling et al., 2016, Frieda et al.,
2017], viral barcoding of the 3" UTR of a fluorescent protein mRNA [Yao et al.,
2017,Biddy et al., 2018], or CRISPR-Cas9-induced small modifications of a fluore-
cent protein mRNA that can be detected in sequencing [Spanjaard et al., 2018, Rajj
et al., 2018, Alemany et al., 2018, Kalhor et al., 2017]. Remarkably, single-molecule
fluorescent in situ hybridisation data also allows the spatial localisation of cells,
adding a s layer of information about the spatial organisation of cells during dif-
ferentiation.

More generally, the number of high-throughput experimental techniques bring-
ing various independent measurements at the single cell resolution has exploded,
providing means to uncover information about the lineage, genome sequence and
methylation state, histone modification, chromatin accessibility, composition in
mRNA, proteins and surface proteins, and the spatial localisation of cells in the
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body [Stuart and Satija, 2019]. Some of those techniques have also been com-
bined into one experiment, such that observations can be made simultaneously
on the same cell. Most often though, the measurable variables are obtained in a
destructive manner, and thereby have to be considered in distinct cell populations.
However, the scale and diversity of the measurable variables describing the state of
a cell leads us to believe that we are closer than ever to fully elucidate the molec-
ular mechanisms underlying the developments of multicellular organisms, and to
start building a quantitative theory of how the genetic information is interpreted
to produce the astonishing complexity of a living organism. In fact, considerable
efforts in the scientific community are focused towards tackling the integration of
the abundance of large scaled data generated in recent years [Adey, 2019, Stuart
and Satija, 2019, Welch et al., 2019], and it seems unavoidable that those efforts
will have to primarily go towards the rigorous definition, characterisation, and
analysis of the measured variables, before they can possibly be integrated together
as different aspects of one theory.

The work achieved during the beginning of my doctoral studies and presented in
the first two sections of this thesis ( Quantifying the strength of miRNA-target inter-
actions, and Single cell mRNA profiling reveals the hierarchical response of miRNA
targets to miRNA induction), contributed to the field of miRNA-dependent reg-
ulation by improving the characterisation and the quantification of biophysical
miRNA-mRNA interactions from two different view points, using measurements of
the kinetics of mRNA degradation increase induced by miRNAs and the response
in mRNA level to changes in miRNA concentration measured with scRNA-seq.
The last part of the thesis (Bayesian inference of gene expression levels in single
cells), presents a framework that was first designed to rigorously normalise mRNA
count data from scRNA-seq experiments, as we could not find any satisfactory
published solution to perform this task, which needs to be solved before applying
the MARA model that has been designed in the group for bulk RNA-seq about
10 years ago [Suzuki et al., 2009, Balwierz et al., 2014]. We rapidly realised that
our work could be highly relevant for any sort of analysis that needs to normalise
for the Poisson distributed part of the variance as well as the fluctuations in the
total number of mRNA molecules captured from a cell. As a matter of fact, our
Bayesian framework solves the very general mathematical problem of estimating
log-normally distributed variables presenting additional and undesirable Poisson
distributed noise (typically sampling noise). Because of its generality, our work
has been well received when presented in scientific conferences and since we made
it available as a pre-print. As we developed it in an integrable design, our algo-
rithm can be easily included into new workflows, extend existing ones, to improve
the analysis of scRNA-seq data sets and increase the breadth and accuracy of con-
clusions that can be drawn from such data. The work that builds on the Sanity
framework and is still unpublished, of inferring the activities of regulators of gene
expression in single cells is an entirely new approach to scRNA-seq analysis, which
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already generated compelling preliminary results concerning stem cell differentia-
tion and the development of various organs such as the mouse cortex. For these
reasons, we expect that this work will also be of great interest to the field, opening
new avenues to engineer developmental fates.
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