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Abstract

Bayesian networks are a powerful framework for studying the dependency structure of vari-
ables in a complex system. The problem of learning Bayesian networks is tightly associated
with the given data type. Ordinal data, such as stages of cancer, rating scale survey ques-
tions, and letter grades for exams, are ubiquitous in applied research. However, existing
solutions are mainly for continuous and nominal data. In this work, we propose an itera-
tive score-and-search method - called the Ordinal Structural EM (OSEM) algorithm - for
learning Bayesian networks from ordinal data. Unlike traditional approaches designed for
nominal data, we explicitly respect the ordering amongst the categories. More precisely, we
assume that the ordinal variables originate from marginally discretizing a set of Gaussian
variables, whose structural dependence in the latent space follows a directed acyclic graph.
Then, we adopt the Structural EM algorithm and derive closed-form scoring functions for
efficient graph searching. Through simulation studies, we illustrate the superior perfor-
mance of the OSEM algorithm compared to the alternatives and analyze various factors
that may influence the learning accuracy. Finally, we demonstrate the practicality of our
method with a real-world application on psychological survey data from 408 patients with
co-morbid symptoms of obsessive-compulsive disorder and depression.

Keywords: Bayesian Networks, Ordinal Data, Structural EM Algorithm, Structure
Learning.

1. Introduction

Many problems in applied statistics involve characterizing the relationships amongst a set of
random variables in a complex system, aiming to describe high dimensional joint probability
distributions, which may be of use in prediction and causal inference. Probabilistic graphical
models, which incorporate graphical structures into probabilistic reasoning, are popular and
powerful frameworks for analyzing these complex systems. The idea is to factorize the joint
probability distribution p for the variables X = (X1, · · · , Xn)> with respect to a graph
G = (V, E) , where V is the set of nodes representing the variables, and E the edges encoding
a set of independence relationships (Lauritzen, 1996; Koller and Friedman, 2009).
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In this work, we focus on Bayesian networks - a special family of probabilistic graphical
models where the underlying structure G is a directed acyclic graph (DAG) - also named
DAG models in the literature (Geiger and Heckerman, 2002; Pearl, 2014). The joint proba-
bility distribution p can be fully specified by a set of parameters θ and factorizes according
to G as

p(x | θ,G) = p(x1, . . . , xn | θ,G) =
n∏
i=1

p(xi | xpa(i), θi,G), (1)

where x is a realization for X, θ = ∪ni=1θi, and the subsets {θi}ni=1 are assumed to be
disjoint. We denote the parents of node i by pa(i) such that there is an directed edge from
j to i if j ∈ pa(i). Hence, we can also read the factorization in (1) by saying that a variable
Xi is conditionally independent from its non-descendants given its parents Xpa(i) in G. This
is known as the Markov property (Lauritzen, 1996). We denote a Bayesian network by a
set B = (G, θ). Given a data sample D, learning a Bayesian network, therefore, means
estimating both the network structure G and the parameters θ.

1.1 Structure Learning for Bayesian Networks

Structure learning for Bayesian networks is an NP-hard problem (Chickering et al., 2004),
mainly because the number of possible DAGs grows super-exponentially with the number
of nodes n. Existing approaches to tackle this problem fall roughly into three categories:

• Constraint-based methods perform conditional independence tests for each pair of
nodes given a subset of adjacent nodes in order of increasing complexity. Examples
are the PC (Spirtes et al., 2000), FCI (Spirtes, 2001), and RFCI algorithms (Colombo
et al., 2012). These methods are fast and computationally feasible when the underlying
graph is sparse (Kalisch and Bühlmann, 2007; Uhler et al., 2013).

• Score-and-search methods rely on a scoring function and an algorithm that searches
through the DAG space. One example is the greedy equivalence search (GES), which
starts with an empty graph and goes through two phases of adding and removing
edges based on the scores (Chickering, 2002). Recently, score-and-search algorithms
based on integer linear programming have also been introduced (Cussens et al., 2017).
More general approaches to score-and-search include sampling based methods, which
aims to construct the full posterior distribution of DAGs given the data (Madigan
et al., 1995; Giudici and Castelo, 2003; Friedman and Koller, 2003; Grzegorczyk and
Husmeier, 2008; Kuipers and Moffa, 2017), as well as strategies relying on dynamic
programming (Koivisto and Sood, 2004). These methods can be slower than the
constraint-based ones, but in general, provide better performance when computation-
ally feasible (Heckerman et al., 1999).

• Lastly, the hybrid approaches bring together the above two solutions by restricting the
initial search space using a constraint-based method in order to improve the speed and
accuracy even further (Tsamardinos et al., 2006; Nandy et al., 2018; Kuipers et al.,
2018).
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For a broader overview on Bayesian networks we refer to the comprehensive review by Daly
et al. (2011) as well as the textbook by Koller and Friedman (2009). A recent comparison
of structure learning approaches can be found in Constantinou et al. (2021) for example.

1.2 Structure Learning with Ordinal Data

Alongside the search scheme, it is also important to properly account for the type of ran-
dom variables studied and define a suitable scoring function. The focus of this work is on
categorical variables, which can be either nominal or ordinal, depending on whether the
ordering of the levels is relevant. Examples of nominal variables include sex (male, female,
non-binary), genotype (AA, Aa, aa), and fasting before a blood test (yes, no). They are
invariant to any random permutation of the categories. The listing order of the categories
is, by contrast, an inherent property for ordinal variables. Examples are stages of disease (I,
II, III), survey questions with Likert scales (strongly disagree, disagree, undecided, agree,
strongly agree), as well as discretized continuous data, such as the body mass index (un-
derweight, normal weight, overweight, obese), age groups (children, youth, adults, seniors)
etc. (McDonald, 2009; Agresti, 2010). For discretized data, it is often difficult or impossible
to access the underlying continuous source for practical or confidential reasons. The inter-
actions amongst the latent variables can only manifest through their ordinal counterparts.
From a technical perspective it is thus natural to think of ordinal variables as generated
from a set of continuous latent variables through discretization.

Despite the prevalence of ordinal variables in applied research, not much attention has
been paid to the problem of learning Bayesian networks from ordinal data. One solution is
to apply constraint-based methods with a suitable conditional independence test, including
but not limited to the Jonckheere-Terpstra test in the OPC algorithm of Musella (2013),
copula-based tests (Cui et al., 2016), and likelihood-ratio tests (Tsagris et al., 2018). While a
possible extension along this line is to explore more appropriate tests to improve the search,
constraint-based methods, in general, tend to favor sparser graphs and can be dependent on
the testing order (Uhler et al., 2013; Colombo and Maathuis, 2014). In the score-and-search
regime, no scoring functions exist for ordinal variables, so metrics ignoring the ordering and
based on the multinomial distribution are the typical alternatives. An obvious drawback is
the loss of information associated with ignoring the ordering among the categories, resulting
in inaccurate statistical analyses. Another potential issue is the tendency to overparam-
eterization, especially when the number of levels is greater than 3. In this case, neither
statistical nor computational efficiency can be achieved (Talvitie et al., 2019). However, for
very large number of levels a continuous approximation may be adequate.

In this work, we develop an iterative score-and-search scheme specifically for ordinal
data. Before describing the algorithm in detail, we briefly review the challenges. On the
one hand, we need a scoring function that can preserve the ordinality amongst the cate-
gories. On the other hand, that function should also satisfy three important properties:
decomposability, score equivalence, and consistency (Koller and Friedman, 2009). Decom-
posability of a score is the key to fast searching. Modifying a local structure does not require
recomputing the score of the entire graph, which tremendously reduces the computational
overhead. Score equivalence is less crucial but is necessary for search schemes relying on
Markov equivalent classes, such as GES or hybrid methods that initialize with a PC output.
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Here, two DAGs belong to the same Markov equivalent class if and only if they share the
same skeleton and v-structures (Verma et al., 1991). A Markov equivalent class can be
uniquely represented by a completed partially directed acyclic graph (CPDAG). Finally,
a consistent score can identify the true DAG if sufficient data is provided. Examples of
scores that satisfy all three properties are the BDe score (Heckerman and Geiger, 1995) for
(nominal) categorical data and the BGe score (Geiger and Heckerman, 2002; Kuipers et al.,
2014) for continuous data. It is, however, nontrivial to develop such a score for ordinal
data.

To capture the ordinality, we use a widely accepted parameterization based on the
multivariate probit models (Ashford and Sowden, 1970; Bock and Gibbons, 1996; Chib and
Greenberg, 1998; Daganzo, 2014), with no additional covariates with respect to the variables
whose joint distribution we wish to model and hence focusing on their dependency structure.
As illustrated in Figure 1(a), each ordinal variable is assumed to be obtained by marginally
discretizing a latent Gaussian variable. In this case, the order of the categories is encoded
by the continuous nature of the Gaussian distribution.

More specifically we can have at least two possible formulations, both with their pros
and cons. The first one (Figure 1(b)) assumes that the latent variables Y jointly follow
a multivariate Gaussian distribution, which factorizes according to a DAG. This approach
resembles the Gaussian DAG model (Heckerman and Geiger, 1995; Geiger and Heckerman,
2002) in the latent space, with additional connections to the ordinal variables X. Unlike in
the continuous case, marginalizing out the latent variables will result in a non-decomposable
observed likelihood. The conditional independence relationships will also disappear. This
is because DAG models are not closed under marginalization and conditioning (Richardson
et al., 2002; Silva and Ghahramani, 2009; Colombo et al., 2012). In Figure 1(b), the
Gaussian variables Y2 and Y3 are conditionally independent given Y1, whereas the ordinal
variables X2 and X3 are not independent given X1 due to the presence of a common ancestor
Y1 in the latent space. As a result, traditional closed-form scoring functions such as the
BGe metric (Heckerman and Geiger, 1995) cannot be applied, which is generally the case
in the presence of hidden variables.

Another setup (Figure 1(c)) uses a non-linear structural equation model with the probit
function as the link. In this case it is assumed that a DAG structure describes the relation-
ship between the observed variables, whereas the latent Gaussian variables only facilitate
the flow of information and can be marginalized out. It is equivalent to the probit directed
mixed graph model of Silva and Ghahramani (2009). In this model, the observed likelihood
is decomposable. We can recover the graph X2 ← X1 → X3 after marginalization. However,
the resulting score is not score-equivalent because the joint probability distribution fails to
meet the complete model equivalence assumption as described by Geiger and Heckerman
(2002).

Our solution builds on the first formulation, which we call the latent Gaussian DAG
model. The key is to observe that the complete-data likelihood is both decomposable and
score-equivalent. Further adding a BIC-type penalty will still preserve these key properties
of the score, as well as consistency (Schwarz et al., 1978; Rissanen, 1987; Barron et al.,
1998). The Structural EM algorithm of Friedman (1997) addresses the problem of struc-
ture learning in the presence of incomplete data by embedding the search for the optimal
structure into an Expectation-Maximization (EM) algorithm. We apply the Structural EM
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Figure 1: (a) We assume that an ordinal variable is obtained by marginally discretizing a
latent Gaussian variable. (b) and (c) are examples of three-node graphs for two
different probit models discussed in Section 1.2. X1, X2 and X3 are ordinal vari-
ables, each obtained by discretizing a latent variable Yi with associated Gaussian
parameters θi, i = 1, 2, 3. Latent nodes are shaded for clarity.

to deal with the latent Gaussian variable construction of ordinal data in a procedure which
we call the Ordinal Structural EM (OSEM) algorithm. Note that Webb and Forster (2008)
also used the latent Gaussian DAG model and aimed to determine the network structure
from the ordinal data using a reversible jump MCMC method. Our approach differs in that
it explicitly exploits score decomposability, allowing for search schemes that are compu-
tationally more efficient, such as order and partition MCMC (Friedman and Koller, 2003;
Kuipers and Moffa, 2017), or hybrid methods.

The rest of this article is structured as follows. In Section 2, we formally define the
latent Gaussian DAG model and introduce the corresponding identifiability constraints. In
Section 3, we integrate the model into the Structural EM framework. In Section 4, we
use synthetic and real data to illustrate the superior performance of our proposed method
compared to the alternatives in terms of structure recovery and prediction. In Section 5,
we apply our method to a psychological survey data set. Finally, in Section 6, we discuss
the implications of our results as well as possible directions for future work.

2. The Latent Gaussian DAG Model

Let X = (X1, · · · , Xn)> be a collection of n ordinal variables, where Xi takes values in
the set {τ(i, 1), τ(i, 2), . . . , τ(i, Li)} with τ(i, 1) < τ(i, 2) < · · · < τ(i, Li), i = 1, . . . , n. We
assume that the number of levels Li ≥ 2, so each variable should at least be binary. It is
common to set τ(i, j) = j − 1 for all 1 ≤ j ≤ Li, i.e. τ(i, 1) = 0, τ(i, 2) = 1, and so on.
Further, we assume that each Xi is obtained by discretizing an underlying Gaussian variable
Yi using the thresholds −∞ =: α(i, 0) < α(i, 1) < · · · < α(i, Li − 1) < α(i, Li) := ∞. Let
αi = (α(i, 0), . . . , α(i, Li))

> and α = {αi}ni=1. The hidden variables Y = (Y1, · · · , Yn)>
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jointly follow a multivariate Gaussian distribution N (µ,Σ), which factorizes according to
some DAG G. Formally, the latent Gaussian DAG model is given by

Yi | ypa(i), ϑi,G ∼ N (µi +
∑

j∈pa(i)

bji(yj − µj), vi)

P (Xi = τ(i, l) | Yi = yi,αi) = 1
(
yi ∈ [α(i, l − 1), α(i, l))

)
, l = 1, . . . , Li

p(x,y | θ,G) =
n∏
i=1

φ(yi | ypa(i), ϑi,G)p(xi | yi,αi)

(2)

where θ = ∪ni=1θi with θi = (ϑi,αi), ϑi = (µi,bi, vi) and bi = (bji)j∈pa(i) for all i = 1, . . . , n.
Since the discretization is marginal and deterministic, the joint probability distribution
p(x,y | θ,G) remains decomposable and score-equivalent as in the Gaussian DAG model
(Geiger and Heckerman, 2002). Alternatively we can parametrize the complete joint distri-
bution of the hidden and observed variables using a mean vector µ = (µ1, . . . , µn)> ∈ Rn
and a symmetric positive definite covariance matrix Σ ∈ Rn×n,

p(x,y | θ,G) = φ(y | µ,Σ,G)p(x | y,α). (3)

It follows from Silva and Ghahramani (2009) that we can write the transformation between
{bi, vi}ni=1 and Σ as

Σ = (I−B)−1V(I−B)−>, (4)

where (B)ij = bji and V is an n-by-n diagonal matrix with Vii = vi.

2.1 Identifiability

Different underlying Gaussian variables Y may generate the same contingency table for X,
by simply shifting and scaling the thresholds using the corresponding means and variances.
For example, we can obtain the same ordinal variable X by discretizing either Y1 ∼ N (0, 1)
at {−1, 1} or Y2 ∼ N (−1, 100) at {−11, 9}. In other words, there is not a one-to-one
mapping between the cell probabilities in the table and the parameters θ = (α,µ,Σ).
Thus, we need to impose some constraints to ensure model identifiability.

Typically, each dimension of X requires two constraints. Webb and Forster (2008)
choose to fix the lowest and the highest thresholds for deriving the ordinal variables. For
binary variables, they restrict the only threshold at zero and set vi = 1. Instead, we find
it computationally more convenient to standardize each latent dimension. More precisely,
we let µi = 0 for all i = 1, . . . , n and constrain the covariance matrix to be in correlation
form using a diagonal matrix D := diag(d1, . . . , dn) with di =

√
Σii, i.e. we replace Σ by

its transformation D−1ΣD−1. Due to its symmetry the correlation matrix is identified by
n(n−1)

2 off-diagonal parameters Σij = Σji = ρij for all i 6= j. Imposing these constraints
ensures that the thresholds and the correlation matrix will be identifiable, which is sufficient
for deducing the hidden DAG G. The mean vector and the variances remain unidentifiable.

3. The Ordinal Structural EM Algorithm

Given a sample DX = {x1, . . . ,xN} of size N for X, our goal is to learn both the parameters
and the structure of the Bayesian network B = (G, θ) which best explains the observed
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data. Making inference about Bayesian networks with unknown structure is an intrinsically
challenging problem, and in the case of ordinal variables an additional difficulty originates
from the presence of latent variables. To estimate the parameters θ for a given DAG
G, we can use the Expectation-Maximization (EM) algorithm (Dempster et al., 1977), a
common approach to handle maximum likelihood estimation in the presence of missing
data. Conversely, with fully observed data, we may use one of the methods discussed in
Section 1.1 for structure learning. In the presence of hidden variables, the above strategies
fail, because the marginal density for X no longer decomposes over each node and its
parents. In the sequel, we consider combining the latent Gaussian DAG model with the
Structural EM algorithm of Friedman (1997), where the structure learning step is wrapped
inside the EM procedure. The resulting framework is the Ordinal Structural EM (OSEM)
algorithm.

3.1 The EM and the Structural EM Algorithms

In the presence of latent variables, computing the maximum likelihood estimates for θ by
maximizing the observed data log-likelihood

`(θ;DX) = log p(DX | θ) = log

∫
p(DX,DY | θ)dy1 · · · dyN (5)

can be intractable. The EM algorithm addresses this problem by alternating between two
steps:

• E-step (Expectation): given the observed data and the current estimate of the pa-
rameters θ(t), t ∈ {0, 1, 2, . . . }, compute the expected value of the complete-data (in-
cluding the hidden variables) likelihood with respect to the distribution of the hidden
variables conditional on the observed variables,

Q(θ, θ(t)) = EY|x,θ(t) [log p(DX,DY | θ)]

=

N∑
j=1

EYj |xj ,θ(t) [log p(Xj ,Yj | θ) | Xj = xj ];
(6)

• M-step (Maximization): update the parameters by maximising the Q function with
respect to θ as

θ(t+1) = arg max
θ∈Θ

Q(θ, θ(t)). (7)

The EM procedure guarantees convergence of the observed data likelihood `(θ(t);DX) to a
local maximum as t→∞ (Dempster et al., 1977).

The Structural EM algorithm is an extension of the original EM for learning Bayesian
networks. The idea is to recursively choose a structure and a set of parameters that improve
the following expected scoring function:

Q̃(G, θ;G(t), θ(t)) = EY|x,G(t),θ(t) [log p(DX,DY | G, θ)]︸ ︷︷ ︸
Q(G,θ;G(t),θ(t))

−Penalty(G, θ). (8)
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Here, we choose a BIC penalty term in order to ensure that the score Eq. (8) remains decom-
posable, score-equivalent, and consistent (Theorem 18.2 of Koller and Friedman (2009)). In
the following sections, we elaborate on the steps in the OSEM algorithm.

3.2 Initialization

The original algorithm of Friedman (1997) used a random initialization for both the struc-
ture G and the parameters θ. However, we can achieve faster convergence if we can cheaply
obtain rough estimates of the parameters which maximise the penalised likelihood function,
and start the EM procedure from such estimates.

Given the identifiability constraints in Section 2.1, we only need to estimate the thresh-
olds α once at the very beginning. More precisely, given a sample DX, we can estimate the
thresholds α(i, l) for all i = 1, . . . , n and l = 1, . . . , Li − 1 as

α̂(i, l) = Φ−1
( 1

N

N∑
j=1

1(xji ≤ τ(i, l))
)
, (9)

which are the empirical quantiles of the standard normal distribution.
Next, we assume that the initial DAG G(0) is a full DAG. Conditioned on the thresholds,

we want to find the correlation matrix by maximizing the observed data log-likelihood,

Σ(0) | α̂ = arg max
Σ

log p(DX | 0,Σ,G(0)), (10)

which can be computationally too expensive. Alternatively, we can use a pairwise likelihood
approach (Kuk and Nott, 2000; Renard et al., 2004; Varin and Czado, 2010), where we
estimate each off-diagonal entry ρij in the correlation matrix as

ρ
(0)
ij | α̂ = arg max

ρij
log p

(
DXi∪Xj |

[
0

0

]
,

[
1 ρij

ρij 1

]
,G(0)

)
. (11)

Let θ(0) = {Σ(0), α̂} with (Σ(0))ij = ρ
(0)
ij for all i 6= j and (Σ(0))ii = 1 for all i = 1, . . . , n.

This approach is fast and easy to implement at the expense of accuracy. If the resulting
correlation matrix is not positive-definite, one remedy is to smooth the matrix by coercing
the non-positive eigenvalues into slightly positive numbers. As this is only an initialization,
the difference caused by smoothing should not severely impact the following stages.

3.3 Structure Update

The algorithm iterates through two steps: the structure update and the parameter update.
Given the current estimate (G(t), θ(t)), the structure update searches for the DAG that
maximizes the expected scoring function by computing the expected statistics instead of
the actual ones in the complete-data setting.

In our case, computing the expected values in Eq. (6) is expensive, so we use the Monte
Carlo EM algorithm of Wei and Tanner (1990) as an approximation. For each observation
xj , we draw a sample of size K from the truncated multivariate normal distribution

Yj | xj ,Σ(t), α̂,G(t) ∼ TMN(0,Σ(t) | xj , α̂), (12)
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where the sampling region of the Gaussian data is restricted to the domain specified by xj

and α̂. Then, we can approximate the expected covariance matrix as

Σ̂ =
1

N

N∑
j=1

EYj |xj ,G(t),θ(t)
[
(Yj)(Yj)>

]
≈ 1

N

1

K

N∑
j=1

K∑
k=1

(yj(k))(yj(k))>. (13)

From Eq. (2) and Eq. (3), we decompose the Q function with respect to each node and its
parents,

Q(G, θ;G(t), θ(t)) =
n∑
i=1

N∑
j=1

EYj |xj ,G(t),θ(t)

[
log

φ(Yj
{i}∪pa(i) | (0,Σ){i}∪pa(i),G)

φ(Yj
pa(i) | (0,Σ)pa(i),G)

]
, (14)

where (0,Σ)O are the parameters indexed by the set O for O ⊆ {1, . . . , n}. Let θ̂ = {Σ̂, α̂}.
By substituting Eq. (13) into Eq. (14) and using the standard normal density function, we
rewrite Eq. (8) as

Q̃(G, θ̂;G(t), θ(t)) = Q(G, θ̂;G(t), θ(t))− logN

2
dim(G)

=
n∑
i=1

(
− N

2

[
log
(

Σ̂i,i − Σ̂i,pa(i)Σ̂
−1
pa(i),pa(i)Σ̂pa(i),i

)]
− logN

2
dim(Yi,Ypa(i))

)
,

(15)

which is an expected version of the BIC score as in the complete-data case. Therefore, to
update the structure we need to solve the following maximization problem,

G(t+1) = arg max
G: DAG over (X,Y)

Q̃(G, θ̂;G(t), θ(t)), (16)

which we can address by using any of the existing score-based or hybrid schemes, such as
the GES and MCMC samplers.

3.4 Parameter Update

Conditioned on the structure estimate G(t+1), the goal in the parameter update is to find
θ(t+1) such that

θ(t+1) = arg max
θ∈Θ

Q(G(t+1), θ;G(t), θ(t))− logN

2
dim(Yi,Ypa(i)). (17)

The Q function can be expressed in terms of the conditional parameters from Eq. (2):

n∑
i=1

N∑
j=1

EYj |xj ,G(t),θ(t)
[

log φ(Y j
i | Y

j
pa(i), θi,G

(t+1))
]

=
n∑
i=1

−N
2

(
log(2πvi) +

1

vi

1

N

N∑
j=1

EYj |xj ,G(t),θ(t)
[(
Y j
i − b>i Yj

pa(i)

)2]︸ ︷︷ ︸
≈ 1

K

∑K
k=1

[(
y
j(k)
i −b>

i y
j(k)
pa(i)

)2]
)
.

(18)
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The truncated multivariate normal samples in the previous structure update can be recycled
here, because the parameters θ(t) have not yet been updated. To maximizeQ(G(t+1), θ;G(t), θ(t))
we can then effectively use the multi-step conditional maximization (Meng and Rubin, 1993)

following the topological order in G(t+1). Suppose we have estimated θ
(t+1)
pa(i) and consider now

updating θi. Let Y
(k)
pa(i) = (y

1(k)
pa(i), . . . ,y

N(k)
pa(i))> ∈ RN×|pa(i)| and y

(k)
i = (y

1(k)
i , . . . , y

N(k)
i )> ∈

RN represent the sampled design matrix and the sampled response vector respectively. We
first differentiate Q(G(t+1), θ;G(t), θ(t)) with respect to bi and obtain

b
(t+1)
i =

( K∑
k=1

(
Y

(k)
pa(i)

)>
Y

(k)
pa(i)

)−1( K∑
k=1

(
Y

(k)
pa(i)

)>
y

(k)
i

)
. (19)

Conditioned on b
(t+1)
i , the update for vi is then

v
(t+1)
i =

1

N

1

K

N∑
j=1

K∑
k=1

(
y
j(k)
i − (b

(t+1)
i )>y

j(k)
pa(i)

)2
. (20)

By introducing the BIC penalty, this procedure is equivalent to performing nodewise re-
gression with best subset selection (James et al., 2013) in the latent space. Only minor

modifications in the active components of b
(t+1)
i are required.

For the purpose of identifiability and the next structure update, the final step is to

convert θ(t+1) = (b
(t+1)
i , v

(t+1)
i )ni=1 to its corresponding correlation form with Eq. (4) and

rescaling.

3.5 Summary

The latent Gaussian DAG model assumes that the ordinal variables originate from element-
wise discretization of a set of Gaussian variables, which follow a DAG structure. Given
observations from the ordinal data only, we call Ordinal Structural EM (OSEM) algorithm
the process of estimating the hidden DAG structure, and we summarize the procedure in
Algorithm 1, along with more technical details (Appendix A). Theorem 3.1 of Friedman
(1997) states that the penalized observed data log-likelihood can only improve at each
iteration, and therefore, guarantees the convergence of the algorithm to a local optimum.

4. Experimental Results

In this section, we first use simulation studies to assess the performance of our proposed
method in recovering the hidden network structure from observed ordinal data. Then, we
evaluate its predictive performance in terms of average log loss using real data sets.

4.1 Structure Recovery

We randomly generate DAGs using the randDAG function from the pcalg package (Kalisch
et al., 2012), followed by generating the corresponding Gaussian data according to the topo-
logical order in the DAGs. Then, we discretize the Gaussian data to obtain an ordinal data
set, from which we try to learn the original structure describing the relationship between
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the latent Gaussian variables. We compare our Ordinal Structural EM algorithm (OSEM)
to five other existing approaches:

1. PC algorithm with the nominal G2 test (NPC);

2. PC algorithm of Musella (2013) with the ordinal Jonckheere–Terpstra test (OPC);

3. PC algorithm with the Gaussian test using Fisher’s z–transformation (GPC);

4. hybrid method with the BDe score and NPC as initial search space (BDe);

5. hybrid method with the BGe score and GPC as initial search space (BGe).

Note that none of these methods assume a latent Gaussian DAG model. Namely, they
all build a network model directly on the observed ordinal variables. OSEM on the other
hand estimates the hidden structure on the latent Gaussian variables. Therefore a direct
comparison of the performance with respect to the network structure needs to be taken with
caution, especially in light of the fact that conditional independence relationships do not
automatically extend from the latent to the observed space (see also Section 1.2). To the
best of our knowledge, however, no generative model for ordinal data currently exists that
provides both decomposability and score equivalence in the observed space. In the absence
of alternative methods which are capable of dealing with the latent variable construction of
ordinal data, it may still be insightful to compare the network accuracy of OSEM to that of
the most popular methods currently in use to learn network models for various data types.
Finally, to compare OSEM to other algorithms in a manner that is agnostic to the data
generating scheme, we will evaluate predictive performance on real data sets in Section 4.2.
Detailed implementations for all methods are summarised in Appendix B.7.

4.1.1 Performance Metrics

We assess the performance of the model by comparing the estimated structure with the
true structure. Notice that we can only identify the true DAG up to its Markov equivalence
class, so it is more appropriate to compare the corresponding CPDAGs. However, the
metrics based on CPDAG differences can still be too harsh, because many directed edges
are induced by a few number of v-structures. Therefore, we choose to compare the patterns
of the DAGs in the sense of Meek (1995), where the v-structures are the only directed edges.
In other words, we measure the structural hamming distance (SHD) between two DAGs
using the skeleton differences plus the v-structure differences.

The estimated DAG or CPDAG is first converted into a pattern. If an edge in the
estimated pattern matches exactly the same direction as the corresponding edge in the true
pattern, we count it as 1 true positive (TP). If the direction is wrong but exactly one of this
edge and the corresponding edge is undirected, then we count it as 0.5 TP. We subtract the
number of true positives from the total number of estimated edges to get the number of
false positives (FP). Furthermore, we compute the true positive rate (TPR) and the false
positive rate (FPRp) as

TPR =
TP

P
and FPRp =

FP

P
, (21)
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where P is the total number of edges in the true pattern. Scaling the false positives by
P instead of the number of real negatives N can lead to a more comparable visualization,
because if the sparsity of the network stays the same, N grows quadratically as n increases.
We illustrate the comparisons mainly through Receiver Operating Characteristics (ROC)
curves. In particular, we plot the TPR against the FPRp with the following penalization
parameters:

• significance level for the conditional independence tests:

α ∈ {0.001, 0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3}.

• equivalent sample size for the BDe score:

χ ∈ {0.0001, 0.001, 0.01, 0.1, 1, 10, 20, 40, 60, 80};

• coefficient to be multiplied by the BIC penalty:

λ ∈ {1, 1.5, 2, 2.5, 3, 4, 6, 10, 20, 30};

• coefficient to be multiplied by the precision matrix in the BGe score:

am ∈ {0.0001, 0.001, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1, 1.5}, and the degree of freedom
aw in the Wishart distribution is set to be n+ am + 1.

Unlike comparing skeletons, the ROC curves created this way can be non-monotonic. Some
edges in the patterns may jump between being directed and undirected when the penalty
is too small or too large, so the number of TPs may not be monotonically increasing.
Furthermore, one can read the SHDs scaled by P directly from the plots, which are the
Manhattan distances from the curves to the point (0, 1).

4.1.2 Simulation Results

We generate random DAGs with 4 expected neighbours per node. The edge weights are
uniformly sampled from the intervals (−1,−0.4) ∪ (0.4, 1). We consider 3 network sizes
n ∈ {12, 20, 30} and 3 sample sizes N ∈ {300, 500, 800}. For each DAG, we generate
the associated Gaussian data and perform element-wise discretization randomly using the
symmetric Dirichlet distribution Dir(Li, ν), where Li is the number of ordinal levels in the
ith dimension and ν is a concentration parameter. More specifically, we first generate the
cell probabilities in the ordinal contingency table of Xi from Dir(Li, ν). According to the
cell probabilities, we can compute reversely the thresholds for cutting the Gaussian variable
Yi using the normal quantile function (Figure S2). Here, we draw Li randomly from the
interval [2, 4] to mimic the typical number of ordinal levels and choose ν to be 2 to avoid
highly skewed contingency tables.

For each configuration, we repeat 100 times the process of randomly generating the data
and estimating the structure using the six approaches, followed by plotting the ROC curves
accordingly. Each point in Figure 2 represents a tuple (TPR, FPRp). The lines are created
by interpolating the average TPR against the average FPRp at each penalization value.
Unlike FPRn, FPRp can be greater than 1, but only points within [0, 1] are shown.

In general, the three PC-based methods alone are too conservative to recover the pat-
terns of the true underlying structures, regardless of how we increase the significance level.
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Figure 2: The comparison of the performance in recovering the true pattern between the
OSEM algorithm and five other existing approaches: BGe, BDe, GPC, NPC,
and OPC. The ROC curves are created by plotting the TPR against the FPRp
for sample sizes N ∈ {300, 500, 800}, network sizes n ∈ {12, 20, 30}, 3 expected
number of levels, and a Dirichlet concentration parameter of 2. Both the x-
axis and the y-axis are limited to [0, 1]. For each method, the point on the line
corresponds to the lowest SHD (the highest sum of TPR and (1− FPRp)).

Amongst them, the GPC algorithm performs the best, followed by the OPC and NPC
algorithms.

While the performance of the hybrid method with the BDe score is sometimes much
better than the PC algorithms, the upper bound of the BDe band barely touches the

13



Luo, Moffa, and Kuipers

lower bound of the BGe band. This observation is unanticipated in two ways. On one
hand, ignoring the ordering amongst the categories is not as harmless as one may expect.
If our modeling assumptions are correct, the common practice of using the multinomial
distribution cannot be taken for granted, as the estimated DAG can be far off. On the
other hand, the BGe score is more powerful than we may have anticipated. Even though
treating the ordinal data as continuous is inaccurate, this is still capable of detecting many
true conditional independence relationships in the latent space. Thus, leaving aside our
OSEM algorithm, one should rather use the BGe score instead of the popular BDe score
for Bayesian network learning from ordinal data.

In all cases, our OSEM algorithm demonstrates a strong improvement. When the sample
size is large enough, the contingency tables are more accurate, so recovering the original
covariance structure through the EM iterations becomes more likely. With fixed sample
size, increasing the network size does not make the performance of our model deteriorate,
as long as the sparsity of the network stays the same. Additional simulation results can be
found in Appendix B, including 1) ROC curves for skeletons, 2) the effect of thresholds,
3) the effect of network sparsity, 4) runtimes, and 5) comparison against the most recent
structure learning methods for mixed data.

4.2 Predictive Performance

For score-based approaches, we also evaluate the predictive performance using five real
ordinal data sets from McNally et al. (2017) and the UCI machine learning repository (Dua
and Graff, 2017) (Table 1).

data set Sample size Number of variables Average levels

OCD and Depression 408 24 4.67

Congressional Voting Records 435 17 2

Contraceptive Method Choice 1473 9 3.3

Primary Tumor 339 17 2.18

SPECT Heart 267 23 2

Table 1: Description of the five real data sets in Section 4.2. Except the OCD and De-
pression data set, all other data sets are obtained from the UCI machine learning
repository.

In addition to OSEM, BGe, and BDe, we have included the PCART algorithm of Talvitie
et al. (2019) for comparison, which is a score-based method for mixed continuous, nominal
and ordinal data. For each data set and method, we train the network with 80% of the data
points, and conditioned on the structure, we compute the log loss on the remaining 20%
test cases. To ensure that the method with the continuous BGe score has a comparable
log loss, we substitute its maximum a posteriori covariance matrix based on the estimated
DAG into the OSEM log loss function (Appendix B.6). Taking the BDe as the baseline,
which is a standard choice for categorical data, we plot in Figure 3 the relative log loss
per instance corresponding to the optimal tuning parameters over 100 random splits. We
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can clearly see that OSEM consistently outperforms the baseline approach and is highly
competitive across the board, while BGe and PCART are much less robust. This further
suggests that modelling the ordinal data as being generated from a hidden continuous space
can be more effective in practice, making the OSEM algorithm a generally better choice for
both structure learning and prediction. Details including the computation of the log loss,
additional figures and more extensive comparisons on sub-sampled data sets can be found
in Appendix B.6.

Figure 3: The relative log loss per instance with respect to the BDe baseline (dashed hor-
izontal line at 0) for OSEM, BGe, and PCART over the five data sets and 100
random splits.

5. Application to Psychological Data

In this section, we provide an example applying our method to psychological survey data,
where the potential of Bayesian network models to describe complex relationships has re-
cently gained momentum (McNally et al., 2017; Moffa et al., 2017; Kuipers et al., 2019;
Bird et al., 2019). We use a data set of size 408 from a study of the functional relationships
between the symptoms of obsessive-compulsive disorder (OCD) and depression (McNally
et al., 2017). It consists of 10 five-level ordinal variables representing the OCD symptoms
and 14 four-level ordinal variables representing the depression symptoms, measured with
the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS-SR) (Steketee et al., 1996) and the
Quick Inventory of Depressive Symptomatology (QIDS-SR) (Rush et al., 2003) respectively.
Details are summarized in Supplementary Table S2. Note that “decreased vs. increased ap-
petite” and “weight loss vs. gain” in the original questionnaire QIDS-SR de facto address
the same questions from opposite directions. To avoid including two nodes in the network
representing almost identical information, we replace each pair of variables with a one seven–
level variable—appetite and weight respectively. Contradictory answers are merged into the
closest levels. For example, if “decreased appetite” receives a score of 2 and “increased
appetite” receives a score of 1, we assigns −1 to the variable appetite.
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Figure 4: CPDAG of the hidden network structure estimated via the OSEM algorithm for
the obsessive-compulsive disorder (OCD) symptoms (rectangles) and depression
symptoms (ellipses) from a data set provided by McNally et al. (2017). The
labelled nodes are the latent Gaussian variables, and the shaded nodes are the
corresponding observed ordinal variables. The Monte Carlo sample size K is 5,
and the penalty coefficient λ is 6. The thickness of the undirected edges reflects
the percentage of time they occur in the skeletons of 500 Bootstrapped CPDAGs.
If an edge between two labelled nodes is directed, then its thickness represents its
directional strength. For clarity, we highlight the bridge between the two clusters
of nodes (sad – obdistress).

In addition to having a suitable number of observations N = 408, variables n = 24,
and an average number of levels greater than 4, we also check that none of the marginal
contingency tables have weights concentrating on one end. Thus, our OSEM algorithm is
particularly well suited in this setting. We choose the Monte Carlo sample size K to be
5 and the penalty coefficient λ to be 6, which corresponds to the highest sum of average
TPR and (1 − FPRp) on the ROC curves for N = 500, n = 20 or 30, E[Li] = 4 or 5, and
ν = 1 from our simulations studies. The resulting CPDAG is shown in Figure 4. We depict
the nodes related to OCD symptoms with rectangles and the nodes related to depression
symptoms with ellipses. The thickness of the undirected edges reflects the percentage of
time they occur in the skeletons of 500 bootstrapped CPDAGs. If an edge is directed, then
its thickness represents its directional strength.

We reproduce the Bayesian network of McNally et al. (2017) by running the hill-climbing
algorithm with the Gaussian BIC score and retaining the edges that appear in at least 85% of
the 500 Bootstrapped networks. The corresponding CPDAG is depicted in Supplementary
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Figure S11. In both graphs, the OCD and depression symptoms form separate clusters,
bridged by the symptoms of sadness and distress caused by obsessions. With the exception
of a few edge discrepancies (e.g. late – anhedonia, guilt → suicide), the two graphs appear
to be mostly similar, which is consistent with our simulation results. When the average
number of ordinal levels is relatively large, violating the hidden Gaussian assumption does
not substantially reduce the performance in recovering the true edges. Nevertheless, the
structure estimated by the OSEM algorithm should still be more reliable.

Moreover, the CPDAG estimated using the hybrid method with the BDe score (Sup-
plementary Figure S12) is also very similar to the OSEM output, with some edges missing
and all edges undirected. The drastic difference in the estimated structures between the
BDe and OSEM observed in the simulation studies does not recur here. A potential reason
could be that the average number of parents in the true network is fewer than one. In this
case, one can check via simulations that the BDe score can sometimes provide satisfactory
results without the problem of overparameterization. However, we still observe a general
improvement in predictive power for OSEM over the BDe approach (Figure 3). Also, the
OSEM algorithm can handle networks that are less sparse and hence should be more ro-
bust and preferable in practical applications. Supplementary Figure S13 is the CPDAG
estimated using the hybrid method with the BGe score. Again, since it treats the data as
continuous and uses Gaussian distribution, it looks similar to the first two networks but
slightly denser. Filtering out edges that are less certain may improve the learned structure,
but the outcome is unlikely to outperform the one from the OSEM algorithm.

Finally, we use heatmaps (Supplementary Figure S14) to visualize and compare the ad-
jacency matrices of the four CPDAGs. The shade in the grid represents the percentage of
time a directed edge appears in the 500 Bootstrapped CPDAGs, where an undirected edge
counts half for each direction. The darker the shade, the more frequent the corresponding
directed edge occurs. There are several aspects in common: first, the symptoms of the two
questionnaires form relatively separate clusters in all four networks; second, the symptoms
appetite and weight interact with each other but are isolated from the rest of the symp-
toms; third, the connection between sad and obdistress is present in all four structures.
Nevertheless, there are also small differences between the network structures which may be
important in practice. For example, the link late – anhedonia creates a connection between
a small subset of symptoms and the largest cluster, a connection which we do not observe
in the network estimated by McNally et al. (2017). Since our simulations suggest that the
OSEM achieves better performances in structure learning from ordinal data, discovering
the connections more accurately may be highly relevant in the application domain.

6. Discussion

In this work, we addressed the problem of learning Bayesian networks from ordinal data
by combining the multinomial probit model (Daganzo, 2014) with the Structural EM algo-
rithm of Friedman (1997). The resulting framework is the Ordinal Structural EM (OSEM)
algorithm. By assuming that each ordinal variable is obtained by marginally discretizing
an underlying Gaussian variable, we can capture the ordinality amongst the categories. By
contrast, the commonly used multinomial distribution loses information related to the order
of categories due to its invariance with respect to any random permutation of the levels.
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Furthermore, we assumed that the hidden variables jointly follow a DAG structure. In other
words, we have a Gaussian DAG model in the latent space, allowing us to exploit many of
its well-established properties, such as decomposability and score-equivalence.

The location and scale of the original Gaussian distribution are no longer identifiable
after discretization. Hence, we chose to standardize each latent dimension to ensure iden-
tifiability. This is computationally efficient since we only need to estimate the thresholds
once in the process.

Instead of a random initialization, we started with a full DAG and used a pairwise
likelihood approach for estimating the initial correlation matrix. This method reduces the
number of EM iterations required for convergence. We also derived closed-form formulas
for both the structure and parameter updates. In the parameter update, we can perform
regression with subset selection following the topological order of a DAG, which induces little
cost. Since our expected scoring function is decomposable, score-equivalent, and consistent,
we can perform the structure update efficiently by using existing search schemes, such as
the GES, MCMC samplers, and hybrid approaches. Unlike the reversible jump MCMC
method of Webb and Forster (2008), this additional flexibility in choosing search methods
allows us to further reduce the computational burden.

In the simulation studies, we compared the OSEM algorithm to other existing ap-
proaches, including three PC-based methods, two hybrid methods with the BDe and the
BGe scores respectively, and several methods for mixed data. Under all configurations
we tested, our method significantly improved the accuracy in recovering the hidden DAG
structure. Using real ordinal data sets, we also showed the generally superior predictive
performance of the OSEM algorithm over other score-based approaches, highlighting the
usefulness of our modelling assumptions in real applications. In addition, we demonstrated
the practicality of our method by applying it to psychological survey data.

To our surprise, the performance of the BDe score in structure recovery was much poorer
than our method. Even though it is widely recognized that ignoring the ordering can lead to
loss of information, we are, to the best of our knowledge, the first to quantify and visualize
its impact on structural inference. The resulting deviance from the true structure was
much larger than expected. Therefore, we should in general avoid using nominal methods
to tackle problems involving ordinal data.

The BGe score, on the other hand, performed better than we had thought. The corre-
lation matrix estimated directly from the ordinal data appears to be sufficient for the BGe
score to identify many of the true edges, especially when the number of ordinal levels is
large, so that the continuous approximation improves. However, this method can hardly go
beyond the OSEM algorithm, since it still disregards the discreteness of the data.

The most dominating factor for successful structure learning is the quality of the contin-
gency tables, which is determined by the sample size, the number of levels in each ordinal
variable, as well as the position of the thresholds. First, the sample size is tightly associ-
ated with the accuracy of each cell probability, which decides to what extent the original
correlation matrix can be recovered. Second, the number and position of the thresholds
control the resolution of the contingency tables. In order to obtain a more reliable result,
it is recommended to have more than two levels for each dimension, and the weight should
not concentrate on one end of the tables. Otherwise, one may reconsider the effectiveness
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of the data collected, such as whether a survey question is well-designed or whether the
target population selected is appropriate.

The PC algorithms have relatively limited accuracy in estimating the latent structures.
It could be interesting to see if a more suitable test for ordinal data can be developed,
which is in itself a challenging task. A recent method proposed by Liu et al. (2020) may
be a direction to investigate further. Furthermore, a more accurate output by the PC
algorithm can also refine the initial search space for a hybrid search scheme, such as the
method of Kuipers et al. (2018), which should in principle bring further improvements to
our OSEM algorithm.

Because of the EM iterations, the runtime of our method is unavoidably longer than
a pure score-based or hybrid approach, especially when the network size gets larger. The
main bottleneck lies in the sampling from the truncated multivariate normal distribution,
which is required in every iteration of the process. A possible direction for improvement
is a Sequential Monte Carlo sampler (Moffa and Kuipers, 2014), where the samples can be
updated from one iteration to the next instead of resampling from scratch.

Another possible direction is to create a Bayesian version of the model. One can re-
place the BIC penalty with the well-known Wishart prior (Geiger and Heckerman, 2002)
and adapt the Bayesian Structural EM algorithm of Friedman (1998). Moreover, Bayesian
model averaging (Madigan and Raftery, 1994; Friedman and Koller, 2003) may help with
the problem of reaching a local optimum. Specifically, at each iteration, one can sample
a collection of structures instead of checking only the highest-scoring graph. A sequential
Monte Carlo method can also be applied to the structure level to overcome the computa-
tional bottleneck.

Under our current model specification, it is natural to relate to the problem of Bayesian
network learning with mixed data. In particular, one may obtain a data set with both
continuous and ordinal variables by first generating a Gaussian data set according to a
DAG structure and then discretizing some of the variables while keeping others continuous.
A similar learning framework may be applicable in this setting. The situation, however, can
become much more sophisticated when one wants to include nominal categorical variables.
It would therefore be interesting to extend OSEM to mixed continuous and categorical data
and compare with other existing approaches (Cui et al., 2016; Tsagris et al., 2018; Talvitie
et al., 2019).
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Appendix A. The OSEM Algorithm

Algorithm 1: Ordinal Structural EM (OSEM)

initialization:

Let G(0) be a full graph;

Estimate thresholds α̂: α̂(i, l) = Φ−1
(

1
N

∑N
j=1 1(xji ≤ τ(i, l))

)
, l = 1, . . . , Li − 1;

Estimate correlation matrix Σ(0) such that for all i, j ∈ {1, . . . , n}, i 6= j,

ρ
(0)
ij | α̂ = argmaxρij∈(−1,1) log p

(
DXi∪Xj |

[
0

0

]
,

[
1 ρij

ρij 1

]
,G(0)

)
;

loop: t = 0, 1, 2, . . .
Sample K hidden data points for each observation xj from the distribution

Yj | xj , α̂,Σ(t),G(t) ∼ TMN(0,Σ(t) | xj , α̂);

Structure update:
Compute expected covariance matrix

Σ̂ =
1

N

1

K

N∑
j=1

K∑
k=1

(yj(k))(yj(k))>;

Update the DAG structure

G(t+1) = arg max
G: DAG over (X,Y)

n∑
i=1

(
− N

2

[
log
(

Σ̂i,i − Σ̂i,pa(i)Σ̂
−1
pa(i),pa(i)Σ̂pa(i),i

)]
− logN

2
dim(Yi,Ypa(i))

)
;

Parameter update:

Following the topological order in G(t+1), update the parameters using linear
regression with best subset selection and the BIC penalty:

b
(t+1)
i =

( K∑
k=1

(
Y

(k)
pa(i)

)>
Y

(k)
pa(i)

)−1( K∑
k=1

(
Y

(k)
pa(i)

)>
y

(k)
i

)
;

v
(t+1)
i =

1

N

1

K

N∑
j=1

K∑
k=1

(
y
j(k)
i − (b

(t+1)
i )>y

j(k)
pa(i)

)2
;

Transform {b(t+1)
i , v

(t+1)
i }ni=1 into the correlation matrix Σ(t+1);

until convergence;
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A.1 Threshold Estimation

We only need to estimate the thresholds once at the beginning of the EM iterations, because
the discretization is performed marginally, and the marginal mean and variance are always
fixed. Consider the ith dimension. By the law of large numbers and the law of iterated
expectation, for all l = 1, . . . , Li,

1

N

N∑
j=1

1(Xj
i = τ(i, l))→ E

[
1(Xi = τ(i, l))

]
= E

[
E
[
1(Xi = τ(i, l)) | Yi

]]
= E

[
P (Xi = τ(i, l) | Yi,αi)

]
= E

[
1(Yi ∈ [α(i, l − 1), α(i, l)))

]
= P

(
Yi ∈ [α(i, l − 1), α(i, l))

)
,

as N →∞. It follows that

1

N

N∑
j=1

1(Xj
i ≤ τ(i, l))→ P (Yi < α(i, l)) = Φ

(
α(i, l)

)
, N →∞.

Thus, given a sample DX = {x1, . . . ,xN}, we can estimate each threshold α(i, l) as

α̂(i, l) = Φ−1
( 1

N

N∑
j=1

1(xji ≤ τ(i, l))
)
, l = 1, . . . , Li − 1.

They are simply the empirical quantiles of the standard normal distribution.

A.2 Score Used in the Structure Update

Let P (i) := pa(i) and O(i) := pa(i) ∪ {i} for all i ∈ {1, . . . , n}. From Eq. (2), the joint
probability of x and y can be written as

p(x,y | θ,G) =
n∏
i=1

φ(yi | yP (i), ϑi,G)p(xi | yi,αi)

=
n∏
i=1

φ(yO(i) | (µ,Σ)O(i))

φ(yP (i) | (µ,Σ)P (i))
p(xi | yi,αi),

where (µ,Σ)O(i) is the set of parameters indexed by O(i). The Q function becomes

Q(G, θ;G(t), θ(t)) =
N∑
j=1

EYj |xj ,G(t),θ(t)
[

log p(Xj ,Yj | G, θ) | Xj = xj
]

=
N∑
j=1

n∑
i=1

EYj |xj ,G(t),θ(t)
[

log
φ(Yj

O(i) | (µ,Σ)O(i))

φ(Yj
P (i) | (µ,Σ)P (i))

p(Xj
i | Y

j
i ,αi) | Xj

i = xji ,G
]

=

n∑
i=1

N∑
j=1

EYj |xj ,G(t),θ(t)
[

log φ(Yj
O(i) | (µ,Σ)O(i))p(X

j
i | Y

j
i ,αi) | Xj

i = xji ,G
]

− EYj |xj ,G(t),θ(t)
[

log φ(Yj
P (i) | (µ,Σ)P (i)) | G

]
.
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Using the multivariate normal density φ and the truncated multivariate normal density ϕ,
we can expand the summands,

EYj |xj ,G(t),θ(t)
[

log φ(Yj
O(i) | (µ,Σ)O(i))p(X

j
i | Y

j
i ,αi) | Xj

i = xji ,G
]

=

∫ (
log φ(yjO(i) | (µ,Σ)O(i))

)
ϕ(yj | θ(t),G(t),α)dyj

= −1

2

∫ [
(|P (i)|+ 1) log(2π) + log(|ΣO(i),O(i)|)

+ Tr
(
(yjO(i) − µO(i))(y

j
O(i) − µO(i))

>Σ−1
O(i),O(i)

)]
ϕ(yj | θ(t),G(t),α)dyj

= −1

2

[
(|P (i)|+ 1) log(2π) + log(|ΣO(i),O(i)|)

+ Tr
(
EYj |xj ,G(t),θ(t) [(Y

j
O(i) − µO(i))(Y

j
O(i) − µO(i))

>]Σ−1
O(i),O(i)

)]
.

Analogously,

EYj |xj ,G(t),θ(t)
[

log φ(Yj
P (i) | (µ,Σ)P (i)) | G

]
= −1

2

[
|P (i)| log(2π) + log(|ΣP (i),P (i)|)

+ Tr
(
EYj |xj ,G(t),θ(t) [(Y

j
P (i) − µP (i))(Y

j
P (i) − µP (i))

>]Σ−1
P (i),P (i)

)]
.

By computing the expected statistics

µ̂ =
1

N

N∑
j=1

EYj |xj ,G(t),θ(t)
[
Yj
]

and

Σ̂ =
1

N

N∑
j=1

EYj |xj ,G(t),θ(t)
[
(Yj − µ̂)(Yj − µ̂)>

]
,

we get

Q(G, θ̂;G(t), θ(t)) =
n∑
i=1

−N
2

[
log(2π) + log

( |Σ̂O(i),O(i)|
|Σ̂P (i),P (i)|

)
+ 1

]
.

Notice that |Σ̂O(i),O(i)| can be partitioned as

Σ̂O(i),O(i) =

[
Σ̂i,i Σ̂i,P (i)

Σ̂P (i),i Σ̂P (i),P (i)

]
with

|Σ̂O(i),O(i)| = |Σ̂P (i),P (i)|(Σ̂i,i − Σ̂i,P (i)Σ̂
−1
P (i),P (i)Σ̂P (i),i).

Therefore,

Q(G, θ̂;G(t), θ(t)) =
n∑
i=1

−N
2

[
log
(

Σ̂i,i − Σ̂i,P (i)Σ̂
−1
P (i),P (i)Σ̂P (i),i

)
+ log(2π) + 1

]
.

The formulas used in Algorithm 1 are after the adjustment for the identifiability constraints.
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A.3 MLE in the Parameter Update

By substituting Eq. (2) into Q(G, θ;G(t), θ(t)), we get

Q(G, θ;G(t), θ(t)) =
N∑
j=1

EYj |xj ,G(t),θ(t)
[

log p(Xj ,Yj | G, θ) | Xj = xj
]

=

N∑
j=1

n∑
i=1

EYj |xj ,G(t),θ(t)
[

log φ(Y j
i | Y

j
pa(i), θi,G)p(Xj

i | Y
j
i ,αi) | Xj

i = xji

]

=

n∑
i=1

N∑
j=1

∫ (
log φ(yji | y

j
pa(i), θi,G)

)
ϕ(yj | θ(t),G(t),α)dyj

=
n∑
i=1

N∑
j=1

EYj |xj ,G(t),θ(t)
[

log φ(Y j
i | Y

j
pa(i), θi,G)

]
.

Conditioned on θ
(t+1)
pa(i) , let βi = (µi,b

>
i )> and Ỹj

pa(i) = (1, (Yj
pa(i) − µ

(t+1)
pa(i) )>)>. Invoking

the formula for normal distributions,

Q(G(t+1), θ;G(t), θ(t)) =
n∑
i=1

N∑
j=1

∫ [
− 1

2
log(2πvi)−

1

2vi

(
yji − µi − b>i (yjpa(i) − µpa(i))

)2
]

× ϕ(yj | θ(t),G(t),α)dyj

=
n∑
i=1

−N
2

(
log(2πvi) +

1

vi

1

N

N∑
j=1

EYj |xj ,G(t),θ(t)
[(
Y j
i − µi − b>i (Yj

pa(i) − µpa(i))
)2])

=

n∑
i=1

−N
2

(
log(2πvi) +

1

vi

1

N

N∑
j=1

EYj |xj ,G(t),θ(t)
[(
Y j
i − β>i Ỹj

pa(i)

)2])
.

The expectations can be approximated with Monte Carlo samples of size K,

EYj |xj ,G(t),θ(t)
[(
Y j
i − β>i Ỹj

pa(i)

)2] ≈ 1

K

K∑
k=1

[(
y
j(k)
i − β>i ỹ

j(k)
pa(i)

)2]
,

where yj(k) is drawn from the conditional distributions Yj | xj ,G(t), θ(t), j = 1, . . . , N .
Next, we differentiate Q(G(t+1), θ;G(t), θ(t)) with respect to βi and set to zero,

∂

∂ βi
Q(G(t+1), θ;G(t), θ(t)) =

∂

∂ βi

1

vi

1

N

1

K

N∑
j=1

K∑
k=1

[(
y
j(k)
i − β>i ỹ

j(k)
pa(i)

)2]

= −2
1

vi

1

N

1

K

N∑
j=1

K∑
k=1

[(
y
j(k)
i − β>i ỹ

j(k)
pa(i)

)
ỹ
j(k)
pa(i)

]
, 0.
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Thus,

β
(t+1)
i =

( K∑
k=1

(
Ỹ

(k)
pa(i)

)>
Ỹ

(k)
pa(i)

)−1( K∑
k=1

(
Ỹ

(k)
pa(i)

)>
y

(k)
i

)
with Ỹ

(k)
pa(i) = (ỹ

1(k)
pa(i), . . . , ỹ

N(k)
pa(i))> ∈ RN×(|pa(i)|+1) and y

(k)
i = (y

1(k)
i , . . . , y

N(k)
i )> ∈ RN .

Conditioned on β
(t+1)
i , we then differentiate Q(G(t+1), θ;G(t), θ(t)) with respect to vi,

∂

∂ vi
Q(G(t+1), θ;G(t), θ(t)) =

1

vi
− 1

v2
i

1

N

1

K

N∑
j=1

K∑
k=1

[(
y
j(k)
i − β>i ỹ

j(k)
pa(i)

)2]
, 0.

Therefore, the update for vi is

v
(t+1)
i =

1

N

1

K

N∑
j=1

K∑
k=1

[(
y
j(k)
i − (β

(t+1)
i )>ỹ

j(k)
pa(i)

)2]
.

Again, the formulas used in Algorithm 1 are adjusted for the identifiability constraints.

Appendix B. Additional Experimental Results

B.1 ROC Curves for Skeletons

If we plot the ROC curves for skeletons, ignoring the v-structure differences, we can see in
Figure S1 that all methods show substantial improvement, and the OSEM algorithm still
performs the best. In particular, the method with the BDe score, the GPC and the OPC
algorithms have more significant increase in TPR from the one in Figure 2, which implies
that these methods tend to inaccurately estimate the v-structures.

B.2 Effect of the Thresholds

Here we focus on the effects of thresholds on the model performance by changing the ex-
pected number of levels and the symmetric Dirichlet concentration parameter. We pick
networks with 20 nodes, 4 expected neighbours, and the associated data sets of size 500.

In symmetric Dirichlet distributions Dir(Li, ν), the parameter ν controls the density
concentration in the (Li − 1)-dimensional probability simplex, which is illustrated in Fig-
ure S2. By simulating from Dir(Li, ν) with Li fixed and ν < 1, it is more likely to obtain
a contingency table where a few cells have much higher frequencies than the others. When
most mass concentrates on one end of the table, recovering the original DAGs becomes
more difficult, as most correlation information is lost. If ν = 1, it means that we sample
uniformly from the simplex. Lastly, if ν > 1, the cell probabilities will be more evenly
distributed.

We consider four expected values {2, 3, 4, 5} for Li (write E[Li], i = 1, . . . , n) and three
values {0.8, 1, 2} for ν. Specifically, we assume that each Li follows independently a discrete
uniform distribution on the interval [2, 2E[Li]−2]. When E[Li] = 2, all variables are binary.

The ROC curves in Figure S3 again show that our proposed method is superior to
all alternatives in every case. With ν fixed, increasing E[Li] significantly improves the
performance of both the OSEM algorithm and the method with the BGe score. This is
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Figure S1: The same plot as Figure 2 but the TPR and FPRp are computed using the
skeletons instead of the patterns.

because the resolution of the contingency tables becomes higher. When the discretization
is thin enough, the ordinal data should mimic the continuous data on a different scale,
and we expect these two curves to move towards the upper left corner of the plot. For
similar reasons, the GPC algorithm also slightly improves. Moreover, the rise of the curves
gradually becomes slower, which suggests that having more levels is preferable, but too many
levels are not necessary for successful structure learning. On the contrary, the performance
of the method with the BDe score seems to worsen as E[Li] increases, possibly due to the
problem of overparameterization. This can be another reason why we should not apply the
nominal method on ordinal data.
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Conversely, with E[Li] fixed, all hybrid methods show various degrees of improvement
as ν increases. The OSEM and the BGe enhance the most, because the contingency tables
to be learned from are more well-shaped. The results are least reliable when all variables
are binary (E[Li] = 2) and the cell probabilities are skewed (ν = 0.8). If this is the case, it is
however unfortunate that none of the alternative methods will work either. Therefore, the
number of thresholds and their positions do play an important role in the recovery of DAG
structures, and we should not underestimate the importance of the quality of the data.

Figure S2: Contour plots of 3-dimensional symmetric Dirichlet distributions Dir(3, ν) with
ν being 0.8 (left), 1+1×10−9 (middle), and 2 (right) respectively, created using
the Compositional package (Tsagris and Athineou, 2019). Below each coutour
plot, an instance of the generated contingency table for the ordinal variable Xi

and the corresponding discretization of the Gaussian variable Yi are shown.
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Figure S3: The same plot as Figure 2 but with sample size N = 500, network size n = 20,
expected number of ordinal levels E[Li] ∈ {2, 3, 4, 5}, and Dirichlet concentration
parameter ν ∈ {0.8, 1, 2}.
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B.3 Effect of Network Sparsity

With network size n = 20, sample size N = 500, expected number of ordinal levels E[Li] = 3
and Dirichlet concentration parameter ν = 2, we also look at the effect of network sparsity
on the model performance by varying the expected number of neighbours d per node. In
Figure S4, it is clear that the performances of all methods deteriorate as the networks
become denser. When d = 2, the generated networks are relatively sparse, even the GPC,
the OPC and the method with the BDe score can achieve an average TPR of almost 75%,
and the gap between the OSEM and the method with the BGe score is small. When
d = 5, however, the average TPRs of all methods drop below 75%. In all cases, the
OSEM algorithm outperforms the alternatives. In general, structure learning for very dense
Bayesian networks is a difficult problem.

Figure S4: The same plot as Figure 2 but with sample size N = 500, network size n = 20,
expected number of ordinal levels E[Li] = 3, Dirichlet concentration parameter
ν = 2, and expected number of neighbours per node d ∈ {2, 3, 4, 5}.

B.4 Runtimes

Due to its iterative nature, the OSEM algorithm is expected to be slower than other meth-
ods. To examine its computational cost, we perform a runtime comparison for DAGs with
12, 20, 30 nodes and 500 data points. The expected number of levels is again 3. The
runtimes are associated with the cutoff values at the highest sum of average TPR and
(1− FPRp).
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Notice that the runtimes are highly dependent on the algorithmic implementation and
the software packages chosen (see Appendix B.7). For hybrid approaches, the speed and ac-
curacy of the search schemes dominate the overall computational complexity. The runtimes
for constraint-based methods rely on how the tests are coded. Therefore, the comparison
in Figure S5 is intended only as a general reference limited to the functions we chose.

Figure S5: Runtime comparison in recovering the true patterns for random DAGs with 12,
20, 30 nodes and 500 data points. The runtimes are displayed in seconds, and
the y-axis is transformed with log10.

For completeness we present runtimes for the NPC, OPC and GPC algorithms. They
are less interesting due to their unsatisfying performance in the recovery of DAGs. On
average, both hybrid methods with the BDe and BGe scores take less than 10 seconds to
finish for all three network sizes. Our OSEM algorithm, however, takes around 1.5, 2.5
and 3.5 minutes respectively in order to converge, which is sometimes more than 20 times
slower than a pure hybrid approach without EM iterations. Such a loss in computational
efficiency is mainly due to sampling from the n-dimensional truncated multivariate normal
distributions, especially when n is large. Consequently, the current version of our method is
only feasible for small-to-medium networks. For larger networks, one may wish to conduct
a pre-selection of the variables before using such models for inference.

B.5 Comparison with Existing Mixed Methods

We additionally benchmark the OSEM algorithm against the most recent structure learning
methods for mixed (continuous, nominal and ordinal) variables. If we consider only the ordi-
nal data, our OSEM algorithm clearly outperforms the following approaches in simulations
(Figure S6):

• The copula PC algorithm of Cui et al. (2016) (CPC); To be consistent with the paper
mentioned, we also include the rank PC algorithm of Harris and Drton (2013) (RPC);

• PC algorithm with a symmetric test based on two asymmetric likelihood-ratio tests
(Tsagris et al., 2018) (MMPC);

• Two score-based approaches based on classification and regression trees (Talvitie et al.,
2019): PCART and OPCART. OPCART is an extension of PCART to accommodate
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Figure S6: The comparison of the performance in recovering the true pattern between our
OSEM algorithm and five other approaches: PCART, OPCART, CPC, RPC,
and MMPC. The ROC curves are created as in Figure 2.

ordinal response variables in decision trees. Note that OPCART performs much worse
than PCART. With the segmentation prior parameter κ set to 1

4 , as suggested by the
authors, the estimated OPCART graph is always very sparse no matter how one
changes the other hyperparameters. If one increases κ, then OPCART has similar
performance as PCART but requires much more computational resources due to the
segmentation step, which takes around an hour to learn one network with 20 nodes.
In the section below, we also show that OPCART has worse predictive performance
than PCART.

All implementations are summarised in Appendix B.7.
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B.6 More about Predictive Performance

In Table 1 one can find all five data sets used to assess the predictive performance of the
OSEM algorithm. In the pre-processing step, we have categorized two numerical variables
in the Contraceptive Method Choice data set: wife’s age (0: [0, 20); 1: [20, 30); 2: [30, 40);
3: [40,∞)) and number of children ever born (0: [0, 1]; 1: [2, 3]; 2: [4, 5], 3: [6,∞)). We
have also removed the class variable with 22 levels from the Primary Tumor data set.

In cross validation, we first randomly split each data set into 80% training data and
20% test data. Using the training data, we find the optimal model with respect to each of
the methods being compared (BDe, BGe, OSEM, PCART/OPCART). Conditioned on the
estimated model M̂, we evaluate the discrete (negative) log loss (log-likelihood) function
on the test data,

logP (Xtest | M̂) =

Ntest∑
i=1

L∑
l=1

1xil
log p̂l, (22)

where Ntest is the number of unseen test cases, L is the total number of combinations of all
ordinal levels, 1xil

indicates whether the ith data point matches the lth combination, and p̂l
is the probability of observing the lth combination given the model. In particular, we select
p̂l from the probability tables computed for each method being compared:

• BDe: from the BDe posterior predictive distribution (Heckerman and Geiger, 1995);

• PCART/OPCART: from the BDe posterior predictive distribution;

• OSEM: by integrating the multivariate normal distribution with zero mean vector
and the optimal correlation matrix from the OSEM output over regions defined by
the estimated thresholds α̂ from Eq. (9);

• BGe: by integrating the multivariate normal distribution with zero mean vector and
the maximum a posteriori correlation matrix based on the estimated DAG (Viinikka
et al., 2020) over regions defined by the estimated thresholds α̂ from OSEM.

For each method, we repeat the above process 100 times over a range of tuning parameters
and obtain Figure S7, where the optimal values are selected and summarised in Figure 3.
We also provide an example in Figure S8 to show that OPCART has worse predictive
performance than PCART and hence it is omitted from the main text. In addition, we
evaluate the log loss with decreasing number of data points by subsampling the data sets
(Figure S9). The relative log loss of the BDe approach slightly worsens in comparison to
the other three methods, possibly due to overparameterization. As sample size decreases,
the uncertainty consistently increases, and the advantage of OSEM over BGe appears less
pronounced.
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Figure S7: The comparison of log loss for four methods (OSEM, BGe, BDe, PCART) and
five data sets: (a) Congressional Voting Records, (b) Contraceptive Method
Choice, (c) OCD and Depression, (d) Primary Tumor, and (e) SPECT Heart.
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Figure S8: The comparison of log loss between PCART and OPCART for the OCD and
Depression data set.

Figure S9: The comparison of log loss with decreasing sample sizes. In each simulation run,
we first randomly subsample a proportion of the data points (75% or 50%) from
the data sets, followed by structure learning and log loss computation.

As a sanity check, we evaluate the predictive performance using synthetic data sets where
we know the ground truth networks. Considering N = 500, n = 20 and three expected
number of levels {2, 3, 4}, we plot in Figure S10 the log loss against the structural hamming
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distance scaled by P as defined in Section 4.1.1. As we expect, the OSEM algorithm
dominates the other three methods in terms of both log loss and SHD. As the average
number of levels increases, the performance of BGe becomes closer to OSEM, which is
consistent with the observations in Appendix B.2. Interestingly, the optimum log loss for
OSEM and BGe (solid points) do not match the minimum SHD (the top left corner of
the curves), and the log loss is very flat across a wide range of tuning parameters. This
may suggest that overfitting in Gaussian-based BNs can be beneficial in terms of predictive
power, and the strength of regularization needs to be stronger for optimal structure learning
than for prediction.

Figure S10: The comparison of log loss against SHD scaled by P for four methods (OSEM,
BGe, BDe, PCART) using synthetic data. The lines are created by inter-
polating the average log loss against the average SHD scaled by P at each
penalization value. The solid points correspond to the optimal/maximum log
loss for each method.
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B.7 R Implementations

Method R package R functions Reference

NPC pcalg pc, disCItest Neapolitan et al. (2004);
Kalisch et al. (2012)

OPC bnlearn pc.stable(..., test = "jt") Scutari (2009); Musella (2013)

GPC pcalg pc, gaussCItest Kalisch et al. (2012)

BDe BiDAG scoreparameters("bdecat",...),
iterativeMCMC

Heckerman and Geiger
(1995); Suter et al. (2021)

BGe BiDAG scoreparameters("bge",...),
iterativeMCMC

Heckerman and Geiger
(1995); Suter et al. (2021)

OSEM BiDAG iterativeMCMC, OSEM1 Suter et al. (2021)

RPC pcalg pc, gaussCItest, cor(..., method

= "kendall")

Kalisch et al. (2012); Harris
and Drton (2013)

CPC pcalg pc, gaussCItest,
inferCopulaModel2

Kalisch et al. (2012); Cui et al.
(2016)

MMPC MXM pc.skel(..., method =

"comb.mm"), pc.or
Tsagris et al. (2018)

PCART rpcart3,
BiDAG

opt.pcart.cat, iterativeMCMC Talvitie et al. (2019); Suter
et al. (2021)

OPCART rpcart4,
BiDAG

opt.pcart, iterativeMCMC Talvitie et al. (2019); Suter
et al. (2021)

Table S1: R implementations for simulation studies. The first six methods are discussed in
Section 4, and the last five methods can be found in Appendix B.5.

1. https://github.com/xgluo/OSEM
2. https://github.com/cuiruifei/CausalMissingValues
3. https://github.com/ttalvitie/pcart
4. https://github.com/xgluo/pcart. Note that the original rpcart package does not have an R imple-

mentation for OPCART.
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Appendix C. Additional Table and Figures

Symptoms and the associated abbreviations

Y-BOCS-SR QIDS-SR

Time consumed by obsessions obtime Sleep-onset insomnia onset

Interference due to obsessions obinterfer Middle insomnia middle

Distress caused by obsessions obdistress Early morning awakening late

Difficulty resisting obsessions obresist Hypersomnia hypersom

Difficulty controlling obsessions obcontrol Sadness sad

Time consumed by compulsions comptime Decreased/Increased appetite appetite

Interference due to compulsions compinterf Weight loss/gain weight

Distress caused by compulsions compdis Concentration impairment concen

Difficulty resisting compulsions compresist Guilt and self-blame guilt

Difficulty controlling compulsions compcont Suicidal thoughts or attempts suicide

Anhedonia anhedonia

Fatigability fatigue

Psychomotor slowing retard

Psychomotor agitation agitation

Table S2: Symptoms and the associated abbreviations on the self report versions of the Yale-
Brown Obsessive-Compulsive Scale (Y-BOCS-SR) (Steketee et al., 1996) and the
Quick Inventory of Depressive Symptomatology (QIDS-SR) (Rush et al., 2003).
We combine the symptoms “Increased appetite” and “Decreased appetite” into
one variable appetite with 7 levels. Analogously, the symptoms “weight gain”
and “weight loss” are combined into the variable weight.

36



Learning Bayesian Networks from Ordinal Data

Figure S11: CPDAG of the reproduced Bayesian network using the method described in
(McNally et al., 2017). As in Figure 4, rectangles represent nodes related to
OCD symptoms, ellipses represent nodes related to depression symptoms, and
edges between nodes with different colors are highlighted with pink.

Figure S12: CPDAG estimated via the hybrid method, as described in Section 4, with the
BDe score and the nominal PC output as the initial search space. The penalty
for the BDe score χ is chosen to be 1.5. As in Figure 4, rectangles represent
nodes related to OCD symptoms, ellipses represent nodes related to depression
symptoms, and edges between nodes with different colors are highlighted with
pink.
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Figure S13: CPDAG estimated via the hybrid method, as described in Section 4, with the
BGe score and the Gaussian PC output as the initial search space. The penalty
for the BGe score am is chosen to be 0.05. As in Figure 4, rectangles represent
nodes related to OCD symptoms, ellipses represent nodes related to depression
symptoms, and edges between nodes with different colors are highlighted with
pink.
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Figure S14: Heatmaps for the CPDAG adjacency matrices estimated using the four meth-
ods mentioned in Section 5. The shade in the grid represents the percentage
of time a directed edge appears in the 500 Bootstrapped CPDAGs, where an
undirected edge counts half for each direction. The darker the shade, the more
frequent the corresponding directed edge occurs.
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