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ABSTRACT 

 

 

This study aims to improve the forecasting accuracy for the monthly material flows of an 

area forwarding based inbound logistics network for an international automotive company. Due 

to human errors, short-term changes in material requirements or data bases desynchronization 

the Material Requirement Planning (MRP) cannot be directly derived from the Master 

Production Schedule (MPS). Therefore, the inbound logistics flows are forecast.  

The current research extends the forecasting methods’ scope already applied by the company 

namely, Naïve, ARIMA, Neural Networks, Exponential Smoothing and Ensemble Forecast (an 

average of the first four methods) by allowing the implementation of three new algorithms: The 

Prophet Algorithm, the Vector Autoregressive (Multivariate Time Series) and Automated 

Simple Moving Average, and two new data cleaning methods: Automated Outlier Detection and 

Linear Interpolation. All the methods are structured in a software using the programming 

language R.  

The results show that as of April 2018, 80.1% of all material flows have a Mean Absolute 

Percentage Error (MAPE) of less than or equal to 20%, in comparison with the 58.6% of all 

material flows which had the same behavior in the original software in February 2018. 

Furthermore, the three new algorithms represent now 29% of all forecasts. 

All the analysis realized in this research were made with actual data from the company, and 

the upgraded software was approved by the logistics analysts to make all future material flow 

forecasts.   

 

 

 

Key Words: Forecast, Inbound Logistics, Prophet, Vector Autoregressive, Simple Moving 

Average, Outlier Detection, R.  
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1. INTRODUCTION 

 

 

There are many business factors influencing a company’s performance, among these accurate 

forecasts have the greatest impact on an organization’s ability to satisfy customers and manage 

resources cost effectively (Syntetos, Babai, Boylan, Kolassa, & Nikolopoulos, 2016). A forecast 

is not simply a projection of future business; it is a request for product and resources that 

ultimately impacts almost every business decision the company makes across sales, finance, 

production, management, logistics and marketing (Logility, 2016). An improvement in forecast 

accuracy, even just one percent, can have a ripple effect across the business including reducing 

inventory buffers, obsolete products, expedited shipments, distribution center space, and non-

value added work (Logility, 2017).  

Typically, a variety of forecasting methods are applicable to any particular type of supply 

chain scenario. Exponential Smoothing Method is a best-fit statistical technique used when 

demand is trended but does not vary by the time of the year. The Holt-Winters variant is used 

when demand exhibits seasonality. The Moving Average Methods is best for products whose 

demand histories have random variations, including no seasonality or trend, or fairly flat demand 

(Logility, 2016). ARIMA models are the most suitable for stationary time series (Montgomery, 

2016) and Neural Networks Forecasting is able to understand underlying pattern in the time 

series data (Hyndman & Athanasopoulos, 2014). The best tip is to pick the most effective and 

flexible models, blend their best feature, and shift between them as needed to keep forecast 

accuracy at its pick. Thence, allowing a forecasting software to choose for the best forecasting 

methods over time is the best approach.  

The current research considers an International Automotive Company that produces vehicles 

in more than 23 assembly plants around the world and has 32 logistic service providers. The 

company has currently more than 4000 suppliers worldwide, which deliver different vehicles 

parts, components and finished goods to their corresponding consolidation center in its 

forwarding area. To be precise, the company has an area forwarding based inbound logistics 

network. Currently, there are 471 material flows considered in the forecasting software.  

This software is able to produce 4-month-ahead forecast in aggregate units in tons, which are 

then upgraded monthly. The company has decided to forecast their material flows instead of 

using its Bill of Materials because it is currently undergoing an upgrading and synchronization 

process of all the logistics data bases. Moreover, since not all plants have the same MRP 

software, the information quality is also a main issue. This process causes the material flow 

observations to have many extreme values or outliers, as well as, missing values.  When outliers 

and missing values are incorrectly handled they can certainly reduce the forecast accuracy (Chen 

& Liu, 1993) (Lepot, Aubin, & Clemens, 2017) (Vidal Holguín, 2010).   

This Software has been developed in R, which is a Statistical Software Development 

Environment. Five forecasting methods have been implemented, namely, Naïve, ARIMA, 

Neural Network, Exponential Smoothing and Ensemble Forecast. The last one refers to the 

average of the forecasts delivered by the first four methods (Claeskens, Magnus, Vasnev, & 

Wang, 2016). These methods are based on the package Forecast on R (Hyndman & Khandakar, 

2008). 

As stated before, forecasts accuracy is a main issue in a company’s performance. A 1% 

improvement in forecast accuracy leads to 3,2% reduction in transportation costs (Logility, 

2017). Therefore, improving the forecast accuracy is the main issue regarding the material flow 
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forecasts. Methods like the Moving Average are likely to bring good results, since many of the 

monthly material flows show either random variation or any trend. There are other new 

algorithms like Prophet Algorithm (Taylor & Letham, 2017) that is based on structural time 

series models (Harvey & Peters, 1990) which considers features further than time series 

autocorrelations, and therefore is proved to outperform ARIMA models in some cases.  

Consequently, the current research is aimed to prove whether there are other Forecasting 

Methods than the currently used by the Forecasting Software, which are able to improve the 

forecast accuracy of the material flows.  

The research’s methodology starts at making a diagnosis of the current forecasting problem, 

as well as the software’s forecasting approach. Then new algorithms are chosen based on the 

input data features and on the potential of the algorithms themselves. Finally, simulations with 

sample data are run, in order to test how the new algorithms perform, regarding subsets as well 

as with the whole data available.  

This study is done as a research project at the company and all the analyses will be carried 

out using actual and current data.  

This document is structured as follows: a description of the problem is made in Chapter 2. 

Chapter 3 states the Research Question, then Chapter 4 states the main and specific objectives 

of the research. Chapter 5 makes a theoretical description of the current forecasting methods 

used by the company along with the new algorithms which are likely to cause an improvement 

in the forecast accuracy. Furthermore, a time series outliers detection method proposed by (Chen 

& Liu, 1993) is explained in detail. Chapter 6 outlines the company’s forecasting problem to 

every detail, from the demand patterns to the current forecast analysis approach. Moreover, the 

software routines, as well as the input and output data, are explained using a flow chart. Then, 

a diagnosis of the possible improvements to the overall forecasting approach is stated. 

Afterwards, the results delivered by the new algorithms are described in Chapter 7. Finally, 

Chapter 8 presents the Conclusions, Chapter 9 the References, and a general view of the Final 

Software’s Routines, Input and Output Data can be found at the end of the document.  
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2. PROBLEM DESCRIPTION 

 

Supply Chain Forecasting (SCF) goes beyond the operational task of extrapolating demand 

requirements at one echelon. It involves complex issues such as supply chain coordination and 

sharing information between multiple stakeholders. (Syntetos, et. al, 2016) 

The final customer's demand sets the entire supply chain into motion. That is to say, this 

demand is the input for the Production Planning (Master Production Schedule - MPS) then this 

MPS is desegregated to get the Material Requirement Planning (MRP); for which the Materials 

and resources needed to meet the Production Plan are supplied. This would be the common 

process flow for material planning but when it comes to international companies with many 

factories around the world and different MRP Information Systems, the information flows are 

in most cases not as accurate as they should be.  

The following problem concerns an international automotive company which produces 

vehicles in more than 23 assembly plants around the world and has 32 logistics service 

providers. The company has currently more than 4000 suppliers worldwide which deliver 

different vehicles parts to their corresponding consolidation center in its forwarding area. In 

other words, the company has an area forwarding based inbound logistics network. The material 

transportation is carried out via truck. Modes of truck shipments are milk runs, direct truck load 

between supplier and the plant and area forwarding. 

The Area Forwarding Based Inbound Logistics Network consists of three major participants. 

The first one is an organization which must be supplied with goods. It can be seen as a customer, 

mathematically spoken a sink or, in a logistics term, the unloader in the network. Secondly, a 

set of suppliers provides the goods required by the unloader. The suppliers are the source of the 

network and are put together in groups, most likely based on their geographical location. Such 

a group is called area, and that is where the term Area Forwarding comes from. The third 

participant in the network is the logistics service provider, who organizes the transportation of 

goods between the suppliers and the unloader. In different areas, different logistics service 

providers can be hired by the unloader. The logistics service provider runs a consolidation center 

within the area. The logistics service provider collects goods from each supplier in his area and 

consolidates them in his consolidation center. The logistics service provider’s action is limited 

to a pure cross docking, no warehousing takes place in the consolidation center. The 

transportation step from the supplier to the consolidation center is called pre-leg or first leg. 

From this point, the goods from different suppliers in the area are transported together. This step 

is called main leg. If the load in the pre-leg exceeds the volume of one vehicle, the goods are 

transported directly to the unloader. This transportation is called full load (Schöneberg, 

Koberstein, & Suhl, 2010). A typical area forwarding based inbound logistics network is shown 

in Fig. 1.  
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Figure 1. Area Forwarding based inbound logistics network 

Currently there is a good information flow between the assembly plants and the suppliers, 

which allows the suppliers to plan their capacity and resources accordingly. However, the freight 

forwarders are not linked to these information flow yet, which results in imprecise transportation 

capacity planning. This causes additional transportation costs, which could be avoided.  Added 

to that, the network dynamics is more and more complex.  

The company has a main information system which allows to gather the material volume 

transported by all freight forwarders to the assembly plants in a big data base. However, due to 

human errors, short-term changes in material requirements or data bases desynchronization, the 

amount of material transported differs considerably from the actual material registered in the 

data bases. That is why, the company’s first proposal was to develop mid-term forecasts to the 

material requirement flow for the main legs, with the following features: 

• Forecast for the main legs. 

• Forecast in ton/month. 

• Future time frame of 3-6 months.  

• Forecast for the Area Forwarding based inbound logistics Network in Europe. 

This allowed to synchronize the Inbound Supply Chain capacities and reduce costs 

considerably. Four forecasting methods were implemented namely, Naïve, ARIMA, Neural 

Networks, and Exponential Smoothing, which are available in the Library Forecast for R 

(Hyndman & Khandakar, 2008). Moreover, a fifth method is used; this is a simple linear 

combination of the four forecasting methods with parameters set to 1; called Ensemble 

Forecasts, which delivers the average values predicted by the other models.   

Due to the data quality problem already mentioned, there are flows that do not have more 

than 10 observations, which were not considered for the forecast. A simple outlier recognition 

method was implemented to clean the data before fitting the forecast models, namely values 

exceeding a threshold (5 times the Interquartile Range plus the 3rd quantile) were replaced by 

the median of the observations. After this, the data was split up into samples to make cross-

validation, then the Mean Absolute Percentage Error (MAPE) was calculated for each validation 

test for a forecast of 4 periods in the future. After all these calculations, the mean for all the 



5 
 

MAPEs obtained in the cross-validation is calculated and taken as a decision variable to choose 

which of the four models better fits the observations, namely the lowest value. With the selected 

method then the forecast is carried out, which delivers a forecast report for 471 material flows 

in ton/month for the next 4 months.  

This process is made for every main leg flows, i.e., the five methods are fitted to each time 

series, and then cross-validation tests are made with samples taken from each time series, these 

tests deliver a corresponding MAPE, which then is averaged with the other results. The decision 

variable to select the methods which fits the time series the best is the averaged MAPE from the 

cross-validation tests. After this process, the actual forecast with the best fitted method is 

performed. 

Other important reports are also generated through this process, specifically the Forecast 

Errors Plots for every Material Flow forecasted, and the Monthly Material Volume Flow for 

each main leg.  

Up to February 2018, the forecasts have the following MAPE performance, the frequency 

represents the number of main legs flows: 

 

Table 1. Forecast MAPE Distribution Feb. 2018 

MAPE Category Frequency Percentage 

lower than 10% 61 13.0% 

between 10% and 20% 215 45.6% 

between 20% and 30% 106 22.5% 

between 30% and 40% 37 7.9% 

higher than 40% 52 11.0% 

TOTAL 471 100.0% 

 

The questions which naturally arise here are: (1) how the forecast performance measured by 

the MAPE can be improved? (2) Are there any other forecasting methods which could better 

perform as the current ones? (3) Is the outlier detection process good enough so that the current 

time series deliver reliable forecasts? (4) How can the forecasts variability be monitored, since 

the model that provides the best fit to historical data generally does not result in a forecasting 

method that produces the best forecast of new data (Montgomery, 2016)? 
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3. RESEARCH QUESTION 

 

Which mathematical models are the best to improve the demand forecasting of vehicle parts 

at an international automotive company regarding their forecasting accuracy? 
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4. OBJECTIVES 

 
 

4.1. Main Objective 

 

     To analyze and propose mathematical methods which can improve the demand forecast of 

vehicle parts at an international automotive company regarding their forecasting accuracy.  
 
 

4.2. Specific Objectives 

 

• To make a diagnosis of the current situation for the material flows’ forecast at the 

company.  

• To determine which mathematical models can improve the current forecast performance. 

• To simulate forecasts with the selected models for sample data and select the ones with 

the best performance.  
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5. THEORETICAL FRAMEWORK 

 
 

5.1 Forecasting Methods 

 

In order to produce reliable forecasts, many mathematical methods have been developed. 

They can be classified as: subjective, time series, econometric, and other methods (Logility, 

2016).  

 

5.1.1 Subjective Methods  

The Delphi method, The Market Research and the Historical Life-Cycle Analogy are 

examples of subjective methods. The Delphi Method is a structured communication method, 

originally developed as a systematic, interactive forecasting method which relies on a panel of 

experts whom are asked using questionnaires in two or three rounds; the final results are 

determined by the mean or median scores of the final round. On the other hand, the Market 

Research can also be used as a forecasting method, as it is defined as the process of assessing 

the viability of new goods and services through research guided directly with the consumer 

which allows the company to discover the target market and record opinions and other input 

from consumers concerning the interest in the product. Market Research can be supplemented 

by referring to the performance of a similar product or service, this is called the Historical Life-

Cycle Analogy, using life cycle data from an ancestor of the product provides a starting point 

to focus the forecasting on the right way (Logility, 2016). 

 

5.1.2 Time Series Methods 

 

5.1.2.1 Definition 

A time series is a collection of stochastic variables 𝑥1…𝑥𝑡 …𝑥𝑇 indexed by an integer value 

t. The interpretation is that the series represent a vector of stochastic variables observed at equal-

spaced time intervals. The series is also sometimes called a stochastic process. The 

distinguishing feature of time series is that of temporal dependence: the distribution of 

𝑥𝑡 conditional on previous values of the series depends on the outcome of those previous 

observations (Sorensen E., 2012).  

 A time series is called stationary (more precisely covariance stationary) if: 

 𝐸(𝑥𝑡) = 𝜇     𝑓𝑜𝑟 𝑡 = 1,2,3… 

𝐸[(𝑥𝑡 − 𝜇)
2] = 𝛾(0) 

𝐸[(𝑥𝑡 − 𝜇)(𝑥𝑡+𝑘 − 𝜇)]
 = 𝛾(𝑘) = 𝛾(−𝑘) = 𝐸[(𝑥𝑡 − 𝜇)(𝑥𝑡−𝑘 − 𝜇)]; 𝑘 = 1,2…

  

(1) 

Where 𝛾(𝑘); 𝑘 = 0,1, … are independent of t and finite.  

     There is a quite long tradition in time series to focus on only the first two moments of the 

process, rather than on the actual distribution of 𝑥𝑡. If the process is normally distributed, all 

information is contained in the first two moments and most of the statistical theory of time series 

estimators is asymptotic and more often than not only dependent on the first two moments of 

the process (Sorensen E., 2012). The 𝛾(𝑘)´𝑠 for 𝑘 ≠ 0 are called auto-covariances, if these are 

divided by the variance then the auto-correlations are obtained, namely 𝜌(𝑘) = 𝛾(𝑘)/𝛾(0). 
These are the correlation of  𝑥𝑡 with its own lagged value.  

∑  𝑻 is the matrix of variances and covariances of 𝑥1, … , 𝑥𝑡 then: 
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∑  
𝑻
=

(

 
 

𝛾(0) 𝛾(1) 𝛾(2) … 𝛾(𝑇 − 1)
𝛾(1) 𝛾(0) 𝛾(1) … 𝛾(𝑇 − 2)
⋮ ⋮ ⋮ ⋮ ⋮

𝛾(𝑇 − 2) … … … 𝛾(1)
𝛾(𝑇 − 1) 𝛾(𝑇 − 2) … 𝛾(1) 𝛾(0) )

 
 

 (2) 

      

Then let 𝛀𝑻 be the matrix of autocorrelations, i.e. ∑  𝑻 =  𝛾(0)𝛀𝑻. It is also important to 

mention that, a stationary process 𝑒𝑡 with mean 0 is called white noise if 𝛾(𝑘) = 0 𝑓𝑜𝑟 𝑘 ≠ 0. 

Of course, this implies that the autocorrelation matrix is just an identity matrix, so that the 

standard OLS (Ordinary Least-Squares) assumptions on the error term can also be formulated 

as “the error term is assumed to be white noise”.  

The Autoregressive (AR) model, moving average (MA) model, Autoregressive Moving 

Average (ARMA), Autoregressive Integrated Moving Average (ARIMA) models, exponential 

smoothing and Multivariate Time Series (MTS) are examples of time series methods. 
 

5.1.2.2 AR(p) Model  

An AR(p) model (Autoregressive of order p) is a discrete time linear equation with noise, 

of the form: 

 

 𝑋𝑡 = 𝛼1𝑋𝑡−1 +⋯+𝛼𝑝𝑋𝑡−𝑝 + 휀𝑡 (3) 

 

     Here p is the order, 𝛼1…𝛼𝑝 are the parameters or coefficients (real numbers), 휀𝑡 is an error 

term, usually a white noise with intensity 𝜎2. The model is considered either on integers 𝑡 𝜖 ℤ, 

thus without initial conditions, or on the non-negative integers 𝑡 𝜖 ℕ. In this case, the relation 

above starts from 𝑡 = 𝑝 and some initial condition 𝑋0…𝑋𝑝−1 must be specified. The simplest 

case is an AR(1) model which can be written as: 

 

 𝑋𝑡 = 𝛼1𝑋𝑡−1 + 휀𝑡 (4) 

 

     With |𝛼| < 1 and 𝑉𝑎𝑟[𝑋𝑡] < 𝜎
2/(1 − 𝛼2), it is a wide sense stationary process. Stationary 

means, in statistical terms, that the probability distribution of an arbitrary collection of  𝑋𝑡 is 

time invariant (Tsay, 2014).  

     In order to model more general situations, it may be convenient to introduce models with 

non-zero average, namely of the form: 

 

 (𝑋𝑡 − 𝜇) = 𝛼1(𝑋𝑡−1 − 𝜇) +⋯+ 𝛼𝑝(𝑋𝑡−𝑝 − 𝜇) + 휀𝑡 (5) 

 

     When = 0 , if the initial condition is taken as having zero average (in order to have a 

stationary series), then 𝐸[𝑋𝑡] = 0 for all t. This situation can be avoided by taking ≠ 0 . The 

new process 𝑍𝑡 = 𝑥𝑡 − 𝜇 has zero average and satisfies the usual equation:  

 

 𝑍𝑡 = 𝛼1𝑍𝑡−1 +⋯+ 𝛼𝑝𝑍𝑡−𝑝 + 휀𝑡 (6) 
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But 𝑋𝑡 satisfies: 

 𝑋𝑡 = 𝛼1𝑋𝑡−1 +⋯+𝛼𝑝𝑋𝑡−𝑝 + 휀𝑡 + (𝜇 − 𝛼1𝜇 −⋯− 𝛼𝑝𝜇) 

𝑋𝑡 = 𝛼1𝑋𝑡−1 +⋯+𝛼𝑝𝑋𝑡−𝑝 + 휀𝑡 + 𝜇 

 

(7) 

     The time lag operator is widely used in the time series literature, before going any further 

is important to remember its use, because future equations are going to be simplified by using 

it. 

     Let S be the space of all sequences (𝑥𝑡)𝑡∈ℤ of real numbers. Let define an operator 𝐿: 𝑆 → 𝑆, 

a map which transform sequences in sequences. It is defined as: 

 

 𝐿𝑥𝑡 = 𝑥𝑡−1,     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈  ℤ (8) 

 

     The equation should be written as (𝐿𝑥)𝑡 = 𝑥𝑡−1, with the meaning that, given a sequence 

𝑥 = (𝑥𝑡)𝑡∈ℤ  ∈  𝑆 , a new sequence is introduced 𝐿𝑥 ∈ 𝑆, that at time t is equal to the original 

sequence at time 𝑡 − 1 , hence the notation (𝐿𝑥)𝑡 = 𝑥𝑡−1, but it is clear that L  operates on the 

full sequence 𝑥, not on the single value 𝑥𝑡. 
The map L is called time lag operator, or backward shift, because the result of L is a 

shift, a translation, of the sequence. 

The time lag operator is a linear operator. The powers, positive and negative, of the lag 

operator are denoted by 𝐿𝑘 : 

 

 𝐿𝑘𝑥𝑡 = 𝑥𝑡−𝑘,   𝑓𝑜𝑟 𝑡 ∈  ℤ (9) 

   

 Or for 𝑡 ≥ max(𝑘, 0) for sequences (𝑥𝑡)𝑡∈ℤ. With this notation the AR model can be written 

as: 

 

(1 −∑𝛼𝑘𝐿
𝑘

𝑝

𝑘=1

)𝑋𝑡 = 휀𝑡 (10) 

 

5.1.2.3 MA(q) Model 

 A MA(q) (Moving Average with order q) model is an explicit formula for 𝑋𝑡, in terms of 

noise of the form: 

 

 𝑋𝑡 = 휀𝑡 + 𝛽1휀𝑡−1 +⋯+ 𝛽𝑞휀𝑡−𝑞 (11) 

 

 The process is given by a weighted average of the noise, but not an average from time zero 

to the present time t; instead, an average moving with t is taken, using only the last q +1 times.  

 Using the time lags this can be expressed as: 

 

 

𝑋𝑡 = (1 +∑𝛽𝑘𝐿
𝑘

𝑞

𝑘=1

) 휀𝑡 
(12) 
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5.1.2.4 ARMA(p,q) Model 

An ARMA (p, q) (Autoregressive Moving Average with orders p and q) model is a discrete 

time linear equation which combines the AR and MA models, its form is: 

 

 

(1 −∑𝛼𝑘𝐿
𝑘

𝑝

𝑘=1

)𝑋𝑡 = (1 +∑𝛽𝑘𝐿
𝑘

𝑞

𝑘=1

) 휀𝑡 
(13) 

Or explicitly 

 

 𝑋𝑡 = 𝛼1𝑋𝑡−1 +⋯+ 𝛼𝑝𝑋𝑡−𝑝 + 휀𝑡 + 𝛽1휀𝑡−1 +⋯+ 𝛽𝑞휀𝑡−𝑞 (14) 

 

 A non-zero average model can also be incorporated. If it is desired that 𝑋𝑡 has an average 𝜇, 

the natural procedure is to have a zero-average solution 𝑍𝑡 like the generalization with the AR(p) 

model, as following:  

 

 𝑍𝑡 = 𝛼1𝑍𝑡−1 +⋯+ 𝛼𝑝𝑍𝑡−𝑝 + 휀𝑡 + 𝛽1휀𝑡−1 +⋯+ 𝛽𝑞휀𝑡−𝑞 (15) 

 

 And take 𝑋𝑡 = 𝑍𝑡 + 𝜇 , hence solution of:  

 

 𝑋𝑡 = 𝛼1𝑋𝑡−1 +⋯+ 𝛼𝑝𝑋𝑡−𝑝 + 휀𝑡 + 𝛽1휀𝑡−1 +⋯+ 𝛽𝑞휀𝑡−𝑞 + 𝜇 (16) 

 

Another important feature to consider is the difference operator. The first difference 

operator, ∆ is defined as: 

 

 ∆ 𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−1 = (1 − 𝐿)𝑋𝑡 (17) 

 

Let be 

 

 𝑌𝑡 = (1 − 𝐿)𝑋𝑡 (18) 

 

Then 𝑋𝑡 can be reconstruct from 𝑌𝑡 by integration: 

 

 𝑋𝑡 = 𝑌𝑡 + 𝑋𝑡−1 = 𝑌𝑡 + 𝑌𝑡−1 + 𝑋𝑡−2 = 𝑌𝑡 +⋯+ 𝑌1 + 𝑋0 (19) 

 

Having the initial condition 𝑋0. 
The second difference operator, ∆𝟐, is defined as: 

 ∆𝟐𝑋𝑡 = (1 − 𝐿)
2𝑋𝑡 (20) 

 

Assuming 

 

 𝑌𝑡 = (1 − 𝐿)𝑍𝑡 (21) 

  𝑍𝑡 = (1 − 𝐿)𝑋𝑡 (22) 

 

So 𝑍𝑡 has to be first reconstructed from  𝑌𝑡 : 
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 𝑍𝑡 = 𝑌𝑡 +⋯+ 𝑌1 + 𝑍1 (23) 

 

Where 

 

 𝑍1 = (1 − 𝐿)𝑋1 = 𝑋1 − 𝑋0 (24) 

 

Then 𝑋𝑡 can be reconstructed from  𝑍𝑡: 
 

 𝑋𝑡 = 𝑍𝑡 +⋯+ 𝑍1 + 𝑋0 (25) 

 

Finally, this can be generalized to ∆𝒅, for any positive integer d.  

 

5.1.2.5 ARIMA(p,q,d) Model 

 An ARIMA(p,d,q) (Autoregressive Integrated Moving Average with orders p,d,q) model is 

a discrete time linear equation with noise, of the form:  

 

 

(1 −∑𝛼𝑘𝐿
𝑘

𝑝

𝑘=1

) (1 − 𝐿)𝑑𝑋𝑡 = (1 +∑𝛽𝑘𝐿
𝑘

𝑞

𝑘=1

) 휀𝑡 
(26) 

 

It is a particular case of ARMA models, but with a special structure. Set 𝑌𝑡 ≔ (1 − 𝐿)𝑑𝑋𝑡 . 
Then 𝑌𝑡 is an ARMA(p, q) model 

 

 

(1 −∑𝛼𝑘𝐿
𝑘

𝑝

𝑘=1

)𝑌𝑡 = (1 +∑𝛽𝑘𝐿
𝑘

𝑞

𝑘=1

) 휀𝑡 
(27) 

 

 And 𝑋𝑡 is obtained from 𝑌𝑡 by successive integrations. The number d is thus the order of 

integration. For many time series, it can be seen that, different snapshots taken in time do exhibit 

similar behavior except for the mean level of the process. Similarly, processes may show 

nonstationary in the slope as well. Therefore, a time series 𝑋𝑡, can be called homogeneous 

nonstationary if it is not stationary but its first difference, that is 𝑌𝑡 = 𝑋𝑡 − 𝑋𝑡−1 = (1 − 𝐿)𝑋𝑡, 
or higher-order differences,  𝑌𝑡 = (1 − 𝐿)

𝑑𝑋𝑡, produce a stationary time series. Consequently, 

a 𝑋𝑡 time series can be called an autoregressive integrated moving average (ARIMA) process 

of orders p, d, and q  -that is, ARIMA(p,d,q)- if its dth difference, denoted by 𝑌𝑡 = (1 − 𝐿)
𝑑𝑋𝑡 

, produces a stationary ARMA(p,q) process (Montgomery, 2016).  

 The random walk with drift 0 or Naïve method is an ARIMA(0,1,0). A nonzero average can 

be incorporated in the auxiliary process 𝑌𝑡 and consider the equation: 

 

 

(1 −∑𝛼𝑘𝐿
𝑘

𝑝

𝑘=1

) (1 − 𝐿)𝑑𝑋𝑡 = (1 +∑𝛽𝑘𝐿
𝑘

𝑞

𝑘=1

) 휀𝑡 + 𝜇 

𝑋𝑡+ℎ = 𝑋𝑡−1 + 휀𝑡, ℎ = 1, 2, 3… 

(28) 

With 

𝜇 = 𝜇 − 𝛼1𝜇 −⋯− 𝛼𝑝𝜇 

 



13 
 

Hence, the Naïve Method assumes that the most current observation is the only important 

one and all previous observations provide no information for the future. This can be thought of 

a weighted average where all the weight is given to the last observation (Hyndman & 

Athanasopoulos, 2014). 

There is another way of writing the AR, MA, ARMA and ARIMA models, namely, using 

lag polynomials. Let 𝜙0 = 1,  𝜃0 = 1,  𝛼0 = 1 and define the lag polynomials: 

 

 𝜙(𝐿) = 1 − 𝜙1𝐿 − 𝜙2𝐿
2 −⋯− 𝜙𝑝𝐿

𝑝 (29) 

 𝜃(𝐿) = 1 + 𝜃1𝐿 + 𝜃2𝐿
2 +⋯+ 𝜃𝑞𝐿

𝑞 (30) 

 𝛼(𝐿) = (1 − 𝐿)𝑑 (31) 

 

Therefore, the processes can be written in a more compact way as: 

 

 𝐴𝑅:  𝜙(𝐿)𝑋𝑡 = 휀𝑡 (32) 

  𝑀𝐴:   𝑋𝑡 = 𝜃(𝐿)휀𝑡 (33) 

  𝐴𝑅𝑀𝐴:  𝜙(𝐿)𝑋𝑡 = 𝜃(𝐿)휀𝑡 (34) 

  𝐴𝑅𝐼𝑀𝐴: 𝜙(𝐿)𝛼(𝐿)𝑋𝑡 = 𝜃(𝐿)휀𝑡 (35) 

 

5.1.2.6 Seasonal ARIMA(p,q,d)(P,D,Q) Model 

Seasonal ARIMA. The seasonal ARIMA1 model incorporates both non-seasonal and 

seasonal factors in a multiplicative model. One shorthand of the model is: 

 

 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑠 
 

𝑝 = 𝑛𝑜𝑛 𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝐴𝑅 𝑜𝑟𝑑𝑒𝑟 
𝑑 = 𝑛𝑜𝑛 𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑖𝑛𝑔 

𝑞 = 𝑛𝑜𝑛 𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑀𝐴 𝑜𝑟𝑑𝑒𝑟 
𝑃 = 𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝐴𝑅 𝑜𝑟𝑑𝑒𝑟 
𝐷 = 𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑖𝑛𝑔 

𝑝 = 𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑀𝐴 𝑜𝑟𝑑𝑒𝑟 
 

 

Without differencing operations, the model could be written more formally as: 

 

 Φ(𝐿𝑆)𝜙(𝐿)(1 − 𝐿𝑆)𝐷(1 − 𝐿)𝑑𝑋𝑡 = 𝜃(𝐿)Θ(𝐿
𝑆)휀𝑡 (36) 

 

The two new items are the seasonal components, namely: 

 

 Φ(𝐿𝑆) = 1 − Φ1𝐿
𝑆 −Φ2𝐿

2𝑆 −⋯−Φ𝑃𝐿
𝑃𝑆 (37) 

 Θ(𝐿𝑆) = 1 + Θ1𝐿
𝑆 + Θ2𝐿

2𝑆 +⋯+ Θ𝑄𝐿
𝑄𝑆 (38) 

 

So more explicitly the complete seasonal ARIMA model can be expressed as: 

 

                                                           
1 A further explanation of the seasonal ARIMA model can be found on: 

https://onlinecourses.science.psu.edu/stat510/node/67  

https://onlinecourses.science.psu.edu/stat510/node/67
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(1 −∑Φ𝑘𝐿

𝑘𝑆

𝑃

𝑘=1

)(1 −∑𝜙𝑘𝐿
𝑘

𝑝

𝑘=1

)(1 − 𝐿𝑆)𝐷(1 − 𝐿)𝑑𝑋𝑡 = (1 +∑Θ𝑘𝐿
𝑘𝑆

𝑄

𝑘=1

)(1 +∑𝜃𝑘𝐿
𝑘

𝑞

𝑘=1

)휀𝑡 + �̃� 
(39) 

 

It is important to notice that the left side of equation (39) the seasonal and non-seasonal AR 

components multiply each other, and on the right side of equation (39) the seasonal and non-

seasonal MA components also multiply each other.  

 

5.1.2.7 Exponential Smoothing 

Exponential Smoothing Methods are widely used in industry. Their popularity is due to 

several practical considerations in short-range forecasting. This method was originally 

developed by Brown and Holt in the 1950s (Brown, 1972). The Simple Smoothing represents 

the time series by 𝑋𝑡 = 𝑏 + 휀𝑡. Where 휀𝑡 is a random component with mean zero and variance 

𝜎2.The level 𝑏 is assumed to be constant in any local segment of the series but may change 

slowly over time (Gardner, 2006). Exponential smoothing methods can be upgraded to more 

complexity; double and triple exponential smoothing applications can also be found in the 

literature (Shan, Hu, Wang, & Liu, 2014). Other extension of the Exponential Smoothing are 

the non-seasonal, additive seasonal and multiplicative seasonal models, examples of these is the 

Holt-Winters linear trend models (Gardner, 2006).  

The idea behind exponential smoothing is that it may be sensible to attach larger weights to 

more recent observations than to observations from the distant past. In Simple Exponential 

Smoothing forecasts are calculated using weighted averages where the weights decrease 

exponentially as observations come from further in the past – the smallest weights are associated 

with the oldest observations: 

 

 �̂�𝑇+1/𝑇 = 𝛼𝑋𝑇 + 𝛼(1 − 𝛼)𝑋𝑇−1 + 𝛼(1 − 𝛼)
2𝑋𝑇−2 +⋯ (40) 

 

Where 0 ≤ 𝛼 ≤ 1 is the smoothing parameter. The one-step-ahead forecast for time T+1 is 

a weighted average of all the observations in the series 𝑋1, … , 𝑋𝑇. The rate at which the weights 

decrease is controlled by the parameter 𝛼 (Hyndman & Athanasopoulos, 2014). 

 The packages forecast for R, includes a function called ets which can automatically select 

among the most important exponential methods, namely: (1) Simple Exponential Smoothing, 

(2) Holt’s linear method, (3) Exponential trend method, (4) Additive damped trend methods, (5) 

Multiplicative Damped Trend Method, (6) Additive Holt-Winters method, (7) multiplicative 

Holt-Winters method and (8) Holt-winters damped method.  

The taxonomy of Exponential Smoothing methods can be summarized as (Figures 2 to 4 and 

Table 2): 

 

 
Figure 2. A two-way classification of exponential smoothing methods (Hyndman & Athanasopoulos, 2014) 
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Figure 3. Exponential Smoothing Methods (Hyndman & Athanasopoulos, 2014) 

 

Table 2. Formulas for recursive calculations and point forecasts 

 
Source: (Hyndman & Athanasopoulos, 2014). In each case, ℓ𝑡 denotes the series level at time t, 

𝑏𝑡 denotes the slope at time t, 𝑠𝑡 denotes the seasonal component of the series at time t, and m, 

denotes the number of seasons in a year; 𝛼,  𝛽∗, 𝛾 and 𝜙 are smoothing parameters. 𝜙ℎ =
𝜙 + 𝜙2 +⋯+ 𝜙ℎ

 
and ℎ𝑚

+ = ⌊(ℎ − 1)𝑚𝑜𝑑 𝑚 ⌋ + 1 . 

 

 
Figure 4. Initialization strategies for some of the more commonly used exponential smoothing methods (Hyndman & 

Athanasopoulos, 2014) 
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5.1.2.8 Multivariate Time Series 

Multivariate Time Series analysis considers simultaneously multiple time series. It is a 

branch of multivariate statistical analysis but deals specifically with dependent data. 

Understanding the relationships between those factors and providing accurate predictions of 

those variables are valuable in decision making. The objectives of multivariate time series 

analysis include (1) To study the dynamic relationships between variables, (2) to improve the 

accuracy of prediction.  

Let {𝑧𝑖𝑡} be the ith component of the multivariate time series 𝒛𝒕2. If there is interest in 

predicting 𝒛𝑻+𝟏 based on the data{𝒛𝟏, … , 𝒛𝑻}. To this end, the following model can be used: 

 

 �̂�𝑻+𝟏 = 𝒈(𝒛𝑻, 𝒛𝑻−𝟏, … , 𝒛𝟏) (41) 

 

Where �̂�𝑻+𝟏 denotes a prediction of 𝒛𝑻+𝟏 and g(.) is some suitable function. The goal of 

multivariate time series analysis is to specify the function g(.) based on the available data. In 

many applications, g(.), is a smooth, differentiable function and can be well approximated by a 

linear function, say,  

 

 �̂�𝑻+𝟏 ≈ 𝝅𝟎 + 𝝅𝟏𝒛𝑻 + 𝝅𝟐𝒛𝑻−𝟏 +⋯+𝝅𝑻𝒛𝟏 (42) 

  

Where 𝝅𝟎 is a k-dimensional vector, and 𝝅𝒊 are k x k constant real-valued matrices (for i = 

1,…,T). Let 𝒂𝑻+𝟏 = 𝒛𝑻+𝟏 − �̂�𝑻+𝟏 be the forecast error. The prior equation states that 

 

 �̂�𝑻+𝟏 ≈ 𝝅𝟎 + 𝝅𝟏𝒛𝑻 + 𝝅𝟐𝒛𝑻−𝟏 +⋯+ 𝝅𝑻𝒛𝟏 + 𝒂𝑻+𝟏 (43) 

 

Under linearity assumption, 𝒛𝑻 follows a continuous multivariate probability distribution.  

 There are some assumptions which must hold in order to work with multivariate time series, 

one of these is weakly stationarity. A k-dimensional time series 𝒛𝑻 is said to be weakly 

stationary if (a) (𝒛𝑻) = 𝝁, a k-dimensional constant vector, and (b) 𝐶𝑜𝑣(𝒛𝑻) = 𝑬[(𝒛𝑻 −
𝝁)(𝒛𝑻 − 𝝁)

′] = ∑  𝒛 , a constant k x k positive-definite matrix. Thus, the mean and covariance 

matrices of a weakly stationary time series 𝒛𝑻 do not depend on time, that is, the first two 

moments of 𝒛𝑻 are time invariant.  

 A k-dimensional time series 𝒛𝑻 is strictly stationary if the joint distribution of the m 

collection, (𝒛𝒕𝟏 , … , 𝒛𝒕𝒎) is the same as that of (𝒛𝒕𝟏+𝒋 , … , 𝒛𝒕𝒎) where m, j and (𝑡1, … , 𝑡𝑚) are 

arbitrary positive integers.  

 In statistical terms, strict stationarity requires the probability distribution of an arbitrary 

collection of 𝒛𝑻 to be time invariant. For instance, the sequence of independent and identically 

distributed random vectors of a standard multivariate normal distribution. Notwithstanding, 

strict stationarity is hard to verify in practice.  

 As in univariate time series, multivariate time series can be represented as Moving Average 

(MA) and Autoregressive (AR) models. A k-dimensional multivariate time series 𝒛𝑻 is linear if 

it can be represented as a Moving Average (MA) model, namely: 

 
𝐳𝒕 = 𝝁 +∑𝝍𝒊𝒂𝒕−𝒊

∞

𝒊=𝟎

 
(44) 

                                                           
2 Here the bold letter notation is introduced to indicate a matrix or a vector.  
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in which 𝝁 is a k-dimensional constant vector, 𝝍𝒐 = 𝑰𝒌 k x k identity matrix, 𝝍𝒊 (𝒊 > 𝟎) k x k 

constant matrices, 𝒂𝒕 sequence of independent and identity distributed random vectors with 

mean zero and positive definite covariance matrix  ∑  𝒂 .    

A time series is to be invertible if it can be written as an Autoregressive Model (AR), 

namely: 

 
𝒛𝒕 = 𝒄 + 𝒂𝒕 +∑𝝅𝒋𝒛𝒕−𝒋

∞

𝒋=𝟏

 

 

(45) 

𝒄 is a k-dimensional constant vector, 𝒂𝒕 as defined before, 𝝅𝒋 k x k constant matrices. 

Consequently if 𝑖 → 0, 𝝅𝒋 → ∞. 

 If the time series is both stationary and invertible, then these two model representations are 

equivalent, and one can obtain one representation from the other, namely, 𝝅𝒍 can be obtained 

recursively from {𝝍𝒊|𝑖 = 1,2, … } via 

 𝝅𝟏 = 𝝍𝟏 

𝝅𝒍 = 𝝍𝒍 −∑𝝅𝒍 𝝍𝒍−𝟏

𝑙−1

𝑖=0

         𝑙 > 1 

 

(46) 

 Notwithstanding, neither the AR representation nor the MA representation is particularly 

useful in estimation if they involve too many coefficient matrices. To facilitate model 

estimation, the coefficient matrices 𝝅𝒋 and 𝝍𝒊 will depend only on a finite number of parameters. 

This consideration leads to the use of vector autoregressive moving-average (VARMA) models, 

which are also known as the multivariate autoregressive moving-average (MARMA) models.  

 A general VARMA(p,q) model can be written as: 

 

 

𝒛𝒕 = 𝝓𝟎 +∑𝝓𝒊

𝑝

𝑖=1

𝒛𝒕−𝟏 + 𝒂𝒕 −∑𝜽𝒋

𝑞

𝑗=1

𝒂𝒕−𝒋 
(47) 

 

Where p and q are nonnegative integers,  𝝓𝟎 is a k-dimensional constant vector, 𝝓𝒊 and 𝜽𝒋 

are k x k constant matrices, and 𝒂𝒕 is a sequence of independent and identically distributed 

random vector with mean zero and positive-definite covariance matrix ∑  𝒂 . Using the lag 

operator 𝐿, the VARMA model can be written in a more compact form as: 

 

 𝝓(𝐿)𝒛𝒕 = 𝝓𝟎 + 𝜽(𝐿)𝒂𝒕 (48) 

 

 Where 𝝓(𝐿) =  𝑰𝒌 −𝝓𝟏𝐿 −⋯−𝝓𝒑𝐿
𝑝 and 𝜽(𝐿) =  𝑰𝒌 − 𝜽𝟏𝐿 −⋯− 𝜽𝒒𝐿

𝑞 are matrix 

polynomials in L.  

 To measure the linear dynamic dependence of a stationary time series 𝒛𝒕, the lag l cross-

covariance matrix is defined, namely: 

 

 𝚪𝒍 = 𝑐𝑜𝑣(𝒛𝒕, 𝒛𝒕−𝒍) = 𝑬[(𝒛𝒕 − 𝝁)(𝒛𝒕 − 𝝁)′] 

= [

𝐸(�̃�𝟏𝒕, �̃�𝟏,𝒕−𝒍) 𝐸(�̃�𝟏𝒕, �̃�𝟐,𝒕−𝒍) ⋯ 𝐸(�̃�𝟏𝒕, �̃�𝒌,𝒕−𝒍)
⋯ ⋯ ⋱ ⋯

𝐸(�̃�𝟏𝒕, �̃�𝒕−𝒍) 𝐸(�̃�𝟏𝒕, �̃�𝒕−𝒍) ⋯ 𝐸(�̃�𝟏𝒕, �̃�𝟐,𝒕−𝒍)
] 

(49) 
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𝝁 = 𝑬(𝒛𝒕) is the mean vector of 𝒛𝒕 and �̃�𝒕 = (�̃�𝟏𝒕, … , �̃�𝒌 𝒕) =  𝒛𝒕 − 𝝁 is the mean adjusted time 

series.  

This cross-covariance matrix is a function of l, not of the time index t, because 𝒛𝒕 is 

stationary. For l = 0,  𝚪𝒍 becomes 𝚪𝟎 , which is the covariance matrix of 𝒛𝒕 , that is, ∑ =  𝚪𝟎𝒛 . 
Denote the (i,j)th element of 𝚪𝒍 as 𝛾𝑙,𝑖𝑗 that is, 𝚪𝒍 = [𝛾𝑙, 𝑖𝑗].  𝛾𝑙,𝑖𝑗 is the covariance between 

𝒛𝒊,𝒕 and 𝒛𝒋,𝒕−𝟏. Therefore, for a positive lag l, 𝛾𝑙,𝑖𝑗 can be regarded as a measure of the linear 

dependence of the ith component 𝒛𝒊,𝒕 on the lth lagged value of the jth component of 𝒛𝒋,𝒕. 

Accordingly, the lag l cross-correlation matrix (CCM) 𝝆𝒍 is defined as:  

 

 𝝆𝒍 = 𝑫
−𝟏𝚪𝒍𝑫

−𝟏 = [𝜌𝑙,𝑖𝑗] (50) 

 

Where 𝑫 = 𝑑𝑖𝑎𝑔{𝜎1, … , 𝜎𝑘} is the diagonal matrix of the standard deviations of 

components of 𝒛𝒕. Specifically, 𝜎𝑖
2 = 𝑉𝑎𝑟(𝑧𝑖𝑡) = 𝛾𝑙,𝑖𝑗, that is, the (i,i)th of 𝚪𝟎. Obviously, 𝝆𝟎 is 

symmetric with diagonal elements being 1. The off-diagonal elements of 𝝆𝟎 are the 

instantaneous correlations between the components of 𝒛𝒕. For > 0 , 𝝆𝒍  is not symmetric in 

general because 𝜌𝑙,𝑖𝑗  is the correlation coefficient between 𝑧𝑖𝑡 and 𝑧𝑗,𝑡−𝑙, whereas 𝜌𝑙,𝑗𝑖 is the 

correlation coefficient between 𝑧𝑗𝑡 and 𝑧𝑖,𝑡−𝑙. That is to say, the  lag cross-correlation feature of 

a group of time series is intransitive.  

 Since in real life, there is normally only access to samples of the population of data, it is 

necessary to define the Sample CCM.  Given the sample {𝑧𝑡}𝑡=1
𝑇 , the sample mean vector and 

covariance matrix can be defined as: 

 

�̂�𝒛 =
1

𝑇
∑𝒛𝒕

𝑇

𝑡=1

 

(51) 

 

�̂�𝟎 =
1

𝑇 − 1
∑(𝒛𝒕 − �̂�𝒛)(𝒛𝒕 − �̂�𝒛)′

𝑇

𝑡=1

 

(52) 

 

The lag l sample cross-covariance matrix 

 

𝚪𝒍 =
1

𝑇 − 1
∑ (𝒛𝒕 − �̂�𝒛)(𝒛𝒕−𝒍 − �̂�𝒛)′

𝑇

𝑡=𝑙+1

 

(53) 

The l sample CCM is then: 

 

 �̂�𝒍 = �̂�
−𝟏𝚪�̂��̂�

−𝟏 = [�̂�𝑙,𝑖𝑗] (54) 

 

Where �̂� = 𝑑𝑖𝑎𝑔{𝛾0,11
1/2
 , … , 𝛾0,𝑘𝑘

1/2
}, in which 𝛾0,11

  is the (i, i)th element of �̂�𝟎. If 𝒛𝒕 is a stationary 

process and 𝒂𝒕 follows a multivariate normal distribution, then �̂�𝒍 is a consistent estimate of  𝝆𝒍. 
 For the implementation of multivariate time series to a data set, it is necessary to test the zero 

cross-correlation using a statistical test with some significance level. A basic test is to detect the 

existence of linear dynamic dependence in the data. This amounts to testing the null hypothesis 

𝐻0: 𝒑𝟏 = ⋯ = 𝒑𝒎 = 𝟎 versus the alternative hypothesis 𝐻0: 𝒑𝒊 ≠ 𝟎 for some i satisfying 1 ≤
𝑖 ≤ 𝑚, where m is a positive integer. The Portmanteau test of univariate time series has been 
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generalized to the multivariate case by several authors. In particular, the multivariate Ljung-

Box test statistic is defined as: 

 
𝑄𝑘(𝑚) =  𝑇

2∑
1

𝑇 − 𝑙
𝑡𝑟(�̂�𝒍

′�̂�𝟎
−𝟏�̂�𝒍

 �̂�𝒍
−𝟏)

𝑚

𝑙=1

 
(55) 

 

Where 𝑡𝑟(𝑨) is the trace of the matrix A and T is the sample size. This is referred to as the 

multivariate Portmanteau test. Under the null hypothesis that 𝚪𝒍 = 𝟎  for 𝑙 > 0  (no linear 

dependence in the data) and the condition that 𝐳𝒕 is normally distributed, 𝑄𝑘(𝑚) is 

asymptotically distributed as 𝜒𝑚 𝑘2
2  , that is, a chi-square distribution with 𝑚 𝑘2 degrees of 

freedom.  

 

5.1.2.9 Vector Autoregressive Model 

Vector Autoregressive Model. The most commonly used multivariate time series model is 

the vector autoregressive (AR) model. First, the model is easy to estimate. One can use the least-

squares (LS) method, the maximum likelihood (ML) method, or Bayesian method. All three 

estimates are asymptotically equivalent to the ML estimates and the ordinary least-squares 

(OLS). Second, the properties of VAR models are similar to the multivariate multiple linear 

regressions widely used in multivariate statistical analysis.  

The multivariate time series 𝒛𝒕 follows a VAR model of order p, VAR(p), if 

 

 

𝒛𝒕 = 𝝓𝟎 +∑𝝓𝒊

𝑝

𝑖=1

𝒛𝒕−𝟏 + 𝒂𝒕 
(56) 

 

This is a special case of the VARMA(p,q) model with  𝑞 = 0. With the back-shift operator, 

the model becomes 𝝓(𝐿)𝒛𝒕 = 𝝓𝟎 + 𝒂𝒕, as stated before, where 𝝓(𝐿) =  𝑰𝒌 −𝝓𝟏𝐿 −⋯−
𝝓𝒑𝐿

𝑝 , 𝝓(𝐿) = 𝑰𝒌 −∑ 𝝓𝒊
𝑝
𝑖=1 𝑳𝒊  is a matrix polynomial of degree p. Therefore, the  𝝓𝒊 = [𝝓𝒍 ,𝒊𝒋 

] as the lag l AR coefficient matrix.  

 VAR(1) Models. This will be the VAR models considered in this document. A bivariate 

example will be used to clarify how the model works. The bivariate VAR (1) model can be 

written as: 

 𝒛𝒕 = 𝝓𝟎 +𝝓𝟏𝒛𝒕−𝟏 + 𝒂𝒕 (57) 

 

This model can be written explicitly as  

 

 
[
𝑧1𝑡
𝑧2𝑡
] = [

𝜙10
𝜙20

] + [
𝜙1,11 𝜙1,12
𝜙1,21 𝜙1,22

] [
𝑧1,𝑡−1
𝑧2,𝑡−1

] + [
𝑎1𝑡
𝑎2𝑡
] 

(58) 

 

Or equivalently 

 𝑧1𝑡 = 𝜙10 + 𝜙1,11𝑧1,𝑡−1 + 𝜙1,12𝑧2,𝑡−1 + 𝑎1𝑡 
𝑧2𝑡 = 𝜙20 + 𝜙1,21𝑧1,𝑡−1 + 𝜙1,22𝑧2,𝑡−1 + 𝑎2𝑡 

(59) 

 

Thus, the (1,2)th element of 𝝓𝟏, that is,  𝜙1,12, shows the linear dependence of 𝑧1𝑡 on 𝑧2,𝑡−1 

in the presence of 𝑧1,𝑡−1. The (2,1)th element of 𝝓𝟏, that is,  𝜙1,21, measures the linear 

relationship between 𝑧2𝑡 on 𝑧1,𝑡−1 in the presence of 𝑧2,𝑡−1.  
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If the off-diagonal elements of 𝝓𝟏 are 0, that is, 𝜙1,12 = 𝜙1,21 = 0 . Then 𝑧1𝑡 and 𝑧2𝑡  are not 

dynamically correlated. In this particular case, each series follows a univariate AR(1) model and 

can be handled accordingly. The two series are uncoupled.  

If 𝜙1,12 = 0 , but 𝜙1,21 ≠ 0, then 

 

 𝑧1𝑡 = 𝜙10 +𝜙1,11𝑧1,𝑡−1 + 𝑎1𝑡 
𝑧2𝑡 = 𝜙20 + 𝜙1,21𝑧1,𝑡−1 + 𝜙1,22𝑧2,𝑡−1 + 𝑎2𝑡 

(60) 

 

This particular model shows that 𝑧1𝑡 does not depend on the past value of 𝑧2𝑡, but 𝑧2𝑡 does 

depends on the past value of 𝑧1𝑡. Consequently, there is a unidirectional relationship with 𝑧1𝑡 
acting as the input variable and 𝑧2𝑡 as the output variable. In the statistical literature, the two 

series 𝑧1𝑡 and 𝑧2𝑡 are said to have a transfer function relationship. Transfer function models, 

which can be regarded as a special case of the VARMA model, are useful in control engineering 

as one can adjust the value of 𝑧1𝑡 to influence of 𝑧2𝑡. In the econometric literature, the model 

implies the existence of Granger causality between the two series with 𝑧1𝑡 causing 𝑧2𝑡, but not 

being caused by 𝑧2𝑡. 
 Granger introduces the concept of causality, which is easy to deal with for an AR model 

(Granger, 1969). Consider a bivariate series and the h-step-ahead forecast. In this case, a VAR 

model and a univariate model can be used for individual components to produce forecasts. It 

can be asseverated that 𝑧1𝑡 causes 𝑧2𝑡 if the bivariate forecast for 𝑧2𝑡 is more accurate than its 

univariate forecast. That is to say, the accuracy of a forecast is measured by the variance of its 

forecast error; under Granger’s framework, 𝑧1𝑡 causes 𝑧2𝑡 if the past information of 𝑧1𝑡 improves 

the forecast of 𝑧2𝑡 (Tsay, 2014). 

 

5.1.3 Econometric Methods 

 Econometric methods, namely, Regression Analysis, Autoregressive Moving Average with 

exogenous inputs and Disaggregate Choice Models are also used in forecasting (Berkovec, 

1985). The advantages of the Disaggregate Discrete Choice Approach are in its more plausible 

theoretical structure and the ability to represent a wider range of policy options due to the much 

greater degree of differentiation of the elements to be forecasted. This model tries to find an 

Equilibrium in price and in quantity for the demand and supply of multiple products.  

 

5.1.4 Other Methods 

 Other methods like Linear Combination of Forecasts, Neural Networks and Prophet 

Algorithm can be applied to predict costumers demand.  

 

5.1.4.1 Combination of Forecasts 

When several forecasts of the same event are available, it is natural to try to find a (linear) 

combination of these forecasts that is the ‘best’ in some sense (Claeskens et al., 2016). If ‘best’ 

is defined in terms of the mean squared error and the variances and covariances of the forecast 

are known, then optimal weights can be derived. Empirical evidence and extensive simulations 

show that the estimated optimal forecast combination typically does not perform well, and that 

the arithmetic mean often performs better. Additionally, (Smith & Wallis, 2009) also said that 

a simple average of competing forecasts is expected to be more accurate than a weighted 

combination. This empirical fact has become known as the ‘forecast combination puzzle’. 
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5.1.4.2 Artificial Neural networks 

These are forecasting methods that are based on simple mathematical models of the brain. 

They allow complex nonlinear relationships between response variable and its predictors. A 

neural network can be thought of as a network of “neurons” organized in layers. The predictors 

(or inputs) form the bottom layer, and the forecast (or outputs) form the top layer. There may be 

intermediate layers containing “hidden neurons” (Hyndman & Athanasopoulos, 2014).  

 The very simplest networks contain hidden layers and are equivalent to linear regression. 

Figure 5 shows a neural network version of a linear regression with four predictors. The 

coefficient attached to these predictors are called weights. The forecasts are obtained by a linear 

combination of the inputs. The weights are selected in the neural network framework using a 

“learning algorithm” that minimizes a “cost function” such as Mean Squared Error.  

 

 
Figure 5. Simple Neural Network 

 Once an intermediate layer with hidden neurons is added, the neural network becomes non-

linear. Figure 6 shows an example.  

 

 
Figure 6. Neural Network with one hidden layer with three neurons 

 This is known as a multilayer feed-forward network where each layer of nodes receives 

inputs from the previous layers. The outputs of nodes in one layer are inputs to the next layer. 

The inputs to each node are combined using a weighted linear combination. The result is then 

modified by a nonlinear function before being output. For example, the inputs into hidden 

neuron j in Figure 3 are linearly combined to give: 
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𝑧𝑗 = 𝑏𝑗 +∑𝑤𝑖,𝑗𝑥𝑖

4

𝑖=1

 

(61) 

 

In the hidden layer, this is then modified using a nonlinear such as a sigmoid: 

 

 
𝑠(𝑧) =

1

1 + 𝑒−𝑧
 

(62) 

 

The parameters 𝑏1, 𝑏2, 𝑏3 and 𝑤1, 𝑤2, 𝑤3 are “learned” from the data. The values of the 

weights are often restricted to prevent them becoming too large. The parameters that restricts 

the weights is known as the “decay parameter” and is often set to be equal to 0.1. 

The weights take random values to begin with, which are then updated using the observed 

data. Consequently, there is an element of randomness in the predictions produced by a neural 

network. Therefore, the network is usually trained several times using different random starting 

points, and the results are averaged.  

The number of hidden layers, and the number of nodes in each hidden layer, must be specified 

in advance.  

Neural Network auto-regression. With time series data, lagged values of the time series 

can be used as inputs to neural networks. Just as lagged values are used in a linear auto-

regression model.  The nnetar() function from the package forecast (Hyndman & 

Athanasopoulos, 2014) fits an 𝑁𝑁𝐴𝑅(𝑝, 𝑃, 𝑘)𝑚 model. Where p is the number of lagged input 

values, P is the number of last observed values of the same season, k is the number of nodes in 

the hidden layer, and m is the number of periods per season.  

With seasonal data, it is useful to also add the last observed values from the same season as 

inputs. For example, an  𝑁𝑁𝐴𝑅(3, 2, 1)12 model has inputs 𝑦𝑡−1, 𝑦𝑡−2, 𝑦𝑡−3 and 𝑦𝑡−12 and two 

neurons in the hidden layer. More generally, an 𝑁𝑁𝐴𝑅(𝑝, 𝑃, 𝑘)𝑚 model has inputs 

𝑦𝑡−1, 𝑦𝑡−2, 𝑦𝑡−3 , … , 𝑦𝑡−𝑝 and 𝑦𝑡−𝑚, 𝑦𝑡−2𝑚 , 𝑦𝑡−𝑃𝑚  and k in the hidden layer. A 

𝑁𝑁𝐴𝑅(𝑝, 𝑃, 0)𝑚is equivalent to an 𝐴𝑅𝐼𝑀𝐴(𝑝, 0,0)(𝑃, 0, 0)𝑚 model but without the restrictions 

on the parameters to ensure stationarity.  

In the nntar() function, if the values of p and P are not specified, then they are automatically 

selected. For non-seasonal time series, the default is the optimal number of lags (according to 

the AIC for a linear AR(p) model). For seasonal time series, the default values are P=1 and p is 

chosen from the optimal linear model fitted to the seasonally adjusted data. If k is not specified 

it is set to 𝑘 = (𝑝 + 𝑃 + 1)/2 (rounded to the nearest integer) (Hyndman & Athanasopoulos, 

2014). 

 

5.1.4.3 Prophet Algorithm 

 Prophet algorithm is a new forecasting algorithm released and developed by Facebook 

Research, it can be accessed as a free forecasting tool available in Python and R. They propose 

a modular regression model with interpretable parameters that can be intuitively adjusted by 

analysts with domain knowledge about time series. The algorithm uses a decomposable time 

series model with three main model components: trend g(t), seasonality s(t), and holidays h(t). 

 

 𝑦(𝑡) = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + 휀𝑡 (63) 
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The essence of a structural time series model is that it is formulated in terms of independent 

component which have a direct interpretation in term of quantities of interest. One of the most 

important models for economic time series is the basic structural model: this consists of a trend, 

a seasonal and an irregular component (Harvey & Peters, 1990) . The specification is similar to 

a Generalized Additive Model (GAM), a class of regression model with potentially non-linear 

smoothers applied to the regressors. The GAM formulations has the advantage that it 

decomposes easily and accommodates new components as necessary; for instance, when a new 

source of seasonality is identified (Taylor & Letham, 2017). GAM’s also fit very quickly, either 

using backfittig or Limited-Memory Broyden-Fletcher-Goldfarb-Schanno Algorithm (L-BFGS) 

(Byrd, Lu, Nocedal, & Zhu, 1994), this latter is an optimization algorithm in the family of quasi-

Newton methods, popularly used for parameter estimation in machine learning.  

 The model is, in effect, framing the forecast problem as a curve-fitting exercise, which is 

inherently different from time series models that explicitly account for the temporal dependence 

structure in the data. While some important inferential advantages are discarded when using a 

generative model such as an ARIMA, this formulation provides several practical advantages:  

(1) Flexibility can easily accommodate seasonality with multiple periods and let the analyst 

make different assumptions about trends.  

(2) Unlike with ARIMA models, the measurements do not need to be regularly spaced, and 

missing values do not need to be interpolated e.g. from removing outliers.  

(3) Fitting is very fast, allowing the analyst to interactively explore many model 

specifications, for example in an R-Shiny application.  

(4) The forecasting model has easily interpretable parameters that can be changed by the 

analyst to impose assumptions on the forecast.  

The trend model behaves as a sort of growth, which can be typically modeled using the 

logistic growth model, the resulting equation is: 

 

 
𝑔(𝑡) =

𝐶(𝑡)

1 + exp (−(𝑘 + 𝒂(𝑡)T𝜹)(𝑡 − (𝑚 + 𝒂(𝑡)T𝜸)))
 

(64) 

 

In which 𝐶(𝑡) is a vector of the expected carrying capacities of the system at any point in 

time, 𝑘 is the growth rate, and 𝑚 is an offset parameter. Trend changes in the growth model can 

be incorporated by explicitly defining changepoints where the growth rate is allowed to change. 

The model assumes there are 𝑆 changepoint at times 𝑠𝑗 for  𝑗 = 1, . . , 𝑆. Then, a vector of rate 

adjustments 𝜹 ∈  ℝ𝑆 is defined, where 𝛿𝒋 is the change in rate that occurs at time 𝑠𝒋. The rate at 

any time t is then the base rate k, plus all the adjustment up to that point: 𝑘 + ∑ 𝛿𝑗𝑗 :𝑡>𝑠𝑗
. This is 

represented more cleanly by defining a vector 𝒂(𝒕) ∈  {0,1}𝑆 such that: 

 

 
𝑎𝑗(𝑡) = {

1, 𝑖𝑓 𝑡 < 𝑠𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(65) 

 

Finally, when the rate k is adjusted, the offset parameter m must also be adjusted to connect 

the endpoints of the segments. The correct adjustment at changepoint j is recursively computed 

as: 
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𝛾𝑗 = (𝑠𝑗 −𝑚 −∑𝛾𝑙
𝑙<𝑗

)(1 −
𝑘 + ∑ 𝛿𝑙𝑙<𝑗

𝑘 + ∑ 𝛿𝑙𝑙≤𝑗
) 

(66) 

 

 The changepoints 𝑠𝑗 could be specified by the analyst using known dates of product launches 

and other growth-altering events or may be automatically selected given a set of candidates. 

Prophet algorithm specify a large number of changepoints (e.g., one per month for a several 

year history and use the prior 𝜹 ∽ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0, 𝜏)). The parameter 𝜏 directly controls the 

flexibility of the model in altering its rate. Importantly, a sparse prior on the adjustments 𝜹 has 

no impact on the primary growth rate k, so as 𝜏 goes to 0 the fit reduces to standard (not-

piecewise) logistic or linear growth.  

Business time series often have multi-period seasonality as a result of the human behaviors 

they represent. For instance, a 5-day work week can produce effects on a time series that repeat 

each week, while vacation schedules and school breaks can produce effects that repeat each 

year. The model relies on Fourier series to provide a flexible model of periodic effects, since to 

fit and forecast seasonality it is necessary to specify models that are periodic functions of t. P 

will be the regular period expected in the time series (e.g. 𝑃 = 365.25 for yearly data or 𝑃 = 7 

for weekly data, when this variable is measured in days). Seasonal effects can be arbitrary 

approximated by: 

 

𝑠(𝑡) = ∑(𝑎𝑛𝑐𝑜𝑠 (
2𝜋𝑛𝑡

𝑃
) + 𝑏𝑛𝑠𝑖𝑛 (

2𝜋𝑛𝑡

𝑃
))

𝑁

𝑛=1

 

(67) 

 

 Fitting seasonality requires estimating the 2N parameters 𝜷 = [𝑎1, 𝑏1, … , 𝑎𝑁 , 𝑏𝑁]
T. This is 

done by constructing a matrix of seasonality vectors for each value of t in the historical and 

future data, for example with yearly seasonality and 𝑁 = 10. 
 

 
𝑋(𝑡) = [𝑐𝑜𝑠 (

2𝜋(1)𝑡

365,25
) ,… , 𝑠𝑖𝑛 (

2𝜋(10)𝑡

365,25
)] 

(68) 

 

The seasonal component is then: 

 

 𝑠(𝑡) =  𝑋(𝑡) 𝜷 (69) 

 

In the generative model 𝜷 ∽ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2) to impose a smoothing prior on the seasonality.  
 Holidays and events provide large, somewhat predictable shocks to many business time 

series and often do not follow a periodic pattern, so their effects are not well modeled by a 

smooth cycle. Many countries around the world have major holidays that follow the lunar 

calendar. The impact of a particular holiday on the time series is often similar year after year, 

so it is important to incorporate it into the forecast.  

 Prophet Algorithm allows the analyst to provide a custom list of past and future events, 

identified by the event or holiday’s unique name. Incorporating a list of holidays into the model 

is made straightforward by assuming that effects of holidays are independent. For each holiday 

𝑖, let 𝐷𝑖 be the set of past and future dates for that holiday. An indicator function is added 

representing whether time t is during holiday 𝑖, and assign each holiday a parameter 𝜅𝑖 which is 
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the corresponding change in the forecast. This is done in a similar way as seasonality by 

generating a matrix of regressors 

 

 𝑍(𝑡) = [𝟏(𝑡 ∈ 𝐷1), … , 𝟏(𝑡 ∈ 𝐷𝐿)] (70) 

And taking  

 ℎ(𝑡) =  𝑍(𝑡) 𝜿 (71) 

 

As with seasonality, a prior 𝜿 ∽ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2)  is used.  

 It is often important to include effects for a window of days around a particular holiday, such 

as the weekend of Thanksgiving. To account for that, additional parameters for the days 

surrounding the holiday are included, essentially treating each of the days in the window around 

the holiday as a holiday itself.  

 

 

5.2 Choosing between competitive models 

 

Selecting the model that provides the best fit to historical data generally does not result in a 

forecasting method that produces the best forecasts of new data. Concentrating too much on the 

model that produces the best historical fit often results in overfitting, or including too many 

parameters or terms in the model just because these additional terms improve the model fit 

(Montgomery, 2016).  

In general, the best approach is to select the model that results in the smallest standard 

deviation (or mean squared error) of the one-step-ahead forecast error when the model is applied 

to data that were not used in the fitting process. Some authors refer to this as an out-of-sample 

forecast error standard deviation (or mean squared error). A standard way to measure this out-

of-sample performance is by utilizing some form of data splitting; that is, divide the time series 

data into two segments-one for model fitting and the other for performance testing. Sometimes 

data splitting is called cross-validation. A good rule is to have at least 20 to 25 observations in 

the performance testing data set.  

When evaluating the fit of the model to historical data, there are several criteria that may be 

of value. The mean squared error of the residuals is: 

 
𝑠2 =

∑ 𝑒𝑡
2𝑇

𝑡=1

𝑇 − 𝑝
 

(72) 

 

Where T periods of data have been used to fit a model with p parameters and et is the residual 

from the model-fitting process in period t. The mean squared error s2 is just the sample variance 

of the residuals and it is an estimator of the variance of the model errors.  

Another criterion is the R-squared statistic 

 
𝑅2 = 1 −

∑ 𝑒𝑡
2𝑇

1

∑ (𝑦𝑡 − �̅�)2
𝑇
1

 

 

(73) 

The denominator of Eq. (73) is just the total sum of squares of the observations, which is 

constant (not model dependent), and the numerator is just the residual sum of squares. Therefore, 

selecting the model that maximizes R2 is equivalent to selecting the model that minimizes the 
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sum of the squared residuals. Large values R2 suggest a good fit to the historical data. Because 

the residual sum of squares always decreases when parameters are added to the model, relying 

on R2 to select a forecasting model encourages overfitting or putting in more parameters than 

are necessary to obtain good forecasts. A large value of R2 does not ensure that the out-of-sample 

one-step-ahead forecast errors will be small.  

A better criterion is the “adjusted” R2 statistic, defined as: 

 

𝑅2 = 1 −

∑ 𝑒𝑡
2𝑇

𝑡=1
𝑇 − 𝑝

∑ (𝑦𝑡 − �̅�)2/(𝑇 − 1)
𝑇
1

= 1 −
𝑠2

∑ (𝑦𝑡 − �̅�)2/(𝑇 − 1)
𝑇
1

 

 

(74) 

The adjustment is a “size” adjustment- that is, adjust for the number of parameters in the 

model. Note that a model that maximizes the adjusted R statistic is also the model that minimizes 

the residual mean square.  

Two other important criteria are the Akaike Information Criterion (AIC) and the Schwarz 

Bayesian Information Criterion (abbreviated as BIC or SIC). These two criteria penalize 

the sum of squared residuals for including additional parameters in the model. Models that have 

small values of the AIC or BIC are considered good models.  

 
𝐴𝐼𝐶 = 𝑙𝑛 (

∑ 𝑒𝑡
2𝑇

𝑡=1

𝑇
) +

2𝑝

𝑇
 

(75) 

 
𝐵𝐼𝐶 = 𝑙𝑛 (

∑ 𝑒𝑡
2𝑇

𝑡=1

𝑇
) +

𝑝 𝑙𝑛(𝑇)

𝑇
 

(76) 

 

 One way to evaluate model selection criteria is in terms of consistency. A model selection 

criterion is consistent if it selects the true model when the true model is among those considered 

with probability approaching unity as the sample size becomes large, and if the true model is 

not among those considered, it selects the best approximation with probability approaching unity 

as the sample size becomes large. It turns out that s2, the adjusted R2, and the AIC are all 

inconsistent, because they do not penalize for adding parameters heavily enough. Relying on 

these criteria tends to result in overfitting. The BIC, which carries a heavier “size adjustment” 

penalty, is consistent.  

Consistency, however, does not tell the complete story. It may turn out that the true model 

and any reasonable approximation to it are very complex. An asymptotically efficient model 

selection criterion chooses a sequence of models as T (amount of data available) gets large for 

which the one-step-ahead forecast error variances approach the one-step-ahead forecast error 

variance for the true model at least as fast as any other criterion. The AIC is asymptotically 

efficient but the BIC is not (Montgomery, 2016).  
 
 

5.3 Monitoring a Forecasting Model  

 

5.3.1 Error measures 

Another important feature of forecasting is monitoring, which is essential to ensure that the 

system remains in control. This is especially true when the system is based on simple 

exponential smoothing, which will lag any trend in the data. This is essential in inventory 
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control, for example, because of the need to take-off-line action when there is a significant 

change in demand. If demand goes up, new orders should be placed on a priority basis. If 

demand goes down, any unneeded orders should be canceled to prevent excess inventory 

investment (Gardner, 2006).  

 At the forecast accuracy level, the Mean Absolute Deviation (MAD), Mean Absolute 

Percentage Error (MAPE), Mean Squared Error (MSE) and Average Error (AE) are the most 

common forecast error indicators used by forecasters. The most commonly used accuracy 

measure is the MAPE. This widespread use of MAPE suggests that many forecasters agree on 

the use of an error measure which can be adjusted for scale in the data (Fildes & Goodwin, 

2007).  

 Errors are also called residuals, some authors have developed techniques to follow how 

residuals behave when forecast is carried out, this is called tracking signals. The first tracking 

signal used in forecasting was the simple cumulative sum cusum of the residuals, developed by 

(Brown, 1972). The simple cusum is defined as the ratio of the sum of the errors at the end of 

each period to the smoothed mean absolute deviation (MAD) of the errors, it will be explained 

further in more detail. The ratio should fluctuate around zero if the errors are unbiased.  

 One possible problem with the simple cusum is that it may give an unreasonable number of 

false alarms.  

 

5.3.2 Control Charts 

Developing and implementing procedures to monitor the performance of the forecasting 

model is an essential component of good forecasting system design. No matter how much effort 

has been expended in developing the forecasting model, and regardless of how well the model 

works initially, over time it is likely that its performance will deteriorate. The underlying pattern 

of the time series may change, either because the internal inertial forces that drive the process 

may evolve through time, or because of external events such as new customers entering the 

market.  

The one-step-ahead forecast errors et(1) are typically used for forecast monitoring. The 

reason for this is that changes in the underlying time series will also typically be reflected in the 

forecast errors. For example, if a level change occurs in the time series, the sequence of the 

forecast errors will no longer fluctuate around zero; that is, a positive or negative bias will be 

introduced.  

Monitoring forecasting model performance can be achieved through (Montgomery, 2016) : 

• Shewhart Control Charts 

• Cumulative Sum Control Chart (CUSUM) 

• Exponentially Weighted Moving Average (EWMA) 

A Shewhart Control Chart is a plot of the forecast error versus time containing a center 

line that represents the average (or the target value) of the forecast error and a set of control 

limits that are designed to provide an indication that the forecasting model performance has 

changed. The center line is usually taken as either zero (which is the anticipated forecast error 

for an unbiased forecast) or the average forecast error, and the control limits are typically placed 

at three standard deviations of the forecast errors above and below the center line. Forecast error 

that plot outside the control limits would indicate model inadequacy, or possibly the presence 

of unusual observations such as outliers in the data.  

Because a Shewhart control chart exhibits statistical control, a conclusion would be that there 

is no strong evidence of statistical inadequacy in the forecasting model. Therefore, these control 
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limits would be retained and used to judge the performance of future forecasts (in other words, 

the control limits are not recalculated). However, the stable control chart does not imply that the 

forecasting performance is satisfactory in the sense that the model results in small forecast 

errors. In the quality control literature (Montgomery, 2016), these two aspects of process 

performance are referred to as control and capability, respectively. It is possible for the 

forecasting process to be stable or in statistical control but not capable, that is to say, the 

forecasting process produces forecast errors that are unacceptably large.  

CUSUM and EWMA charts are more effective at detecting smaller changes or disturbances 

in the forecasting model performance than the Shewhart control chart.  

The CUSUM is very effective in detecting level changes in the monitored variable. It works 

by accumulating deviations of the forecast error that are above the desired target value T0 

(usually either zero or the average forecast error) with one statistic C+ and deviation that are 

below the target with another statistic C-. The statistics C+ and C- are called the upper and lower 

CUSUMs, respectively. They are computed as follows: 

 

 𝐶𝑡
+ = max [0, 𝑒𝑡(1) − (𝑇𝑜 + 𝐾) + 𝐶𝑡−1

+ ] (77) 

 𝐶𝑡
− = min [0, 𝑒𝑡(1) − (𝑇𝑜 − 𝐾) + 𝐶𝑡−1

− ] (78) 

 

Where the constant K, usually called the reference value, is frequently chosen as K=0.5σe(1) 

and σe(1) is the standard deviation of the one-step-ahead forecast errors. The logic is that if the 

forecast errors begin to systematically fall on one side of the target value (or zero), one of the 

CUSUMs will increase in magnitude. When this increase becomes large enough, an out-of-

control signal is generated. The decision rule is to signal if the statistic C+ exceeds a decision 

internal H=5σe(1) or if C- exceeds –H.  

A control chart based on the EWMA is also useful for monitoring forecast errors. The 

EWMA applied to the one-step-ahead forecast errors is: 

 

 �̅�𝑡(1) = 𝜆𝑒𝑡 + (1 −  𝜆)�̅�𝑡−1(1) (79) 

 

Where 0 < λ < 1 is a constant (usually called the smoothing constant) and the starting value 

of the WEMA (required at the first observation) is either 0 or the average of the forecast errors. 

Typical values of the smoothing constant for an EWMA control chart are 0.05 < λ < 0.2.  

The EWMA is a weighted average of all current and previous forecast errors, and the weights 

decrease geometrically with the “age” of the forecast error. Recursively the following equation 

can be obtained: 

 

 

�̅�𝑛(1) = 𝜆∑(1 − 𝜆)𝑗
𝑛−1

𝑗=0

𝑒𝑇−𝑗(1) + (1 − 𝜆)
𝑛�̅�0(1) 

(80) 

 

The standard deviation of the EWMA is 

 

 

�̂��̅�𝑡(1) = 𝜎𝑒(1)√
𝜆

2 − 𝜆
[1 − (1 − 𝜆)2𝑡] 

(81) 
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𝜎𝑒(1) = 

0.8865 𝑀𝑅

𝑛 − 1
 

(82) 

 
𝑀𝑅 = ∑|𝑒𝑡(1) − 𝑒𝑡−1(1)|

𝑛

𝑡=2

 
(83) 

 

So, an EWMA control chart for the one-step-ahead forecast errors with a center line of T 

(target for the forecast errors) is defined as follows: 

 

 

𝑈𝐶𝐿 = 𝑇 + 3𝜎𝑒(1)√
𝜆

2 − 𝜆
[1 − (1 − 𝜆)2𝑡] 

(84) 

𝐶𝑒𝑛𝑡𝑒𝑟 𝐿𝑖𝑛𝑒 = 𝑇 

 

𝐿𝐶𝐿 = 𝑇 − 3𝜎𝑒(1)√
𝜆

2 − 𝜆
[1 − (1 − 𝜆)2𝑡] 

(85) 

5.3.3 Tracking Signals 

The Cumulative Error Tracking Signal (CETS) (Montgomery, 2016) is based on the 

cumulative sum of all current and previous forecast errors: 

 
𝑌(𝑛) =  ∑𝑒𝑡(1) = 𝑌(𝑛 − 1) + 𝑒𝑛(1)

𝑛

𝑡=1

 
(86) 

 

If the forecasts are unbiased, we would expect Y(n) to fluctuate around zero. To 

operationalize this, suppose that we have an estimate and form the cumulative error tracking 

signal: 

 

 
𝐶𝐸𝑇𝑆 =  |

𝑌(𝑛)

�̂�𝑌(1)
| 

(87) 

 

If the CETS exceeds a constant, say, K1, we would conclude that the forecasts are biased 

and that the forecasting model may be inadequate.  

It is also possible to devise a Smoothed Error Tracking Signal based on the smoothed one-

step Forecast Errors (SETS) (Montgomery, 2016) (Vidal Holguín, 2010). This would lead to a 

ratio: 

 
𝑆𝐸𝑇𝑆 =  |

�̅�𝑛(1)

�̂�𝑒𝑛(1)
| 

(88) 

 

If the SETS exceed a constant, say K2, this in an indication that the forecasts are biased 

and that there are potentially problems with the forecasting model. The CETS is very similar to 

the CUSUM control chart and the SETS is essentially equivalent to the EWMA control chart.  
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5.4 Outlier Detection Procedures 

 

Most time series data are observational in nature. In addition to possible gross errors, 

time series data are often subject to the influence of some nonrepetitive events; for example, 

implementation of a new regulation, major changes in political or economic policy, or 

occurrence of a disaster. Consequently, discordant observations and various types of structural 

changes occur frequently in time series data. Whereas the usual time series model is designed 

to grasp the homogenous memory pattern of a time series, the presence of outlying observations 

or structural changes raises the question of efficiency and adequacy in fitting general 

autoregressive moving average (ARMA) models to time series data.  

 A common approach to deal with outliers in a time series is to identify the locations and the 

types of outliers and then use intervention models (Box & Tiao, 1975). There are some main 

important issues caused by outliers, i.e., (a) the presence of outliers may result in an 

inappropriate model, (b) even if the model is appropriately specified, outliers in a time series 

may still produce bias in parameter estimates and hence may affect the efficiency of outlier 

detection. A typical difficulty found in this approach was that both the types and locations of 

outliers may change at different iterations of model estimation, and (c) some outliers may not 

be identified due to a masking effect.  

 For problems b and c (Chen & Liu, 1993) designed a procedure that is less vulnerable to the 

spurious and masking effects during outlier detection and is able to jointly estimate the model 

parameters and outlier effects.  

 This procedure can be applied to general seasonal and nonseasonal ARMA processes. They 

defined a 𝑌𝑡 time series, which follows a general ARMA process of the form: 

 

 
𝑌𝑡 =

𝜃(𝐿)

𝛼(𝐿)𝜙(𝐿)
𝑎𝑡         𝑡 = 1,… , 𝑛 

(89) 

 

Where n is the number of observations for the series; 𝜃(𝐿), 𝛼(𝐿) and 𝜙(𝐿) are lag 

polynomials of L. The model may include a constant term when the nonstationary operator 𝛼(𝐿) 
is contained on the left side of the model equation. To describe a time series subject to the 

influence of a nonrepetitive event, they consider the following model: 

 

 
𝑌𝑡
∗ = 𝑌𝑡 + 𝜔

𝐴(𝐿)

𝐺(𝐿)𝐻(𝐿)
𝐼𝑡(𝑡1) 

(90) 

 

Where 𝑌𝑡 follows a general ARMA process described in (89). And: 

 

 
𝐼𝑡(𝑡1) = {

1, 𝑖𝑓 𝑡 = 𝑡1 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(91) 

  

Here 𝐼𝑡(𝑡1) is an indicator function for the occurrence of an outlier impact, 𝑡1 is the possibly 

unknown location of the outlier, and 𝜔 and 𝐴(𝐿)/𝐺(𝐿)𝐻(𝐿) denote the magnitude and the 

dynamic pattern of the outlier effect. If the location and the dynamic pattern of an event in 

known, then model (90) is the intervention model studied by Box and Tiao (1975). Chen & Lui 

consider the estimation problem when both the location and the dynamic pattern are not known 
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a priori. The approach is to classify an outlier impact into four types by imposing a special 

structure on 𝐴(𝐿)/𝐺(𝐿)𝐻(𝐿). The types include an innovational outlier (IO), an additive outlier 

(AO), a level shift (LS), and a temporary change (TC). They can be defined as follows: 

 

 
𝐼𝑂: 

𝐴(𝐿)

𝐺(𝐿)𝐻(𝐿)
=

𝜃(𝐿)

𝛼(𝐿)𝜙(𝐿)
 

(92) 

 

 
𝐴𝑂: 

𝐴(𝐿)

𝐺(𝐿)𝐻(𝐿)
= 1 

(93) 

  

 
𝑇𝐶: 

𝐴(𝐿)

𝐺(𝐿)𝐻(𝐿)
=

1

(1 − 𝛿𝐿)
 

(94) 

 

 
𝐿𝑆: 

𝐴(𝐿)

𝐺(𝐿)𝐻(𝐿)
=

1

(1 − 𝐿)
 

(95) 

 

The four outliers represent various types of simple outlier effects; more complicated responses 

usually can be approximated by combinations of the four types. In principle, the proposed 

procedure can handle any other specific form of outlier responses.  

 It is remarkable that, except for the case of an IO, the effects of outliers on the observed series 

are independent of the model. Moreover, AO and LS are two boundary cases of TC, where 𝛿 =
1 and = 0 . For TC, the outlier produces an initial effect 𝜔 at time 𝑡1 , and this effect dies out 

gradually with time. The parameter 𝛿 is designed to model the pace of dynamic dampening 

effect. In practice, the value of 𝛿 can be specified by the analyst. Chen & Lui recommend that 

𝛿 = 0.7 be used to identify a TC. In the case of an AO, the outliers cause an immediate and one-

shot effect on the observed series. A LS produces an abrupt and permanent step change in the 

series. On the other hand, the effect of an IO is more intricate than the effects of the other types 

of outlier. Using the formulation of model (92), when IO occurs at 𝑡 = 𝑡1, the effect of this 

outlier on 𝑌𝑡1+𝑘, for 𝑘 > 0, is equal to 𝜔𝜓𝑘, where 𝜔 is the initial effect and 𝜓𝑘 is the kth 

coefficient of the 𝜓 (𝐿) polynomial where 

 

 𝜓 (𝐿) =  {𝜃(𝐿)}/{𝛼(𝐿)𝜙(𝐿)} 
𝜓 (𝐿) = (𝜓0 + 𝜓1𝐿 + 𝜓2𝐿

2 +⋯),     𝑤𝑖𝑡ℎ 𝜓0 = 1 

(96) 

 

For a stationary series, an IO will produce a temporary effect because 𝜓𝑗 decay to 0 

exponentially. The pattern of 𝜓𝑗 for a nonstationary series can be quite different. Depending on 

the model of 𝑌𝑡, an IO may produce (a) an initial effect at the time of the intervention and a level 

shift from the second period of intervention, if the time series model follows an autoregressive 

integrated moving average 𝐴𝑅𝐼𝑀𝐴(0,1,1) model; (b) an initial effect at the time of intervention, 

gradually converging to a permanent level shift if 𝑌𝑡 follows an 𝐴𝑅𝐼𝑀𝐴(1,1,1) model; (c) a 

seasonal level shift if the time series model follows a pure seasonal 𝐴𝑅𝐼𝑀𝐴(0,1,1)𝑠 and annual 

trend changes if 𝑌𝑡  follows a multiplicative seasonal 𝐴𝑅𝐼𝑀𝐴(0,1,1)(0,1,1)𝑠 model. 

 To examine the effects of outliers on the estimated residuals, Chen & Liu assume that the 

time series parameters are known and the series is observed from 𝑡 = −𝐽, 𝑡 = 𝑛, wehre 𝐽 is an 
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integer larger than 𝑝 + 𝑑 + 𝑞, and that 1 ≤ 𝑡2 ≤ 𝑛, where p, d and q, are orders of the 

polynomials 𝜙(𝐿), 𝛼(𝐿) and 𝜃(𝐿). We define the 𝜋(𝐿) polynomial as  

 

 
𝜋 (𝐿) =

{𝛼(𝐿) 𝜙(𝐿)}

{𝜃(𝐿)}
= 1 − 𝜋1𝐵 − 𝜋1𝐵

2 −⋯ 
(97) 

  

Where the 𝜋𝑗 weights for 𝑗 beyond a moderately large 𝐽 become essentially equal to 0, 

because the roots of 𝜃(𝐿) are all outside the unit circle. The estimated residuals �̂�𝑡, which may 

be contaminated with outliers, can be expressed as:  

 

 �̂�𝑡 = 𝜋(𝐿)𝑌𝑡
∗,   𝑓𝑜𝑟 𝑡 = 1,2, … (98) 

 

For the four types of outliers: 

 

 𝐼𝑂: �̂�𝑡 = 𝜔𝐼𝑡(𝑡1) + 𝑎𝑡 (99) 

 

 𝐴𝑂: �̂�𝑡 = 𝜔 𝜋(𝐿) 𝐼𝑡(𝑡1) + 𝑎𝑡  (100) 

 

 𝑇𝐶: �̂�𝑡 = 𝜔 {𝜋(𝐿)/( 1 − 𝛿𝐿)}𝐼𝑡(𝑡1) + 𝑎𝑡   (101) 

 

 𝐿𝑆: �̂�𝑡 = 𝜔 {𝜋(𝐿)/( 1 − 𝐿)}𝐼𝑡(𝑡1) + 𝑎𝑡   (102) 

 

Equation (99-102) can be alternatively written as: 

 

 �̂�𝑡 = 𝑥𝑖𝑡 + 𝑎𝑡 
𝑡 = 𝑡1, 𝑡1 + 1,… , 𝑛 

𝑖 = 1,2,3,4 

(103) 

 

Where 𝑥𝑖𝑡 = 0 for all I and 𝑡 < 𝑡1, 𝑥𝑖𝑡1 = 1 for all i and 𝑘 ≥ 1, 𝑥1(𝑡1+𝑘) = 0, 𝑥2(𝑡1+𝑘) =

− 𝜋𝑘, 𝑥3(𝑡1+𝑘) = 1 − ∑ 𝜋𝑗
𝑘
𝑗=1 , and 𝑥4(𝑡1+𝑘) = 𝛿

𝑘 − ∑ 𝛿𝑘−𝑗𝜋𝑗 − 𝜋𝑘
𝑘−1
𝑗=1  . Hence the least squares 

estimate for the effect of a single outlier at 𝑡 = 𝑡1 may be expressed as: 

 

 �̂�𝐼𝑂(𝑡1) = �̂�𝑡1 (104) 

 

 
�̂�𝐴𝑂(𝑡1) =

∑ �̂�𝑡 𝑥2𝑡
𝑛
𝑡=𝑡1

∑ 𝑥2𝑡
2𝑛

𝑡=𝑡1

 
(105) 

 

 
�̂�𝐿𝑆(𝑡1) =

∑ �̂�𝑡 𝑥3𝑡
𝑛
𝑡=𝑡1

∑ 𝑥3𝑡
2𝑛

𝑡=𝑡1

 
(106) 

 

 
�̂�𝑇𝐶(𝑡1) =

∑ �̂�𝑡 𝑥4𝑡
𝑛
𝑡=𝑡1

∑ 𝑥4𝑡
2𝑛

𝑡=𝑡1

 
(107) 
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It is important to note that for the last observation (i.e., 𝑡1 = 𝑛) ,�̂�𝐼𝑂(𝑡1) = �̂�𝐴𝑂(𝑡1) =
�̂�𝐿𝑆(𝑡1) = �̂�𝑇𝐶(𝑡1) = �̂�𝑡1 . As a result, it is impossible to empirically distinguish the type of an 

outlier occurring at the very end of a series. A possible approach for detecting outliers is to 

examine the maximum value of the standardized statistics of the outlier effects: 

 

 �̂�𝐼𝑂(𝑡1) = �̂�𝐼𝑂(𝑡1)/�̂�𝑎 (108) 

 

 

�̂�𝐴𝑂(𝑡1) = {�̂�𝐴𝑂(𝑡1)/�̂�𝑎} (∑ 𝑥2𝑡
2

𝑛

𝑡=𝑡1

)

1/2

 

(109) 

 

 

�̂�𝐿𝑆(𝑡1) = {�̂�𝐿𝑆(𝑡1)/�̂�𝑎} (∑ 𝑥3𝑡
2

𝑛

𝑡=𝑡1

)

1/2

 

(110) 

 

 

�̂�𝑇𝐶(𝑡1) = {�̂�𝑇𝐶(𝑡1)/�̂�𝑎} (∑ 𝑥4𝑡
2

𝑛

𝑡=𝑡1

)

1/2

 

(111) 

 

For a given location, theses standardized statistics follow an approximately normal distribution. 

Knowing the type and location of an outlier, one can adjust the outlier effects on the observations 

and the residuals using Equation (92) and Equations (99-102). In general, the adjusted 

observations at 𝑡1, denoted �̃�𝑡1 , can be expressed as a weighted sum of the entire observed series. 

In the case of IO, it can be shown that the adjusted observation �̃�𝑡1, is the conditional expectation 

of �̃�𝑡1m given the past observations. Under an AO, the adjusted observation is the interpolation 

based on both the past and the future 𝑌′𝑠, but does not involve 𝑌𝑡1. This suggests a possible 

approach to estimating missing values in a time series by treating the missing data as an AO. 

Another important feature of the model is that they found that when the critical values are too 

low, there is a higher frequency to misidentify the location of an outlier by one time period.  

 When finding the outliers, the authors have also investigated the performance of the proposed 

procedure under certain non-Gaussian noise, such as noise with exponential distribution. In such 

situations, they found that the proposed procedure is effective in determining extreme values in 

a time series, but it cannot distinguish such extreme values as outliers or regular observations 

associated with the inherent nature of the distribution.  

 Following this approach described by Chen & Liu (1993), an automatic procedure for 

detection of outliers in time series is implemented in the package tsoutliers for R. The procedure 

may in turn be run along with the automatic ARIMA model selection strategy available in the 

package forecast. 

The function tso is the main interface for the automatic procedure. Although the purpose of 

the package is to provide an automatic procedure, the implementation allows the user to do a 

manual inspection of each step of the procedure. Thus, the package is also useful to track the 

behavior of the procedure and come up with ideas for possible improvements or enhancements. 
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5.5 Forecast in the Supply Chain  

 

Supply Chain Management is a difficult task due to the uncertainty associated with the 

demand. In addition, the frequency at which forecasts are produced varies considerably not only 

among the various supply chain organizations but also within each of those organizations 

depending on the decision-making processes they serve. Retail inventory replenishments, for 

example, rely upon frequent short-term forecast, whereas aggregate sales planning may take 

place quarterly.  

 The objective of every supply chain should be to maximize the overall value generated. The 

value (also known as supply chain surplus) a supply chain generates is the difference between 

what the final product is worth to the customer and the costs the supply chain incurs in filling 

the customer’s requests. Such costs are an increasing function of the uncertainty associated with 

the demand and thus supply chain forecasting plays a major role in increasing the overall value.  

 The longer supply chains are and the more organizations they involve, the more difficult it 

becomes to coordinate them. The collaborative practices within supply chains vary 

considerably. There are three key features that have implications for supply chain forecasting: 

(1) Under certain conditions, the variance of demand is amplified as it progresses upstream, 

making it more difficult to forecast accurately;  

(2) There are potential gains in forecast accuracy which may be achieved by different forms of 

collaboration, including sharing of demand information between different levels of the supply 

chain;  

(3) The practice of collaboration has resulted in some major initiatives like Collaborative 

Planning, Forecasting and Replenishment (CPFR) and Vendor Managed Inventory(VMI) 

systems that have had important implications for the practice of supply chain forecasting 

(Syntetos et al., 2016).  

Syntetos at al. (2016) also developed a four-dimensional Supply Chain Structure within 

which supply chain forecasting hierarchies may be positioned, namely: Product, Time, Location 

and Echelon. The echelon dimension is necessary for any consideration of forecasting that 

relates to inventory management. The location dimension is also relevant to inventory 

management and is essential for any consideration of forecasts that inform transport planning. 

It is also crucial for inventory management/warehouse location decisions, as well as the decision 

to allocate given areas to different warehouses. The product dimension relates to inventory 

management, transport planning and also warehouse planning (e.g. where to locate products 

within a warehouse). Finally, the time dimension is essential for all forecasting problems, not 

just those that relate to supply chain forecasting (Figure 7).  
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Figure 7. Supply Chain Structure (Syntetos et al., 2016) 

 

5.5.1 The importance of demand planning 

Most executives agree that the ability to generate an accurate forecast has a significant impact 

on long-term business success. The forecast directly affects an organization’s ability to satisfy 

customers, manage resources and grow the business cost effectively. An improvement in 

forecast accuracy can have a ripple effect across the business, namely a 1% improvement of the 

forecast can lead to (Logility, 2017): 

• 2.4% decrease in order-to-deliver days (cycle time) 

• 0.4% increase in perfect order performance  

• 2.7% reduction in finished goods inventory (days) 

• 3.2% reduction in transportation cost (percentage of sales) 

• 3.9% reduction in inventory obsolescence (percentage of inventory value) 

There is also an equation which can be used to analyze the effect of an improvement in the 

forecast on the return on the Shareholder’s value, this is called the Dupont Equation (Figure 8) 

The Dupont Equation indicates that just a 10% increase in forecast accuracy can cause a 

Return on Shareholder Value increase up to 22.43%. Thence, the importance of improving 

forecast accuracy.   

5.5.2 Improving forecast accuracy 

According to the Consulting Group Logility (Logility, 2016), for many supply chain 

scenarios, it is typically best to employ a variety of methods to obtain optimal forecasts. Ideally, 

managers should take advantage of several different methods and build them into the foundation 

of the forecast.  
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Figure 8. Dupont Equation Source: (Logility, 2017) 

 

The best practice is to use automated methods switching to accommodate selection and 

deployment of the most appropriate forecast method for optimal results.  

For most levels of management within an organization, aggregated demand history for 

product family, brand category, and/or selling region are good predictors of future performance. 

Such demand history serves as a baseline for effectively forecasting Stock Keeping Units 

(SKUs). When there are more than four-to-six periods of sales history, SKUs can be effectively 

forecast with moving average and basic trend methods. SKUs with at least one year of sales 

history offer sufficient information to incorporate a seasonal profile into the projected trend.  

A modified Holt-Winters decomposition model with best-fit-analysis can generate forecasts 

based on demand history that incorporate trends and seasonal information. The method “senses” 

the amount of history available for each time series or segment to create a basic model that best 

fits the history. Then it uses the best combination of smoothing factors to enable the model to 

react to changing conditions going forward without overreacting to anomalies in demand (such 

as unplanned seasonal events, transportation disruption, and so on). 

For factors relating to seasonality, planners need the ability to weight the historical demand. 

Under the assumption that the previous year is the best indicator of what will happen next year, 

most forecast systems apply a higher weighting factor to the previous year’s demand, less to the 

year before and even less to the years before that. But if the previous year was unusual in any 

significant way, the planner must have the capability to change the historical weighting factors 

so as not to under- or over-forecast the business. 

Seasonal methods can be effective with less than 23 months of history; the minimum required 

is twelve months. An effective approach for expected seasonal items with less than twelve 
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months of history is to assign a seasonal curve that has been captured from a similar item or 

item group.  

A powerful best-fit statistical method should include flexible features such as trend, seasonal-

with-trend, moving average and low-level pattern fitting, as well as trend models for products 

with sporadic, low-volume demand. The method should provide limiting and damping, as well 

as seasonal smoothing, demand filtering, reasonability tests, tracking signals and test for erratic 

nature that evaluate the validity of each element, determining which are anomalous and should 

be filtered. These parameters give the planner the flexibility to tune the process to best fit 

conditions at any element of the organization (Table 3).  

 
Table 3. Parameters for an effective forecast 

Parameter Description 

Limiting 
Confidence Limits describe the spread of the distribution above and below the 

point forecast. 

Smoothing 

Removes random variation (noise) from the historical demand, enabling better 

identification of demand patterns (primarily trend and seasonality patterns) and 

demand levels. Result in a closer estimate of future demand.  

Damping 
Applies various “weights” to each period to achieve the desired results. These 

weights are expressed as percentages. Total weights must add up to 100%. 

Filtering 

Forecast error, viewed as the difference between forecast value and actual value, 

is usually normally distributed. A demand filter is usually set to +/- 4 Mean 

Absolute Deviation against the forecast value. Whenever the deviation is more 

than that, the adequateness of the forecast model should be reviewed by analyzing 

the actual data.  

Forecast Error 

The difference between actual demand and forecast demand. Error can occur in 

two ways: bias or random variation. Bias is a systematic error that occurs when 

cumulative actual demand is consistently above or below the cumulative forecast 

demand.  

 

Type 1 Bias is subjective and occurs due to human intervention.  

Type 2 Bias is a manifestation of a business process that is specific to the product 

(for instance, persistent demand trend and forecast adjustments do not correct fast 

enough for items specific to a few customers).  

Reasonability Tests 

An important type of reasonability measure is the tracking signal, which can be 

used to monitor the quality of the forecast. There are several procedures that can 

be used, but one of the simplest is based on a comparison of the cumulative sum 

of the forecast errors to the mean absolute deviation (cusum).  

Source: (Logility, 2016) 
 

The best fit refers then to the ability to change forecast methods as a product evolves through 

its life cycle. The process may start out as a demand profile method (this is a technique which 

uses user-defined attributes to model new product introductions and product end-of-life 

retirement), evolve to a modified Holt-Winters method as the product becomes stable, and 

ultimately transition to a demand profile method again as the product life cycle comes to an end. 
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6. CURRENT FORECAST PROBLEM ANALYSIS 

 
 

6.1 Material Flow Forecast Description 

As mentioned in the problem description, the problem concerns an international automotive 

company which produces vehicles and other products in 23 assembly plants around the world 

and has more than 32 logistics service providers. The company has currently more than 4000 

suppliers which deliver different vehicles parts to their corresponding consolidation center in 

their forwarding area. To be precise, the company has an area forwarding based inbound 

logistics network.  

The current problem regarding the supply chain structure framework can be described as 

follows (Syntetos et al., 2016): (1) at the product dimension level:  the forecasts regard all 

finished goods or components flows aggregated as tons (2) at the location dimension: it is about 

all main leg flows from the forwarding areas to the plants in Europe, (3) at the time dimension: 

forecasts are made monthly, and finally (4) at the echelon dimension: the supply chain level 

corresponds to the flows among the consolidation centers (source) and the plants (sink) (see 

Figure 1).  

471 flows were initially considered into the forecasting process designed by the company. 

The data available corresponds to the time frame January 2014 to the current ongoing date; 

however, there are some flows which do not have information between 2014 and 2015. 

Moreover, there are 5 methods already implemented, i.e. Naïve, Auto ARIMA, Neural 

Networks, Exponential Smoothing and Ensemble Forecasts. The first four methods are available 

in the package forecast based on R-programming, which allows to make an automatic 

implementation. 

At this time, a 4-step-ahead forecast is carried out and forecasts are monthly upgraded, this 

methodology allows the company to reduce the uncertainty implicit in long term forecasts.  

It is also important to mention that the forecasts are not made directly using the time series 

with its values in tons but with another variable called alpha 𝛼, which is the result of dividing 

the time series in tons over the production plan time series of the corresponding plant for which 

this main leg material flow is forwarded. This allows to take advantage of an existing high 

correlation between these two variables and carry out a time series normalization to reduce the 

variability of the observations. This solution implemented by the company is also another way 

to reduce the uncertainty due to current adjustments to the data bases which are being made for 

the synchronization of the information systems and the human error. Then, given the forecast 

for the Production Plans, which are provided by other department, the 𝜶-time series can be set 

back to tons by multiplying it by its corresponding production plan forecast.  

Nevertheless, there are some flows which do not deliver material to the plants but to some 

consolidation centers owned by the company, where the material here is then forwarded to plants 

outside Europe. Since there are not production plans for these consolidation centers, forecasts 

for these flows have not been considered yet.  

Along this research the terms 𝜶-time series and 𝐭𝐨𝐧-time series will be used referring in the 

first case, the ton-time series divided by its corresponding production plan and in the second 

case, the ton-time series regarding the time series without any transformation, i.e. in tons.  

 

 



39 
 

6.2 Time Series Analysis 

 

6.2.1 Demand Patterns 

The flows display almost all possible demand patterns, i.e. positive and negative trends, 

seasonality, irregular demand, outliers, and missing values, except intermittent demand. One 

particular feature of the problem is the availability of two time series referring to the same 

variable. That is to say, the tons per month, forwarded from the main legs forwarding areas to 

the plants, register two values from the same variable, one is called the “actual_ton” the other 

is called “should_ton”. This is done to avoid data bases inconsistency which is mostly caused 

by human error or lacking synchronization among the information systems. The actual_ton time 

series is the one being used to make the forecasts; however, when missing values or outliers are 

found, the corresponding value in the should_ton time series is used instead. Figure 9 depicts a 

time series example. 

 

 

Figure 9. Example of Actual and Should ton for a Material Flow Time Series 

6.2.2 Outliers 

The outlier detection method currently used by the company’s software is described as 

follows: Values exceeding a threshold (5 times the Interquartile Range plus the 3rd quantile) in 

both the actual_ton and should_ton time series should be replaced by the median of the 

corresponding observations. Then, a validation function is used to clean the data, namely, if a 

value in the actual_ton time series is found to be an outlier then it is replaced by its 

corresponding value in the should_ton time series; as long as this value itself is not an outlier; 
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if so is the case, i.e. both the values of a given month for the actual_ton and the should_ton time 

series are outliers, then the median of the actual_ton time series is used instead.  

6.3 Current Error Measures Analysis  

The software uses an out-of-sample forecast measure based on the Mean Absolute Percentage 

Deviation (MAPE). Specifically, the time series are split up into subsets, one subset is used to 

make the model fitting, and the other to make validation tests.  

6.4 Current Best Error Measures Evaluation Decision 

Given the resulting MAPE out of the fitting model process for each time series for each 

model; the model with the lowest MAPE is chosen to make the 4-step-ahead forecast. 

In a more detailed way, the choosing process is carried out as follows: the time series are 

split up into samples to make cross-validation tests, then the Mean Absolute Percentage Error 

(MAPE) is calculated for each validation test to make a 4-month-ahead forecast. For example, 

if a time series has n values, then the process will be so: initially the first 𝑘 < 𝑛 values are taken, 

and the corresponding model is fitted, then a 4-month-ahead forecast is carried out, and with 

this forecast, the MAPE for this validation test is calculated. Then 𝑘 + 1 values are taken as the 

training set and the same 4-month-ahead forecast is made. This step will produce up to 𝑛 − 𝑘 −
4 cross-validation tests and MAPE’s, which are then averaged, giving the decision variable to 

choose the best model.  

The same process is made for the other 4 methods, which also delivers their corresponding 

cross-validation test averaged MAPE. This methodology is called rolling forecasting, because 

the software is trying to simulate the data generation behavior over time. This is certainly useful, 

since forecast automated methods are being used by R; specifically, every time the forecast is 

made, new parameters for the models are calculated. So the idea behind this, is to let the software 

decide which automated method behaves the best along the data generation process by 

considering the averaged MAPE of all cross-validation tests (Logility, 2016). 
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6.5 Current Implemented Software Description 

The original state of the software can be summarized in Figure 10.  

 

Figure 10. Original State Transport Forecast Software 

6.5.1 Input Data 

In order to obtain the forecasts, certain input is needed. There are three csv files which trigger 

the process: 

(1) Historical Forwarded Material, which is upgraded monthly and contains the historical 

forwarded material flow information since 2014. This data base can be described as follows: 

• 1: Time in months (date) 

• 2: Logistics Service Provider Identification Number (string) 

• 3: Logistics Service Provider Name (string) 

• 4: Bordereau Prefix Number (Integer) 

• 5: Plant Identification Number (string) 

• 6: Transport mode (string) 

• 7: Inbound or Outbound Transport (string: Inbound/Outbound) 

• 8: Actual_kg (Integer) 

• 9: Should_kg (Integer) 

(2) The second file is the Production Programs, which contains the units which were 

produced and will be produced until some point in the future. Each column represents a plant, 

and its values are integer values. The (3) last file is a Correction Table, which have some 

negative material flow values for some months in the past, which then are added to the historical 

values to adjust values which still have not been corrected in the main Material Flow data base. 

This file has the same data structure as the first csv file, except that its Actual_kg and Should_kg 

values are negative.  
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6.5.2 Output Data 

The main output file is the Forecast file as a csv file, this document delivers the following 

information: 

• 1: Numeration (integer) 

• 2: Logistics Service Provider Identification Number (string) 

• 3: Logistics Service Provider Name (string) 

• 4: Plant Identification Number (string) 

• 5: Plant Name (string) 

• 6: Current Month actual ton (double) 

• 7: 1-month ahead forecast in ton (double) 

• 8: 2-month ahead forecast in ton (double) 

• 9: 3-month ahead forecast in ton (double) 

• 10: 4-month ahead forecast in ton (double) 

• 11: Current Month absolute percentage (string) – always 100% 

• 12: 1-month ahead forecast in percentage relative to current month (string) 

• 13: 2-month ahead forecast in percentage relative to current month (string) 

• 14: 3-month ahead forecast in percentage relative to current month (string) 

• 15: 4-month ahead forecast in percentage relative to current month (string) 

• 16: Forecast Error classified as: low ( < 20%), medium (𝑏𝑒𝑡𝑤𝑒𝑒𝑛 20 ; 30%) or high 

(> 30%) (string) 

The second file corresponds to the Forecast Error Graphics, which shows the Mean 

Absolute Percentage Deviation (MAPE) from each of the main leg material flows for each 

logistics service providers and all the plants to which it delivers material. Below this graphic, 

the corresponding average monthly material flow is also plotted, this allows the analyst to check 

the relationship between the MAPE and the average monthly material flow for each main leg. 

An example is shown (Figure 11). 

 The third file shows the Historical Incoming Material Flow for each plant and the 

corresponding Production Plan (Figure 12). The most important information of this analysis 

is to realize the high existing correlation mentioned before between these two variables; i.e. the 

production program is indeed the trigger of the quantity of input materials purchased by a 

company. The analyst uses this graphics to find out whether any unusual behavior from any of 

those two variables might have raised. That is the reason why the forecasts are made using the 

𝛼 − transformation, instead of using the tons themselves. Further, an experiment will be carried 

out on this matter, and it will be demonstrated that the MAPE worsen if the forecasts are made 

directly using the tons instead of the 𝛼 time series.  

 The last output file is the Variation Coefficient Analysis for the Material Flows (Figure 

13), which allows the analyst to recognize if there is any uncommon variation in the data; a low 

variation coefficient should be found on material flows with high monthly material volumes, 

i.e. the uncertainty of the forecast should also be lower and additional high costs can be avoided; 

whereas for a high variation coefficient, low monthly material volumes should be the rule; that 

means, even though the variability is high, the additional costs should be low since there is not 

a great amount of material compromised.   
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Figure 11. Forecast Error (MAPE) and Monthly Average Material Flow for a single Logistics Service Provider 

 

Figure 12. Material Flow and Production Program Analysis for a single plant 
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Figure 13.  Variation Coefficient and Monthly Material Volume for a single Logistics Provider 

6.5.3 R Scripts 

The R-Scripts are the single steps of code shown in Figure 10. The first R-Script called Data 

Cleaning performs different activities which allow the user to adapt the data before the 

forecasting fitting process is carried out. The Correction Table file is used as input to eliminate 

some wrong values in the historical material flows. The outliers are afterwards eliminated using 

the outlier detection procedure described before.  

The second R-Script called Data Visualization allows the user to plot the Variation 

Coefficient with the Monthly Material Volume for every single Logistics Provider as well as 

the Material Flow and Production Program Analysis for every single plant. As mentioned 

before, these graphics are used to recognize unusual behavior in the data.  

The third R-Script named Fit and Forecast Univariate Methods carries out firstly the 

forecasting fitting process, i.e. the cross-validation tests. As mentioned in 6.4, the data is split 

up into subsets for training and test, then the average MAPE is the criterion to choose which 

method better fits the data. Secondly, with the selected methods, a 4-month-ahead forecast is 

carried out for every single main leg material flow.  

The last step is the R-Script Forecast Report, which takes the results from the 3rd R-Script 

and turn it into a csv file report called Forecast with the respectively current date, as mentioned 

in 6.5.2. 
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6.6 Potential Improvement Points 

 

6.6.1 Triple for loop 

The fit and forecast univariate methods R-Script performs its processes by using a triple for 

loop, this is the so called cubic algorithm. To have solutions in the order of minutes, triple 

algorithms are only typically capable of solving problems on the size of thousands, while 

quadratic algorithms can solve problems in the order of tens of thousands (Sedgewick & Wayne, 

2011).  This triple algorithm causes the forecast process to take a long time, approximately 1 

hour, on a 4 GB RAM, Intel Core i5 4310 2.7 GHz Laptop. Thence, the analyst had used so far, 

a workstation with 64 GB RAM and an Intel Xeon E5-2699 2-processors 2.30 GHz with 72 

cores, which is able to make this step in 5 minutes. Nevertheless, the workstation is not always 

available, which causes delays on the Forecast Report when it comes to make analysis tests. A 

possible solution would be to try at least to turn the triple for loop into a double for loop in order 

to achieve a quadratic algorithm.   
 

6.6.2 Historical MAPE 

Currently, the forecast fitting process and the forecast calculation are carried out in a single 

R-Script. This fitting process has been repeatedly carried out every single month, which also 

causes the software to take up so much computer time. A possible solution is to split up these 

two steps, namely, to make the fitting process and the forecasting in different R-Scripts. This 

idea would allow to save the resulting averaged MAPE’s from the fitting process in a separate 

file in order to reuse it for future forecasts; allowing the software to focus only on the forecast 

calculation.  
 

6.6.3 Choosing between competing models 

As stated before, the decision criterion to select which method better fits the data is the MAPE. 

Other out-of-sample error measure as MSE or RMSE could be used to choose between 

competing models and evaluate the model’s variability. 

 

6.6.4 Implementation of new forecasting methods 

There are forecasting methods which could be tested that are likely to outperform the results 

of the current methods. It is important to select methods which can model and fit the demand 

patterns described before, namely positive and negative trends, seasonality, irregular demand, 

outliers, and missing values.  

One good example is the Prophet Algorithm. There are two main features that this algorithm 

displays which might bring positive results: 

(1) Parameters can easily accommodate seasonality with multiple periods and let the analyst 

make different assumptions about trends.  

(2) Unlike ARIMA models, the measurements do not need to be regularly spaced, and 

missing values do not need to be interpolated e.g. from removing outliers.  

These characteristics makes this new released algorithm a good option to implement (Taylor & 

Letham, 2017).  

 Additionally, there are also important features which are left out when only using univariate 

methods, which is the current case for the company’s software, since the current used methods 

are ARIMA, Neural Network, Naïve, Exponential Smoothing and Ensemble Forecasts. On the 
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other hand, Multivariate Methods are able to consider lag-cross correlations among different 

time series (Tsay, 2014). This cross-correlation feature along the historical data regards the 

influence of a past value of a time series A on the future value of a time series B and vice versa; 

this feature is highly relevant, since if the parameters for this influence can be found and are 

statistically significant, then it may allow to improve the forecast of groups of time series with 

high autocorrelation values.  

Finally, a simple but useful method still not considered by the company is the Simple Moving 

Average. (Logility, 2016) mentions that the Moving Average is the best model for products 

whose demand histories have random variations, including no seasonality or trend, or fairly flat 

demand. Therefore, it is relevant to implement this method, considering an automation which 

allow to find the optimal parameters automatically.   

Furthermore, the Ensemble Forecast method, already implemented by the company, which 

consider a simple linear combination (average) of the forecast values from the other methods, 

can be also extended, i.e. the Prophet Algorithm, Simple Moving Average and Multivariate 

Time Series can also be included in the linear combination, so that the likelihood of better 

forecasts accuracy increase (Smith & Wallis, 2009).  

Finally, another possibility is to implement an algorithm which can complete the missing 

values in the time series. Recently, a new data base update to the main Material Software Server 

eliminated values in some periods. This leads to incomplete time series. Allowing a linear 

interpolation algorithm to find the missing values instead of using the mean of the observations 

can also improve the forecasting accuracy. Linear interpolation is easy to implement (Lepot et 

al., 2017), which will allow to find missing values for the 471 time series in short computer 

time. (Gnauck, 2004) demonstrated that this method is efficient, and most of the time it is better 

than non-linear interpolations for predicting missing values. 
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7. RESULTS 

 
 

7.1  Forecast Accuracy Improvement 

 

Three new forecast algorithms were implemented, namely, Prophet Algorithm, Automated 

Simple Moving Average and Multivariate Time Series: Vector Auto-regressive. For testing the 

performance of the algorithms, the current software’s approach was implemented; i.e. the rolling 

forecasting method (see 6.4) with the averaged MAPE, so that the same criteria could be used 

in order to compare how better the new methods behave regarding the current ones.  Moreover, 

a forecast test using the ton-time series instead of the 𝛼-time series was also realized.  

 Two types of tests are carried out. They are called: 

(1) Test type 1, in which 3 plants and their respective logistics service providers are chosen, 

reducing the amount of material flows to forecast from 4723 to 84. This approach has 

the advantage of faster computer time calculation and also a briefly overview of how the 

algorithm performs in a data subset. 

(2) Test type 2, in which all plants and their respective logistics service providers are 

chosen, i.e. the complete 472 material flows. This test takes up a long computer time but 

allows to see what the overall performance of the algorithm is.  

Then two types of files were developed to assess the performance: 

(1) Algorithm_name_difference.csv shows how many of the material flow forecasts 

achieved a better MAPE with the new algorithm. The data file has the following 

structure: 

• Column 1: Numeration (integer)  

• Column 2: Logistics Service Provider Identification Number (String) 

• Column 3: Plant Identification Number (String) 

• Column 4: MAPE difference (double) – Percentage of MAPE improvement 

• Column 5: Old_Method (String) 

• Column 6: New_Method (String) 

(2) Comparison Empirical Distribution MAPE as pdf, which shows how the cumulative 

percentage of MAPE’s are spread along the number of material flows forecasted. The x-

axis represents the number of cumulative material flows as percentage. The y-axis 

represents the cumulative percentage of MAPE’s. Two lines will be shown, the red one 

stands for the new method’s performance, the blue one, stands for the old method’s 

performance. This graphic can be interpreted as follows: if the new forecast method has 

a better performance, then the red curve must be directed either in the upper direction, 

to the left or in both directions. This interpretation means that more material flow 

forecasts have a lower MAPE than before. 

An important observation in most of the below forecasting methods is that almost never the new 

forecasting method worsens the MAPE. In other words, the method either improves the MAPE 

or it remains unchanged, but it does not worsen.  

 

                                                           
3 There was one new available material flow at the time where the tests were carried out. That is why, the tests 

are made with 472 material flows instead of 471.  
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7.1.1 Prophet forecast Implementation 

As described in section 5.1.4.3, the Prophet Algorithm is a new forecast method, which can 

be implemented through a package based on R. The algorithm can be fully automated, so that 

the parameters selection is based on routines available in the R-package Prophet. It uses 

different parameters like yearly, weekly and daily seasonality. In order to test the feasibility of 

the algorithm, the two types of tests were carried out. 

 

7.1.1.1 Test type 1: Prophet 

The first test, which analyzes only 3 plants, improved 4 flows out of 84. The results are 

presented in Table 4.  

 

Table 4. Prophet Algorithm, Test Type 1 

Numeration 
MAPE  

Improvement (%) 
Old_Method New_Method 

1 4.39 Ensemble Forecast Prophet Forecast 

2 4.31 Exponential Smoothing Forecast Prophet Forecast 

3 3.43 Exponential Smoothing Forecast Prophet Forecast 

4 2.73 Naive Forecast Prophet Forecast 

  

This represents an improvement of 3.72% on the averaged MAPE’s, and of 4.72% on the 

number of material flow forecasts.   

The corresponding Empirical Distribution Function is shown in Figure 14.   
 

7.1.1.2 Test type 2: Prophet 

The second test, which considers all plants, delivered 43 improved flows out of 472. A briefly 

view of the results are presented in Table 5. 

 

Table 5. Prophet Algorithm, Test Type 2 

Numeration 
MAPE Improvement 

(%) 
Old_Method New_Method 

1 24.31 Naive Forecast Prophet Forecast 

2 21.53 Ensemble Forecast Prophet Forecast 

3 19.46 Exponential Smoothing Forecast Prophet Forecast 

4 18.22 Ensemble Forecast Prophet Forecast 

5 16.40 Exponential Smoothing Forecast Prophet Forecast 

6 15.74 Ensemble Forecast Prophet Forecast 

7 15.19 Naive Forecast Prophet Forecast 

8 13.77 Ensemble Forecast Prophet Forecast 

9 13.10 Ensemble Forecast Prophet Forecast 

10 12.11 Ensemble Forecast Prophet Forecast 
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Figure 14. Comparison Cumulative MAPE Distribution Function Prophet Algorithm, Test Type 1 

The Test Type 2 for the Prophet Algorithm represents an improvement of 8.31% on the 

averaged MAPE’s, and of 9% on the number of material flow forecasts.   

The corresponding Empirical Distribution Function is shown in Figure 15.   
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Figure 15. Comparison Cumulative MAPE Distribution Function Prophet Algorithm, Test Type 2 
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7.1.2 Automated Simple Moving Average  

The function SMA from the R-Package Smooth applies the Simple Moving Average method on 

a time series vector. The SMA order was set to be chosen automatically by the function, which 

chooses the optimal one. In order to test the performance of the algorithm the Tests Type 1 and 

2 were made.  

 

7.1.2.1 Test Type 1: Automated Simple Moving Average 

The Test type 1, which considers only 3 plants, improved 20 flows out of 84. The results are 

presented in Table 6.  

 
Table 6. Automated Moving Average, Test Type 1 

Numeration 
MAPE Improvement 

(%) 
Old_Method New_Method 

1 6.73 Ensemble Forecast Simple Moving Average 

2 6.3 Ensemble Forecast Simple Moving Average 

3 5.96 Ensemble Forecast Simple Moving Average 

4 5.86 ARIMA Forecast Simple Moving Average 

5 5.25 Exponential Smoothing Forecast Simple Moving Average 

7 4.11 Exponential Smoothing Forecast Simple Moving Average 

9 2.94 Exponential Smoothing Forecast Simple Moving Average 

10 2.83 Ensemble Forecast Simple Moving Average 

12 2.06 Ensemble Forecast Simple Moving Average 

13 1.98 Ensemble Forecast Simple Moving Average 

14 1.85 Exponential Smoothing Forecast Simple Moving Average 

15 1.85 Ensemble Forecast Simple Moving Average 

16 1.58 Exponential Smoothing Forecast Simple Moving Average 

17 1.39 Exponential Smoothing Forecast Simple Moving Average 

18 0.99 Exponential Smoothing Forecast Simple Moving Average 

19 0.17 Naive Forecast Simple Moving Average 

20 0.09 Exponential Smoothing Forecast Simple Moving Average 

 

This result represents an improvement of 3.12% in the averaged MAPE’s, and of 23.8% on 

the number of material flow forecasts.   

The corresponding Empirical Distribution Function is shown in Figure 16.   
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Figure 16. Comparison Cumulative MAPE Distribution Function Automated Moving Average, Test Type 1 

 

7.1.2.2 Test Type 2: Automated Simple Moving Average 

The Test Type 2, which considers all plants, improved 80 flows out of 472. A briefly summary 

of the results is presented in Table 7.  
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Table 7. Automated Moving Average, Test Type 2 

Numeration MAPE Improvement (%) Old_Method New_Method 

1 21.34 Exponential Smoothing Forecast Simple Moving Average 

2 13.98 Ensemble Forecast Simple Moving Average 

3 12.92 Ensemble Forecast Simple Moving Average 

4 9.89 Naive Forecast Simple Moving Average 

5 9.10 Ensemble Forecast Simple Moving Average 

6 8.53 Exponential Smoothing Forecast Simple Moving Average 

7 8.44 ARIMA Forecast Simple Moving Average 

8 8.42 Ensemble Forecast Simple Moving Average 

9 8.18 Exponential Smoothing Forecast Simple Moving Average 

10 7.97 ARIMA Forecast Simple Moving Average 

11 7.84 Naive Forecast Simple Moving Average 

12 7.18 Naive Forecast Simple Moving Average 

13 7.12 Ensemble Forecast Simple Moving Average 

14 7.11 Ensemble Forecast Simple Moving Average 

15 6.98 Exponential Smoothing Forecast Simple Moving Average 

16 6.95 Ensemble Forecast Simple Moving Average 

 

This result represents an improvement of 3.88% on the averaged MAPE’s, and of 17% on 

the number of material flow forecasts.   

The corresponding Empirical Distribution Function is shown in Figure 17.   
 

7.1.3 Multivariate Time Series Implementation 

For the implementation of the Vector Autoregressive method, there are a couple of things 

which must be considered in advance. First, The Ljung-Box test is used to test the lag-cross-

correlation along n time series (see 5.1.2.8). Since there are 472 material flows, the possible 

groups would be 472! = 7 𝑥 101058. This is a huge number, which could not be solved in a 

reasonable computational time. That is why, the time series are divided into groups which are 

more likely to have the highest lag-cross-correlation coefficient, and namely, all the material 

flows coming to a single plant.  

A plant has up to 32 incoming flows, this value represents the number of logistics service 

providers which currently deliver material to the plants. Secondly, the automated Vector 

Autoregressive method might break down if too many time series with too few values are 

calculated, explicitly, the algorithm takes up too much memory and time to calculate all the 

parameters involved in the matrices. Moreover, the number of lags consider fitting the model 

also affects the algorithm performance, that is why a 1-lagged Automated Vector 

Autoregressive model is implemented in this case.  

Finally, another routine is implemented to eliminate the parameters with a significance level 

lower than 5%. This step improves the model accuracy as well as the final forecasts errors. To 

sum up, the multivariate time series implemented through the Automated Vector Autoregressive 

model is shown in Figure 18. 
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Figure 17. Comparison Cumulative MAPE Distribution Function Automated Moving Average, Test Type 2 
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Figure 18. Multivariate Time Series Implementation 

The first step in figure 18 takes, for example, 5 flows and makes the possible combinations 

of groups which have two things: on the one hand, that the time series in the group have a 1-

lag-cross-correlation; on the other hand, that the higher possible number of time series joins in 

this group. These two constrains make sure that the groups obtained do not follow a factorial 

function. After that, step two creates the VAR models, step three refine them, and step four 

generates the 4-month-ahead forecasts.  

 The results of the implementation can be briefly summarized in Table 8. For this algorithm, 

only the Test Type 2 was carried out due to the complexity of the implementation.  
 

Table 8. Multivariate Time Series, Test Type 2 

Numeration 
MAPE 

Improvement (%) 
Old_Method New_Method 

1 68.64 Exponential Smoothing Forecast Multivariate Time series 

2 59.13 Naive Forecast Multivariate Time series 

3 57.58 Naive Forecast Multivariate Time series 

4 52.96 Neural Network Forecast Multivariate Time series 

5 46.28 Naive Forecast Multivariate Time series 

6 39.06 Prophet Forecast Multivariate Time series 

7 37.96 Naive Forecast Multivariate Time series 

8 33.75 Simple Moving Average Multivariate Time series 

9 33.23 Ensemble Forecast Multivariate Time series 

10 27.54 Ensemble Forecast Multivariate Time series 

11 26.40 Ensemble Forecast Multivariate Time series 

12 24.78 Naive Forecast Multivariate Time series 

13 24.02 Exponential Smoothing Forecast Multivariate Time series 

14 22.15 Exponential Smoothing Forecast Multivariate Time series 

15 21.85 Ensemble Forecast Multivariate Time series 

  

The Vector Autoregressive model improved 32 out of 472 material flows, representing an 

improvement of 6.8%. The averaged MAPE was improved in 23.78% (Figure 19). This implies 



56 
 

that the VAR model may not improve as many flows as the SMA algorithm, but the accuracy 

of this improvement is higher than both Prophet and SMA algorithm. 

 

Figure 19. Comparison Cumulative MAPE Distribution Function Multivariate Time Series, Test Type 2 
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7.1.4 Prophet, SMA and Multivariate Time Series Combination 

Finally, all the three algorithms implemented were tested together, the results are presented 

in Table 9. 

Table 9. Prophet, SMA and Multivariate Algorithms Performance Summary 

Algorithms Averaged MAPE 

Improvement 

Improved 

Material Flows 

Stand 

Prophet Algorithms 8.31 % 43 out of 472 (9%) January 2018 

Automated Simple 

Moving Average 
3.78 % 

82 out of 472 (17.4%) January 2018 

Multivariate Time Series 23.78 % 32 out of 472 (6.8%) March 2018 

Prophet + SMA + 

MVTS 
7.82 % 

201 out of 472 (42.8%) March 2018 

 

Table 9 shows how the algorithms performed individually and combined. It is important to 

highlight that the Multivariate Time Series algorithm obtained the highest Averaged MAPE 

improvement, namely, 23.8%, which tells about the potential of finding lag cross-correlation 

among different time series. Therefore, it can be said that, there is indeed many time series’ past 

values which are correlated with future values of other time series, and that the decision of 

making times series groups of those that go to the same plant, delivered a significant 

improvement. Moreover, the Automated Simple Moving Average was able to improve more 

time series than the other two algorithms, representing a 17.4% of the total time series 

considered. Finally, the Prophet algorithm also had a significant contribution, above all, because 

the averaged MAPE improvement was higher than the improvement made by the Automated 

Simple Moving Average.  

 When the three algorithms are combined, dynamical relationships appear. That is to say, there 

should be maximum 157 improved material flows (the sum of the individual improvements), 

but their respective new forecasts are now included in the Ensemble Forecast, i.e. Ensemble 

Forecast now considers the average of the forecasts delivered by ARIMA, Neural Networks, 

Exponential Smoothing Methods, Naïve, Prophet, SMA and Multivariate. This new 

combination leads to an overall improvement of 201 material flows out of 472, representing the 

42.8% of the forecasts. As already stated by (Logility, 2017), just an improvement of 10% of 

forecasting accuracy can reduce inventory costs up to 10%, in this particular case, the average 

MAPE improvement was 7,82%, this could reduce inventory costs up to 7%.  

 

7.1.5  Ton-based Forecast 

As mentioned before, the forecasts are carried out by using a variable transformation. This 

allows to take advantage of an existing high correlation between these two variables and carry 

out a time series normalization to reduce the variability of the observations. The values are 

originally in tons, but due to the high correlation between the material flows and the production 

programs, a variable transformation is realized, namely: 

 

 
𝛼𝑡 =

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝐹𝑙𝑜𝑤 [𝑡𝑜𝑛]

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑔𝑟𝑎𝑚 [𝑈𝑛𝑖𝑡𝑠]
    𝑓𝑜𝑟 𝑡 = 𝑔𝑖𝑣𝑒𝑛 𝑚𝑜𝑛𝑡ℎ 

(112) 
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The forecasts are then made using the values delivered by this new time series, also called 

𝛼-time series, and multiplied by the future production programs. In order to test if this 

transformation, implemented initially by the company, better performs than using the time series 

in tons, Test Type 1 and 2 were carried out. Therefore, in this case the software was adjusted so 

that the forecasts were made in tons.   

 

7.1.5.1 Test Type 1: Ton-based Forecast 

The Test Type 1 delivers the performance comparison based on the material flows to three 

plants. Figure 20 depicts the results of this test. It can be found out that the forecasts performance 

worsened considerably when the ton-time series are used instead of the 𝛼 time series. 

7.1.5.2 Test Type 2: Ton-based Forecast 

Test Type 2 reinforces the results delivered by Test Type 1. Therefore, the 𝛼 time series have 

a better out-of-sample MAPE performance than the 𝑡𝑜𝑛 time series (Figure 21). That is why, all 

future adjustments to the software should be done for the forecast based on the 𝛼 transformation.  

The variability reduction reached by this transformation also explains the data inaccuracy of 

the Bill of Materials’ data bases. This is the problem currently found owing to the company’s 

data bases’ synchronization.  
 
 

7.5 Time Series Data Cleaning 

 

7.5.1 Outliers detection 

The outlier detection routines were analyzed, and it was found out that, a simple Interquartile-

Range-based Method for the outlier detection was not enough to clean the data time series 

correctly and completely. This is so because this method considered statistical data, which only 

includes correlation terms; however, time series models consider lag-autocorrelations values 

which are also important when it comes to detecting outliers in time series. Thence, the method 

proposed by (Chen & Liu, 1993) was implemented. This method is capable of fitting a 

corresponding ARIMA model to every single time series, and then it applies a structure, which 

is described in 5.4, that looks for 4 different types of outliers: An Innovational Outlier (IO), an 

Additive Outlier (AO), a Level Shift (LS), and a Temporary Change (TC). Depending on the 

type of outlier, interpolation or the median of the time series is used to replace the values.  

Figure 22 shows the results of the implementation. The algorithm improved the data quality, 

that is to say, the step 1 in Figure 10: the data cleaning. These results allowed the model to 

deliver better forecasts. The forecasts were carried out namely using the first three new 

algorithms: Prophet, Vector Autoregressive and Automated Simple Moving Average. The 

number of improved material flow forecasts were 314 out of 473, it means an improvement of 

66.4%, whereas the average improvement of the MAPE was 22.25%. This is a much better result 

than when only the three new algorithms were implemented. This result shows how important 

the quality of the input data for the forecasting process is. Just by adjusting the outliers of the 

time series, the overall improved material flows forecasts went from 42.8%, as stated in Table 

9, to 66.4%. This represents a 23.6 p.p. improvement. Additionally, the forecast accuracy 

improvement went from 7.82% to 22.25%, representing a 14.4 p.p. improvement. Therefore, 
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improving the data quality itself can lead to higher forecast accuracy. The current result now 

represents an Inventory Cost reduction up to 20%. 

For this algorithm only the Test Type 2 was carried out (Figure 22). A flow chart, which 

explains how the algorithm’s routine was implemented for this particular case, is found in Figure 

23.  

It is also important to mention here that an automatic deletion or replacement of outliers is 

better preceded by an analysis of the causes of the outlier.  For example, if the cause is human 

error when entering data, the outlier should be immediately replaced.  However, another cause 

might be a real change in demand trend. Automatic replacement could hide real changes in 

demand trends.   

 

  

 

Figure 20.  Comparison Cumulative MAPE Distribution Function Ton-Based Forecast, Test Type 1 
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Figure 21. Comparison Cumulative MAPE Distribution Function Ton-Based Forecast, Test Type 2 
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Figure 22. Comparison Cumulative MAPE Distribution Function Outlier Detection Algorithm, Test Type 2 
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Figure 23. Automated Outliers Detection Flow Chart 

Due to the particular data available, namely the two time series Actual_ton and Should_ton, 

it is important to consider both when replacing outliers. The process starts at setting ARIMA 

models to both the actual and the should time series, then the automated outlier detection method 

is applied to these ARIMA models, which delivers the outliers and their corresponding adjusted 

value. Then the actual time series is adjusted using both the corrected should time series and its 

adjusted values. This is done by using a simple decision rule similar to the one used for the 

Interquartile Range Method. The rule is if a value in the actual time series is an outlier, then 

replace it by the corresponding value in the should time series, as long as this value is not itself 

an outlier; if the value of a month is an outlier for both time series then the adjusted value, found 

by the automated outliers’ detection method, is used instead.  Finally, the new adjusted actual 

time series is returned, and this will be the one used to make the forecasts.  

 

7.5.2 Linear Interpolation 

As stated before, improving the data quality leads to improvement of the forecasts’ accuracy. 

Given that the outlier detection algorithm only works for complete time series, there are some 

information loss for material flows having missing values. This is so because the information 

before a missing value is not considered by the forecasting process. The time frame considered 

in this analysis is the monthly material flows between January 2014 and April 2018. Missing 

values frequently appear between years 2014 and 2015.  

 A linear interpolation algorithm was used in order to find the missing values. Then a routine 

was implemented to complete all the missing values found in every single material flow time 

series.  

This new implementation was added to the software combining the Prophet Algorithm, the 

Automated Simple Moving Average, the Multivariate Time Series and the outlier detection 

procedure. Table 10 summarizes all the results obtained with the implemented algorithms. The 

very last implementation is then the linear interpolation which allows the final software, 

compared to the original software, to improve 325 material flows out of 4814 representing now 

the 67.6% of all material flows. Moreover, the averaged MAPE was also improved to 24.84%. 

Therefore, better data quality leads to better forecasts. This can be implied from the results, 

                                                           
4 As of April 2018, there are new material flows having more than 10 monthly values, which is the requirement 

for a material flow time series to be forecasted. 
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given that the averaged MAPE improvement by the new algorithm was 7.82%, whereas the 

outlier detection procedure and the interpolation allowed this improvement to rise on 17.82 p.p. 

This is an extremely important result, since a merely improvement in data quality, i.e. the Bill 

of Material’s data bases information accuracy, has the potential to reduce Inventory Costs up to 

17%. Finally, the Empirical Distribution of the MAPE’s is depicted in Figure 24.  

 

 

Figure 24. Comparison Cumulative MAPE Distribution Function Interpolation Algorithm, Test Type 2 
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Table 10. All Algorithms Performance Summary 

Algorithms Averaged MAPE 

Improvement 

Improved 

Material Flows 

Stand 

Prophet Algorithms 8.31 % 43 out of 472 (9%) January 2018 

Automated Simple Moving 

Average 
3.78 % 

82 out of 472 (17.4%) January 2018 

Multivariate Time Series 23.78 % 32 out of 472 (6.8%) March 2018 

Prophet + SMA + MVTS 7.82 % 201 out of 472 (42.8%) March 2018 

P + SMA + MVTS + 

Outliers detection 
22.25% 314 out of 473 (66.4%) March 2018 

P + SMA + MVTS + 

Outliers detection + 

Interpolation 

24.84% 325 out of 481 (67.6%) April 2018 

 

7.6 Run Time Improvements 

 

7.6.1 For-loop Indexing 

In the R-Script Fit and Forecast Univariate Methods there was initially an indexing error in the 

most internal for-loop, which is the one in charge of making the cross-validation tests for every 

time series. The indexing was beyond the length of the training data set for each time series, 

adding a false cross-validation out-of-sample MAPE at the end of the training process. The 

overall averaged MAPE for each test was then either under or overestimated. Thence, the 

indexing problem was adjusted correspondently, allowing the software to deliver reliable 

averaged MAPE’s from each cross-validation test. All the analysis since the implementation of 

the Prophet Algorithm were carried out using the indexing-problem-corrected software.  
 

7.6.2 Triple for loop to double for loop 

The R-Script Fit and Forecast Univariate Methods (Figure 10) was featured by three for loops. 

The first for loop calls every logistics service provider, the second for loop calls every plant. At 

this point the software is able to call all possible material flows combinations. Finally, a third 

for loop was used to carry out the cross-validation tests from time 𝑘 < 𝑛 to time 𝑛 − 𝑘 − 4, 

where n is the number of periods of the given Time Series, k is the starting time for the training 

set, and 4 owing to the 4-step-ahead forecasts.  

Afterwards, still in the second for loop, the 4-month-ahead forecasts are carried out, using 

the chosen algorithm for the given material flow. Therefore, instead of making the software to 

look for all possible combinations among all logistics service providers and all plants, these 

combinations are already available in the Historical_Forwarded_Material.csv file, so they are 

provided directly to a for loop before starting the process, and then an inner for loop does the 

cross-correlation calculation. This changes allows the calculations to reduce from 3 for loops to 

2 for loops, reaching a quadratic algorithm, which computationally better performs than a cubic 

algorithm (Sedgewick & Wayne, 2011). This implementation reduced the computational time 

to the half.  
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7.6.3 Historical MAPE values saved 

Instead of calculating the cross-validation tests every month, the out-of-sample MAPE’s can be 

saved in a file, which then can be used as an input for the next month’s forecasts. This was an 

implementation made in order to improve the computational time. Using the saved historical 

MAPE values from the cross-validation tests, the computational time for the now double for-

loop, in the R-Script Fit and Forecast Univariate Methods, was reduced up to 96%. The whole 

calculation including the triple for loop, the prophet algorithm and the Automated Simple 

Moving Average would take up to 2,3 hours; while, with the double for-loop and using the saved 

historical MAPE’s as input, the forecasts can be obtained in 5 minutes in a 4 GB RAM, Intel 

Core i5 4310 2.7 GHz Laptop. This result allows now the logistics analysts to avoid waiting 

time to use the workstation. 
 
 

7.7 Forecasting for Consolidation Centers 

 

Given that the company’s analyst has used the 𝛼 −time series to make all forecasts, no 

forecasts for their own Consolidation Centers have been made so far. This is so because the 

Consolidation Center do not have any Production Program to relate with. Notwithstanding, even 

though making forecasts with the 𝑡𝑜𝑛 −time series results in less accurate results than the 

forecasts based on 𝛼 −time series, this is a feasible solution which can deliver this important 

information.  

Therefore, 𝑡𝑜𝑛 −time-series-based forecasts were made for 4 consolidations centers. Both 

univariate and multivariate methods were used to make the forecasts, that is to say, all the 

forecasts for the Consolidation Center’s observations are all made based on univariate methods 

and then all made based on multivariate methods. These two results are then compared, and the 

most accurate calculations are chosen, i.e. better MAPE. 

 This added to the calculation 56 additional material flows, so that the new number of total 

material flows time series available to forecasts is 537. 

 

7.8  Error Measures Improvements 

 

7.8.1 MAPE Evaluation  

When evaluating the model fitting, there are several criteria that may be of value. 

Notwithstanding, as (Montgomery, 2016) mentioned, concentrating too much on the model that 

produces the best historical fit often results in overfitting. Overfitting is one main feature to 

avoid in this forecasting process. This is achieved by allowing the software to recalculate the 

models’ parameters monthly. Hence, the best approach is to select the model that results in the 

smallest standard deviation (or Mean Squared Error -MSE) of the one-step-head forecast error 

when the model is applied to data that were not used in the fitting process. This is called the out-

of-sample forecast error standard deviation. This is the process which has been applied to the 

forecast evaluation by the company so far; however, the Mean Absolute Percentage Error 

(MAPE) was used instead.  

The forecast process follows a rolling forecast method, which considers the MAPE out-of-

sample forecast error for several cross-validation tests, namely, 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑡𝑒𝑠𝑡𝑠: (𝑛 − 𝑘 −
4 ), where n is the number of observation in a time series and k is the minimum number of 
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training values to fit a forecasting model. The k value was originally set to be 6, i.e. the number 

of minimum observations to be found in a time series must be at least 10, specifically, a training 

set of 6 values and 4 values to calculate the out-of-sample MAPE with the 4-step-ahead forecasts 

obtained by each method. Finally, 4 stands for the 4-step-ahead forecast carried out in each test.  

Due to this approach, there is some bias introduced for the first tests, which only use few 

values from the time series of the main leg material flow. For example, a given time series with 

20 values, will have 10 cross-validation tests, however only the very last test will use 16 values 

of the time series to predict values 17-20. Thence, the accuracy of the model, on the first 1-9 

cross-validation tests, is not the same as the accuracy of the cross-validation test which uses the 

maximum amount of information possible from the time series. Therefore two main changes 

will be introduced: (1) the Smoothed Errors (7.8.1.1), (2) the minimum value of k is now n/2, 

this last requirement makes sure to have at least 20 observations in the training set as stated by 

(Montgomery, 2016). 

 

7.8.1.1 Smoothed Errors 

In consequence of the previous description, due to the time relationship between the cross-

validation tests and their corresponding MAPE out-of-sample forecast errors, this measure can 

be seen as an error tracking signal (Vidal Holguín, 2010) , and using a smoothing parameter will 

allow the model to have a smoothed 4-step-ahead forecast error, creating a exponentially 

weighted moving average (EWMA) tracking signal (Montgomery, 2016). The EWMA is a 

weighted average of all current and previous forecast errors, whose weights decrease 

geometrically with the “age” of the forecast error.  

As stated by (Montgomery, 2016) and (Fildes & Goodwin, 2007)’s approach, when 

evaluating forecast accuracy, it is better to have different forecast error measures which can be 

then compared. Thence, the Mean Squared Error (MSE) was added to the software as a forecast 

error measure. Now, all the material flows forecasts obtain both a 4-ahead out-of-sample MAPE 

and MSE. According to (Montgomery, 2016), the MSE is a better measure of the out-of-sample 

forecast standard deviation. Therefore, the MSE is now the criterion to decide which forecasting 

method better performs at the cross-validation tests for a given material flow time series. 

The Exponentially Weighted Moving Average approach was applied to both the MAPE and 

the MSE showing significant positive results. Firstly, it eliminated previous biased information 

in the historical MAPE’s evaluation. This result can be translated into lower historical MAPE 

values for each material flow time series (Figure 25). However, this does not necessarily mean 

an improvement in the software’s accuracy but rather a change in the forecast’s error approach. 

Secondly, the information is now more reliable, since the Exponentially Weighted Moving 

Average MAPE and MSE set the highest weights to the most recent cross-validation tests’ 

errors. In other words, cross-validation tests, having few values, are set to the lowest weights 

while cross-validation tests with the most values are set to the highest weights. Finally, the 

EWMA-MSE now leads the automation for which a given method is chosen to forecast a 

material flow time series; this is an important result for the next section, in which the tracking 

signals will be discussed. 

 

7.8.2 Tracking Signals and Control Charts 

Control charts are a well-known tool in today’s industry, and Shewhart control charts are the 

best known of these. Despite their popularity, they are unable to detect small shifts in a process 

quickly enough. For this reason other charts have been implemented, such as the Cumulative 
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Sum (CUSUM) and the Exponentially Weighted Moving Average (EWMA) charts 

(Maravelakis, Panaretos, & Psarakis, 2004).  

EWMA charts are explained in section 5.3.2. These charts allow the analyst to check more 

easily a change in the mean of a process by allowing the lower and upper Control Limits to 

adjust as time evolves. This methodology was therefore applied to the forecasts using 

(Montgomery, 2016)’s approach.  

For every single time series, the following simulation was made: Since the current modified 

and improved software is just available in April 2018, a historical data simulation was made. 

That is to say, the data were split into subsets and the 4-step-ahead forecasts for the months 

October 2017, November 2017, December 2017, January 2018, February 2018, March 2018 and 

April 2018 were calculated. Then the 4-step-ahead out-of-sample MAPE as well as the MSE 

were obtained. Using the corresponding MAPE’s an EWMA Shewhart Control Chart for every 

single material flow time series was created. 

 

 
Figure 25. EWMA Cumulative MAPE Distribution Function 
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The results are highly important. Since the software calculates the model parameters in every 

single simulation, i.e. for every month in which the 4-month-ahead forecast was carried out, the 

best model chosen was not the same as the former one (in most of the cases). As there is new 

information, the added observed values are used to (1) recalculate the model parameters, (2) 

make one additional cross-validation test, (3) add the corresponding out-of-sample MAPE and 

MSE to the historical forecast error data base (described in 7.6.3), and then (4) decide, based on 

the lowest MSE, which method better now performs with the added information, and (5) use it 

correspondingly to obtain the new forecasts.  

The EWMA Control Charts shown in Figures 26, 28 and 30 contain the Upper and Lower 

Control Limits, which change over time (blue lines). The MAPE measure was the one chosen 

since this allows a faster and easier interpretation of the forecasts errors by the logistics analysts. 

The mean of the MAPE’s (black line) and the corresponding MAPE’s over time (red line) 

represent the material flow time series’ residuals. Moreover, a chart on the right displays which 

method was chosen in every single month.  There are currently 536 Control Charts available, 

including both plants and consolidation center material flow forecasts.   

The first highlighted result is that some time series follow the same Forecasting Model in all 

the simulations. For example, Figure 26 follows the Prophet Forecast Algorithm, the 

corresponding time series with their respective actual and should values are depicted in Figure 

27. This time series is clearly non-stationary, but Prophet Algorithm is able to capture its 

underlying features and over time “learns” how the values will behave in the future so that the 

error measure improves. The errors lie between the control limits.  

On the other hand, there are other time series in which the software chooses different 

forecasting methods over the time, improving the error measure considerably, so that the 

residuals go below the Lower Control Limit (Figures 28 and 29). This does not mean that the 

forecasts are out of control but rather that the mean of the process is changing, since the software 

is selecting the best method each time and this decision leads to better forecast errors.  

Finally, there are some cases, in which the Error Measure worsened and went above the 

Upper Control Limit. A sample case is shown in Figure 30. This indicates that the new observed 

values increased the time series variability, so this is a good input for the logistic analyst to 

check whether the new information in the data bases is correct or whether some unexpected 

situation caused changes in the material flow volume.  

All this information is plotted on a pdf file called Control_Charts.pdf, i.e. the Control 

Charts for every single material flow. Moreover, the first page displays a summary of the 

underlying results (Figure 32). For the whole simulation, in the month of April the material flow 

time series’ residuals are featured as: Out of 536 time series, 95 MAPE’s are above the Upper 

Control Limit, 106 are between the control limits and 335 are below the Lower Control Limits. 

This indicates that 62.7% of the forecast, corresponding to the ones below the Lower Control 

Limit, have changed their respective Forecasting Method and their mean forecasting error has 

changed. Additionally, only 17.7% of the forecasts are above their Upper Control Limits. This 

is explained by the information accuracy problem that the company currently faces and the 

simulation time frame, which only covers 7 months. Finally, the 20% of the Time Series MAPE 

are under control. Here it is important to apply further research, since 7 values for the Control 

Charts are still too few to correctly assess the Error Measure’s performance. Unfortunately, the 

information accuracy is the main factor which constrains the research’s scope.  
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Figure 26. Control Chart Sample, MAPE between control limits 

 

Figure 27. Material Flow from Sample Chart Figure 26 
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Figure 28. Control Chart Sample, MAPE below lower control limit 

 

Figure 29. Material Flow from Sample Chart Figure 28 
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Figure 30.  Control Chart Sample, MAPE above upper control limit 

 

Figure 31. Material Flow from Sample Chart Figure 30 
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Figure 32. Summary Control Charts April 2018 

 

7.9 Final Software Procedure Description 

 

Figure 33. Final Software Flow Chart Description 

The final software procedure designed in this work is depicted in Figure 23. Now there are 

10 R-Scripts which apply all the added functions and new algorithms. The process can be 

described as follows: 

(1) Data Cleaning: Cleans the data; corrects wrong values with correction table; applies 

two outlier detection processes, namely, Interquartile Range and tsoutliers; then applies 

linear interpolation for missing values. Finally, it delivers a pdf with all the material 

flows charts, showing both actual and should time series (see Figure 9, for example). It 

also delivers the Material Flows pdf if the user wishes.   

(2) Data Visualization: Delivers the Variation Coefficient charts as well as the Historical 

Material Flow and Production charts.  

(3) Fit Forecast Univariate Methods: Applies univariate methods to the historical data of 

both plants and consolidation centers. The methods used are: Naïve, ARIMA, Neural 

Network, Exponential Smoothing, Prophet Algorithm and Automated Simple Moving 

Average.  It delivers the historical MAPE’s and MSE’s, which can then be used to make 

the forecasts. This step should be done once for the next coming months.  
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(4) Forecast Univariate Methods: Applies univariate methods to both plants and 

consolidation centers. The methods used are: Naïve, ARIMA, Neural Network, 

Exponential Smoothing, Prophet Algorithm and Automated Simple Moving Average. If 

the historical MAPE’s and MSE’s are available, step 3 can be skipped. The historical 

MAPE’s and MSE’s work as input and then it is upgraded with the current new 

information, so that next month’s forecasts can reuse them.  

(5) Correlated groups Factories: Finds all possible 1-lag-cross correlated material flows 

that go to a plant.  

(6) Correlated groups Consolidation Centers: Finds all possible 1-lag-cross correlated 

material flow that go to the Company’s Consolidation Centers. 

(7) Forecast MVTS: Applies Vector Autoregressive Model to all correlated group of 

material flows on the Factories and delivers the corresponding Forecast based on this 

Multivariate Method.  

(8) Forecast MVTS CC: Applies Vector Autoregressive Model to all correlated groups of 

material flows on the Consolidation Centers and delivers the corresponding Forecast 

based on this Multivariate Method.  

(9) Control Charts: Delivers the control charts as pdf and join all the forecasts delivered 

by Forecast Univariate, Forecast MVTS and Forecasts MVST CC. The final forecast 

data is then called Joint Forecasts. 

(10) Forecast Report: Delivers the forecast report as csv file, as well as the Forecast Error 

Graphics as pdf. 

The final software performance can also be assessed by the distribution of the forecasting 

methods. This distribution can be found in Figure 34. It is important to highlight, that now the 

three new introduced algorithms take up to 29% of all forecasts. However, 15.2% of the 

algorithms are forecasted by the Ensemble Forecast Method, which is also influenced by the 

three new algorithms. Hence, it can be stated that, the new algorithms take part in up to 44.2% 

of the forecasts. Another important result is that Naïve Algorithm takes up to 10% of the 

forecasts, this tells about the high variability and inconsistence patterns that some material flows 

show.  

Furthermore, Figure 35 shows a scattered plot of the single MAPE values for each material 

flow and their corresponding monthly average material volume. This graphic allows to 

understand how the distribution of the forecast is, and how they may influence on extra costs. 

When a material flow forecasts has a high forecast error and high monthly material volume, 

then this high variability is likely to cause additional transportation costs with high impact. On 

the other hand, a high forecast error but a low monthly material volume will not have a great 

impact in additional transportation costs. That is why, the ideal MAPE distribution is low 

forecast errors on high material volume and ideally not too high forecast errors on low material 

volumes.  

Figure 35 shows then how the new software improved the MAPE distribution. For this 

graphic the forecasts for the month April 2018 were carried out using both the new and the 

original software, and then the results were plotted together. The red points representing the new 

method are now lower than the blue ones. This demonstrates graphically how the new software 

performs better than the original version. 
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Figure 34. Forecast Methods Distribution 

 

Figure 35. Relation MAPE and average monthly material flow in tons April 2018 
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Finally, Table 11, summarizes the overall change applied to the software’s performance. At 

the starting time in February 2018, the software was able to produce forecasts to 471 material 

flows, the consolidation centers did not have any forecast and only 13% of the forecasts’ MAPE 

were lower than 10%. The new software, up to April 2018, is now capable of delivering forecasts 

for 537 material flows, including the consolidation centers. Forecasts having less than 10% 

MAPE now represent the 43.6% of all the material flows. This result shows an improvement of 

30.6 p.p. Another relevant feature to highlight is the forecasts having more than 40% MAPE, 

these were reduced from 11% to 4.5%.  

To conclude, it can be implied from Table 11, that up to April 2018, 80.1% of all material 

flows have a MAPE of less than or equal to 20%.  

 

Table 11. MAPE distribution Comparison Table February vs April 2018 
MAPE 

Category 

Frequency 

Original Software 

Feb 2018 

Percentage 

Original Software 

Feb 2018 

Frequency 

Improved Software 

Apr 2018 

Percentage 

Improved Software 

Apr 2018 

lower than 10% 61 13.0% 234 43.6% 

between 10% and 

20% 
215 45.6% 196 36.5% 

between 20% and 

30% 
106 22.5% 62 11.5% 

between 30% and 

40% 
37 7.9% 21 3.9% 

higher than 40% 52 11.0% 24 4.5% 

TOTAL 471 100,0% 537 100% 
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8 CONCLUSIONS 

 
 

The current research extended the forecasting methods’ scope for the monthly material flows 

of an international automotive company by allowing the implementation of three new 

algorithms, namely: The Prophet Algorithm, the Vector Autoregressive (Multivariate Time 

Series) and Automated Simple Moving Average, and two new data cleaning methods: 

Automated Outlier Detection and Linear Interpolation.  

Figure 35 shows then how the new software improved the MAPE distribution. The forecast 

for the month of April 2018 were carried out using both the new and the original software, and 

then the results were plotted together. The blue points (upgraded software) are now lower than 

the red ones (original software).  This proves graphically how the upgraded software performs 

better than the original version. Quantitatively, it can be stated that, according to Table 11, up 

to April 2018, 80.1% of all material flows have a MAPE of less than or equal to 20%, in 

comparison with the 58.6% of all material flows which had the same behavior in the original 

software.  

All the analysis realized in this research were made with actual data from the company, and 

the upgraded software was approved by the logistics analysts to make all future material flow 

forecasts.  The software’s copyright is property of the company. 

To sum up, the new algorithms’ performance, it can be stated that, the Prophet Algorithm 

allows the analyst to adjust manually or automatically different parameters like seasonality, 

trends and holidays. In this research, these parameters were chosen automatically by the 

algorithm. Further research may test how individual parameters can be assigned to the material 

flow time series. This algorithm proved to have a high performance even if the parameters are 

automated. 10.6% of all forecasts are obtained now by the Prophet Algorithm.  

Moreover, Simple Moving Average can capture the average trend of a time series. This 

feature is suitable for time series with high variability, like many of the company’s material 

flows. This algorithm proved to have a high positive impact on the forecasts and had the highest 

improvement on the number of material flows. 15.4% of all forecasts are now obtained by the 

Automated Simple Moving Average. This is a significant result since Simple Moving Average 

is the simplest method to forecast. 

On the other hand, Vector Autoregressive Method is certainly a powerful algorithm which, 

based on the Multivariate Time Series Theory, is able to take advantage of the lag-cross 

correlation among different time series and create models capable of predicting future values 

with high accuracy. This algorithm had the highest improvement on the average MAPE 

(23.78%), which also demonstrates its potential. Further research can be also applied, like 

extending the 1-lag VAR model to 2-lag VAR model; or even using the Vector Autoregressive 

Moving Average (VARMA) model, which can also consider the Moving Average of the lag-

cross correlations.  

The three new algorithms represent now 29% of all forecasts. Moreover, since the Ensemble 

Forecast method takes the average of all forecasts delivered by all methods, the new algorithms 

also influence these results. It can be implied then that the three new algorithms take part in up 

to 44.3 % of the forecasts.  

Given the available information, namely, the forecasts for the production programs in the 

coming months; these data could be used as input to make a Multivariate Linear Regression 

Analysis, which is also likely to deliver good forecasts outperforming the current methods. 
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The outlier detections methods, explicitly, the Interquartile Range and the Time Series 

Outlier Detection are robust enough for the current input data. These methods are complemented 

by the Linear Interpolation Algorithm, which prepares the data, filling in the missing values, 

before the time series go to the outlier detection process.  

The two new cleaning data procedures allowed the software to reach a much higher accuracy 

than before. This demonstrates that the most important feature when making forecasts is the 

data quality. This is indeed the most important issue that the company currently faces. The 

company is undergoing a data bases upgrading and synchronization process in all its plants, 

which causes the company to have information quality problems.  

At the current research, the main problem was that the Bill of Materials is not clear to every 

product. That is why, the monthly forwarded material is forecasted, so that the logistics 

managers can have a clearer view of how much material in aggregated units they will need to 

transport in the coming months.  

 

 

  



78 
 

9 REFERENCES 

 

 

Berkovec, J. (1985). Forecasting automobile demand using disaggregate choice models. 

Transportation Research Part B, 19(4), 315–329. https://doi.org/10.1016/0191-

2615(85)90039-6 

Box, G., & Tiao, G. (1975). Intervention Analysis with Applications to Economic and 

Environmental Problems. Journal of the American Statistical Association, 70(349), 70–

79. https://doi.org/10.2307/2285379 

Brown, R. C. (1972). Detection of Turning Points in a Time Series. Decision Sciences, 3(4), 

1–18. https://doi.org/10.1111/j.1540-5915.1972.tb01664.x 

Byrd, R. H., Lu, P., Nocedal, C., & Zhu, C. (1994). A limited memory algorithm for bound 

constrained optimization, 1–12. https://doi.org/10.1145/279232.279236 

Chen, C., & Liu, L.-M. (1993). Joint Estimation of Model Parameters and Outlier Effects in 

Time Series. Journal of the American Statistical Association, 88(421), 284–297. 

https://doi.org/10.2307/2290724 

Claeskens, G., Magnus, J. R., Vasnev, A. L., & Wang, W. (2016). The forecast combination 

puzzle: A simple theoretical explanation. International Journal of Forecasting, 32(3), 

754–762. https://doi.org/10.1016/j.ijforecast.2015.12.005 

Fildes, R., & Goodwin, P. (2007). Against your better judgment? How organizations can 

improve their use of management judgment in forecasting. Interfaces, 37(6), 570–576. 

https://doi.org/10.1287/inte.1070.0309 

Gardner, E. S. (2006). Exponential smoothing: The state of the art—Part II. International 

Journal of Forecasting, 22(4), 637–666. https://doi.org/10.1016/j.ijforecast.2006.03.005 

Gnauck, A. (2004). Interpolation and approximation of water quality time series and process 

identification. Analytical and Bioanalytical Chemistry, 380(3 SPEC.ISS.), 484–492. 

https://doi.org/10.1007/s00216-004-2799-3 

Granger, C. W. J. (1969). Investigating Causal Relations by Econometric Models and Cross-

spectral Methods. Econometrica, 37(3), 424. https://doi.org/10.2307/1912791 

Harvey, A., & Peters, S. (1990). Estimation procedures for structural time series models. 

Journal of Forecasting, 9(2), 89–108. https://doi.org/10.1002/for.3980090203 

Hyndman, R. J., & Athanasopoulos, G. (2014). Forecasting: Principles and Practice: Notes. 

OTexts (1st. Editi). Texts, Online Open-Acces Textbooks. Retrieved from 

https://www.otexts.org/fpp/2/5%5Cnhttps://play.google.com/store/books/details?id=gDu

RBAAAQBAJ%5Cnhttps://play.google.com/books/reader?id=gDuRBAAAQBAJ&prints

ec=frontcover&output=reader&hl=el 

Hyndman, R. J., & Khandakar, Y. (2008). Automatic Time Series Forecasting: the forecast 

Package for R, 27(3), 23. https://doi.org/10.18637/jss.v000.i00 

Lepot, M., Aubin, J.-B., & Clemens, F. (2017). Interpolation in Time Series: An Introductive 

Overview of Existing Methods, Their Performance Criteria and Uncertainty Assessment. 

Water, 9(10), 796. https://doi.org/10.3390/w9100796 

Logility. (2016). Eight Methods that Improve Forecasting Accuracy Eight Methods that 

Improve Forecasting Accuracy, 12. 

Logility. (2017). Practical Tips to Improve Demand Planning, 8. Retrieved from 

www.logility.com 

Maravelakis, P. E., Panaretos, J., & Psarakis, S. (2004). EWMA chart and measurement error. 

Journal of Applied Statistics, 31(4), 445–455. 



79 
 

https://doi.org/10.1080/02664760410001681738 

Montgomery, D. C. (2016). Time Series Analysis and Forecasting. 

https://doi.org/10.1007/978-3-319-28725-6 

Schöneberg, T., Koberstein, A., & Suhl, L. (2010). An optimization model for automated 

selection of economic and ecologic delivery profiles in area forwarding based inbound 

logistics networks. Flexible Services and Manufacturing Journal, 22(3–4), 214–235. 

https://doi.org/10.1007/s10696-011-9084-5 

Sedgewick, R., & Wayne, K. (2011). Algorithms. (P. Education, Ed.) (4th Editio). Boston: 

Addison-Wesley. 

Shan, H., Hu, E., Wang, L., & Liu, G. (2014). Forecasting Electric Vehicles Demand in USA. 

Pakistan Journal of Statistics, 30(5), 939–955. https://doi.org/10.1007/978-3-662-43871-

8 

Smith, J. ., & Wallis, K. F. (2009). A simple explanation of the forecast combination puzzle. 

Oxford Bulletinn of Economics and Statistics, 71, 331–355. 

Sorensen E., B. (2012). ECONOMICS 7344. Houston, Texas: University of Houston. 

Retrieved from http://www.uh.edu/~bsorense/arma-intro2012.pdf 

Syntetos, A. A., Babai, Z., Boylan, J. E., Kolassa, S., & Nikolopoulos, K. (2016). Supply 

chain forecasting: Theory, practice, their gap and the future. European Journal of 

Operational Research, 252(1), 1–26. https://doi.org/10.1016/j.ejor.2015.11.010 

Taylor, S. J., & Letham, B. (2017). Forecasting at Scale. PeerJ Preprints, 1–17. 

https://doi.org/10.7287/peerj.preprints.3190v1 

Tsay, R. S. (University of C. (2014). Multivariate Time Series Analysis. Chicago, IL. 

Vidal Holguín, C. J. (2010). Fundamentos de Control y Gestión de Inventarios (2da Edició). 

Cali, Colombia: Universidad del Valle. 

 

 



80 
 

10 ATTACHMENT 1: FLOW CHART FORECAST SOFTWARE 

 

 

 

  

 

 
 

 


